
Priority Inversion
POSIX scheduling support

RT Java scheduling support

Embedded Real-Time Systems—Lecture 13

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science

Real-Time Systems and Embedded Systems Group

14 January 2009
Last compiled: January 19, 2009, 22:34 hrs

Priority Inversion
Scheduling in POSIX and
RT Java

WS 2008/09 Embedded Real-Time Systems Slide 1

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

Overview
Priority Inversion

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

POSIX scheduling support
Sporadic servers
Inheritance of scheduling characteristics
Keeping RT applications in check
Priority inheritance

RT Java scheduling support
The scheduler
Avoiding priority inversion

WS 2008/09 Embedded Real-Time Systems Slide 2

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

Process Interactions and Blocking

I A process may be blocked:
Suspended waiting for a lower-priority process to complete
some required computation or to release a resource

I Example: Processes a, b, c , and d , accessing resources Q and
V as follows

Process Priority Release Time Execution Sequence
(P) E: Execute

Q: Access Resource Q
V: Access Resource V

a 4 4 EEQVE
b 3 2 EVVE
c 2 2 EE
d 1 0 EQQQQE

WS 2008/09 Embedded Real-Time Systems Slide 3

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

Example of Resource Sharing

R. v. Hanxleden 2002 WS 2002/03  – Real-Time Systems I  – Lecture_22 Slide 4

Example of Resource Sharing
Process

d

c

b

a

0 2 4 6 8 10 12 14 16 18

Executing

Executing with Q locked

Preempted

Executing with V locked

Blocked

WS 2008/09 Embedded Real-Time Systems Slide 4



Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

Priority Inversion

I Priority inversion: A process (a) is blocked waiting for a
lower-priority process (d) to complete some required
computation or to release a resource

I Some of this is inevitable if
I Resources are shared among processes of different priority
I A lower-priority process that uses a resource cannot be

preempted from using this resource by a higher-priority process

I However, the (indirect) blocking of the high-priority process
(a) by medium-priority processes (b and c) that prevent the
low-priority process (d) from freeing the resource can (and
should) be avoided

WS 2008/09 Embedded Real-Time Systems Slide 5

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

One Solution: Nonpreemptive Critical Sections

I Consider the interval from allocating a resource until releasing
the resource a critical section

I Nonpreemptive Critical Sections Protocol: Schedule all critical
sections nonpreemptively

I When job requests resource, always allocate the resource
I When job holds resource, executes at priority higher than

priority of all other jobs

I Disadvantage: High-priority jobs may get delayed
unnecessarily

WS 2008/09 Embedded Real-Time Systems Slide 6

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

Another Solution: Priority Inheritance
If process p is blocking process q, it runs with q’s priority

R. v. Hanxleden 2002 WS 2002/03  – Real-Time Systems I  – Lecture_22 Slide 6

A Solution: Priority Inheritance

d

c

b

a

0 2 4 6 8 10 12 14 16 18

Process

Executing
Executing with Q locked

Preempted

Executing with V locked Blocked

WS 2008/09 Embedded Real-Time Systems Slide 7

Note: We consider a process “preempted” if it is preempted by a
process with a statically higher priority; otherwise, we consider it
“blocked”



Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

Calculating Maximal Blocking Time

I If a process has K critical sections that can lead to it being
blocked, then the maximum number of times it can be
blocked is K

I Let usage(k , i) be 1 if resource used by critical section k is
used by at least one process with priority less than Pi , and by
at least one process with priority greater or equal to Pi ;
otherwise 0

I Let C (k) be the WCET of critical section k

I The the maximum blocking time Bi of process i is then given
by:

Bi =
K∑

k=1

usage(k , i)C (k)

WS 2008/09 Embedded Real-Time Systems Slide 8

I Note: In the definition of usage(k , i), “one process with
priority greater or equal to Pi” may be i itself as well.

I Note also that [Burns and Wellings] here treats “critical
sections” and “resources” as synonymous. We here separate
these concepts, to allow one resource to be used multiple
times by the same process, in different critical sections.

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

Response Time and Blocking

I If we have obtained a blocking time, we can extend formula
(5) as follows:

Ri = Ci + Bi +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj

I This again can be expressed as a recurrence:

wn+1
i = Ci + Bi +

∑
j∈hp(i)

⌈
wn

i

Tj

⌉
Cj

WS 2008/09 Embedded Real-Time Systems Slide 9

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

Priority Ceiling Protocols

I The standard priority inheritance protocol gives an upper
bound on the number of blocks a high-priority process can
encounter—however, this may lead to an unacceptably
pessimistic worst case

I Furthermore, transitive blocking may lead to chains of
blocks—process c is blocked by b which is blocked by a etc.

I In addition, we want to eliminate deadlock when accessing the
resource

I All these issues are addressed by the Priority Ceiling protocols
(PCPs), of which we will discuss two forms:

I Original priority ceiling protocol, OPCP
I Immediate priority ceiling protocol, IPCP

WS 2008/09 Embedded Real-Time Systems Slide 10



Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

PCP Properties on a Single Processor

I A high-priority process can be blocked at most once during its
execution by any lower-priority processes

I Deadlocks are prevented

I Transitive blocking is prevented

I Mutual exclusive access to resources is ensured, by the
protocol itself (no semaphores etc. required)

WS 2008/09 Embedded Real-Time Systems Slide 11

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

The Original Priority Ceiling Protocol (OPCP)

1. Each process has a static default priority assigned, perhaps by
the deadline monotonic scheme

2. Each resource has a static ceiling value defined, this is the
maximum priority of the processes that will use it

3. A process has a dynamic priority that is the maximum of its
own static priority and any it inherits due to it blocking
higher-priority processes

4. A process can only lock a resource if:
I Its dynamic priority is higher than the ceiling of any currently

locked resource (excluding any that it has already locked itself)

WS 2008/09 Embedded Real-Time Systems Slide 12

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

OPCP Inheritance

R. v. Hanxleden 2002 WS 2002/03  – Real-Time Systems I  – Lecture_22 Slide 12

OPCP Inheritance

d

c

b

a

0 2 4 6 8 10 12 14 16 18

Process

Executing

Executing with Q locked

Preempted

Executing with V locked

Blocked

WS 2008/09 Embedded Real-Time Systems Slide 13

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

The Immediate Priority Ceiling Protocol (IPCP)

1. Again, each process has a static default priority assigned, perhaps by the
deadline monotonic scheme

2. Also, each resource has a static ceiling value defined, this is the maximum
priority of the processes that will use it.

3. A process has a dynamic priority that is the maximum of its own static
priority and the ceiling values of any resources it has locked

I As a consequence, a process will only suffer a block at the very beginning
of its execution
Note: We assume that a process is only pre-empted by other processes of
higher priority, not of the same priority

I Once the process starts actually executing, all the resources it needs must
be free
If they were not, then some process would have an equal or higher priority
and the process’s execution would be postponed

WS 2008/09 Embedded Real-Time Systems Slide 14



Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

IPCP Inheritance

R. v. Hanxleden 2002 WS 2002/03  – Real-Time Systems I  – Lecture_22 Slide 14

IPCP Inheritance

d

c

b

a

0 2 4 6 8 10 12 14 16 18

Process

Executing

Executing with Q locked

Preempted

Executing with V locked

Blocked

WS 2008/09 Embedded Real-Time Systems Slide 15

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

OPCP versus IPCP

I Although the worst-case behaviour of the two ceiling schemes
is identical (from a scheduling view point), there are some
points of difference:

I IPCP is easier to implement than the original (OPCP) as
blocking relationships need not be monitored

I IPCP leads to less context switches as blocking is prior to first
execution

I IPCP requires more priority movements as this happens with
all resource usage

I OPCP changes priority only if an actual block has occurred

I Note: IPCP is also called
I Priority Protect Protocol (in POSIX)
I Priority Ceiling Emulation (in Real-Time Java)

WS 2008/09 Embedded Real-Time Systems Slide 16

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

Extensions

I There are numerous extensions to the simple process model
discussed so far—for example:

I Cooperative Scheduling
I Release Jitter
I Arbitrary Deadlines
I Fault Tolerance
I Offsets
I Optimal Priority Assignment

I These extensions address real problems—however, today’s RT
languages and OSs very rarely support any of these extensions

I See [Burns and Wellings 2001] or [Liu 2000] for a detailed
treatment

WS 2008/09 Embedded Real-Time Systems Slide 17

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

Offline vs. Online Scheduling Analysis

I For hard RT systems, an offline scheduling analysis is
desirable—and often mandatory

I However, this analysis requires
I bounded and known arrival patterns of incoming work
I bounded and known (!) computation times
I a predictable scheduling scheme

I However, there are dynamic soft real-time applications in
which arrival patterns and computation times are not known a
priori

I Although some level of offline analysis may still be applicable,
this can no longer be complete and hence some form of online
analysis is required

WS 2008/09 Embedded Real-Time Systems Slide 18



Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

Dynamic Systems and Online Analysis

I The main task of an on-line scheduling scheme is to manage
any overload that is likely to occur due to the dynamics of the
system’s environment

I EDF is a dynamic scheduling scheme that is optimal

I However, during transient overloads EDF performs very badly.
It is possible to get a domino effect in which each process
misses its deadline but uses sufficient resources to result in the
next process also missing its deadline.

WS 2008/09 Embedded Real-Time Systems Slide 19

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

Admission Schemes

I To counter this detrimental domino effect, many on-line
schemes have two mechanisms:

I an admissions control module that limits the number of
processes that are allowed to compete for the processors, and

I an EDF dispatching routine for the admitted processes

I An ideal admissions algorithm prevents the processors getting
overloaded so that the EDF routine works effectively

I If some processes are to be admitted, whilst others rejected,
the relative importance of each process must be known

I This is usually achieved by assigning a value

WS 2008/09 Embedded Real-Time Systems Slide 20

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

Values

I Values can be classified
I Static: the process always has the same value whenever it is

released.
I Dynamic: the process’s value can only be computed at the

time the process is released (because it is dependent on either
environmental factors or the current state of the system)

I Adaptive: here the dynamic nature of the system is such that
the value of the process will change during its execution

I To assign static values requires the domain specialists to
articulate their understanding of the desirable behaviour of the
system—this is not always a trivial task . . .

WS 2008/09 Embedded Real-Time Systems Slide 21

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

Programming Priority-Based Systems

I Traditionally, priority-based scheduling has been more an issue
with OSs rather than with programming languages

I In the introduction to scheduling, we discussed the
scheduling-related facilities provided by standard UNIX

I Will further discuss the scheduling interfaces provided by
I POSIX
I Real-Time Java

WS 2008/09 Embedded Real-Time Systems Slide 22



Priority Inversion
POSIX scheduling support

RT Java scheduling support

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

Summary Priority Inversion

I Processes may be blocked by lower-priority processes—this is
referred to as priority inversion

I A solution for this is priority inheritance—however, this may
still lead to more blocking than necessary

I Priority ceiling protocols are an improvement over priority
inheritance protocols—we discussed the Original PCP and the
Immediate PCP

WS 2008/09 Embedded Real-Time Systems Slide 23

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Sporadic servers
Inheritance of scheduling characteristics
Keeping RT applications in check
Priority inheritance

Overview
Priority Inversion

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

POSIX scheduling support
Sporadic servers
Inheritance of scheduling characteristics
Keeping RT applications in check
Priority inheritance

RT Java scheduling support
The scheduler
Avoiding priority inversion

WS 2008/09 Embedded Real-Time Systems Slide 24

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Sporadic servers
Inheritance of scheduling characteristics
Keeping RT applications in check
Priority inheritance

POSIX

I POSIX supports priority-based scheduling, and has options for
priority inheritance and ceiling protocols

I Priorities may be set dynamically
I Within the priority-based facilities, there are four policies:

1. SCHED FIFO: a process/thread runs until it completes or it is
blocked

2. SCHED RR: a process/thread runs until it completes or it is
blocked or its time quantum has expired (Round-Robin)
This is equivalent to priocntl’s RT TQDEF, but here it cannot
be changed

3. SCHED SPORADIC: a process/thread runs as a sporadic server
(still rarely implemented)

4. SCHED OTHER: implementation-defined

WS 2008/09 Embedded Real-Time Systems Slide 25

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Sporadic servers
Inheritance of scheduling characteristics
Keeping RT applications in check
Priority inheritance

Sporadic Server

A sporadic server process is assigned a certain budget

I Runs at high priority when it has some budget left

I Consumed execution time is subtracted from budget

I Runs at low priority when budget is exhausted

I The amount of budget consumed is replenished at the time
the server was activated plus the replenishment period

A sporadic server is useful to integrate background, soft RT
processes in a hard RT environment

I The sporadic server is assured a high priority for a limited time

I Beyond that, the sporadic server process cannot interfere with
hard RT tasks (that presumably have a higher priority than
the sporadic server’s low priority)

WS 2008/09 Embedded Real-Time Systems Slide 26



Priority Inversion
POSIX scheduling support

RT Java scheduling support

Sporadic servers
Inheritance of scheduling characteristics
Keeping RT applications in check
Priority inheritance

POSIX

I For each policy, must support a minimum range of priorities

I 32 priorities for FIFO and round-robin

#include <unistd.h>

#ifdef POSIX PRIORITY SCHEDULING

#include <sched.h>

typedef ... pid_t;

struct sched_param {

...

int sched_priority; // SCHED_FIFO and SCHED_RR

int sched_ss_low_priority; // SCHED_SS

timespec sched_ss_repl_period;

timespec sched_ss_init_budget;

int sched_ss_max_repl;

...

}

WS 2008/09 Embedded Real-Time Systems Slide 27

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Sporadic servers
Inheritance of scheduling characteristics
Keeping RT applications in check
Priority inheritance

POSIX Process-Based Scheduling
// Set and get the scheduling parameters of process pid

int sched setparam (pid_t pid,

const struct sched_param *param);

int sched getparam (pid_t pid,

struct sched_param *param);

// Set and get the scheduling policy/params of pid

int sched setscheduler (pid_t pid,

int policy,

const struct sched_param *param);

int sched getscheduler (pid_t pid);

// Get info on scheduling policies

int sched get priority max (int policy);

int sched get priority min (int policy);

int sched rr get interval(pid_t pid,

struct timespec *t);

// Places current process/thread at the back of the queue

int sched yield (void);
WS 2008/09 Embedded Real-Time Systems Slide 28

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Sporadic servers
Inheritance of scheduling characteristics
Keeping RT applications in check
Priority inheritance

POSIX

I The scheduling policy can be set on a per process and a per
thread basis

I Threads compete with other threads
I across the whole system (PTHREAD SCOPE SYSTEM), or
I per process (PTHREAD SCOPE PROCESS)

It is unspecified how such threads are scheduled relative to
threads in other processes or to threads with global contention

I A specific implementation must decide which to support

WS 2008/09 Embedded Real-Time Systems Slide 29

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Sporadic servers
Inheritance of scheduling characteristics
Keeping RT applications in check
Priority inheritance

POSIX Thread-Based Scheduling

// Set and get the contention scope for a thread attribute

int pthread attr setscope(pthread_attr_t *attr,

int contentionscope);

int pthread attr getscope(pthread_attr_t *attr,

int contentionscope);

// Set and get the scheduling policy for a thread attribute

int pthread attr setschedpolicy(pthread_attr_t *attr,

int policy);

int pthread attr getschedpolicy(pthread_attr_t *attr,

int policy);

// Set and get the scheduling params for a thread attribute

int pthread attr setschedparam(pthread_attr_t *attr,

const struct sched_param *p);

int pthread attr getschedparam(pthread_attr_t *attr,

const struct sched_param *p);

WS 2008/09 Embedded Real-Time Systems Slide 30



Priority Inversion
POSIX scheduling support

RT Java scheduling support

Sporadic servers
Inheritance of scheduling characteristics
Keeping RT applications in check
Priority inheritance

Like Father, Like Son

I By default, each process inherits the scheduling policy and
priority from the parent process

I Scheduling attributes are inherited across a fork or one of the
exec family of calls

I Example:
% get data | process data > /dev/out < /dev/in

I All processes in the pipe run with the scheduling attributes of
the shell

I POSIX.1b exactly defined when a child process runs after a
fork
Assuming a single processor, the parent occupies the CPU
until it blocks

WS 2008/09 Embedded Real-Time Systems Slide 31

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Sporadic servers
Inheritance of scheduling characteristics
Keeping RT applications in check
Priority inheritance

Forking From the Shell

I Consider a program atprio that sets the priority of a process
from the shell, using the FIFO scheduler (⇒ Homework)

I Example:
% atprio 127 get data | process data > /dev/out <
/dev/in

I This only sets the priority of get data to 127—the other
processes inherit their scheduling params from the shell!

I Example:
% atprio 127 sh -c g̈et data | process data >
/dev/out < /dev/in¨

I All elements in the pipe will be set to priority 127

WS 2008/09 Embedded Real-Time Systems Slide 32

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Sporadic servers
Inheritance of scheduling characteristics
Keeping RT applications in check
Priority inheritance

Keeping RT Applications in Check

Assume

I you are developing an RT application and let it run on your
development platform

I you happen to accidentally create a process as part of that
application that runs at the highest priority and performs an
infinite loop

What happens?
It is generally a good idea to

I Keep a shell around that runs under the FIFO scheduler, at
the highest priority

I Can use for example the atprio program

I Refrain from using the highest priority in the program under
development

WS 2008/09 Embedded Real-Time Systems Slide 33

Priority Inversion
POSIX scheduling support

RT Java scheduling support

Sporadic servers
Inheritance of scheduling characteristics
Keeping RT applications in check
Priority inheritance

Keeping RT Applications in Check

I kill, atprio, and a high-priority shell are usually sufficient
to regain control of your machine

I However, they may not always be sufficient
I There are typically layers of processes between a busted

program and you (madly typing CTRL-Cs . . . )
I Operating System
I X Server
I Window Manager
I Xterm
I shell

I So you better know what you are doing . . . (as always)

WS 2008/09 Embedded Real-Time Systems Slide 34



Priority Inversion
POSIX scheduling support

RT Java scheduling support

Sporadic servers
Inheritance of scheduling characteristics
Keeping RT applications in check
Priority inheritance

POSIX Priority Inheritance

I POSIX also allows priority inheritance to be associated with
mutexes (rarely implemented yet)

I This priority protected protocol corresponds to the Immediate
Priority Ceiling Protocol discussed earlier

// Set and get the priority inheritance protocol

int pthread mutexattr setprotocol(pthread_mutexattr_t *ma,

int protocol);

int pthread mutexattr getprotocol(pthread_mutexattr_t *ma,

int protocol);

// Set and get the priority ceiling

int pthread mutexattr setprioceiling(pthread_mutexattr_t *ma,

int prioceiling);

int pthread mutexattr getprioceiling(pthread_mutexattr_t *ma,

int prioceiling);

WS 2008/09 Embedded Real-Time Systems Slide 35

Other POSIX Facilities: POSIX also allows

I message queues to be priority ordered

I functions for dynamically getting and setting a thread’s
priority

I threads to indicate whether their attributes should be
inherited by any child thread they create

Priority Inversion
POSIX scheduling support

RT Java scheduling support

The scheduler
Avoiding priority inversion

Overview
Priority Inversion

Process Blocking and Priority Inversion
Priority Inheritance
Calculating the blocking time
Priority ceiling protocols
Offline vs. Online scheduling

POSIX scheduling support
Sporadic servers
Inheritance of scheduling characteristics
Keeping RT applications in check
Priority inheritance

RT Java scheduling support
The scheduler
Avoiding priority inversion

WS 2008/09 Embedded Real-Time Systems Slide 36

Priority Inversion
POSIX scheduling support

RT Java scheduling support

The scheduler
Avoiding priority inversion

RT Java Threads and Scheduling

There are two entities in Real-Time Java which can be scheduled:

I RealtimeThreads (and NoHeapRealtimeThread)

I AsyncEventHandler (and BoundAyncEventHandler)

Objects which are to be scheduled must

I implement the Schedulable interface
I specify their

I SchedulingParameters
I ReleaseParameters
I MemoryParameters

WS 2008/09 Embedded Real-Time Systems Slide 37



Priority Inversion
POSIX scheduling support

RT Java scheduling support

The scheduler
Avoiding priority inversion

Real-Time Java

I Supports at least 28 real-time priority levels

I As with Ada and POSIX, the larger the integer value, the
higher the priority

I Non real-time threads are given priority levels below the
minimum real-time priority

I Scheduling parameters are bound to threads at thread
creation time; if the parameter objects are changed, they have
an immediate impact on the associated thread

I Like Ada and RT POSIX, RT Java supports a pre-emptive
priority-based dispatching policy

I Unlike Ada and RT POSIX, RT Java does not require a
preempted thread to be placed at the head of the run queue
associated with its priority level

WS 2008/09 Embedded Real-Time Systems Slide 38

Priority Inversion
POSIX scheduling support

RT Java scheduling support

The scheduler
Avoiding priority inversion

The Schedulable Interface
public interface Schedulable extends java.lang.Runnable

{

public void addToFeasibility();

public void removeFromFeasibility();

public MemoryParameters getMemoryParameters();

public void setMemoryParameters(MemoryParameters memory);

public ReleaseParameters getReleaseParameters();

public void setReleaseParameters(ReleaseParameters release);

public SchedulingParameters getSchedulingParameters();

public void setSchedulingParameters(

SchedulingParameters scheduling);

public Scheduler getScheduler();

public void setScheduler(Scheduler scheduler);

}

WS 2008/09 Embedded Real-Time Systems Slide 39

Priority Inversion
POSIX scheduling support

RT Java scheduling support

The scheduler
Avoiding priority inversion

Scheduling Parameters
{

public SchedulingParameters();

}

public class PriorityParameters extends SchedulingParameters

{

public PriorityParameters(int priority);

public int getPriority(); // At least 28 priority levels

public void setPriority(int priority) throws IllegalArgumentException;

...

}

public class ImportanceParameters extends PriorityParameters

{

public ImportanceParameters(int priority, int importance);

public int getImportance();

public void setImportance(int importance);

...

}
WS 2008/09 Embedded Real-Time Systems Slide 40

Priority Inversion
POSIX scheduling support

RT Java scheduling support

The scheduler
Avoiding priority inversion

RT Java: The Scheduler

I RT Java supports a high-level scheduler whose goals are:
I to decide whether to admit new schedulable objects according

to the resources available and a feasibility algorithm, and
I to set the priority of the schedulable objects according to the

priority assignment algorithm associated with the feasibility
algorithm

I For comparison:
I Ada and POSIX assume a static off-line schedulability analysis
I RT Java addresses more dynamic systems with the potential

for on-line analysis

WS 2008/09 Embedded Real-Time Systems Slide 41



Priority Inversion
POSIX scheduling support

RT Java scheduling support

The scheduler
Avoiding priority inversion

The Scheduler

I Abstract class Scheduler

I The isFeasible method considers only the set of schedulable
objects that have been added to its feasibility list (via the
addToFeasibility and removeFromFeasibility methods)

I The method changeIfFeasible checks to see if its set of
objects is still feasible if the given object has its release and
memory parameters changed

I If it is, the parameters are changed

I Static methods allow the default scheduler to be queried or set

I RT Java does not require an implementation to provide an
on-line feasibility algorithm

WS 2008/09 Embedded Real-Time Systems Slide 42

Priority Inversion
POSIX scheduling support

RT Java scheduling support

The scheduler
Avoiding priority inversion

The Scheduler
public abstract class Scheduler

{

public Scheduler();

protected abstract void addToFeasibility(Schedulable s);

protected abstract void removeFromFeasibility(Schedulable s);

// Check the current set of schedulable objects

public abstract boolean isFeasible();

public boolean changeIfFeasible(Schedulable schedulable,

ReleaseParameters release,

MemoryParameters memory);

public static Scheduler getDefaultScheduler();

public static void setDefaultScheduler(Scheduler scheduler);

public abstract java.lang.String getPolicyName();

}

WS 2008/09 Embedded Real-Time Systems Slide 43

Priority Inversion
POSIX scheduling support

RT Java scheduling support

The scheduler
Avoiding priority inversion

Avoidance of Priority Inversion in RT Java

I RT Java provides priority inheritance; to quote from [Bollela+
2000]:
Any conforming implementation must provide an
implementation of the synchronized primitive with default
behavior that ensures that there is no unbounded priority
inversion. [. . . ] The priority inheritance protocol must be
implemented by default.

I RT Java also specifies IPCP, under a different name:
A second policy, priority ceiling emulation protocol (or highest
locker protocol), is also specified for systems that support it.

WS 2008/09 Embedded Real-Time Systems Slide 44

Priority Inversion
POSIX scheduling support

RT Java scheduling support

The scheduler
Avoiding priority inversion

The Priority Scheduler

class PriorityScheduler extends Scheduler

{

public PriorityScheduler()

protected void addToFeasibility(Schedulable s);

...

public void fireSchedulable(Schedulable schedulable);

public int getMaxPriority();

public int getMinPriority();

public int getNormPriority();

public static PriorityScheduler instance();

...

}

Standard preemptive priority-based scheduling

WS 2008/09 Embedded Real-Time Systems Slide 45



Priority Inversion
POSIX scheduling support

RT Java scheduling support

The scheduler
Avoiding priority inversion

A Difficulty with Priority Inversion Avoidance

I What if both a NoHeapRealTimeThread and a regular Java
thread synchronize on the same object ?

I A NoHeapRealTimeThread object must have a priority (or, to
be precise, execution eligibility) higher than the garbage
collector

I A regular Java thread may never have a priority higher than
the garbage collector

I This cannot be resolved by any classic priority inversion
schemes

I Therefore, RT Java provides, in addition to the
synchronized modifier, wait-free queued classes to provide
protected, non-blocking, shared access

I WaitFreeDequeue()
I WaitFreeReadQueue()
I WaitFreeWriteQueue()

WS 2008/09 Embedded Real-Time Systems Slide 46

Priority Inversion
POSIX scheduling support

RT Java scheduling support

The scheduler
Avoiding priority inversion

Summary

I Ada, POSIX and RT Java
I all support preemptive priority-based scheduling
I also support the Immediate PCP

I Ada and POSIX focus on static off-line schedulability analysis

I RT Java addresses more dynamic systems with the potential
for on-line analysis

I Memory locking avoids the detrimental effects that demand
paging and swapping have on timing predictability

I When letting applications run on the development platform
under a FIFO scheduler, care must be taken to avoid the
process taking over the machine

WS 2008/09 Embedded Real-Time Systems Slide 47

Priority Inversion
POSIX scheduling support

RT Java scheduling support

The scheduler
Avoiding priority inversion

To go further

I Chapter 13 of [Burns and Wellings 2001]

I [Liu 2000]

I Greg Bollela, Ben Brosgol, Steve Furr, David Hardin, Peter
Dbble, James Gosling, Mark Turnbull, The Real-Time
Specification for Java, Addison-Wesley, 2000
(http://www.nist.gov/rt-java)

I Chapter 5 of Gallmeister, POSIX.4: Programming for the Real
World, O’Really, 1995

I What really happened on Mars?
(http:
//research.microsoft.com/~mbj/Mars_Pathfinder/)

WS 2008/09 Embedded Real-Time Systems Slide 48


