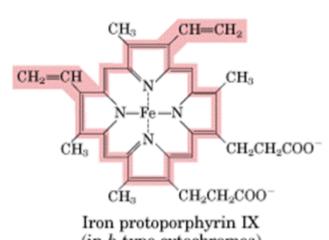


CONTAMINACIÓN POR METALES


Todos los Metales son Toxicos?

Depende de la concentracion

- algunos metales son fisiológicos, los organismos los necesitan

- otros tienen un uso desconocido y son frecuentemente tóxicos

(in *b*-type cytochromes)

METALES ESENCIALES Y TÓXICOS

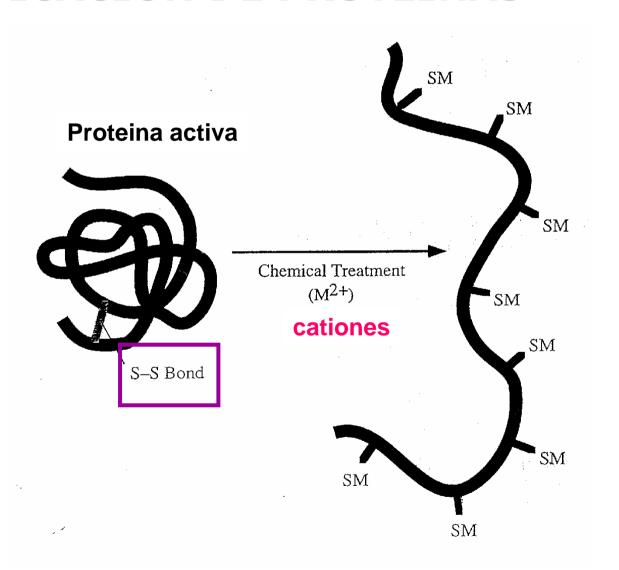
Esenciales (fisiológ	Esenciales (fisiológicos) o No Esenciales	
Esenciales	No Esenciales	
zinc	cadmio	
Hierro	niquel	
magnesio	plomo	
cobre	aluminio	
cobalto	arsenico	

algunos metales son biológicamente importantes

- Funcionan como cofactores
- componentes integrales de enzimas (Mg) y moléculas biológicamente activas

Ejemplos: Fe: hemoglobina, citocromos Mg: clorofila

Ejemplos de Metales Tóxicos


(Pb)	Síntesis del hemo y Síntesis de Clorofila
(Hg, Pb)	Neurológicos: daño mental, entumecimiento, visión tunel
(Cd)	Nefrotoxicidad, Interrumpe la entrada del Calcio y
	Osteoporosis

TÓXICIDAD DE METALES POR PRECIPICACIÓN DE PROTEÍNAS

Mecanismos de Toxicidad de Cationes

- A) Efectos Membranas
- B) Efectos intracelulares
- i) Desplazamientos de otros cationes
- ii) Unión a enzimas e.g., enzimas de la síntesis del Hemo

FUENTES DE PLOMO

-metal muy utilizado por el hombre estabilización de la concentración ambiental (restricción en gasolinas) -altamente tóxico ("saturnismo")

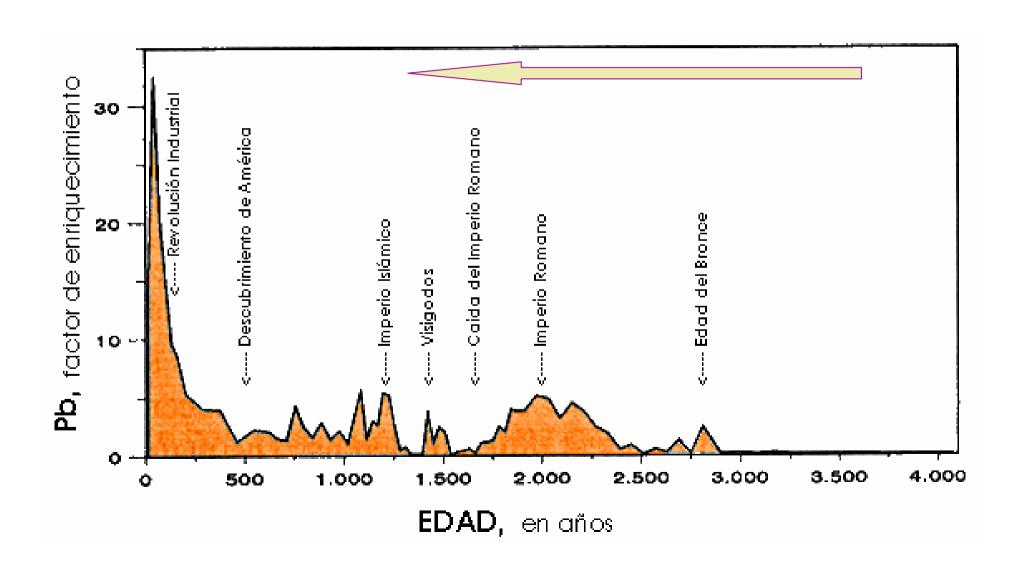
FUENTES NATURALES:

Depósitos minerales: <u>GALENA</u> (PbS), cerusita (PbCO3) anglesita (PbSO4) y asociado a otros minerales: Zn, Cd, Cu…)

Vulcanismo y erosión

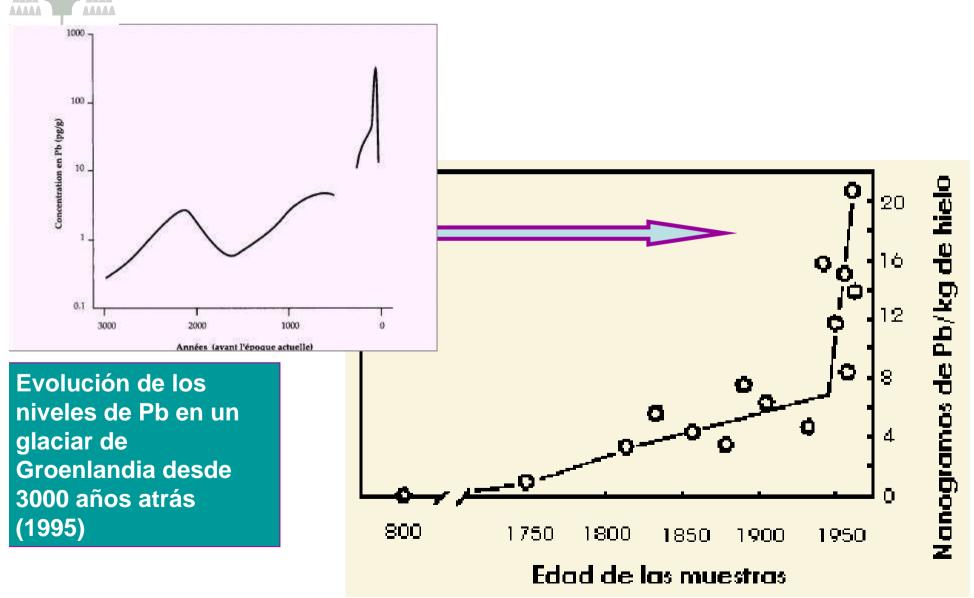
ANTROPOGÉNICAS:

Acumuladores y baterías Aditivos para la gasolina


Pigmentos Insecticidas

Explosivos Alfarería decorativa

Cubiertas para rayos X Fertilizantes



EVOLUCIÓN HISTÓRICA DE LOS NIVELES DE CONTAMINACION por Pb en una turbera

EVOLUCIÓN HISTÓRICA DE LOS NIVELES DE CONTAMINACION por Pb EN DEPÓSITOS DE HIELO

DINÁMICA METABÓLICA

ABSORCIÓN:

VÍA RESPIRATORIA (50% absorción)
VÍA ORAL (absorción <10%, en niños 53%)
(VÍA CUTÁNEA: compuestos orgánicos)

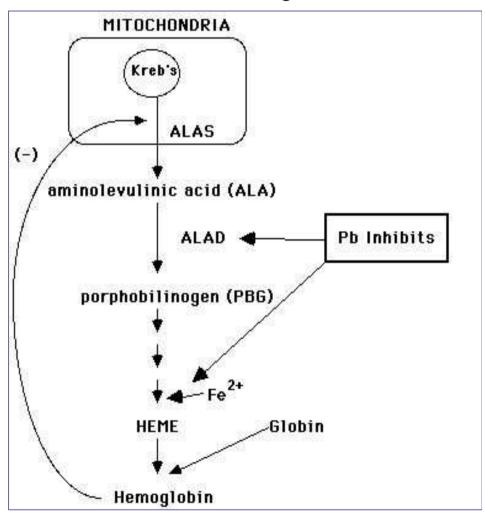
TRANSPORTE: SANGUÍNEO (UNIDO A RBCs)

ACUMULACIÓN: TEJIDO ÓSEO (80-90%) y RBCs

ELIMINACIÓN: EXCRECIÓN EN ORINA (bilis en heces)

NO ABSORBIDO: HECES

El Pb2+ y el Cd2+ atraviesan las membranas utilizando los canales del Ca2+



Toxicidad del Plomo

- Sistema henatopoyético
 Inhibición de la síntesis del grupo hemo (δ-ALAD)
 Alteraciones morfológicas celulares
- Sistema nervioso
 Altera la función de la
 acetilcolinesterasa
 Inhibe otras actividades enzimáticas
- Sistema renal Inclusiones, fibrosis, nefritis

OTROS: abortos espontáneos, hipoespermia, alteraciones cardiovasculares, posible carcinogénico

Síntesis de hemoglobina

FUENTES DE CADMIO

- asociado a diversos minerales (Zn, Pb yCu)
- vida media larga (acumulación)
- es uno de los elementos más tóxicos

FUENTES

NATURALES:

Erosión de depósitos minerales:

Asociado a depósitos de Zn (asfalerita, ZnO y blenda de Zn) GRENOCKITA (CdS), otavita (CdO) y anglesita (PbSO4)

ANTROPOGÉNICAS:

De la fundición para el refinamiento del Zn

Pigmentos pinturas

Recubrimiento de metales Baterías

Galvanoplastia soldaduras

Estabilizante del PVC Reactores nucleares

DINÁMICA DEL CADMIO

ABSORCIÓN:

VÍA RESPIRATORIA <u>—</u>depósitos en los pulmones (15-30% absorción)

VÍA ORAL_- absorción gastrointestinal (unido a proteínas animales) 6% o más en compuestos org.

(VÍA CUTÁNEA: CICd, absorción<4%)

TRANSPORTE:

SANGUÍNEO (METALOTIONEÍNAS, en eritrocitos)

ACUMULACIÓN: HÍGADO, RIÑONES Y MÚSCULO (Mt: larga

vida media (10-30 años)

ELIMINACIÓN: EXCRECIÓN EN ORINA (mucosa bucal, sudor,

descamación)

NO ABSORBIDO: HECES

El Pb2+ y el Cd2+ atraviesan las membranas utilizando los canales del Ca2+

TOXICIDAD DEL CADMIO

- INHIB. ENZIMÁTICA DE ENZIMAS QUE UTILIZAN EL ZN DE COFACTOR (carboxipeptidasa) COMPETENCIA POR SITIOS DE UNIÓN A Ca2+ (calmodulina)

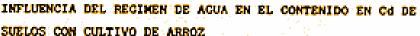
ACCIÓN IRRITANTE SOBRE VÍA DE ENTRADA (mucosa nasal, a. respiratorio, a. digestivo) por ppt. de proteínas

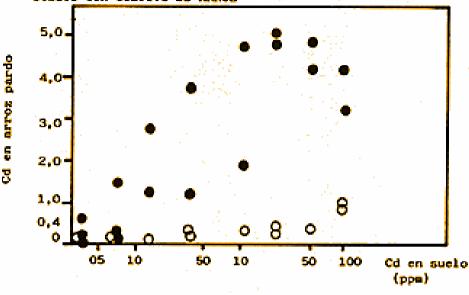
ACCIÓN TÓXICA GENERAL:

FUNCIÓN RENAL TEJIDO PULMONAR TEJIDO ÓSEO CORTEZA CEREBRAL

CARCINOGÉNICO (aumenta riesgo de c. de próstata, riñón y pulmón)
TERATOGÉNICO

(Enfermedad "Itai, Itai") arrozales tratados con Cd. Desmineralización y problemas renales.




CADMIO

"itai-itai" en el Sureste asiático.

Con el suelo sumergido en los cultivos no se producían envenenamientos por Cd, al mantenerse en condiciones reductoras.

El drenaje causó la oxidación de S= a SO4=, bajada del pH y aumento del Cd2+ en disolución y por tanto en el arroz así cultivado, lo que provocó la disentería y la dismenarilación (E de itai-itai).

- Con drenaje
- O Sumergidos durante todo el periodo de crecimiento

Repercusiones de las condiciones redox sobre los riesgos de toxicidad por Cd (limura et al., 1977).

el cambio del laboreo del suelo provocó la movilización y el efecto nocivo del Cd, aunque las cantidades de Cd se mantuvieron constantes. Es un ejemplo muy ilustrativo de la importancia de la especie química para

su toxicidad, independientemente de la cantidad total del contaminante.

FUENTES DE MERCURIO

- único metal que se presenta líquido a la temperatura ambiente.
- súmamente volátil
- en contacto con un ambiente acuático, el mercurio se transforma en METILMERCURIO, uno de los seis peores contaminantes del planeta.

FUENTES NATURALES:

Minerales: cinabrio rojo (HgS) y metacinabrio negro (sulfuro mixto). Asociado a piritas (sulfuro de hierro) y a estilbina (sulfuros de antimonio) y a otros sulfuros: Zn, Cu y Pb Evaporación de minerales y aguas, erosión de la corteza terrestre, vulcanismo

ANTROPOGÉNICAS: (1/8 de f.naturales)

Explotación de yacimientos, procesos metalúrgicos e industriales centrales térmicas de carbón, aguas residuales urbanas

termómetros barómetros fármacos plaguicidas pinturas antisuciedad baterías

catalizadores amalgamas

DINÁMICA DEL MERCURIO

ABSORCIÓN:

VÍA RESPIRATORIA (inhalación)— (80% absorción) (metálico y orgánicos)
VÍA ORAL - absorción gastrointestinal (sales solubles y orgánicos 95%)
(VÍA CUTÁNEA: Hg0 posiblemente, metilmercurio)

TRANSPORTE:

SANGUÍNEO ERITROCITOS (Mt)/PLASMA (Albúmina) Vapor de mercurio:1.5-2 Sales inorgánicas: 0.4 (tioles) Metilmercurio: 10 (Hb y glutation)

ACUMULACIÓN: Vapor de mercurio: CEREBRO

Hg2+: RIÑONES

Metilmercurio: CEREBRO, HÍGADO Y RIÑÓN

ELIMINACIÓN: EXCRECIÓN EN ORINA (filtración,

absorción), SALIVA, SUDOR (bilis, pelo, uñas)

NO ABSORBIDO: HECES

Biomagnificación del Met-Hg en los organismos de un entorno contaminado por residuos mercuriales.

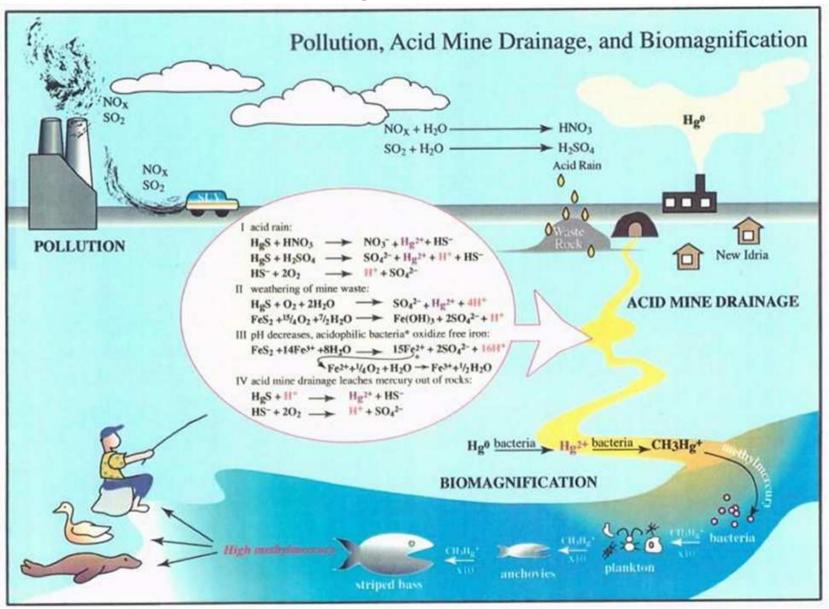
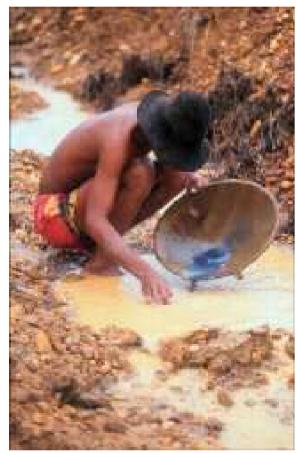


Figure 1. A figure demonstrating a cycle that causes elevated concentrations of MMHg in higher trophic level organisms.

CONTAMINACIÓN POR MERCURIO

1932-68 - Chisson Chemical Company libera Hg en la bahía de


Harbor (Japón). Una fábrica de plásticos que utilizaba Hg como catalizador y vertía los residuos en la Bahía.

Conocida enfermedad de Minamata. 397 afectados, aun restan efectos en el entorno.

CH3-HgCl liposoluble, atraviesa la barrera hematoencefálica y placentaria.

Acumulacion de Hg2+ en Minamata

A) Water	< 0.1 ppb	
B) Sediments	133 – 2010 ppm	In Bay
	0.25 – 3 ppm	Outside Bay
C) Shellfish	11.4 – 39 ppm	In Bay
	2.4 – 20.4 ppm	Outside Bay
D) Fish	< 20 ppm	
E) Cats	37 – 145 ppm	Liver
	12 – 36 ppm	Kidney
	2 – 18 maa 81 – 8	Brain
E) Humans	1 – 70 ppm	Liver
	3 – 144 ppm	Kidney
	2 – 25 ppm	Brain

TOXICIDAD DEL MERCURIO

UNIÓN A TIOLES:

PRECIPITA PROTEÍNAS (en neuronas)

- -DISMINUYE PRODUCCIÓN ENERGÉTICA (- síntesis proteínas)
- -REDISTRIBUCIÓN DEL Ca2+ (altera Señalización celular)
- -ALTERA S TRANSPORTE TUBULOPROXIMALES (ATPasas)

INHIBICIÓN ENZIMÁTICA

- -DISMINUYE ACTIVIDAD DE FOSFATASAS ALCALINAS
- * inhibición: DIFOSFO Y TRIFOSFO-PIRIDÍN –NUCLEÓTIDO, DOPA-DESCARBOXILASA

SUCCINODESHIDROGENASA, GLICEROFOSFATASA, MAO, CATALASAS PLASMÁTICAS, GLUTATION REDUCTASA (globular y cerebral), COLINESTERASA.

COMPUESTOS MERCURIALES: POTENTES TÓXICOS ENZIMÁTICOS, pero no específicos (LESIONES donde SE ACUMULA)

El Metil-Hg se usó como fungicida en el tratamiento de granos y semillas. Se han documentado casos en Iraq (1971-1972), Suecia, Japon y Nuevo Mexico de aves con defectos congénitos a causa de la ingestión materna de esos cereales.

Los derivados alilo o arilo de Hg son mas tóxicos debido a que atraviesan la barrera hematoencefálica.

Enfermedad de Minamata

En la bahía de Minamata se produjo una enfermedad denominada "Enfermedad de Minamata", debida al consumo de pescado y mariscos contaminados con metil mercurio.

La producción de metil-Hg por bacterias y su liberación en el medio acuático es un mecanismo de defensa que protege los microbios del envenenamiento de Hg.

La metilación bacteriana movilizó el Hg almacenado en los sedimentos de la bahía.

Fetal Mercury Poisoning

In 1952, Chisson Chemical
Company dumped mercury
in Minimata harbor. As a
result, 397 people were
affected. Of these, 68 people
died, including 22 unborn
children. Minimata was the
first known instance of fetal
mercury poisoning,
sometimes referred to as
"Minimata disease."

TOXICIDAD DEL MERCURIO

Parestesia,
Daño fetal
Efectos visuales
Sordera, Descontrol
Muerte

Etilmercurio Metilmercurio 90% absorbido Vida media 70 d

Mercurialismo Locura de Halter

Metilación Desmetilación

Hg (0)
Vías respiratorias
80% absorbido
Vida media 60 d

Oxidación

Redución

→Hemorragias bucales

 \rightarrow 1

PULMÓN ()
Neumonía

Hg(0) Hg(+)

Hg(++)

Hg orgánico

Hg (+) Baja solubilidad No absorbido

d —

Hg (++) 10% absorbido Vida media 40 d Daño túbulos renales
Síndrome nefrotóxico

orina

Fenilmercurio 80% absorbido

Hipersensibilidad Acrodimia o Enfermedad rosa

Relación de efectos sobre diferentes órganos

A Jaia	Organo crítico	Efecto crítico
	Pulmón	Cáncer de pulmón (unidad riesgo 4,6 x 10-3)
	Riñón	Mayor excreción urinaria de proteínas de bajo peso molecular (b2–M, RBP)
	Pulmón	Enfisema, leves cambios funcionales
Plomo	Sistema	Mayor excreción urinaria de ácido delta-
	hematopoyético	aminolevulínico; (ALA-U); mayor concentración de protoporfirina eritrocitaria libre (FEP) en los eritrocitos
	S.N. periférico	Menor velocidad de conducción del impulso nervioso en las fibras lentas
Mercurio	S:N.C.	Descenso del CI y otros efectos sutiles; temblor mercurial (dedos, labios, párpados)
Mercurio	Riñón	Proteinuria
Manganeso	S.N.C. Pulmón	Deterioro de funciones psicomotoras Síntomas respiratorios
	S.N.C.	Deterioro de funciones psicomotoras
Tolueno	Mucosas	Irritación
Cloruro de vinilo	Hígado	Cáncer (angiosarcoma, unidad riesgo 1 x 10-6)
Acetato de etilo	Mucosas	Irritación