

DIP
Data, Information and Process Integration with Semantic Web Services

FP6 - 507483

Deliverable

WP10: e-Banking case study
D10.2

Design and Specification of Application

Mónica Martínez Montes

José Luís Bas

Sergio Bellido

Oscar Corcho

Silvestre Losada

Richard Benjamins

Jesús Contreras

15 April 2005

Design and Specification of Application

Deliverable 10.2 i April 15th, 2005

EXECUTIVE SUMMARY
This document describes how to deploy a mortgage comparator/simulator that takes
advantage of the Semantic Web Services (SWS) technology provided by the DIP
Consortium.

The application automates the process of collecting mortgage data from several banks,
taking into account that the data can be accessed by executing Semantic Web Services
from different banks. Then it provides this aggregated information to users, according to
the data that they have filled-in in appropriate query forms.

Following the DIP standards, we present an extensive description of the application, the
requirements (functional, non-functional and project constraints) and a sketch of the
desired user interface.

Design and Specification of Application

Deliverable 10.2 ii April 15th, 2005

Document Information

IST Project
Number

FP6 – 507483 Acronym DIP

Full title Data, Information, and Process Integration with Semantic Web Services

Project URL http://dip.semanticweb.org

Document URL

EU Project officer Kai Tullius

Deliverable Number 10.2 Title Design and Specification of Application

Work package Number 10 Title Case Study eBanking

Date of delivery Contractual M 12 Actual 15-04-05

Status Version. 1.3 final

Nature Prototype Report Dissemination

Dissemination
Level

Public Consortium

Authors (Partner) Mónica Martínez Montes, José Luís Bas, Sergio Bellido (Bankinter),
Oscar Corcho, Silvestre Losada, Richard Benjamins, Jesús Contreras
(iSOCO)

Mónica Martínez Montes Email mmtnez@bankinter.es Responsible
Author Partner Fundación de la

Innovación. Bankinter
Phone

Abstract
(for dissemination)

This document describes the mortgage comparator/simulator, which
takes advantage of the Semantic Web Services (SWS) technology
provided by the DIP Consortium.

Keywords Mortgage simulation, mortgage comparison

Version Log

Issue Date Rev No. Author Change

19-10-04 001 Bankinter First table of contents drafted

22-11-04 002 All Table of contents aligned with other DIP partners

3-12-04 003 All Version for QA

22-12-04 004 All QA comments included

15-04-05 005 All Comments from the first review included in introduction
and in section 2.3

Design and Specification of Application

Deliverable 10.2 iii April 15th, 2005

Project Consortium Information
Partner Acronym Contact

National University of Ireland Galway

NUIG

Prof. Dr. Christoph Bussler
Digital Enterprise Research Institute (DERI)
National University of Ireland, Galway
Galway
Ireland
Email: chris.bussler@deri.ie
Tel: +353 91 512460

Fundacion De La Innovacion.Bankinter

Bankinter

Monica Martinez Montes
Fundacion de la Innovation. BankInter,
Paseo Castellana, 29
28046 Madrid,
Spain
Email: mmtnez@bankinter.es
Tel: 916234238

Berlecon Research GmbH

Berlecon

Dr. Thorsten Wichmann
Berlecon Research GmbH,
Oranienburger Str. 32
10117 Berlin,
Germany
Email: tw@berlecon.de
Tel: +49 30 2852960

British Telecommunications Plc.

BT

Dr John Davies
BT Exact (Orion Floor 5 pp12)
Adastral Park Martlesham,
Ipswich IP5 3RE,
United Kingdom
Email: john.nj.davies@bt.com
Tel: +44 1473 609583

Swiss Federal Institute of Technology,
Lausanne

EPFL

Prof. Karl Aberer
Distributed Information Systems Laboratory

École Polytechnique Féderale de Lausanne

Bât. PSE-A
1015 Lausanne, Switzerland
Email : Karl.Aberer@epfl.ch
Tel: +41 21 693 4679

Essex County Council

Essex

Mary Rowlatt,
Essex County Council,
PO Box 11, County Hall, Duke Street,
Chelmsford, Essex, CM1 1LX,
United Kingdom.
Email: maryr@essexcc.gov.uk
Tel: +44 (0)1245 436524

Forschungszentrum Informatik

FZI

Andreas Abecker
Forschungszentrum Informatik
Haid-und-Neu Strasse 10-14
76131 Karlsruhe,
Germany
Email: abecker@fzi.de
Tel: +49 721 9654 0

Design and Specification of Application

Deliverable 10.2 iv April 15th, 2005

Institut für Informatik, Leopold-Franzens
Universität Innsbruck

IFI

Prof. Dieter Fensel
Institute of computer science
University of Innsbruck
Technikerstr. 25
A-6020 Innsbruck, Austria
Email: dieter.fensel@uibk.ac.at
Tel: +43 512 5076485

ILOG SA

ILOG Christian de Sainte Marie
9 Rue de Verdun, 94253
Gentilly, France
Email: csma@ilog.fr
Tel: +33 1 49082981

inubit AG

Inubit Torsten Schmale,
inubit AG
Lützowstraße 105-106
D-10785 Berlin,
Germany
Email: ts@inubit.com
Tel: +49 30726112 0

Intelligent Software Components, S.A.

iSOCO

Dr. V. Richard Benjamins, Director R&D
Intelligent Software Components, S.A.
Pedro de Valdivia 10
28006 Madrid, Spain
Email: rbenjamins@isoco.com
Tel. +34 913 349 797

The Open University

OU

Dr. John Domingue
Knowledge Media Institute,
The Open University, Walton Hall,
Milton Keynes, MK7 6AA,
United Kingdom
Email: j.b.domingue@open.ac.uk
Tel.: +44 1908 655014

SAP AG

SAP

Dr. Elmar Dorner
SAP Research, CEC Karlsruhe
SAP AG
Vincenz-Priessnitz-Str. 1
76131 Karlsruhe, Germany
Email: elmar.dorner@sap.com
Tel: +49 721 6902 31

Sirma AI Ltd.

Sirma Atanas Kiryakov,
Ontotext Lab, - Sirma AI EAD,
Office Express IT Centre, 3rd Floor
135 Tzarigradsko Chausse,
Sofia 1784, Bulgaria
Email: atanas.kiryakov@sirma.bg
Tel.: +359 2 9768 303

Tiscali Österreich Gmbh

Tiscali

Dieter Haacker
Tiscali Österreich GmbH.
Diefenbachgasse 35,
A-1150 Vienna,
Austria
Email: Dieter.Haacker@at.tiscali.com

Design and Specification of Application

Deliverable 10.2 v April 15th, 2005

Tel: +43 1 899 33 160

Unicorn Solution Ltd.

Unicorn

Jeff Eisenberg
Unicorn Solutions Ltd,
Malcha Technology Park 1
Jerusalem 96951,
Israel
Email: Jeff.Eisenberg@unicorn.com
Tel.: +972 2 6491111

Vrije Universiteit Brussel

VUB

Carlo Wouters,
Starlab- VUB
Vrije Universiteit Brussel
Pleinlaan 2, G-10
1050 Brussel ,Belgium
Email: carlo.wouters@vub.ac.be
Tel.: +32 (0) 2 629 3719

Design and Specification of Application

Deliverable 10.2 vi April 15th, 2005

GLOSSARY
Bank. A financial institution that accepts deposits and channels the money into lending
activities. In this deliverable, the terms bank and financial entity will be used
indistinctly.

Comparator. An instrument or machine for comparing anything that can be measured
with a standard measure.

Simulator. A machine that simulates an environment for the purpose of training or
research.

Service. Financial product offered by a bank or services that does not require a
contract, like a bank transfer order

Product. Bank product that requires the signature of a contract between the customer
and the bank

Asset. The land or property of a company or individual, payments due from bills,
investments, and anything else owned that can be turned into cash

SavingAccount. Account without a chequebook and normally with a low interest rate

Loan. Money let out at interest

MortgageLoan. A long-term loan backed by real estate or valuable property, usually
the item purchased with the loan. The creditor can claim that property if all payments
are not made by the borrower when they are due

Channel. Communication means used in the relationship between the bank and its
customers, including branches, phone, Internet, virtual banking, etc.

Branch. Physical bank office

vBanking. Virtual Banking. Banking without human intervention

Customer. Bank client, who usually has a contractual relationship with the bank

Company. A number of people grouped together as a business enterprise. Types of
companies include public limited companies, partnerships, joint ventures and
proprietorships, and branches of foreign companies

Person. Bank client that represents a single person (physical or juridical)

SOHO. Small Office, Home Office. It usually refers to professionals who work in their
own offices

Design and Specification of Application

Deliverable 10.2 vii April 15th, 2005

TABLE OF CONTENTS

EXECUTIVE SUMMARY.. I

GLOSSARY ...VI

TABLE OF CONTENTS...VII

LIST OF FIGURES.. VIII

1 INTRODUCTION.. 1
1.1 Added value of applying Semantic Web Services.. 1

1.2 Introductory description of the application .. 2

2 REQUIREMENTS... 3
2.1 Functional requirements ... 3

2.1.1 Portal simulator and comparator modules ... 5
2.1.2 Business data flow... 6
2.1.3 Required input-output data .. 7

2.2 Non-functional requirements.. 8

2.2.1 External interface requirements... 8
2.2.2 Performance requirements... 8
2.2.3 Development requirements.. 8

2.3 Project and solution constraints (relationship with the DIP architecture) 8

3 USER INTERFACE AND SCREEN FLOWING ... 10
3.1 Input screen .. 10

3.2 Processing screen.. 10

3.3 Results screen ... 11

3.4 Error screen .. 12

4 MOCKUP .. 12

FIRST ITERATION .. 12

SECOND ITERATION ... 13

5 REFERENCES ... 17

Design and Specification of Application

Deliverable 10.2 viii April 15th, 2005

LIST OF FIGURES

Figure 1. A sample mortgage comparison service offered by
http://www.comparador.com, and its disclaimer.. 3

Figure 2. System use case diagram... 4

Figure 3. High level sequence diagram. ... 5

Figure 4. Portal simulator sequence diagram. .. 5

Figure 5. Detailed sequence diagram. .. 6

Figure 6. Business data flow. ... 6

Figure 7. Business data flow. ... 7

Figure 8. Relationship with the DIP architecture. .. 9

Figure 10. Screen result pattern for a specific bank and product. 11

FP6 – 507483

Deliverable 10.2

 1

1 INTRODUCTION
The objective of this document is to describe the process of a financial application based
on SWS (Semantic Web Services). As described in the project deliverable 10.1 [1],
banks can act both as clients and as providers of Semantic Web Services. Consequently
we will develop an application that includes SWS from both points of view.

In deliverable D10.1 we selected a first case study - mortgage processes – an interesting
application to be developed in the SWS framework, due to the number of participants,
the time-consumption and the amount of human tasks to be performed. While many
SWS sub-processes could be deployed for this application, most of them are dependant
on third party developments (i.e. appraisal entities), so we selected the one that allowed
DIP to test the provider and the client sides. More precisely, we explained that a
Mortgage Offers Simulator/Comparator would be suitable to test the technology
provided by our core technology partners.

1.1 Added value of applying Semantic Web Services
As described in D10.1 [1], SWS technology can optimise several processes in the
financial domain. These processes are mainly related with human interactions and,
consequently, with the costs associated to them. Hence the main benefit of applying
SWS technology is that it could permit to develop and maintain financial services with
lower costs.

Bankinter is currently offering a free service at http://www.comparador.com/, described
in the next section, which presents data about mortgages from a set of banks in Spain.
This data is obtained manually by persons, by browsing the Internet services offered by
banks (when available) or by calling each bank to gather the information.

The use of (semantic) web service technology can optimise this manual process by
allowing search in available registries, so that the new Web services that have been
deployed in the market can be discovered. Besides, these registries provide information
about how to invoke the selected Web services so as to include them into other, more
complex, services. Hence, the data gathering process is improved since the relevant
information can be obtained more easily by means of executing those services.

Consequently, more services (product price comparators, broker information, deposits,
etc.) can be offered by banks due to their low cost, since less human interaction is
required to discover and invoke new available Semantic Web Services once the
application is launched.

Some of the advantages of SWS over state-of-the-art Web Service technology are the
following:

- When facing UDDI with a large number of exported web services, the lookup (aka
discovery) becomes a serious problem. There is no standard for service goal or
capabilities in current WSDL that prevents automatic service discovery. For
example, a bank offering a mortgage information Web service only for fixed interest
rates and with a maximum period of 20 years will not be able (or will have many
difficulties) to publish such constraints in UDDI registries, so that the external
parties looking for services that are compliant with those characteristics will not be
able to know in advance whether the service is providing this information according
to those constraints or not.

FP6 – 507483

Deliverable 10.2

 2

- When the discovered services have been defined according to a set of heterogeneous
models, discrepancies may occur in the execution of those services. This is
summarised as follows by Gartner Research (February 28, 2002): “Lack of
technologies and products to dynamically mediate discrepancies in business
semantics will limit the adoption of advanced Web services for large public
communities whose participants have disparate business processes.”

Thus the possibilities of better discovery and mediation are the main advantages of
SWS technology over current web service technology in the context of the financial
application to be developed in this work package.

1.2 Introductory description of the application
In this document we describe the application requirements (functional and non-
functional, and other that depend on the project constraints) and the input/output data
flows. Besides, we propose a first sketch of the user interface, although this is not so
important from the SWS technology point of view.

The main interaction of the Mortgage Offers Simulator/Comparator is very simple: each
time a client wants to know the mortgage market proposals, the application will give
him/her actual simulations made on-line in each bank WS-based Simulator, and the
results are presented in a human-capable interface in order to compare them. Some
further filtering on the presented data could enhance the user experience.

To provide some degree of complexity, the application is designed to allow different
requests (‘goals’), and, therefore, the use of different WS on those goals. The whole
process implies the use of many of the components that DIP is committed to develop.

A complete market application would contain several hundreds of goals-requests.
However, we have chosen a cut down sample in order to be workable within the project
time constraints, which we hope to extend later when the prototype is deployed.
Anyhow, we are keeping our eyes on a more complex future result. For instance, the
mortgage market is changing as global low interest rates continue to be low and land
prices are rising as a result while wages remain low. The market is devising differently
presented mortgage solutions for its customer base (e.g., mortgages that have several
months with only-interest payments).

In order to make the objective of the application more comprehensive, Webs similar to
http://www.comparador.com have been considered. These kinds of services are fed with
data obtained with screen-scraping techniques or filled in by humans. Each bank can use
a different set of mathematic formulae to obtain the output data; consequently the
information may not be completely accurate. It is easy to check the disclaimers that the
aforementioned Webs show in their pages, as shown in figure 1.

FP6 – 507483

Deliverable 10.2

 3

Figure 1. A sample mortgage comparison service offered by http://www.comparador.com.
The disclaimer says that the comparator software retrieves the data from banks’ web sites or
from phone requests, for banks that do not publish this information on their webs.

In contrast with these kinds of services, in our Case Study data is to be calculated by
each Bank provider, using its own formulae and, therefore, certifying the results in real
time.

We do not want to forget another relevant matter either: the possible application of this
case study to other industrial sectors. The present Case Study could be a useful
experience for any other web-based product or service comparator/simulator, e-
commerce related or not, due to the similar goal composition, especially when
composing a personalized price offer. In the simplest case, only the data input/output
and the formula must be changed to offer a similar service devoted to a non-financial
product or service.

For example, similar Simulator/Comparator specific applications could be Travel, Real
State or Insurance sector offers. As the complexity of the data increases, the easier is to
see the basic benefits of SWS technology. A simple product price comparator is just a
part of what we intend to do.

To conclude, the intention of this Case Study is to make use of the technologies
deployed by DIP. Hence in this deliverable we will focus not only on the application
requirements from the end user’s point of view, but also on the relationships of the
components to be deployed with the DIP architecture components.

2 REQUIREMENTS

2.1 Functional requirements
In this section we provide the UML use case diagrams and sequence diagrams that
describe the whole process. The system is made up of two modules:

FP6 – 507483

Deliverable 10.2

 4

- Portal simulator.

- Comparator.

The Portal Simulator is the user interface (it will be probably a web interface) that the
user will use to input the parameters of the mortgage he/she is seeking for. This user
interface connects to the most important system module, the comparator. The
Comparator is devoted to get the user request and look for the available Semantic Web
Services capable to solve the problem. Afterwards these SWS will be invoked and the
results, after being ranked, will be passed to the portal simulator in order to be shown
and presented to the user.

The UML use case diagram for the whole process is shown in figure 2. The customer
sends a request to the simulation system, which uses DIP and other financial entities
information providers to solve the customer’s enquiry.

Figure 2. System use case diagram.

A key point is the integration with the DIP architecture and with their different modules.
The UML sequence diagram in figure 3 shows at a high level basis how the system will
use the DIP architecture, seen as a black box.

FP6 – 507483

Deliverable 10.2

 5

Figure 3. High level sequence diagram.

The customer sends the requests to the system, which discovers the Web Services
available using components from the DIP architecture and uses other components of the
DIP architecture to execute them. The responses are ranked before they are presented to
the final user.

2.1.1 Portal simulator and comparator modules

2.1.1.1 Portal simulator
The portal simulator module is the simplest module. It has no interaction with any DIP
architecture component and it is devoted to act as a user interface and to dispatch the
user query to the comparator module.

User interface screens are described in section 3. The sequence diagram is shown in
figure 4.

Figure 4. Portal simulator sequence diagram.

2.1.1.2 Comparator
The comparator is the module that interacts with the DIP architecture and with other
financial entities.

FP6 – 507483

Deliverable 10.2

 6

In the next sequence diagram (figure 5) the System module from figure 3 is expanded
into their two modules: the portal simulator and the comparator. The costumer requests
will get to the portal and be redirected to the comparator.

Figure 5. Detailed sequence diagram.

The first step form the comparator to be made is to “discover” the available Web
Services by using the DIP architecture. It will provide a list of suitable ones and
afterwards the Comparator module will ask the DIP Architecture to execute them.
Those Web Services will belong to different financial entities that have previously
registered themselves in order to be discovered.

Once the Web Services give any kind of response, it will be given back to DIP and to
the Comparator, which will serve the ranked results to the portal simulator

2.1.2 Business data flow
In order to understand, from a high level point of view, the business data flow two
figures (figures 6 and 7) are included. Figure 6 describes the data flow in the comparator
module where a User Enquiry is entered into the comparator module and, using the WS
provided by other financial entities, a goal is constructed and the output is returned.

Figure 6. Business data flow.

Figure 7 describes the second business data flow, which ranks the information provided
by the previous business flow according to the parameters given by the user. The
Comparator module finally accomplishes the goal of the mortgage simulation.

FP6 – 507483

Deliverable 10.2

 7

Figure 7. Business data flow.

2.1.3 Required input-output data
The mandatory parameters for calculating the mortgage formula are:

- Monthly payment: The amount of money paid every month.

- Number of payments during the whole life of the mortgage.

- Total mortgage amount.

- Interest rate to be applied to the mortgage.

- Type of interest: Fixed type, variable type or mixed. Banks usually have different
rates for each type of loan.

The specific interest rate for a given mortgage is supposed to be embedded in each bank
Web Service, so it will not take part of the input parameters. The type of interest has to
be provided by the user. From the other three remaining parameters only two have to be
provided by the user: the other one will be calculated by the system, being the output
data.

Therefore we have three combinations of possible input data:
Input Output

Monthly payment + Number of Payments + Type of Interest Mortgage Amount

Monthly payment + Mortgage Amount + Type of Interest Number of Payments

Number of Payments + Mortgage Amount + Type of Interest Monthly payment

For the sake of simplicity the following assumptions are considered by each bank:

- All the monthly payments are equal (the Web Service will provide the first payment
amount).

- All the monthly payments include the amortization of the principal (not only-interest
payments are involved).

- Operation commissions are not considered.

Also a set of optional output data can be considered; hence they may be provided or not
by some SWS.

FP6 – 507483

Deliverable 10.2

 8

Optional Output data Description

Starting interest rate The mortgage starting interest rate

TAE The interest rate including commissions (mandatory in Spain)

Commissions The product commissions (usually a percentage of the loan amount)

Info Any other kind of literal information

2.2 Non-functional requirements
2.2.1 External interface requirements
- User related: The user interface must run on the most common Web browsers, i.e.,

Microsoft Windows and Netscape in their latest versions so JavaScript, forms, java
applets and other plug-ins are supported. The interface must be driven both by the
keyboard and the mouse.

- Hardware related: No requirements.

- Communication related: The application must be accessible through the Internet.

- Platform related: The application must be platform independent. Consequently
there is constraint to use Java.

2.2.2 Performance requirements
The maximum number of concurrent users for the prototype to be developed is
established in 10 users. Moreover the time for the server response must be less than 10
seconds. This is common in all the prototypes developed in the organisation.

2.2.3 Development requirements
No requirements.

2.3 Project and solution constraints (relationship with the DIP architecture)
In the requirements section we have already shown the interaction between the
comparator module and the DIP architecture (described in [2]), by means of a sequence
diagram. In this section we provide more detail about the specific needs of the
application with respect to the architecture proposed in DIP, and more specifically to the
components inside the DIP architecture.

Though this kind of information would be more related to a design document, we
consider it interesting for this document since it also provides requirements to be used
by other DIP workpackages providing the implementation of these components.

Figure 8 summarises these needs.

FP6 – 507483

Deliverable 10.2

 9

Figure 8. Relationship with the DIP architecture.

Discovery. Discovery capabilities are needed in order to find the Semantic Web
Services able to solve the goals composed by the comparator module. WSMO interfaces
are needed so that discovery can be executed in a proper way.

Mediation. Mediation is needed since the different information providers, e.g., the
different financial entities, may use heterogeneous ontologies. The DIP architecture
must mediate the results coming from the Semantic Web Services and return their
responses homogeneously to the Comparator Module

WS Repository/Registry. Since discovery is needed, a registry infrastructure is
mandatory for the case study purposes. This registry must contain the information of the
Semantic Web Services, namely their WSML description including their capabilities,
their physical location, their interfaces, etc.

Invocation. Once the Semantic Web Services to be used have been selected by the
comparator, they will be invoked by the comparator. The invocation engine will contact
the corresponding services and execute them, receiving their responses and sending
them back to the comparator module.

Compensation. No compensation modules are foreseen to be used since no complex
operations are performed during the sequence. If one of the SWS fails, the information
it was to provide will be ignored and the correspondent bank will not partake in the final
simulation/comparison process. A retry-philosophy can be applied if one of the Web
Services fails. It will depend on the class of error and on the final WSMO
implementation.

Composition. No composition modules are foreseen to be used in this case study, since
no composed tasks will take place in the whole process.

Security. Although no private data will be transferred, we need ensure that the
information comes from the source that is supposed to come from in order to effectively
deploy this application in a real environment. This implies that data integrity
mechanisms and e-signal procedures (e.g., when a SWS is executed in a registry) must

FP6 – 507483

Deliverable 10.2

 10

be included in the WSMO implementation. However, since it is not yet clear how this
will be addressed in WSMO and since the application will work, in its prototype state,
in a closed environment, this requirement will not be considered in this development.

3 USER INTERFACE AND SCREEN FLOWING
The final user interface is limited to the following screens: the data input screen, the
output screen and the error screen. Besides, we will include a processing screen that is
used in case that the amount of time needed to process the query is longer than
expected.

3.1 Input screen
The end user fills in two of three possible fields (monthly payment, number of payments
and/or mortgage amount) and checks one or more types of interest (fixed, variable
and/or mixed). By default, all of them are supplied marked.

Using check boxes the user may also ask for more information when available:

- The starting interest rate applied.

- The interest rate including commissions for the first period of time.

- The product commission.

- Other data.

All these components will be placed in the upper-half of the screen. In the bottom-half
part of the screen an empty grid will be shown. The grid columns are described in the
results screen section.

3.2 Processing screen
If the amount of time required to process the data and obtain a result is longer than
usually expected for a Web Page, a screen with a text '"Processing your input" or similar
will be showed. If possible, it will show a tracking of the status of the request using
understandable texts for the average users.

If the waiting period is not too long, this screen should not be used/showed.

Input
screen

Data
Check

Output
screen

Error
screen

Ok Error

Figure 9. Simulator screen flow.

FP6 – 507483

Deliverable 10.2

 11

3.3 Results screen
This will have three main areas:

- In the upper left corner a box will contain the list of banks providing information.

- The upper right corner shows the data provided by the final user (three data fields
plus the selected type/s of mortgage). All this data should be editable in order to
make a new request to all the banks quickly and easily. An action bottom must be
showed to execute the new query.

- The bottom half of the screen will show a grid. Each row shows a different
mortgage offer and columns will be filled with the following data:

o The name of the Bank plus the name of the specific product offered (if supplied
by the institution).

o The type of interest applied.

o The monthly payment.

o The total amount.

o The number of payments.

o The interest rate applied.

The data will be showed sorted by the third column (monthly payment). The user could
click on any column to order the data by the headline concept.

If the user clicks in a row, a window will appear with all the previous data plus the extra
information fields required by user in the input screen. Again, the user should change
any of the data of the upper right corner and deploy a specific request to a specific
bank/product as showed below. The interface design should follow the example in
Figure 9.

The results of a new query will be showed in the same format.

Figure 10. Screen result pattern for a specific bank and product.

FP6 – 507483

Deliverable 10.2

 12

If a bank does not provide some of the required data and the user has asked for it, a
blank text or a ‘n.a’ text will be showed in the output screen.

If the final user unmarks one or more of the extra data options, they will not be showed
in the output screen even if they exist.

3.4 Error screen
Before processing the query, data will be checked in order to ensure that enough data
fields are filled and the provided data format is correct. If an error occurs, a descriptive
text and an action button will appear in a pop-up box.

4 MOCKUP
A mockup of the application has been created in order to understand better the
requirements of the application from the point of view of the user interface and of the
Semantic Web Service descriptions needed to execute it. The following figures show
screenshots of the mockup and some sample services that were developed in FLogic.

First Iteration

1) The comparator screenshot

Figure 11 Comparator home page

2) Clicking on the [COMPARE] button, we obtain the results

FP6 – 507483

Deliverable 10.2

 13

Figure 12 : Result offer list

Second iteration
In this interation we will show in detail how each mortgage is compared.

1) Comparator Home page

Figure 13 : Comparator Home Page

FP6 – 507483

Deliverable 10.2

 14

2) When clicking on the [COMPARE] button, a screen with the used ontology for the
offer description will come up.

Figure 14 : Mortgage ontology edited in Protege

3) Here we show an instance of the ontology that wat generated by the Comparator.

Figure 15 : Ontology instance (Mortgage for 30 years with 2,7% of reate value)

FP6 – 507483

Deliverable 10.2

 15

4) The Comparator is an agent that invokes Web Services. This fugure bellow
describes the GOAL (written in WSMO).

5) Comparator can be also seen as a Web Service offering an ordered list of mortgages.

mygoal:goal.

mygoal[postcondition->>

 myMortgage:MortgageLoan[

 currency -> _#currency[

 currencyName ->EURO],

 term ->_#term:Term[

 type -> month,

 total -> 300,

],

 quota->_#quota[

 amount->800 ,

 currency->_currency:Currency[

 currencyName-> EURO

FP6 – 507483

Deliverable 10.2

 16

6) Using the discovery againts the goals, there appears a list with all services found.
7) Each found service can be view in detail with information about the service, such as

its Capability.
8) At the end we will obtain a list of mortgages that refers to found services.

MLCap ofclass capability

MLCap[precondition] :-

 mortgageloan ofclass MortgageLoan[

 interestRateNominal ofvalue 2.7

 interestRateType ofvalue

_intrestType ofclass
ProductRateApplicationVariable[

 referenceType ofvalue EURIBOR

 interesRateVaulue ofvalue 0.5

]

 term ofvalue _term ofclass Term[

 type ofvalue typeTerm

 total ofvalue totalTerm

]

 quota[

 amount ofvalue quotaAmount

 currency ofvalue _currency ofclass Currency

 .currencyName ofvalue EURO

]

mlCap[postcondition] ofclass -

 _morgageLoan ofclass MortgageLoan[

 idMortgageLoan ofvalue

FP6 – 507483

Deliverable 10.2

 17

5 REFERENCES
[1] DIP Deliverable D10.1. Analysis report on eBanking business needs. Martínez-Montes M,

Bas JL, Bellido S, López-Cobo JM, Losada S, Benjamins VR. June 2004.
[2] DIP Deliverable D6.2. DIP Architecture. Hauswirth M et al. December 2004.

