
Design, Implementation and
Cryptanalysis of Modern Symmetric

Ciphers

by

Matt Henricksen

Bachelor of Information Technology (1995)
University of Queensland

Thesis submitted in accordance with the regulations for

Degree of Doctor of Philosophy

Information Security Research Centre
Faculty of Information Technology

Queensland University of Technology

June 9, 2005

ii

Keywords

Block Ciphers, Word-based Stream Ciphers, Cipher Design, Cipher Implementa-

tion, Cryptanalysis, Key Schedule Classification, Key Agility, Advanced Encryp-

tion Standard, RC4, Alpha1, MUGI, Dragon, Correlation Attacks, Divide and

Conquer Attacks, Intel Pentium 4

iii

iv

Abstract

The main objective of this thesis is to examine the trade-offs between security and

efficiency within symmetric ciphers. This includes the influence that block ciphers

have on the new generation of word-based stream ciphers. By incorporating

block-cipher like components into their designs, word-based stream ciphers have

experienced hundreds-fold improvement in speed over bit-based stream ciphers,

without any observable security degradation. The thesis also emphasizes the

importance of keying issues in block and stream ciphers, showing that by reusing

components of the principal cipher algorithm in the keying algorithm, security

can be enhanced without loss of key-agility or expanding footprint in software

memory.

Firstly, modern block ciphers from four recent cipher competitions are sur-

veyed and categorized according to criteria that includes the high-level structure

of the block cipher, the method in which non-linearity is instilled into each round,

and the strength of the key schedule. In assessing the last criterion, a classification

by Carter [45] is adopted and modified to improve its consistency.

The classification is used to demonstrate that the key schedule of the Ad-

vanced Encryption Standard (AES) [62] is surprisingly flimsy for a national stan-

dard. The claim is supported with statistical evidence that shows the key sched-

ule suffers from bit leakage and lacks sufficient diffusion. The thesis contains

a replacement key schedule that reuses components from the cipher algorithm,

leveraging existing analysis to improve security, and reducing the cipher’s im-

plementation footprint while maintaining key agility. The key schedule is ana-

lyzed from the perspective of an efficiency-security tradeoff, showing that the new

schedule rectifies an imbalance towards efficiency present in the original.

The thesis contains a discussion of the evolution of stream ciphers, focusing on

the migration from bit-based to word-based stream ciphers, from which follows

a commensurate improvement in design flexibility and software performance. It

v

examines the influence that block ciphers, and in particular the AES, have had

upon the development of word-based stream ciphers. The thesis includes a concise

literature review of recent styles of cryptanalytic attack upon stream ciphers.

Also, claims are refuted that one prominent word-based stream cipher, RC4,

suffers from a bias in the first byte of each keystream.

The thesis presents a divide and conquer attack against Alpha1, an irregularly

clocked bit-based stream cipher with a 128-bit state. The dominating aspect of

the divide and conquer attack is a correlation attack on the longest register. The

internal state of the remaining registers is determined by utilizing biases in the

clocking taps and launching a guess and determine attack. The overall complexity

of the attack is 261 operations with text requirements of 35,000 bits and memory

requirements of 229.8 bits.

MUGI is a 64-bit word-based cipher with a large Non-linear Feedback Shift

Register (NLFSR) and an additional non-linear state. In standard benchmarks,

MUGI appears to suffer from poor key agility because it is implemented on an

architecture for which it is not designed, and because its NLFSR is too large

relative to the size of its master key. An unusual feature of its key initialization

algorithm is described. A variant of MUGI, entitled MUGI-M, is proposed to

enhance key agility, ostensibly without any loss of security.

The thesis presents a new word-based stream cipher called Dragon. This

cipher uses a large internal NLFSR in conjunction with a non-linear filter to

produce 64 bits of keystream in one round. The non-linear filter looks very

much like the round function of a typical modern block cipher. Dragon has a

native word size of 32 bits, and uses very simple operations, including addition,

exclusive-or and s-boxes. Together these ensure high performance on modern day

processors such as the Intel Pentium family.

Finally, a set of guidelines is provided for designing and implementing sym-

metric ciphers on modern processors, using the Intel Pentium 4 as a case study.

Particular attention is given to understanding the architecture of the processor,

including features such as its register set and size, the throughput and latencies

of its instruction set, and the memory layouts and speeds. General optimization

rules are given, including how to choose fast primitives for use within the cipher.

The thesis describes design decisions that were made for the Dragon cipher with

respect to implementation on the Intel Pentium 4.

vi

Contents

Keywords iii

Abstract v

Declaration xvii

Previously Published Material xix

Acknowledgements xxi

1 Introduction 1

1.1 Block Ciphers . 3

1.2 Stream Ciphers . 6

1.3 Aims and Objectives . 7

1.4 Results . 8

2 Block Ciphers 13

2.1 Block Cipher Key Schedules . 17

2.1.1 The Carter et al. Key Schedule Classification 18

2.1.2 Repairing the Carter et al. Key Schedule Classification . . 21

2.2 Categorizing Block Ciphers . 24

2.2.1 Advanced Encryption Standard 25

2.2.2 Japanese IPA CRYPTREC 35

2.2.3 NESSIE . 39

2.2.4 ISO/IEC/JTC1/SC27-Korea 44

2.3 Summary . 45

3 An Improved Key Schedule for the AES 49

3.1 Block Cipher Key Schedules . 50

vii

3.2 The Advanced Encryption Standard 51

3.2.1 Description of the AES Key Schedule 52

3.2.2 Previous Cryptanalysis . 54

3.2.3 Our Analysis . 55

3.2.4 AES Implementation Metrics 57

3.3 A New AES Key Schedule Proposal 58

3.3.1 Implementation of the Proposed Key Schedule 60

3.3.2 Security Analysis of the Proposed Key Schedule 60

3.4 Summary . 64

4 Stream Ciphers 67

4.1 Modern Word Based Stream Ciphers 69

4.1.1 HC-256 . 71

4.1.2 Helix . 72

4.1.3 Hiji-Bij-Bij . 74

4.1.4 MUGI . 75

4.1.5 Rabbit . 75

4.1.6 RC4 . 76

4.1.7 Scream . 78

4.1.8 SNOW . 80

4.1.9 Turing . 81

4.1.10 Summary . 82

4.2 Survey of Attacks on Stream Ciphers 85

4.2.1 Time-Memory-Data Trade-Off Attacks 85

4.2.2 Statistical Attacks and Distinguishers 86

4.2.3 Linear Masking Attacks 87

4.2.4 Guess and Determine Attacks 88

4.2.5 Divide and Conquer Attacks 89

4.2.6 Correlation Attacks . 89

4.2.7 Block Cipher Style Attacks 89

4.2.8 Related-Key Attacks . 90

4.2.9 Algebraic Attacks . 91

4.3 A Note on the Biases in the RC4 Keystream 97

4.4 Summary . 101

viii

5 Cryptanalysis of the Alpha1 Stream Cipher 103

5.1 Description of Alpha1 . 104

5.2 Known Weaknesses and Previous Analysis 105

5.3 Divide and Conquer Attack on Alpha1 107

5.3.1 Recovery of R1 . 107

5.3.2 Reduced Version of Alpha1 110

5.3.3 Recovery of R4 . 111

5.3.4 Recovery of R2 and R3 . 115

5.4 Summary . 117

6 Rekeying Issues in the MUGI Stream Cipher 119

6.1 The MUGI Algorithm . 120

6.2 Related Work . 123

6.3 An Observation on Key Initialization 124

6.4 Improving Key Agility of MUGI 126

6.5 The MUGI-M algorithm . 128

6.6 Analysis of MUGI-M . 129

6.7 Summary . 134

7 Dragon: A Fast Word-Based Stream Cipher 135

7.1 Specification of Dragon . 136

7.1.1 Dragon’s State Update Function (F Function) 136

7.1.2 Key Scheduling Algorithm 138

7.1.3 Keystream Generation Algorithm 139

7.2 Design Principles of Dragon . 141

7.2.1 Design of F Function . 141

7.2.2 Design of S-boxes . 141

7.2.3 Design of Key Initialization Algorithm 142

7.3 Analysis of Dragon . 143

7.3.1 Statistical Tests . 143

7.3.2 Period Length . 143

7.3.3 Weak Keys . 143

7.4 Cryptanalysis of Dragon . 144

7.4.1 Related Key and IV Attacks 144

7.4.2 Time-Memory-Data Trade-off Attacks 146

7.4.3 Guess and Determine Attacks 147

ix

7.4.4 Distinguishing Attacks . 148

7.4.5 Linear Approximations . 148

7.4.6 Algebraic Attacks . 149

7.5 Implementation and Performance 150

7.5.1 Software . 150

7.5.2 Hardware . 151

7.6 Summary . 151

8 Implementation of Symmetric Ciphers on the Intel Pentium 4 153

8.1 Architecture . 154

8.1.1 The Register Set . 155

8.1.2 Memory . 156

8.1.3 Execution Pathway . 160

8.1.4 Streaming SIMD Extensions 2 162

8.2 General Optimization Rules . 163

8.2.1 Know Your Compiler . 164

8.2.2 Loop Unrolling . 166

8.2.3 Inlining . 167

8.2.4 Removing Branches . 168

8.3 Cryptographic Primitives on the Intel Pentium 4 169

8.3.1 Additions and Subtractions 169

8.3.2 Logical Operations . 170

8.3.3 Shifts and Rotations . 170

8.3.4 Multiplications . 170

8.3.5 Permutations . 171

8.3.6 S-box Lookups . 171

8.4 Implementing the Dragon Stream Cipher on the Intel Pentium 4 . 173

8.5 Summary . 178

9 Conclusion and Future Research 179

9.1 Review of Contributions . 179

9.2 Future Directions . 182

A Block Cipher Cryptanalysis 185

A.1 Basic Attacks . 188

A.2 Differential Cryptanalysis . 190

x

A.3 Linear Cryptanalysis . 204

A.4 Differential-linear Cryptanalysis 210

A.5 Key Schedule Cryptanalysis . 211

A.6 Algebraic Attacks . 214

B Fast Implementation of Dragon 219

C Dragon Test Vectors 233

D Dragon S-Boxes 235

E Implementation of MUGI-M 239

Bibliography 245

xi

xii

List of Figures

4.1 RC4 Update function . 77

4.2 RC4 Key Initialization Algorithm 77

4.3 Idealized RC4 Key Initialization Algorithm — Pt shuffle 97

4.4 Claimed Bias in First Byte of RC4 output 98

5.1 Alpha1 Stream Cipher . 104

5.2 Reduced Version of Alpha1 Stream Cipher (R1 Removed) 110

5.3 Model for Keystream Generation 112

5.4 Probability Tree of Guessing Register 3 in Alpha1 116

5.5 Probability Tree of Guessing Register 3 Clocking Taps in Alpha1 . 117

6.1 Generalization of the PANAMA and MUGI structures 120

6.2 MUGI F Function . 121

6.3 Alternative View of MUGI . 122

7.1 Schematic of Dragon’s F Function 137

7.2 Dragon’s Key Initialization Algorithm 139

7.3 Dragon’s Keystream Generation Function 140

8.1 Intel Pentium 4 Register Set . 157

8.2 Intel Pentium 4 Architecture . 159

8.3 Assembly Code for 8× 8 S-box Lookup 172

8.4 Assembly Code for 32× 32 S-box Lookup in Dragon 173

8.5 Parallelization Opportunities in the Dragon Update Function . . 175

A.1 Constructing a Boomerang . 198

A.2 Three-Round Integral Distinguisher for AES 202

xiii

xiv

List of Tables

2.1 Differences Between Carter et al.’s and Henricksen’s Key Schedule

Classification of the AES Candidates 24

2.2 Summary of Properties of Contemporary Block Ciphers 48

3.1 The AES Key Schedule . 53

3.2 CryptX Statistical Results for the AES Cipher Algorithm 56

3.3 CryptX Statistical Results for the AES Key Schedule 56

3.4 CryptX Statistical Results for the AES Cipher Algorithm including

Final Round MixColumn . 57

3.5 Bench-marking the Key Schedules of the AES Finalists 58

3.6 Proposed Key Schedule for the AES 58

3.7 CryptX Statistical Results for Proposed Key Schedule 61

3.8 Comparison of the Speed of the AES and Proposed Key Schedules 61

4.1 Summary of Modern Word Based Stream Ciphers 84

4.2 Uniformity Test on Byte Positions in RC4 Keystream 99

5.1 Table of Success Rates in Recovering Register 1 of Alpha1 109

5.2 Truth Table for Update Function f ′ in Reduced Version of Alpha1 111

5.3 Joint Probabilities for Random and Correlated Strings with p= 7
16

113

6.1 Key to State size of Modern Word Based Stream Ciphers 126

6.2 Comparison of the Speed of MUGI and MUGI-M 129

6.3 Propagation of Differences through the MUGI-M State and Buffer 133

7.1 The F Function: Core of the Dragon Stream Cipher 137

7.2 Virtual S-box Construction in the Dragon Cipher 138

7.3 Dragon’s Key Initialization Algorithm 139

7.4 Dragon’s Keystream Generation Function 140

xv

7.5 Propagation of Non-zero Differences In Internal State of the Dragon

Stream Cipher . 145

8.1 Metrics for Dragon Code . 177

A.1 Differential Attacks Against Recent Ciphers 195

A.2 Impossible Differentials Against Recent Ciphers 197

A.3 Boomerang and Rectangle Attacks Against Recent Ciphers 200

A.4 Integral Attacks Against Recent Ciphers 203

A.5 Linear Cryptanalysis Against Recent Ciphers 207

xvi

Declaration

The work contained in this thesis has not been previously submitted for a degree

or diploma at any higher education institution. To the best of my knowledge and

belief, the thesis contains no material previously published or written by another

person except where due reference is made.

Signed: . Date: .

xvii

xviii

Previously Published Material

The following papers have been published or presented, and contain material

based on the content of this thesis.

[1] Lauren May, Matt Henricksen, William Millan, Gary Carter, and Ed Daw-

son. Strengthening the key schedule of the AES. In Lynn Batten and Jennifer

Seberry, editors, Proceedings of Information Security and Privacy - 7th Aus-

tralasian Conference, ACISP’02, volume 2384 of Lecture Notes in Computer

Science, pages 226–240. Springer-Verlag, July 2002.

[2] Ed Dawson, Gary Carter, Helen Gustafson, Matt Henricksen, William Millan,

and Leonie Simpson. Evaluation of the MUGI psuedo-random number gen-

erator. Technical report, CRYPTREC, Information Technology Promotion

Agency (IPA), Tokyo, Japan, 2002.

[3] Ed Dawson, Helen Gustafson, and Matt Henricksen. Analysis of statistical

flaws in the RC4 encryption algorithm. In 19th British Combinatorics Con-

ference, Bangor, Wales, July 2003.

[4] Kevin Chen, Matt Henricksen, Leonie Simpson, William Millan, and Ed Daw-

son. A complete divide and conquer attack on the Alpha1 stream cipher. In

Jong In Lim and Dong Hoon Lee, editors, Information Security and Cryp-

tology - ICISC 2003, 6th International Conference, Seoul, Korea, November

27-28, 2003, Revised Papers, volume 2971 of Lecture Notes in Computer Sci-

ence, pages 418–431. Springer, 2004.

[5] Kevin Chen, Matt Henricksen, Leonie Simpson, William Millan, and Ed Daw-

son. Dragon: A Fast Word Based Cipher. In Information Security and Cryp-

tology - ICISC ’04 - Seventh International Conference, 2004. To appear in

Lecture Notes in Computer Science.

xix

xx

Acknowledgements

Cryptology took me by surprise, consumed my soul and hijacked me from a

mundane career in the software industry.

My primary supervisor, Professor Ed Dawson, of the Information Security

Research Centre gave the best assistance I could imagine, allowing me to immerse

myself as a full-time researcher in his fine institution. Doctors Gary Carter,

Lauren May, Bill Millan, Helen Gustafson and Leonie Simpson were pleasures to

work with. Joint work with Lauren, Gary and Bill is featured in Chapter 3, with

Bill and Leonie in Chapters 5 and 7, and with Helen in Section 4.3. Thanks also

to Kevin Chen for being an intelligent stream cipher buddy; our joint work is

featured in Chapters 5 and 7. Lyta Penna, of University of Central Queensland,

bolstered my confidence and provided remote but fruitful discussion. Her work

in [189] inspired me to write Chapter 8. I thank many members of the ISRC for

their conversation and ideas.

I could not have finished this thesis without the invaluable aid of the fol-

lowing: Faye Wong, who whispered words of encouragement in my ear for the

crazy last year; Tuyet and Minna, lifelong friends who provide me with endless

inspiration; Random; my parents, Noel and Carol, for their unbounded support

and friendship; and the incomparably beautiful Ye Li, to whom this thesis is

dedicated.

xxi

xxii

Chapter 1

Introduction

Cryptology is the art and science of information obfuscation. It has always played

a role in military history, but has become increasingly important in everyday life,

following the proliferation of e-commerce, in which on-line transactions worth

billions of dollars must be protected from abuse (eavesdropping, repudiation,

misrepresentation, and so on).

One of the most well known aspects of cryptology – that of encryption, which

this thesis addresses – is founded on very simple ideas that form the basis of

childrens’ games. Replace each letter in the above paragraph with the letter three

positions subsequent in the alphabet, and you are encrypting with the Caesar

cipher, designed millennia ago to protect the Roman general’s battle orders. The

paragraph you have encrypted is called the plaintext. The resulting paragraph of

unreadability:

Fubswrorjb lv wkh duw dqg vflhqfh ri lqirupdwlrq reixvfdwlrq. Lw kdv

dowdbv sodbhg d uroh lq plolwdub klvwrub, exw kdv ehfrph ylwdoob

lpsruwdqw lq flyloldq olih, iroorzlqj wkh dqgsurolihudwlrq ri

h-frpphufh, lq wklfk rq-olqh wudqvdfwlrqv wruwk eloolrqv ri grooduv

pxvw eh surwhfwhg iurp dexvh (hdyhvgursslqj, uhsxgldwlrq,

plvuhsuhvhqwdwlrq, dqg vr rq).

is called the ciphertext. By possessing the algorithm (which states that letters are

replaced by those x positions further in the alphabet) and the key (in this case,

x = 3), you are able to successfully reverse the process and decrypt the ciphertext

1

2 Chapter 1. Introduction

to the plaintext. Identifying the plaintext without knowledge of the key is called

cryptanalysis. For the simple algorithm given above, the key has only twenty-six

potential values, so the amount of secrecy employed by the algorithm is trivially

small.

Commercial cryptography is considerably more advanced than this simple

example. In addition to encryption, it incorporates other related techniques, in-

cluding protection and verification of message integrity, authentication and non-

repudiation. It can be partitioned into two fields, which relate to how crypto-

graphic keys are used. In asymmetric cryptography, two keys are used; one is

visible to the initiator of the cryptographic process, and is useful for signing and

encrypting documents; the other key is publicly available and useful for verify-

ing the author of signatures and decrypting associated documents. Symmetric

ciphers use a single key for the dual purpose of encryption and decryption, and

for integrity protection, but are generally not used for signature generation or

verification.

Symmetric ciphers fall into two categories: block ciphers and stream ciphers.

Block ciphers are stateless and given plaintext directly output ciphertext. Stream

ciphers maintain state and produce keystream which is externally combined with

the plaintext to make the ciphertext. Until recently there was little in common

between the stream and block ciphers, other than their use of a single secret key.

Stream ciphers were fast in hardware and slow in software, and block ciphers

were slow in hardware and fast in software. The output unit of stream ciphers

was frequently a single bit, while block ciphers produced tens or hundreds of bits

at a time. Now from just the metrics of a symmetric cipher — output units in

excess of 64 bits, high-speed throughput in software, high-speed throughput in

hardware — it is difficult to tell whether they originate from a stream or block

cipher.

This thesis deals with techniques of symmetric cipher design that allow effi-

cient implementation in conjunction with a high level of security. It comes at a

time when the boundaries between block ciphers and stream ciphers have become

blurred, opening up new avenues for design. In this chapter, block ciphers and

stream ciphers are introduced in Sections 1.1 and 1.2 respectively. In Section 1.3,

the aims and objectives of the thesis are explored. In Section 1.4, the structure

of this thesis and its contributions are explained.

1.1. Block Ciphers 3

1.1 Block Ciphers

A block cipher approximates a random permutation on x-bit blocks of plaintext.

As the size of x increases, a random permutation becomes exponentially more im-

practical to implement, but less vulnerable to statistical analysis. A block cipher

represents a compromise between security and efficiency, by joining smaller m×n

non-linear components (m < x, n ≤ x) together with linear diffusion elements.

The block size of the cipher typically ranges from 64 bits (for example, the Data

Encryption Standard (DES) [177]) to 256 bits (Rijndael-256 [62]). The general

model for a block cipher is to incorporate the linear and non-linear components

within a round function, and iterate the function many times to produce the

ciphertext.

Non-linear components are frequently implemented using substitution boxes

(s-boxes) in which each output bit is related to the input bits in a highly non-

linear way. The size of an s-box grows exponentially in the number of inputs as

2m × n bits. Typical sizes for s-boxes include 4 × 4 bits (for example, Serpent

[4]), 8× 8 bits (Rijndael [62]), and 8× 32 bits (MARS [42]).

The block cipher provides confidentiality by mixing a secret key within each

round function. Generally, the key material used within each round – the round

keys – differ. The total material of the round keys may be produced from a much

smaller secret master key by a key schedule; this expansion of a small amount of

secret material to produce a larger amount of pseudo-random material is based

upon a similar problem to the one that stream ciphers address.

The strength of a block or stream cipher is frequently measured by the length

of its effective key size ek, as compared to the size k of its actual key. The

effective key size is determined by the best attack on the cipher. A secure cipher

is regarded as one in which ek approximates k, where k is beyond the range of

brute-force searching (see Appendix A.1). Due to advances in computing power,

traditional key sizes, such as the 56 bits used by the DES, fall within the scope

of brute-force attack, and are no longer regarded as secure.

Most contemporary symmetric ciphers use keys with sizes of 128 bits and

above. Opinion is divided on what constitutes a secure length: some cryptog-

raphers believe that a cipher with an effective key length of 128 bits is secure

[61], while others recommend lengths of 256 bits or above [48]. The problem of

choosing a key length has little to do with the efficiency of handling it within the

block cipher for standard block sizes, but rather of generating the requisite num-

4 Chapter 1. Introduction

ber of random bits for the master key. One problem that arises when insufficient

randomness exists is demonstrated in Section 3.3.2.

While there is no argument that the cipher algorithm of a block cipher needs

to be efficient as possible to allow a high-throughput, there is some contention

over the importance of the efficiency of the accompanying key schedule. One

viewpoint is that a slow key schedule protects the cipher by increasing the time

needed to launch a brute-force attack. This argument is somewhat facetious con-

sidering both the inability of modern processors to execute brute-attacks against

modern ciphers with 128-bit keys, and the pressing need for key agility in wireless

applications.

The block cipher function does not change over time, so encrypting the same

plaintext block multiple times produces identical ciphertext blocks. For example,

a 512-bit message P will be passed to a block cipher with a block size of 128 bits

in four equal-length sections P0...P4.

P = P0 ‖ P1 ‖ P2 ‖ P3

and encrypted with key K as

C = Ek(P0)(= C0)‖ Ek(P1)(= C1)‖ Ek(P2)(= C2)‖ Ek(P3)(= C3)

If P0 = P1 then C0 = C1. To obscure this kind of relationship, and reduce

the potential for attack through statistical analysis, block ciphers are used in

conjunction with modes of operation. The default mode of block cipher operation

is the null mode Electronic Code Book (ECB), which is implicitly used in the

example above. Other standardized modes include:

• Cipher Block Chaining (CBC): in this mode, ciphertexts are chained such

that Ci = Ci−1 ⊕ Ek(P), where C−1 = IV is a public initialization vector.

For Px = Py, Cx 6= Cy unless Cx−1 = Cy−1. In this way, all ciphertexts

depend upon the values of all previous plaintexts. Thus CBC mode has a

use additional to confidentiality: it can be used to generate a single digest

(a MAC) that verifies the integrity of the preceding ciphertexts.

• Cipher Feedback Chaining (CFB): in this mode, a block cipher emulates a

self-synchronizing stream cipher. The size of the plaintext blocks (r) does

not need to match the size of the blocks (n) in the cipher algorithm, thus

1.1. Block Ciphers 5

this mode can be used to expedite transmission of encrypted data by using

smaller ciphertext blocks. The mode initializes a shift register S with an

IV. It produces keystream Oi as: Oi = Ek(Si); Ci = Pi⊕ truncr(Oi); Si+1 =

Si ¿ r ‖ Ci, where truncr reduces the input to r bits and ¿ is the left shift

operator. Because this mode is stateful, identical plaintexts encrypted will

produce different ciphertexts unless the same key and initialization vector

(IV) and preceding plaintexts are used. As with CBC mode, each ciphertext

depends upon all preceding plaintexts.

• Output Feedback (OFB): in this mode, a block cipher emulates a syn-

chronous stream cipher, such as those studied in Chapter 4. As with

CFB, the size of the plaintext blocks does not need to match the size of

the blocks in the cipher algorithm. However it differs from CFB, in that

the keystream is used to replenish the shift register, independently of the

plaintext. Using the same notation as for CFB, OFB works as follows:

Oi = Ek(Si); Ci = Pi ⊕ truncr(Oi); Si+1 = Oi. When r < n, the expected

period of the keystream is 2
n
2 . When r = n, the expected period is 2n−1

[191]. Consequently block ciphers in OFB mode may be vulnerable to dis-

tinguishing attacks unless n ≥ 2k for a master key length of k [181]. OFB

mode is stateful so identical plaintexts encrypted produce different cipher-

texts unless the same key and IV are used. The ciphertexts are independent

of previous plaintext.

Newer modes of operation seek to include additional features such as low-cost

integrity. Examples include Integrity Aware CBC (IACBC) [116] and Offset Code

Book (OCB) [199]. In [152], tweakable block ciphers are suggested as a way to

provide the variability to ciphertexts provided by modes of operations, but within

the block cipher, rather than externally. This kind of block cipher possesses two

keys, one key for secrecy, and one (not necessarily secret) key for variability.

Changing the latter key is inexpensive, and produces a seemingly different and

independent block cipher. From this construction, additional modes of operation

can be developed. The practicability of tweakable block ciphers is built on the

premise that key schedules of block ciphers are expensive compared to the cipher

algorithm. This premise is flawed: secure key schedules can be extremely efficient,

as demonstrated in Chapter 3.

6 Chapter 1. Introduction

1.2 Stream Ciphers

The boundary between stream ciphers and block ciphers has all but dissolved,

given that OFB and CFB modes of a block cipher emulate stream cipher be-

havior, and that stream ciphers can now output large blocks of keystream. The

primary difference between block and stream ciphers is that the latter are state-

ful, and the former are not. From a cryptanalytic viewpoint, this means that

cryptanalysts attacking stream ciphers have fewer degrees of freedom in manip-

ulating the cipher inputs. However the algebraic attacks of [53], although as yet

only successful against bit-based stream ciphers, by their nature pose a danger

to all stream ciphers, since each bit of output generates a new equation that can

be algebraically solved to identify key bits.

The classical example of a stream cipher is the one-time pad in which keystream

bits are generated randomly and independently. Each keystream bit ki is com-

bined with a corresponding plaintext bit pi to form the ciphertext ci = pi ⊕ ki

for 0 ≤ i < M where M is the message length. Non-random generation of the

keystream bits (the pad), or duplication of portions of the pad lead to recovery

of the plaintext, more easily if it possesses a high level of redundancy. When

used correctly, the one-time pad is unconditionally secure. However it suffers

from the requirement that the keystream needs to be as long as the message it

encrypts. The goal of a stream cipher is to emulate a one-time pad in producing

a keystream that appears unpredictable and random, as if it were the product

of a non-deterministic process. Other than the one-time pad, no stream ciphers

are unconditionally secure. In deterministically generating lengthy keystream

from very small inputs, these stream ciphers need to satisfy computational se-

curity requirements, in which retrieval of the key is computationally rather than

theoretically infeasible.

A stream cipher consists of a state S, an update function Υ, which modifies

the state S, and an output filter f which produces keystream using S. It is

considered good practice to use a rekeying algorithm that determines how the

initial state S0 is populated by the master key. If the keystream is generated

independently of the ciphertext, the stream cipher is described as synchronous.

The alternative, self-synchronizing ciphers, incorporate previous ciphertext bits

into the Υ function, but are not common.

One limitation of a stream cipher, indeed the same one suffered by block ci-

phers in ECB mode, is that two or more invocations initialized with the same key

1.3. Aims and Objectives 7

produce the same keystream. As with block ciphers, the solution is to introduce

into the rekeying algorithm, an initialization vector that may remain public but

must change with each invocation of the rekeying algorithm. Particularly for

binary additive ciphers, which combine the plaintext with the keystream using

exclusive-or, but also for any cipher which uses a involution operation as a com-

biner, reuse of keystream can lead to exposure of the plaintext without possession

of the encrypting key. This is evident in the case of exclusive-or, as an attacker

in possession of C1 = P1 ⊕K and C2 = P2 ⊕K can combine both ciphertexts to

acquire P1 ⊕ P2, which can be solved with varying degrees of success depending

upon the redundancy inherent in the plaintext [163].

Typical bit-based ciphers use one or more linear feedback shift registers (LF-

SRs) to contain the state S. LFSRs have predictable properties and allow fast

implementation in hardware, if not software. Non-linearity is introduced to the

cipher by irregular clocking of one LFSR by another or by using a non-linear filter

or combiner to produce the output [214]. In word-based stream ciphers, there is

more freedom of design. Some, such as SNOW [67], remain conservative to their

origins, some such as Helix [73] resemble block ciphers, and others such as Turing

[201] and MUGI [224] retain a shift-register state, to which is appended a large

and complex filter function.

1.3 Aims and Objectives

The main objective of this thesis is to examine the trade-offs between security and

efficiency within symmetric ciphers. The aspect of security covers both design of

ciphers, and their cryptanalysis. It is difficult to design a cipher that is immune to

a catalog of cryptanalytic attacks, without awareness of what the attacks involve.

Conversely, being well versed in contemporary design points a cryptanalyst to

potential weak spots within a cipher design.

The other aspect of this thesis, efficiency, has until recently been neglected.

But the practical needs of an industry requiring high throughput in its ciphers

means that algorithms that encrypt at kilobits or megabits per second are now

unwanted. The industry is looking for gigabytes per second. Bit-based stream

ciphers do not provide this.

But in an effort to improve the performance of stream ciphers, their designers

adopted a word-based methodology, and, as a result, studied construction of

8 Chapter 1. Introduction

block ciphers. They borrowed well-analyzed components and made them their

own. By matching the size of the keystream produced by the output filter to that

of a block cipher, the designers acquired the licence for additional complexity,

and therefore flexibility in cipher construction, without undue penalization of

efficiency. Whereas a stream cipher that produces one bit for each invocation of

the update function can afford to perform only a small amount of work, another

that produces 160 bits can do a comparatively large amount of work. This is the

freedom provided by moving to a word-based paradigm. The result is a family

of stream ciphers that encrypts more efficiently than many block ciphers without

any loss of security.

This thesis studies the influence that block ciphers have on the new generation

of word-based stream ciphers, and proposes a new word-based stream cipher in

which the filter function resembles a block cipher round function. The stream

cipher is approximately four times faster than the Advanced Encryption Standard

(AES) [62] and resists all known cryptanalytic attacks.

The thesis also emphasizes the importance of keying issues in block and stream

ciphers. It demonstrates the benefits of reuse of components from the cipher algo-

rithm: security can be enhanced without a decrease in efficiency, either through

a loss of key agility, or an expanding footprint in memory. The thesis suggests

a replacement algorithm for the key schedule of the AES that has better secu-

rity properties but maintains key agility, and a new variant of the MUGI stream

cipher that improves its key agility without loss of security.

Underlying these designs is a knowledge of how to shape designs to match

characteristics of the architectures on which they will be implemented. This thesis

explicitly describes factors that cipher designers need to consider to succeed in

designing fast and secure ciphers.

1.4 Results

This thesis contains the following contributions. In Chapter 2, the key schedule

classification by Carter et al. [45], and its application to the ciphers of the AES

competition is reviewed. Some of its shortcomings are illustrated, including its

inability to distinguish key schedules in which knowledge of a small number of

round keys allows some of the remaining keys within the schedule to be easily

discovered. An alternative classification is proposed which remedies the identified

1.4. Results 9

problems. It retains the spirit of Carter et al.’s work by partitioning key schedules

as those which are flawed (Type I) or robust (Type II).

A simple categorization of block ciphers is developed. This incorporates the

alternative key schedule classification, and extends the work of Carter et al.

beyond the AES competition to categorize the key schedules of the Japanese

CRYPTREC, European NESSIE and Korean ISO/IEC/JTC1/SC27-Korea com-

petition. The categorization also highlights other construction techniques that

have been the subject of interest recently, including the method by which the

s-boxes are developed.

The classification shows the key schedule of the AES has a Type I key schedule,

which is surprising for a modern national standard. In Chapter 3, a statistical

package is used to demonstrate that the AES key schedule suffers from bit leakage

and lacks sufficient diffusion, which directly aid in some attacks on reduced-round

versions of the cipher. The chapter includes an alternative Type II key schedule

that inhibits the attacks, using a common construction technique in which the

round function of the cipher is also used in the key schedule. This has the effect

of reducing the footprint of the cipher in memory, while leveraging cryptographic

analysis. The throughput of the new key schedule is compared to those of other

block ciphers and it is determined that the new key schedule satisfies both key

agility and security requirements.

Recent word-based stream ciphers are reviewed in Chapter 4, indicating how

their designs have been influenced by ciphers categorized in Chapter 2. The

review includes an analysis of their update and rekeying schedules, and how

they affect the performance of the ciphers. This chapter also discusses how the

inadequate rekeying schedule of one popular cipher, RC4, causes a bias in the

second byte of each keystream, but it contains a refutal of a claim [170] that there

are biases in other keystream bytes of the same cipher. The chapter concludes

by emphasizing the importance of solid rekeying strategies in stream ciphers, and

briefly reviews recent cryptanalytic attack styles upon stream ciphers.

Chapter 5 presents an attack against the proposed cellular stream cipher Al-

pha1. This is a conventional irregularly clocked bit-based stream cipher with a

128-bit state. The chapter shows how to launch a divide and conquer attack on

the cipher, breaking each of its four registers one at a time. Biases in the clocking

taps allow verification of guesses on the smallest register’s initial state. Following

the recovery of this register, the reduced cipher can then be viewed as the under-

10 Chapter 1. Introduction

lying sequence produced by the longest register, with additive noise provided by

the remaining registers, and bit insertion caused by irregular clocking. A correla-

tion attack can be launched on the longest register, using joint probability based

upon Levenshtein distances as the correlation measure. A guess and determine

attack recovers the values of the remaining registers. The overall complexity of

the attack is 261 operations with text and memory requirements of 35,000 and

230 bits respectively.

Chapter 6 gives an example of a word-based stream cipher that is immune to

the kind of attacks to which Alpha1 is vulnerable. MUGI acquires this protection

because it possesses a large state that can be processed efficiently using word-

based operations, and a non-linear filter that resembles a block cipher function.

MUGI suffers key agility problems because it is commonly implemented on an

architecture for which it is not designed, and because its NLFSR is too large

relative to the size of its master key. By reducing the size of its non-linear

feedback shift register (NLFSR) and modifying the rekeying strategy to deal

with the smaller state size, MUGI-M is developed. This is an algorithm which

exhibits a 200% improvement in rekeying time, without apparent loss of security.

This serves the cipher well both on 32- and 64-bit architectures.

Chapter 7 gives the specification for a new cipher called Dragon that has been

developed especially for 32-bit architectures, also bearing in mind the importance

of a strong and agile key schedule. The cipher uses the minimum number of

simple operations to ensure its security, yet maintains a high level of efficiency.

The chosen operations are known to be efficient on the Intel Pentium family,

which is the most widely used processor family. With a keystream throughput

of 6.7 cycles/byte and a key generation setup time of 1,395 cycles, Dragon is

competitive with other modern word-based stream ciphers, and much faster than

block ciphers with equivalent security estimations. Chapter 7 analyzes the cipher

with respect to statistical properties, and demonstrates that any cryptanalytic

attack on the cipher is not immediately obvious.

Dragon is used as a case study in Chapter 8, which provides general guidelines

for fast cipher designs and implementation, and specific advice for development of

ciphers for the Intel Pentium 4. Particular attention is given to the architecture

of the processor, including its register set and size, the throughput and latencies

of its instruction set, and the memory layouts and speeds.

The following material from this thesis has been published: the majority of

1.4. Results 11

the work of Chapter 3 appears in Paper 1; the key schedule irregularity of MUGI

from Chapter 6 appears in Paper 2; the material concerning the keystream bias

in RC4 from Chapter 4 was presented in Paper 3; and the entirety of the work in

Chapters 5 and 7 was published in Papers 4 and 5 respectively.

The contribution of the author to the original work in this thesis is as fol-

lows: Chapters 2, 6, 8 and 9 are solely the work of the author. In Chapter 3,

the security and performance analysis of the AES with and without the proposed

key schedule belongs to the author, as does the metric by which the success of

the new key schedule is gauged. In this chapter, the proposed algorithm and

Crypt-X analysis are the work of Lauren May. All work in Chapter 4 belongs

to the author, except for the statistical analysis of RC4 included in Section 4.3.

The cryptanalysis algorithm of Chapter 5 was devised by Leonie Simpson: the

author’s contribution was to significantly improve the implementation and pro-

filing techniques, without which the cryptanalysis would not be successful. The

cipher algorithm and analysis of Chapter 7 was an iterative group effort, in which

all parties contributed in equal measure to the design and analysis of the cipher.

12 Chapter 1. Introduction

Chapter 2

Block Ciphers

A block cipher is a substitution cipher that maps an m-bit plaintext to an m-bit

ciphertext using a k-bit master-key. Between the inception of the Data Encryp-

tion Standard (DES) [177] and the Advanced Encryption Standard (AES) [62] of

the late-nineties, m was usually 64 bits. Nowadays block ciphers with this block

size are considered legacy [71] and vulnerable (at computationally great expense)

to dictionary attacks (see Section A.1). In recent years, the most common block

size of new ciphers is 128 bits, although some 256-bit block ciphers have been

proposed (for example, NUSH [145] and SHACAL [89]). In this thesis, in-depth

discussion of legacy (64-bit) block ciphers is avoided.

A general model for a block cipher is one that consists of many short rounds

that mix the key material with the round’s input to produce its outputs. A round

is considered weak – given its inputs and outputs, it is not a computationally hard

problem to determine the key material used [221]. For this reason, rounds are

iterated, in which the output of one round becomes the input of the next. After a

pre-determined number of rounds, the ciphertext is emitted and the next block of

plaintext processed. The number of iterations in a cipher is a trade-off between

security and efficiency. It is simple to create a secure cipher by iterating the weak

function a very large number of times, but in an area that is already regarded as

overpopulated with cipher algorithms, block ciphers need to be efficient to garner

attention. To meet this criteria, the number of rounds, and the operations within

them need to be carefully considered.

Each round in a block cipher contains a combination of linear and non-linear

13

14 Chapter 2. Block Ciphers

components. Linear components implement diffusion, which is the process of

making each output bit depend upon as many input bits as possible. Exam-

ples of these linear components include fixed rotations, wired permutations and

maximum distance separable matrices (MDS). Non-linear components implement

confusion, and so mix bits to destroy the dependencies of their outputs upon their

inputs. Non-linear components are as equally varied as linear components, but

the most prominent is the substitution box (s-box). The types of linear and

non-linear components used in block ciphers have changed recently, following the

success of the block cipher Rijndael [62] in the AES competition. Many variants

have followed in its wake, using components and structures (including the MDS)

that were rarely seen previously.

Almost universally, as shown in Section 2.2, s-boxes are used as the prominent

form of non-linearity. There are many ways to construct s-boxes: one broad

categorization includes whether an s-box is random or algebraically constructed,

or filtered for strong properties.

Random s-boxes are unlikely to possess strong cryptographic properties, such

as optimal resistance against differential and linear cryptanalysis [205]. However,

they are also unlikely to be over-defined and thus vulnerable to the XLS attack

(excluding 4× 4 or smaller s-boxes, which are always over-defined) [56].

While algebraically constructed s-boxes can be generated to achieve specific

properties, such as optimal resistance against linear and differential cryptanalysis,

their method of construction may have the side-effect of generating unknown or

unwanted properties or vulnerabilities. One much emphasized example is the

AES s-box which is generated using exponentiation in a Galois field, then altered

using a linear transformation to rid it of its simple algebraic expression. Despite

this precaution, the s-box suffered from redundancies (although not utilized in

an attack) [76] [232], and permitted an expression of the cipher as the basis of an

over-defined system of equations [56].

One technique that is favored by the designers of the block cipher MARS

[42] and the stream ciphers Turing [201] and Dragon [48] is filtered generation

of s-boxes, to acquire strong cryptographic properties such as high non-linearity,

without the drawback of simple algebraic expression. In this technique, itera-

tive changes are made to an s-box, until it passes a fitness test based upon its

cryptographic properties. The s-box may be changed using random (MARS and

Turing) or heuristic methods (Dragon). Generation of heuristic s-boxes is further

15

discussed in Section 7.2.2 and in [168].

Block Cipher Structures

One common block cipher structure is the Feistel round. A Feistel round breaks

its input block into words, and in the course of each round, uses a function of one

or more source words and key words to modify target words within the block.

Between rounds the identities of the source and target words alternate.

The Feistel round can be classified on the basis of how many target words

each source word modifies. In a Type-n Feistel cipher, one source word modifies

n target words. In the most common type of Feistel cipher, the Type-1, such as

DES, the input of round i is split into halves (Li−1, Ri−1) which are treated (with

function f and key ki) as:

Li = Ri−1

Ri = Li−1 ⊕ f(Ri−1, ki)

There are two well-known advantages to the Feistel structure. The first is

that it facilitates decryption due to the invertibility of the connecting exclusive-

or (or other involution) operation, and the swapping of halves at the end of the

cipher [27]. Invertibility of the round function f is not required for the algorithm

to be used unmodified for both encryption and decryption. All that is required

is that the order of the round keys is reversed. Secondly, the Feistel structure

reduces the size of the block that needs to be processed at a time (a Type-1 halves

the size, a Type-3 quarters it). This leads to gains in efficiency, particularly if

the size of the handled block matches the word-size of the processor on which

the cipher is implemented. For example, MARS is a Type-3 Feistel cipher on

a 128-bit block, meaning that the 32-bit source word matches the word-size of

most processors, including the ubiquitous Intel Pentium family. In this case, the

interaction within the source word can occur within a single register, and the

interaction between target words is restricted to the highly efficient addition and

exclusive-or operations.

An alternative to the Feistel network is the Substitution-Permutation Network

(SPN), in which each word can be both a source and a target word. In the SPN,

three types of components are involved: substitution, permutations, and key

addition. One of the most well-known SPNs, and an antecedent to many of the

SPN block ciphers devised in the last eight years, is the SQUARE cipher [60]. It

16 Chapter 2. Block Ciphers

has a block length of 128 bits which is conceptually divided into an array of four

by four bytes. In each round, each of the sixteen cells in the array is modified by

three cells and one key byte. The round consists of four operations: a mixing step

(θ), a byte transposition (π), a substitution layer (γ) and a key addition layer

(σ). The diffusion elements in the cipher are present in θ and π. The γ operation

contains parallel applications of an 8 × 8 s-box. The key addition σ mixes each

cell with a corresponding byte in the round key. This is a common model for

most SPNs, although the details of the components differ between ciphers.

In an SPN, all of the words within the block are modified within the round.

This means that confusion and diffusion may be implemented more quickly than

for Feistel ciphers, and as a result, the SPN may have fewer rounds for an equiv-

alent level of security. However, the round function needs to be constructed

carefully to be invertible to allow both encryption and decryption through the

same algorithm. An alternative is to use the block cipher only in a stream ci-

pher mode such as OFB. Otherwise the footprint – the code-size and memory

requirements of the cipher – grows to accommodate encryption and decryption.

Homogeneity of the Round Function

A block cipher can be categorized according to whether all of its rounds are

homogeneous, or whether some rounds differ (at a high level) from others. By

this, it is meant that the type and inter-relationships of components in the rounds

differ, rather than the values within them.

One common line of reasoning in designing a cipher with heterogenous styles

is that a cipher that is more difficult to analyze is also more difficult to attack.

Consequently some ciphers have been designed as heterogenous structures in an

adhoc approach to gain security. However, the designers of the MARS block

cipher reasoned that many techniques of cryptanalysis involve guessing key bits at

the top or bottom layers of the cipher, following which these rounds are removed

to allow the middle rounds to be subjected to further attack [42]. They observed

from this, that the top and bottom rounds of a cipher play a different role to

the middle rounds in protecting against the attack; in particular, that the top

and bottom rounds are more concerned with fast avalanche of key bits than

resistance to cryptanalysis. They theorized that an additional advantage to a

heterogenous cipher is that it is likely to be more resilient to new attacks, since

to take advantage of a weakness in one homogeneous structure within the cipher

2.1. Block Cipher Key Schedules 17

also requires propagating it through the others, in effect making a multiple-phase

and therefore more difficult attack.

The disadvantage to a heterogenous structure is the increased complexity of

analysis. This ultimately played against MARS, when commentators complained

its complexity was undue and hindered its analysis [12], [180].

A classification of block ciphers is formulated on the aspects discussed in this

section, and used to categorize modern ciphers in Section 2.2. This classification

is based upon: (i) whether the high-level structure of the cipher is SPN or Feistel;

(ii) whether the cipher uses differing round functions within that structure; and

(iii) the method of construction of s-boxes used within the round. A fourth aspect

is included in the classification: this pertains to the type of key schedule used by

the cipher, and is discussed in the next section. Appendix A contains a survey of

attack techniques upon block ciphers.

2.1 Block Cipher Key Schedules

The secrecy in a block cipher is provided by round keys. Some ciphers use more

than one key in each round. For example, E2 [183], a Feistel cipher that modifies

sixty-four bits of text per round uses two 64-bit keys to provide 128 bits of secret

material. A cipher may use whitening, in which key material is added (but not

mixed) to the input of the first cipher round, and to the output of the last cipher

round, this being an effective way of obscuring the inputs and outputs from

attackers.

The total amount of secret key material SK for the round and whitening

keys may range from hundreds to thousands of bits. This is derived by the

key schedule from a master key. The task of the key schedule is to obscure

the relationship between the master key and the round keys, and also between

round keys, therefore preventing related-key and slide attacks (see Section A.5).

It should avoid generating weak keys (keys for which encryption is the same

function as decryption [121]), or too many identical round keys from different

master keys [131].

For a cipher with a strong key schedule, an attacker who learns a round key

of RK bits should face a task of 2RK complexity in acquiring another round

key, and an effort of 2K to retrieve the master key. When the total material

SK ≥ K, brute-force searching, rather than attacking the key schedule or the

18 Chapter 2. Block Ciphers

cipher algorithm, may be the most viable method of attack.

2.1.1 The Carter et al. Key Schedule Classification

One key schedule classification that relates the difficulty that an attacker faces

in discovering round and master keys, was devised by Carter et al. [46]. This

classification assumes that the attacker possesses a single round key, and divides

key schedules into two types. Type 1 key schedules allow the attacker to retrieve

some bits of other round keys, or of the master key with a minimum of calculation.

Type 2 key schedules are more robust. For these key schedules, the attacker needs

to perform computationally infeasible tasks to retrieve additional key material

using that already held. Each of the two types is further divided into three

classes.

The Type 1 key schedule classes incorporate:

• Type 1A key schedules, in which the master key is used without modifica-

tion as round keys (this is the minimum possible key schedule, a null key

schedule);

• Type 1B key schedules, in which the master key is modified in a reversible

and trivial way to produce the round key (for example, by rotating each

round key by a predefined amount to produce its successor). The values

of master key bits are immediately evident in a round key (although the

position of the bits may have changed);

• Type 1C key schedules, when some trivial calculation may be performed to

produce each round key from its predecessor, or from the master key. Given

a round key, an attacker performs some calculation (such as exclusive-oring

two known values) to retrieve some master key or round key bits.

Type 1 key schedules are particularly vulnerable to self-similarity cryptanaly-

sis, which include related-key and slide attacks (see Section A.5). The Type 2

key schedule classes are:

• Type 2A key schedules, in which only a subset of master key bits are used

to derive each round key;

• Type 2B key schedules, in which all master key bits are used to derive

each round key;

2.1. Block Cipher Key Schedules 19

• Type 2C key schedules, in which each round key is independent, such that

the length of the master key equals the total of the lengths of the round

keys.

There are some issues concerning this classification, which include key sched-

ules that have a hybrid category due to polymorphic behavior; key schedules

that have different categories depending upon the number of round keys already

possessed; the similarity of the Types 1B and 1C categories; and the misleading

position of the Type 2C category within the classification.

Hybrid key schedules Different round keys within a block cipher can fall

within different categories in this classification. But the classification provides

no explicit guidance as into which category they should be placed. This leads to

inconsistencies in the classification.

As an example, Carter et al. list SQUARE as Type 1A since they note the first

round subkey is the master key itself. The key schedule of SQUARE’s successor

Rijndael, when used with a 128-bit key, exhibits identical behavior. But Carter

et al. give Rijndael a Type 1B classification because some of the other round keys

are derived using a more complex algorithm. In terms of the classification, the key

schedules of Rijndael and SQUARE behave in identical ways so this discrepancy

should not occur.

The choice of the round key for analysis affects the categorization. Depending

upon the number and position of the round keys possessed, Rijndael with a 256-

bit master key may slot into any of three categories:

1. an attacker in possession of the first two round keys instantly possesses the

master key. In this case, Rijndael is acting as a Type 1A cipher.

2. an attacker in possession of the first round key cannot derive any of the

other round keys, since these are partially based on the second round key

(the second half of the master key), which is independent of the first. In

this case, Rijndael is acting as a Type 2B cipher.

3. an attacker in possession of any other round keys is able to derive some

bits from other round keys and possibly the master key, without any major

computational effort. In this case, Rijndael is acting as a Type 1C cipher.

In many of the attacks discussed in Appendix A, the first or the last round

keys are the first targeted by an attacker. Once discovered, the game may be over

20 Chapter 2. Block Ciphers

for ciphers with Type 1 key schedules, depending upon how many key bits can be

retrieved. For ciphers with Type 2 key schedules, the round with the discovered

key is peeled off, and the reduced cipher treated as a new attack subject. This

suggests that for a key schedule of a cipher that falls into multiple categories,

classification is prioritized on the behavior of the round keys that are targeted

first. The failing of this approach is the difficulty in determining consistency

between attack types in terms of which keys they target. An alternative is to

classify the schedule on the basis of the weakest round key, since if it is possible,

this is the one that the attacker will target first.

Are two round keys twice the value of one? The classification only consid-

ers the scenario for an attacker in possession of one round key. The scenario can

alter radically when an attacker discovers a second round key. As an example,

consider Serpent and Zodiac [98]. As shown later in this survey, the Carter et

al. classification awarded to the key schedules of these ciphers is Type 2B. For a

single round key, an attacker can derive no information about other round keys

or the master key. But if the attacker can, through brute force searching (or in

some other way), discover a second round key, retrieval of subsequent round keys

is trivial.

For one round key, Serpent and Zodiac have a Type 2B classification. For

two round keys, they exhibit Type 1C behavior. The classification does not

distinguish between robust key schedules against an attacker with multiple round

keys, and those that are robust only for a single round key. When the combined

material in two or more round keys is less than the number of the bits in the

master key, this is a serious failing of the classification. When the combined

material is greater than the size of the master key, a brute-force attack is more

effective, and the number of round keys possessed by the attacker is immaterial.

Similarity of Type 1B and 1C classifications The division between Type

1B and 1C categorizations in Carter et al. scheme seems somewhat artificial.

In Type 1B ciphers no calculation is required to retrieve master key bits. In

Type 1C ciphers, trivial calculation is required. An attacker is unlikely to find

much difference, in terms of complexity, between the two categories relative to

the differences between other categories.

The division leads to confusion in the Carter et al. classification. A decryption

that leads directly to DEAL’s [134] master key is classified as 1B, while simple

2.1. Block Cipher Key Schedules 21

arithmetic operations that provide Crypton’s [150] master key is classified as Type

1C. According to the guidelines given above, the classification of DEAL should

be Type 1C.

Type 2C key schedules are not the strongest In [45], Carter states The

strongest key schedules are 2C schedules in which subkey generation is totally

independent. This is consistent with the category’s placing at the end of the clas-

sification (which is ordered from weakest to strongest). However, it ignores the

earlier cryptanalytic result of [121], which indicates that ciphers using indepen-

dent keys may be broken as easily as Type 1A ciphers: in some circumstances

an independent round key can be treated as a master key. Indeed the advice

of Kelsey et al. [122] is Avoid independent round keys...we have shown that this

dramatically lowers [a] cipher’s resistance to related-key attacks.

In a fundamental way, Type 2C key schedules are similar to Type 1A key

schedules, in that the master key is used directly as round keys. The difference

is that in a Type 1A key schedule, the master key is repeated as many times as

there are rounds, but a Type 2C master key subsequence is never deliberately

repeated.

2.1.2 Repairing the Carter et al. Key Schedule Classifi-

cation

Despite the issues identified in Section 2.1.1, the scheme by Carter et al. is

a useful tool for evaluating the strength of block cipher key schedules. In this

section, modifications are made to the classification to rectify the issues described.

In the modified classification, as with the original, Type 1 key schedules do

not require laborious effort from the attacker to retrieve new key material. Type

2 key schedules require the attacker to hold more than one round key, or to

recommence a new attack in order to acquire new key material. The issues relating

to Types 1B, 1C and 2C of Carter’s classification are repaired by amalgamating

or reorganizing them, to accurately reflect the level of effort an attacker needs to

discover new key material. A new category is introduced to reflect the situation

that occurs when an attacker with multiple round keys finds it easy to identify

new material, but an attacker with a single round key does not. This makes the

classification guidelines more explicit, to avoid confusion about into which class

to place a key schedule, when different round keys exhibit different behavior.

22 Chapter 2. Block Ciphers

The new Type 1 key schedule classes are:

• Type 1A key schedules, in which the master key is used directly as each

round key, or in which it is split, without modification, across round keys.

This category is identical to Carter et al.’s classification, except that it

incorporates the case when halves of a n-bit master key are alternated

between rounds that use n
2
-bit round keys. In this case, knowledge of one

round key immediately provides knowledge of half the round keys and one

half of the master key.

• Type 1B key schedules, in which some minimal calculation is required

upon any round key to derive parts of other round keys or the master key.

This calculation may involve any primitive operations, such as addition or

rotation, or a decryption using the cipher’s round function. It also includes

the case in which the master key is directly used as some (but not all) round

keys, and can be easily calculated from other discovered round keys.

This classification is an amalgamation of Carter et al.’s Type 1B and 1C

levels. As indicated in Section 2.1.1, the distinction between these two lev-

els is not of interest to an attacker. It also addresses the case when different

round keys fall into different categories of the Carter et al. classification.

For example, the polymorphic behavior of Rijndael’s key schedule is re-

solved: because it uses the master key directly as some round keys, and

because master key bits are so easily retrievable when given other round

keys, Rijndael’s key schedule falls into the Type 1B category of this classi-

fication.

• Type 1C key schedules, in which independent round keys are used, such

that the length of the master key equals the total of the lengths of the round

keys; or in which the master key is used as some (but not all) round keys,

but master or round key bits cannot be easily derived from other round

keys.

This classification subsumes Carter et al.’s Type 2C classification. But as

reflected by its positioning in the Type 1 category of the new classification,

this type of key schedule is not effective against some kinds of related key

attacks.

The Type 2 key schedule classes are:

2.1. Block Cipher Key Schedules 23

• Type 2A key schedules, in which possession of a single round key does

not allow trivial calculation of bits of other round keys or the master key.

However, an attacker with multiple round keys may be able to easily cal-

culate other key material, under the proviso that the effort 2SK to acquire

the original round keys does not equal or exceed the effort required for a

brute-force attack 2K .

There is no comparable class in Carter et al.’s classification, which concen-

trates on a possession of a single round key. Thus it has no way to distin-

guish between the key schedules of the Zodiac and Serpent block ciphers,

in which an attacker with one round key gains no headway in identifying

new key material.

The Zodiac cipher supports a 256-bit master key and uses 64-bit round keys.

An attacker who holds two round keys totalling 128 bits can easily acquire

other round keys without attacking the cipher further. The Serpent cipher

also supports a 256-bit master key and uses 128-bit round keys. An attacker

who holds two round keys can acquire without effort the 256-bit Serpent

master key. However, the total effort to acquire the two 128-bit round keys

may have exceeded that needed in a simple brute-force attack on the 256-

bit master key. Thus while Carter et al. would award both ciphers a 2B

classification, the new classification awards Zodiac a 2A classification and

Serpent a 2C classification (which is equivalent to a 2B classification in

Carter’s scheme).

• Type 2B key schedules, in which only a subset of master key bits are

used to derive each round key, and in which an attacker faces intractable

problems to acquire new key material, given that the key material SK of

the held round keys is less than the size of the master key K.

This class is comparable to Carter’s Type 2A classification, with the stipu-

lation that the key schedule is robust against SK < K bits of key material

in the attacker’s possession.

• Type 2C key schedules, in which all master key bits are used to derive

each round key, and in which an attacker faces difficult problems to acquire

new key material, given that the key material SK of the held round keys is

less than the size of the master key K.

24 Chapter 2. Block Ciphers

This class is comparable to Carter’s Type 2B classification, with the stipu-

lation that the key schedule is robust against SK < K bits of key material

in the attacker’s possession.

In [45], Carter surveyed the AES candidates and classified their key schedules.

Table 2.1 shows the differences in classifications for those block ciphers. The new

classifications are explained further in the following section.

Carter Henricksen
Cipher

Classification Classification
Notes

Cast-256 2B 2C Equivalent
Crypton 1C 1B
DEAL 1C 1B Incorrectly noted in [45] as Type 1B
DFC 2A 2B Equivalent
E2 2B 2C Equivalent

Frog 2B 2C Equivalent
HPC 1B 1B Incorrectly noted in [45] as Type 2B

LOKI97 2B 2C Equivalent
Magenta 1A 1A Incorrectly noted in [45] as Type 1B

Mars 2B 2C Equivalent
Rijndael 1B 1B

RC6 2B 2C Equivalent
SAFER+ 1B 1B Incorrectly noted in [45] as Type 1C
Serpent 2B 2C Equivalent
Twofish 2B 2C Equivalent

Table 2.1: Differences Between Carter et al.’s and Henricksen’s Key Schedule
Classification of the AES Candidates

2.2 Categorizing Block Ciphers

Prior to 1998, there were only a handful of commonly known and industrially

deployed ciphers including DES, IDEA [143], FEAL [172], RC2 [194] and RC5

[196]. The United States’ Advanced Encryption Standard and analog European,

Japanese and Korean competitions changed all this. Now block ciphers are pro-

lific, and new ciphers are viewed with a degree of cynicism unless distinguished

through a high degree of efficiency or an elegant security proof (for example, the

Wide-Trail Strategy discussed in Section A.2). In this section, 128-bit block ci-

phers proposed in the recent competitions are described and classified according

2.2. Categorizing Block Ciphers 25

to a four-component categorization that includes:

• Cipher Structure: which specifies whether the cipher is constructed using a

Feistel structure, an SPN, or a novel design.

• Round Homogeneity: whether, at a high-level, each function looks identical.

Detailed differences between functions, such as the values used in s-boxes,

are ignored.

• S-box construction: whether the s-boxes (if any are used) are constructed

randomly or using algebraic heuristic means; also, whether they are filtered

or keyed.

• Key Schedule: which is classified according to the scheme developed in the

Section 2.1.2.

2.2.1 Advanced Encryption Standard

The call for ciphers in the AES competition [179] was made in September, 1997.

The requirements were for a block cipher with a block size of 128 bits, and a

key schedule that supported 128, 192 and 256 bit keys. The block cipher was

required to be more efficient in software than the Triple-DES [177] on a majority

of platforms.

Of the submissions, fifteen were accepted. These included Cast-256 [3], Cryp-

ton, DEAL, Decorrelated Fast Cipher (DFC) [85], E2, Frog [78], Hasty Pudding

Cipher (HPC) [207], LOKI97 [39], Magenta [113], MARS, RC6 [197], Rijndael,

SAFER+ [157], Serpent and Twofish [205].

Of these fifteen ciphers, seven had significantly new designs. These were

DFC, E2, Frog, HPC, Magenta, and Serpent. Of these designs, Frog and HPC

were highly unconventional. Frog, LOKI97 and Magenta were broken almost

immediately after their presentation [16], [136], [222].

Cast-256, RC6 and SAFER+ were extended from earlier 64-bit ciphers to meet

the requirements of the AES. Crypton, Rijndael, and to an extent Twofish, owed

much to the SQUARE SPN cipher. DEAL and LOKI97 were strongly influenced

by the DES cipher.

In 1999, the fifteen candidates were narrowed down to five finalists [180].

These were MARS, RC6, Rijndael, Serpent and Twofish. From these, Rijndael

was chosen as the AES winner and standardized in December of 2001.

26 Chapter 2. Block Ciphers

All fifteen of the AES candidates are summarized and classified below.

Cast-256 (Feistel, Heterogenous, Filtered, 2C)

Cast-256 is a byte-oriented cipher. It inherits security properties and analysis

from the 64-bit Feistel cipher Cast-128 [1].

Cast-128 uses three different round functions. In each round function, a 32-bit

data key is mixed with the 32-bit input and the combination rotated using a 5-bit

rotation key. The result is split into bytes, each of which is passed through an

8 × 8 s-box. The four s-box outputs are recombined to form the round output,

using mixing from different algebraic groups. The three round functions differ

in how the data, key and plaintext are mixed, and how the s-box outputs are

recombined. The round functions alternate between rounds.

To upgrade this algorithm for use with a 128-bit block, Cast-256 uses a 48-

round Feistel structure that quarters the block into 32-bit sub-blocks. The right-

most sub-block is used as input to the round function. This sub-block is replaced

by the combination of the function output with the third sub-block. Then the

128-bit block is rotated by thirty-two bits. As with Cast-128, round functions

alternate between rounds. However, after twenty-four rounds, the order of alter-

nation is inverted for the remaining twenty-four rounds, to allow the extended

Feistel structure to be used for both encryption and decryption without alter-

ation.

The s-boxes for Cast-256 are inherited directly from Cast-128. These are 8×8

s-boxes heuristically constructed from bent functions for strong cryptographic

properties.

Cast-256 has no whitening. The key schedule produces 37-bit round keys for

each of the 48 rounds. The schedule contains a 256-bit state, which is initialized

by the padded master key and altered by constants. The algorithm used by the

schedule to update the state is similar to the CAST-256 round function, and

is iterated ninety-six times. This non-invertible process chains the round keys,

producing a Type 2C key schedule.

Crypton (SPN, Homogenous, Filtered, 1B)

Crypton is a variant of the SQUARE cipher that does not explicitly adhere to

the wide-trail design strategy. It is byte-oriented.

2.2. Categorizing Block Ciphers 27

Crypton uses a very similar SPN round structure to SQUARE but that re-

places the byte-wise MDS used in the mixing step (θ) with bit-based masking and

binary additions, presumably for reasons of efficiency. A consequence of this is

the branching number of the operation is reduced by one to four. To compensate

for the reduced round diffusion, Crypton uses twelve rounds rather than eight

rounds used by SQUARE. In alternate rounds, different s-boxes and mixing steps

are used, but from an abstract level, Crypton remains an homogenous cipher.

Crypton uses four 8 × 8 s-boxes, which are variants of a single involution s-

box that is constructed randomly from two 4-bit permutations and filtered on the

basis of good differential and linear characteristics.

The original key schedule of Crypton had undesirable features since the knowl-

edge of one round key could easily be used to determine half of the remaining

round keys. Consequently it was classified by Carter et al. [46] as Type 1C. In

the updated version of Crypton [150], the key schedule was amended to remove

weak keys and the round function used in the generation of the 128-bit round

keys from the master key. It does not use whitening. Round keys for rounds

with even/odd numbers respectively are related, as they are determined using

only shifting of the words and exclusive-oring with known constants. By our

classification, Crypton has a 1B key schedule.

DEAL (Feistel, Homogenous, Filtered, 1B)

DEAL is a wrapper around the DES to bring it into line with the requirements

of the AES Competition, and to supercede Triple-DES. Triple-DES was already

being used to circumvent the short-comings of DES, but had poor performance

and a block size that was vulnerable to dictionary attacks, and it was subject to a

related-key attack [121]. DEAL is a Feistel cipher that uses the DES cipher in its

entirety as a round function. It is competitive with Triple-DES, which executes

a DES encryption three times for a 64-bit block, since DEAL executes one DES

encryption for each of its six rounds on a 128-bit block.

DEAL does not use whitening. The DEAL key schedule breaks the master

key into 64 bit segments, and generates the round keys by alternating among the

segments, masking them with round constants and encrypting them using DES

with a fixed key. Each round key is formed by exclusive-oring the result with the

previous round key. Because knowledge of the first round key leads to the master

key after decryption with a fixed key, Carter et al. classifies DEAL’s key schedule

28 Chapter 2. Block Ciphers

as Type 1B. However, this involves some (trivial) calculation, so according to the

guidelines used in their classification, DEAL actually has a Type 1C key schedule.

According to our classification, this trivial calculation accords a Type 1B status

to DEAL.

DFC (Feistel, Homogenous, Random, 2B)

DFC is a simple byte-oriented Feistel cipher belonging to the PEANUT family

[85]. The ciphers in this family come with security proofs based on decorrelation

theory. DFC is targeted towards 64-bit architectures, which negatively impacts

its performance on 32-bit processors.

The round function of DFC has two parameters a (the data) and b (the key).

Given the 64-bit input x, the output RF equals CP ((a× x + b) mod (264 + 13))

mod 264. CP is a permutation that takes a 64-bit input y = yl|yr. The output

of CP is yr ⊕RT (yl)|(yl ⊕KC) + KD mod 264 where KC and KD are 32- and

64-bit constants respectively. RT is a random 6× 32 s-box. The round function

is iterated eight times.

The key schedule generates eight 128-bit round keys using four rounds of the

encryption function. Carter et al. note that while the encryption function is non-

reversible, the first round key depends on half the master key bits. This invites

an exhaustive search on the first round key. Therefore the DFC key schedule is

Type 2B.

E2 (Feistel, Homogenous, Algebraic, 2C)

E2 is a word-based cipher that uses a global Feistel structure, but within the

Feistel round adopts an SPN layout. It has twelve rounds. The SPN consists of a

layer of eight parallel 8×8 s-boxes, followed by a 64-bit wide permutation, followed

again by a layer of parallel 8× 8 s-boxes, finishing with a byte-based rotation. A

single s-box is used repeatedly within this structure. It is generated algebraically

as an exponentiation in a Galois field, followed by an affine transformation, in

the same manner as Rijndael.

The E2 key schedule generates a 128-bit round key for each round, and four

128-bit whitening keys. The round keys are applied in two 64-bit parts, each

before a layer of s-boxes in the round function. The key schedule initializes a 256-

bit value from the master key, which is padded if necessary. The schedule iterates

two threads, one containing the key-based value, and the other an auxiliary value

2.2. Categorizing Block Ciphers 29

chained from a constant. During the course of the round, each value is modified

four times by an SPN. The outputs of the SPN for the key-based value are

incorporated into the auxiliary value prior to its application to the SPN. The

outputs of the SPN for the auxiliary value are concatenated to form two 128-bit

round keys. The chaining method is non-invertible, so the key schedule is type

2C.

Frog (Adhoc, Homogenous, Random, 2C)

Frog is one of a small number of ciphers surveyed here that does not conform to

either the SPN or Feistel structure. Instead it treats the cipher block as a circular

array of bytes, and in each of eight rounds, performs four operations on each byte,

three of which are based upon byte values in the key. The confusion operations

within Frog include exclusive-oring each byte in the array with a corresponding

key byte, and performing a byte substitution using a keyed s-box. The diffusion

operations include exclusive-oring the output of the s-box into the subsequent

byte, and also into another byte, the position of which is determined by a key-

dependent permutation. There is little theoretical underpinning to this design.

Frog has no whitening. Key setup involves taking a key of between 40 and

1,200 bits, and concatenating it to make an internal key of 18,432 bits. This

is used to encrypt a zero-filled array of 18,432 bits using Frog in CBC mode.

The encrypted array is used to populate the array used during the exclusive-or

operation, the keyed s-box and the keyed permutation. The key schedule is Type

2C, since the one-way Frog round is used to produce each round key from all bits

of the master key.

Hasty Pudding Cipher (Adhoc, Homogenous, Keyed, 1B)

The oddly named Hasty Pudding Cipher is a family of block ciphers with varying

block- and key-sizes. The HPC-medium cipher conforms with the AES specifica-

tions of a 128-bit block and key sizes of 128, 192 and 256 bits.

HPC operates on 64-bit words using addition, subtraction, exclusive-or, shift-

ing and a key-dependent s-box. The key is not mixed directly with the round, but

influences the ciphertext through the key-dependent s-box. The round function

has an ad-hoc design and is iterated eight times.

HPC has no whitening. The key schedule sets up the 8 × 64 key dependent

s-box. The s-box is initialized with constants, over which the repeated key is

30 Chapter 2. Block Ciphers

exclusive-ored. The key schedule stirs each value in the s-box three times, using

a lengthy non-linear function that mixes three s-box values using addition, sub-

traction, exclusive-oring, logical-oring, and shifting. This process is non-invertible

so the master key can not be deduced from knowledge of any word in the s-box.

Also, each word in the s-box depends upon all bits of the master key. For this

reason, Carter et al. classify the key schedule as Type 2B. However, since the

s-box does not change between rounds, and no explicit key addition process is

followed, knowledge of the key in one round permits knowledge of the entire key

in any other. The key schedule classification guidelines make clear that this kind

of key schedule is Type 1B.

LOKI97 (Feistel, Homogenous, Algebraic, 2C)

Along with DEAL, LOKI97 is one of the more conservative entrants in the AES

competition. It is a Type-1 Feistel cipher descended from LOKI89 [40] and

LOKI91 [38], both of which bear strong resemblance to the DES. The homogenous

round function of LOKI97 contains a keyed permutation, a static permutation, a

64-bit expansion box, and two rows of s-boxes, each of which contains alternating

13 × 8 and 11 × 8 s-boxes. No explicit key addition is used within the round.

The s-boxes use cubing in a Galois field and are optimized against differential

and linear cryptanalysis; however, the diffusion elements do permit such attacks

(see Section A.2 and A.3). The keyed permutation obscures which s-box each bit

of input enters during the round, and the static permutation uses a latin square

to provide fast diffusion.

The key schedule uses an unbalanced Feistel network that leverages the round

function and iterates it forty-eight times to produce 16×256-bit round keys. These

are used in the keyed permutation, as input into the second row of s-boxes, and as

whitening material for the half block that is not processed in the round function.

Discovery of a 256-bit round key leads, with trivial computation, to other round

keys later in the schedule. But the schedule is not invertible, and does not allow

recovery of the master key. Because the effort needed to derive other key material

is equivalent to a brute-force search, this key schedule is categorized as Type 2C.

Magenta (Feistel, Homogenous, No s-boxes, 1A)

Magenta is a homogenous Feistel cipher. It contains no s-boxes, its non-linearity

coming from a modified Fast Hadamard Transform structure which is applied

2.2. Categorizing Block Ciphers 31

recursively. It is a simple but slow cipher, since the deepest structure in the

recursion uses exponentiation on a pair of bits. In an encryption of a 128-bit

block, this exponentiation is executed 2,304 times.

Magenta does not possess a complex key schedule. The 256-bit master key

is split into 128-bit segments which are alternated between rounds. Carter et al.

categorize this key schedule as Type 1B because knowing one round key does not

automatically provide the entire master key. However, their Type 1A category

provisions for learning only part of the master key directly. This is the category

to which the key schedule of Magenta belongs.

MARS (Feistel, Heterogenous, Filtered, 2C)

MARS is explicitly geared towards fast performance on contemporary 32-bit ma-

chines, on which addition, substraction, rotation and multiplication were expected

to be fast. By extensively using these efficient and easily analyzed operations,

the designers of MARS expected their cipher would carry the same properties.

Another distinguishing feature of MARS is its heterogenous structure, in which

the top and bottom parts play different roles to the middle parts. However, this

heterogenous structure has lent to the impression that MARS is a complex and

difficult-to-analyze cipher, which is one reason that it was not selected from the

five finalists as the AES [180].

The top and bottom rounds of MARS are “wrapper layers” that add key

words, and perform several rounds of unkeyed s-box mixing that provide rapid

avalanche of key bits.

The middle rounds of MARS are a cryptographic core that consist of eight

rounds of a keyed forward transformation, followed by eight rounds of a mirrored

keyed backwards transformation. Each round uses one data word and two keyed

words to influence three other data words, using a combination of s-box lookups,

multiplications, additions, and data-dependent rotations. When combined with

addition, data dependent rotations are highly efficient at defeating linear and

differential cryptanalysis. However, only the five least significant bits of the rota-

tion word are used in the rotation. High-bits of multiplication products are used

to provide these rotation amounts, since they depend upon the most bits in the

operands. Conversely, the most significant bits in the multiplicand and multiplier

have the least effect upon the bits in the product; these bits are instead used as

inputs into the highly non-linear s-box. In this way, the use of an economical

32 Chapter 2. Block Ciphers

number of simple operations contribute to a strong and secure cipher.

The MARS s-box was created pseudo-randomly using the SHA-1 hash func-

tion, and filtered on the basis of five differential and four linear properties. How-

ever, Burnett et al. [41] identified a mismatch between the resulting s-box and

the claimed properties, and proposed techniques by which better s-boxes could

be generated more quickly.

The key schedule of MARS generates 256 bits of whitening material, and

64-bit round keys for each of the sixteen rounds. It expands the initial key (of

between 128 and 1,248 bits) to 1,280 bits, using a simple linear transformation

involving exclusive-ors and fixed rotations. The expanded array is mixed using

seven rounds of a simple Type-1 Feistel network. Carter et al. note that for a

128-bit key, only three rounds of stirring are required for all round keys to become

dependent upon all bits of the master key. Finally, weak keys are identified and

remedied. Because the round keys are not generated from contiguous sections of

the expanded array, knowledge of one round key does not aid in calculation of

others. Consequently this is a Type 2C key schedule.

Rijndael (SPN, Homogenous, Algebraic, 1B)

Rijndael was the winner of the AES competition, and is referred to as the AES

in the remainder of this thesis. It is a byte-based cipher. One of its strong points

is formalized defence through its use of the wide-trail strategy, which it inherited

from SQUARE. It is a SPN that bears strong resemblance to SQUARE, differing

primarily in its use of a high-diffusion MDS as the mixing component. The

combination of the MDS and the repeated use of a single robust 8×8 s-box means

provable security against basic forms of differential and linear cryptanalysis. The

other point in its favor is efficiency by executing simple operations over a small

number of rounds.

Each round in the AES is identical, with the exception of the last, in which

the mixing component is removed, to allow reuse of the algorithm for encryption

and decryption. Its s-box is constructed algebraically using inversion in a Galois

field combined with an affine transformation. This is due to a result by Nyberg

[184].

The AES does not use whitening. The key schedule of the AES is Type 1B.

In the case where the block size is 128 bits, knowledge of a 128-bit round key

may directly provide knowledge of 96 bits of the round key two rounds previous.

2.2. Categorizing Block Ciphers 33

Some master key bits are directly used as the round key.

RC6 (Feistel, Homogenous, No s-boxes, 2C)

RC6 is a modification of the popular 64-bit block cipher RC5. It can be viewed

as two parallel but intertwined versions of RC5, where rotation amounts depend

upon a quadratic equation of variables from both instances.

In the AES submission, RC6 iterates twenty rounds of its Feistel structure.

It is optimized for 32-bit processors and uses multiplications in conjunction with

rotations, instead of s-boxes, for non-linearity. This parallels MARS, but RC6

is unique in that these operations replace rather than complement s-boxes. At

the time of its design, it was expected that this slimline design would lead to an

extremely fast cipher, but as with MARS, the newly emerging and now ubiquitous

Intel Pentium 4 architecture penalized precisely these operations (see Chapter 8).

The standard version of RC6 uses 22×64-bit round keys, two of which provide

whitening. The key schedule of RC6 is identical to that of RC5, except that the

core function is iterated at least three times per round key. Each round key is

generated from all bits of the master key, and chained to all other round keys,

making the key schedule function non-invertible. Consequently, the key schedule

of RC6 is Type 2C according to our classification.

SAFER+ (SPN, Homogenous, Algebraic, 1B)

SAFER+ is an upgrade of the 64-bit block SAFER cipher family to meet AES re-

quirements. Despite its authors’ claims to the contrary, it is a classic substitution-

permutation network. SAFER+ is a byte-oriented cipher.

The SAFER+ round function contains two key addition layers, between which

is sandwiched a row of s-boxes. After the second key addition layer a block-wide

linear transformation occurs based upon pseudo-hadamard transforms (PHTs).

The key additions are not performed uniformly, but alternate between pairs of

exclusive-ors and modular additions. Likewise pairs of s-boxes are alternated.

SAFER+ contains two algebraically generated 8 × 8 s-boxes. One is con-

structed as S1(x) = 45x mod 257 mod 256 and the other by S2(x) = log45(x)

mod 257 mod 256.

SAFER+ does not use whitening. The key schedule generates 128-bit round

keys for eight, twelve or sixteen rounds for key sizes of 128, 192 or 256 bits

respectively. As the master key provides the first round key according to Carter

34 Chapter 2. Block Ciphers

et al.’s classification, the cipher should be categorized as Type 1B rather than

Type 1C. The remaining round keys are generated iteratively from the previous

round key, by rotating within the bytes by three bits, rotating between the bytes

by one byte, and combining the result with a constant. As knowledge of any

round key allows retrieval of at least fifteen master key bytes, according to the

new classification, this is a Type 1B key schedule.

Serpent (SPN, Homogenous, Filtered, 2C)

Serpent attempts to combine a conservative and secure design with efficiency

through its use of bit-slicing. Until the attack of [56], it was widely regarded as

one of the more secure AES finalists; however, it is not competitive in terms of

throughput [180].

The cipher consists of an initial permutation, thirty-two iterations of the round

function and a final permutation. The initial and final permutations are bit-based

and convert the block to bit-sliced form and vice versa. In each round, each of

the thirty-two bit-sliced words undergoes key addition with four bits of the round

key, and the result is used as input to a replicated 4× 4 s-box. The output of the

thirty-two s-boxes is recombined and, in all but the last round, used as input to

a linear transformation. In the last round, this transformation is replaced by a

final key addition.

The cipher has eight 4×4 s-boxes. Each s-box Si, 0 ≤ i < 8 is used in parallel

eight times in rounds r such that r mod i = 8. The s-boxes were designed using

an RC4-like algorithm in which entries were swapped until differential and linear

criteria were met. The XLS attacks of Courtois and Pieprzyk [56], described

further in Section A.6, apply to Serpent because it uses 4× 4 s-boxes, which are

always over-defined.

Serpent does not use whitening. The key schedule produces 33×128-bit round

keys from a master key that is, if necessary, padded to 256 bits. The key schedule

produces thirty-three intermediate keys, based upon linear combinations of parts

of the current and previous intermediate keys, the round key number, and a

constant. The intermediate keys are placed through s-boxes in bit-slice mode to

produce the round keys. Because each 32-bit word in the round key depends on

between two and four 32-bit words exclusive-ored in the previous round key, a

single round key does not give any information about other round keys or the

master key. Knowledge of any eight consecutive 32-bit round key words gives

2.2. Categorizing Block Ciphers 35

knowledge of all round keys and the master key; however this is equivalent to a

brute-force search, so the key schedule of Serpent has a Type 2C classification.

Twofish (Feistel, Homogenous, Keyed, 2C)

Twofish [205] is a word-based Type-1 Feistel cipher that uses sixteen homogenous

rounds. For diffusion, Twofish uses PHTs inspired by the SAFER family, and an

MDS matrix inherited from SQUARE. Twofish distinguishes itself from most of

the other AES candidates through its use of four 8× 8 keyed s-boxes.

The keyed s-boxes complicate analysis of Twofish and may be one of the

contributing factors in its failure to win the competition. But the cipher is highly

regarded and was one of the five finalists [180].

The key schedule of Twofish is an SPN that uses randomly selected fixed 4×4

s-boxes in conjunction with a MDS matrix, and addition and rotation operations.

It produces 256 bits of whitening material, 64-bit round keys for sixteen rounds

of the round function and material for the keyed s-boxes. It is non-invertible

and, due to its lengthy keying process, complicated to analyze. Its classification

is Type 2C.

2.2.2 Japanese IPA CRYPTREC

In June 2000, the Japanese Information Technology Promotion Agency (IPA)

conducted a call for a wide range of cryptographic techniques including legacy

and contemporary block-ciphers [108]. In total they received six entrants to the

128-bit block cipher section, including the AES candidates MARS and RC6.

Also submitted were Camellia, CipherUnicorn-A [219], Hierocrypt-3 [186],

and SC2000 [211]. SEED [141], although not formally submitted, was a target

for examination. The AES cipher was added as a candidate in 2001. Camellia

is the successor to the AES candidate E2, to which SEED also bears obvious

resemblances. Hierocrypt-3 is derived from the AES block cipher. SC2000 takes

many of its operations from the AES and Serpent. CipherUnicorn-A is a new

and complicated design. None of these ciphers have been seriously compromised

by attacks.

In [109], the CRYPTREC committee recommended the ciphers AES, Camel-

lia, CipherUnicorn-A, Hierocrypt-3, and SC2000 for use in constructing Japanese

e-government systems. RC6 was removed from consideration due to intellectual

property rights issues.

36 Chapter 2. Block Ciphers

Camellia (Feistel, Heterogenous, Algebraic, 1B)

Camellia is a revamp of the failed AES candidate E2, and inherits some features

from the legacy NESSIE candidate MISTY-1 [160]. The cipher is an eighteen

round Feistel cipher in which each round resembles an SPN. While the SPN of

E2 contains two layers of s-boxes, Camellia’s SPN contains only one, which is

compensated for by an increased number of rounds.

The SPN permutation and byte rotation in Camellia are derived from E2.

However, after each group of six SPNs, a MISTY-like linear function (denoted

FL) and its inverse are applied in parallel to the full block. The FL and FL−1

functions are intended to add non-regularity to the cipher to provide security

against unforseen attacks. They are simple, containing logical ands and ors,

exclusive-ors and one-bit rotations. The last of these disrupts byte-oriented crypt-

analysis, a feature that the cipher shares with Twofish. Camellia has a more

ad-hoc approach to heterogeneity than MARS.

As with E2 and the AES, the s-boxes are generated algebraically using expo-

nentiation in a Galois field, and disrupted using affine transformations. Camellia

uses four different 8 × 8 s-boxes, three of which are simple modifications of the

fourth, using rotation on either the s-box input or output.

Camellia uses pre- and post-whitening, of 128 bits each. The key schedule

uses two 128-bit variables KL and KR, which are initialized with the master key,

and padded if necessary. Two additional variables KA and KB are generated by

iterating the round function on KL⊕KR six times using constants as keys. Each

round key is created from one of the four variables rotated by a fixed amount,

thus Camellia has a Type 1B key schedule.

CipherUnicorn-A (Adhoc, Homogenous, Algebraic, 1B)

CipherUnicorn-A has a 128-bit block size and permissible key sizes of 128, 192

and 256 bits. It is a homogenous cipher with a complicated Feistel-like round

function in that the round is broken into two computations. At the end of the

round, one word from the second computation is exclusive-ored with the result

of the first. This forms the input to the next round.

The first computation contains ten sub-rounds. The second computation con-

tains six sub-rounds. In each sub-round, half of the computation’s words form in-

put to s-boxes, which modify the remainder of the words. In alternate sub-rounds,

the roles of the source and target words are swapped. The second computation

2.2. Categorizing Block Ciphers 37

influences the source words of the first computation’s final two sub-rounds.

CipherUnicorn-A uses four 8×8 s-boxes constructed algebraically in the same

way as for the AES.

CipherUnicorn-A uses pre- and post-whitening totalling 256 bits of key mater-

ial. The key schedule for CipherUnicorn-A uses a network of 64-bit MT functions.

This function is based upon a network of s-boxes, logical operators, multiplica-

tion and rotation, and produces a thirty-two bit round key. The input to the MT

function is derived solely from the round key four rounds earlier. Consequently

CipherUnicorn-A has a Type 1B key schedule.

Hierocrypt-3 (Nested SPN, Homogenous, Algebraic, 2C)

Hierocrypt-3 is a cipher in the style of SQUARE and the AES, but uses a 2-tiered

nested SPN structure, which its authors claim benefits efficiency. The cipher is

deceptively simple, since the only components used in the round function are s-

boxes, MDS matrices, and key addition. Each round in the top level of the SPN

consists of a layer of 32 × 32 virtual s-boxes (denoted xs-boxes) and an MDS,

which is implemented as network of exclusive-ors between the sixteen bytes in

the block. The second level of the SPN is accessed through the xs-box layer,

which is implemented as two layers of 8×8 s-boxes, between which is sandwiched

a 4×4 MDS matrix on 8-bit data. The s-boxes are identical and are algebraically

generated by exponentiation in a Galois field, and modified using pre- and post-

linear transformations.

The Hierocrypt round key schedule generates 256-bit round keys for each of

the six to eight rounds, and for a 128-bit post-whitening. Each round key is split

into halves, which are used at the start and finish of each second level round

respectively. The iterated key generation algorithm is Type 2C, and consists of

generating intermediate keys using byte-level permutations in conjunction with a

reduced round function. The intermediate keys are further modified by another

reduced round function to produce the round keys. The intermediate keys are

combined in a non-invertible way so cannot be discovered from a round key and

used to calculate other key material.

SC2000 (SPN + Feistel, Homogenous, Algebraic, 2C)

SC2000 has a unique modified Feistel structure. The round structure is described

as I − B − I − R × R. This structure is iterated six or seven times, depending

38 Chapter 2. Block Ciphers

upon the length of the master key, and followed with I − B − I post-whitening.

The I function is a key addition layer that operates on 128-bit words. The B

function is an SPN-type layer of bit-sliced 4 × 4 s-boxes influenced by Serpent.

The R function is a Feistel structure in which the rightmost 64 bits are used as

an input to a function F that modifies the leftmost 64 bits. Although there are

many different parts to this structure, the round itself is homogenous.

The R function is sub-divided into three layers. The first layer is a row of

twelve s-boxes, of which eight are 5×5 and four are 6×6 s-boxes. The second layer

is a linear transformation implemented by two parallel 32 × 32 MDS matrices.

In the third layer, the two halves of the 64-bit block are mixed using logical

operations.

There are three s-boxes used in SC2000: S4, S5 and S6. These are generated

by a power mapping in a Galois field followed by an affine transformation.

SC2000 does not use key whitening. The key schedule generates between

fourteen and sixteen 128-bit round keys, depending upon the master key length.

It is a three stage process. In the first stage, the master key is padded to eight

32-bit words, by duplicating as many as necessary of the master key words. In the

second stage, the padded key is expanded to a working key of twelve words, using

an S4 s-box layer and an MDS matrix. Each working key word depends upon

only two of eight master key words. In the third stage, the working key words are

chosen in pseudo-random (but fixed) order and combined using rotation, modular

addition, subtraction and binary addition, such that each round key depends upon

every master key bit. The generation of the working key using pairs of master

key words ensures that knowledge of one round key does not provide knowledge

of any other or of the master key. This key schedule belongs to the 2C category.

SEED (Feistel, Homogenous, Algebraic, 2C)

SEED [141] is a traditional Feistel cipher with a 128-bit block and a 128-bit

master key. The round function is split into halves, one of which is applied to a

nested SPN function twice, the other being applied once. The results of each half

are combined inside the Feistel round, using modular addition. The nested SPN

consists of a layer of 8× 8 s-boxes, followed by a permutation.

The s-boxes are generated algebraically, as a power mapping in a Galois field,

followed by a linear transformation.

The key schedule generates 64-bit round keys for each of the sixteen rounds.

2.2. Categorizing Block Ciphers 39

There is no pre- or post-whitening. Round keys are generated using the non-

invertible round SPN. The round keys are split into halves, which are independent,

so that one half of the master key will never influence one half of each round key.

However, since both halves are applied within a round, all master key bits affect

each round key bit, leading to a Type 2C classification.

2.2.3 NESSIE

The NESSIE (New European Scheme for Signatures, Integrity and Encryption)

competition commenced on January 1, 2000 [71] as a European analog to the Ad-

vanced Encryption Standard. As with the CRYPTREC competition, its scope

was much broader than the AES competition, incorporating hash functions,

stream ciphers and asymmetric primitives. The block cipher competition was di-

vided into three components: 64-bit (legacy) block ciphers, 128-bit block ciphers,

and variable-length block ciphers. The entrants in the last two categories included

the AES candidate RC6, the CRYPTREC candidates Camellia, Hierocrypt-3 and

SC2000, and new ciphers Anubis [9], Grand-Cru [36], Noekeon [61], NUSH, Q

[164], SAFER++ [157] and SHACAL.

Of the new ciphers, Anubis, Grand-Cru and Noekeon were very strongly in-

fluenced by the AES or its predecessors. Q was designed using components from

the AES cipher and the AES candidate Serpent. NUSH bore more than a lit-

tle resemblance to the AES finalist RC6. SHACAL was the application of the

well-established hash-function SHA-1 as a block cipher, with its inputs inverted.

SHACAL-2, a variant of SHACAL that is based upon SHA-256, was submitted

after the competition commenced. All of these ciphers suffer from weak Type 1

key schedules.

The NESSIE competition took a different approach to the AES competition,

endorsing multiple ciphers [182]. These were the AES block cipher (which was

not officially submitted), Camellia, and SHACAL-2. SAFER++ and RC6 were

eliminated after the first round, the former because of perceived poor security, and

the latter because of intellectual property rights issues, as per the CRYPTREC

competition. Noekeon, NUSH and Q were broken [181].

Anubis (SPN, Homogenous, Filtered, 1C)

Anubis is a very close relative to the AES, and appears to have been proposed in

response to the criticism of the AES key schedule [72] and its algebraic s-box.

40 Chapter 2. Block Ciphers

Like the AES, Anubis is an homogenous SPN that adheres to the Wide-

Trail Strategy. However, it acquires some of the benefits of Feistel structures by

using operations that are involutions. This means that encryption and decryption

follow the same algorithm, and only the order of round keys changes. The order

and composition of the operations in the round functions are similar to those of

the AES, with the exception that the permutation π is a transposition, as for

SQUARE, rather than the ShiftRow used by the AES.

The 8×8 s-box is not constructed algebraically, as for the AES, but is instead

randomly generated and filtered to meet certain conditions, including non-linear

order and optimal resistance against differential and linear cryptanalysis.

The Anubis key schedule uses the wide-trail strategy to maximize diffusion.

The master key is masked by the s-box and used as the pre-whitening key. This

is Type 1B key schedule behavior. However, it is subsequently iterated using a

modified round function, in which a ShiftColumn operation replaces the trans-

position. During each iteration, a round key is extracted from the result using

a non-reversible Vandermonde matrix. This is Type 2C key schedule behavior.

According to the guidelines, this polymorphic behavior places Anubis in the Type

1C category.

Grand Cru (SPN, Homogenous, Filtered, 1B)

Grand Cru is a derivative of the AES based on the premise that embedding

several sub-ciphers, each with their own independent key set, within a single

cipher makes it more robust against an attack that would break a cipher with a

single key set. This is a defeatist view of thinking in line with that which says

encrypting a plaintext with several ciphers leads to a superior ciphertext.

Grand Cru is very similar to the AES, except that the permutation is keyed

and operates on columns and bits, as well as rows. Each round also contains a

keyed byte-wise rotation which is keyed from a different key set to the permu-

tation. As with the AES, Grand Cru is an homogenous SPN. It uses the same

algebraic s-box as does the AES.

The key schedule takes a 128-bit master key, partitions it into quarters, and

from each quarter produces a separate 128-bit key. No key bit in the master key

is used to produce any two of these keys. The first key is expanded for use with

pre- and post-whitening, the second key expanded for the round key addition,

the third key expanded for the keyed permutation and the fourth key expanded

2.2. Categorizing Block Ciphers 41

for the keyed byte-wise rotation. The derivation of the four keys from the master

key, and the subsequent key expansions to produce the round keys are all based

upon the original AES key schedule. The Grand Cru key schedule suffers the

same weaknesses as does the AES key schedule. For this reason, Grand Cru’s key

schedule is placed in the Type 1B category.

Noekeon (SPN, Homogenous, Algebraic, 1A/1B)

Noekeon is a block cipher with a block size and key size of 128 bits. Like many

of the other NESSIE candidates, it is a homogenous SPN with many similarities

to the AES. In this case, the commonalities come not directly from the AES, but

instead from its ancestors Baseking and 3-Way [57]. Unlike the AES, Noekeon is

a bit-sliced cipher that can be implemented using only bit-wise boolean and shift

operations. As with Anubis, the operations in Noekeon are involutions so that

no change is required to the algorithm between encryption and decryption.

Noekeon uses a bit-sliced 4 × 4 s-box that it applies to each 32-bit word in

the block (the γ operation). The s-box has an alternative representation using

only logical operations. The round also uses a linear mapping (θ) implemented

using exclusive-ors and byte-wise rotations that mix key material, and two linear

shift operations (π1) and (π2), which are each others’ inverse. Round constants

are added in each round.

Noekeon has two modes for its key schedule. The first, direct-key mode uses

the master key as each round key. In this mode, Noekeon has a Type 1A key

schedule that makes it vulnerable to related key attacks. In its second mode, the

cipher algorithm is used as the key schedule, with the master key as the plaintext

and a null-string as the working key. The resulting ciphertext is the new working

key, which is used as each round’s key. In this mode, Noekeon has a Type 1B key

schedule.

NUSH (Adhoc, Homogenous, No s-boxes, 1A)

NUSH is a Russian cipher primitive used to construct a block cipher, hash func-

tion, stream cipher, and even asymmetric digital signature schemes. For the block

cipher implementation of NUSH, the block size is flexible. It may be insulting to

RC6 to comment on the similarities of their designs; the former possesses a more

robust design and is accompanied by an intelligent analysis from its designers.

42 Chapter 2. Block Ciphers

The round function is implemented using only addition, exclusive-or and ro-

tation. For a 128-bit block, it operates on four 32-bit words a, b, c and d. The

round function consists of four sub-rounds, each of which updates a and c using

all four words according to c = (c + k + b) ≫ s; a = a + (c ⊕ d), where k is

the round key, and s is a sub-round dependent constant. When the sub-round is

completed, the words are cycled. The round function is iterated seventeen times

for a 128-bit block.

The key schedule is simplistic and involves generating round keys and pre- and

post-whitening keys by combining the master key words with known constants

using modular addition. Since the constants are known, and add no security

to the schedule, this is equivalent to using the master key as every round key.

Consequently the key schedule is Type 1A.

Q (SPN, Homogenous, Filtered and Algebraic, 1B)

Q is a cipher that inherits strongly from the AES cipher and Serpent. Because Q

lacks strong diffusion components found in Serpent and the AES, it is vulnerable

to differential and linear cryptanalysis in its full eight or nine rounds [25], [119].

The structure of the Q round is K1 − S1 −K2 − S2 −K3 − P − S3 where Ki is

keying layer, Si is a layer of parallel s-boxes, and P is the AES ShiftRow diffusion

operation.

There are two types of s-box mechanism deployed in Q. S1 is the AES s-box.

S2 and S3 are bit-sliced s-boxes, the former of which is taken from Serpent, and

the latter of which is slightly modified from S2.

Q uses pre- and post-whitening keys. The first two keying layers K1 and K2

in the round functions use working keys that do not vary between rounds. K3 is a

keying layer that uses an individual round key for each round. The key schedule

of Q uses a reduced version of the cipher algorithm, with constants as the working

keys. The first output of the algorithm is discarded; subsequent ciphertexts are

used to produce pre- and post- whitening keys, the fixed working keys and eight

or nine round keys (depending upon the master key length). In [25], Biham et al.

note that recovery of any round key easily gives knowledge of any other round

key and in fact the master key. Thus the key schedule is classified as Type 1B.

2.2. Categorizing Block Ciphers 43

SAFER++ (SPN, Homogenous, Algebraic, 1B)

SAFER++ [156] is a relative of the AES candidate SAFER+. It has many

similarities with SAFER+. Primarily the overall structure is the same: it is an

homogenous SPN with two key addition layers sandwiching a row of s-boxes.

Following the second row of key additions is a block-wide linear transformation.

In SAFER++, this is based upon 4-point rather than 2-point Pseudo-Hadamard

Transforms. The designers reduced the number of rounds to seven (for a 128-

bit master key) due to their belief that the mixing had improved; however [190]

asserts that the branch number of the linear transform is only five, which is poor

for the large block size.

SAFER++ contains two algebraically generated 8×8 s-boxes, which are iden-

tical to those used in SAFER+.

SAFER++ uses a single 128-bit post-whitening key. Its key schedule generates

fifteen or twenty-three 128-bit round keys for a 128-bit or 256-bit master key

respectively. The key schedule is similar to that for SAFER+: round keys are

simply rotations of an expanded key, in which one byte is omitted, combined

with a pre-determined constant. However, for a 256-bit master key, odd and even

round keys depend upon different halves of the master key. Since knowledge of

one round key trivially allows knowledge of most of another, and in fact, of the

master key, the SAFER++ key schedule is classified as Type 1B.

SHACAL (Adhoc, Heterogenous, No s-boxes, 1B)

SHACAL [89] is a straight-forward derivation of the SHA-1 hash function as a

block cipher with a 160-bit block and a 512-bit key.

SHA-1 processes a message in 512-bit blocks and combines the blocks with

160-bit chaining variables, the end result of which is a 160-bit digest. By using

the compression function of SHA-1, inserting the secret key as the message, and

initializing the chaining variables with the 160-bit plaintext, the block cipher

SHACAL results.

During each of eighty rounds, SHACAL applies a non-linear function to one

of the chaining variables. Each non-linear function contains only simple logical

operations (no s-boxes) and varies according to the round number: there are three

functions in total, which lends the cipher a heterogenous appearance. Although

the overall structure remains the same, these changes cause attackers difficulty

in covering the whole cipher.

44 Chapter 2. Block Ciphers

The key schedule expands the 512-bit master key to an expanded key of 2,560

bits. This is broken into eighty 32-bit round keys. The master key provides

the first sixteen round keys. The remaining round keys are derived from the

combination (using exclusive-or) of four previous round keys. Knowledge of any

512 consecutive round key bits, which is equivalent to the effort of a brute-force

search, provides the complete expanded key. The key schedule is Type 1B.

SHACAL-2, a variant of SHACAL with a 256-bit block was introduced in the

second phase of NESSIE. SHACAL-2 is based on the standardized hash function

SHA-256, so its key schedule is slightly different. Again the master key provides

the first sixteen round keys. Each subsequent round key depends upon four

previous round keys (two of which are processed by the ω function). The ω

functions are not invertible; however, knowing four round keys allows immediate

calculation of some subsequent round keys, so SHACAL-2 also has a Type 1B

key schedule.

2.2.4 ISO/IEC/JTC1/SC27-Korea

The cryptographic competition in Korea was low key in comparison to the Eu-

ropean, Japanese, and American competitions. It received three entrants, one of

which, SEED, was resubmitted from CRYPTREC. The remaining two ciphers,

Xenon [215] and Zodiac [216], were submitted by a single designer, but Zodiac

was quickly broken.

Xenon (Feistel, Homogenous, No s-boxes, 2A)

Xenon is a Feistel cipher with a simple structure. Within the Feistel round, the

64-bit block is broken into 32-bit blocks, to each of which is applied a function

that uses byte rotation, multiplication, binary addition and modular addition.

The result of each sub-block is then combined with the other sub-block using the

exclusive-or operator, analogous to the SEED algorithm.

The key schedule generates one 64-bit pre-whitening, one 64-bit post-whitening

and sixteen 64-bit round keys. The schedule contains a data-pad and a key-pad.

These are initialized by alternate 32-bit words of the master key masked with

constants. To generate a round key, an initial permutation is applied to the data

pad, which is encrypted using two rounds of the round function, with the key pad

acting as the key. The round key is produced by adding constants to the data

2.3. Summary 45

pad. The data-pad is overwritten by the key-pad, which in turn is overwritten

by the round key. Then the next round key is produced.

The round function is not reversible, so knowing one round key does not allow

retrieval of the bits of other round keys or master key bits. However, knowing

two consecutive 64-bit round keys provides the contents of both the data-pad and

key-pad which allows retrieval of all subsequent (but not prior) round keys. The

master key is not directly used as a round key, so Xenon is classified as owning a

Type 2A key schedule.

Zodiac (Feistel, Homogenous, Algebraic, 2A)

Zodiac is a 16-round Feistel cipher with an extremely simple three-layered round

function. In the first layer, each byte is exclusive-ored with one of its neighbors.

The second layer is a simple permutation. The third layer consists of a layer of

alternating s-boxes. Key addition takes part externally to the round function,

and is combined with the round function’s input.

Zodiac uses two algebraically constructed 8× 8 s-boxes. One is generated by

an inversion in a Galois field, and the other by an exponentiation in a modular

number system.

Zodiac uses pre- and post-whitening. The key schedule of Zodiac is similar

to that of Xenon. The difference occurs because each schedule uses the round

function of their respective cipher algorithms. As with Xenon, the key schedule

of Zodiac is classed as Type 2A.

2.3 Summary

This chapter evaluates the key schedule classification scheme proposed by Carter

et al. in [46]. This classification divides key schedules into two partitions: those

in which an attacker with a single round key can analyze the key schedule to

acquire further key material; and those for which the attacker needs to re-launch

an attack. While the tool is useful for evaluating the robustness of key schedules

against attackers who have discovered a single round key, it suffers from some

deficiencies. These include the inability to distinguish the robustness of the key

schedule against an attacker in possession of one round key, and against another

who has multiple round keys. Also some of the categories in the classification are

either misleading or not useful.

46 Chapter 2. Block Ciphers

A new classification is proposed which is strongly influenced by the classifi-

cation of Carter et al. This classification also contains two partitions that reflect

the robustness of the key schedule against an attacker in possession of round keys.

As with the first classification, the Type 1 category is reserved for key schedules

in which round keys and master keys are strongly related. A new category is

introduced in the Type 2 partition: a Type 2A key schedule is robust against an

attacker with a single round key, but allows an attacker with multiple round keys

to acquire further information. Also the 1B and 1C categories of the Carter et

al. classification are amalgamated due to their similarity; the Type 1A category

is expanded to include cases where portions of master keys may be used as round

keys; and the Type 2C category of the Carter et al. classification is demoted to

a Type 1C following the cryptanalytic result of Kelsey et al [121] which demon-

strates that key schedules in this category demonstrate similar behavior to key

schedules in the Type 1A schedule.

The new classification of key schedule formed part of a broader classification

of block ciphers, which also incorporated aspects of the cipher algorithm, includ-

ing the overall structure, the homogeneity of the rounds, and the methods of s-

box construction. Twenty-nine ciphers from the Advanced Encryption Standard,

Japanese CRYPTREC, European NESSIE and Korean ISO/IEC/JTC1/SC27-

Korea competitions were surveyed. Table 2.2 contains a summary of the prop-

erties that are used in this survey. Almost all of these ciphers are word-based;

the exceptions, all from the AES competition, are DEAL, LOKI97, Magenta, and

(because of its initial and final permutations) Serpent. Full versions of the block

ciphers marked with * in the table are vulnerable to serious attacks.

It is interesting to note a couple of trends from this table. Following the

success of the AES block cipher, many of the ciphers in subsequent competitions

are either variants or strongly influenced by its design. This means that they

use SPN structures and unfortunately have Type 1 key schedules. The ciphers

of the CRYPTREC competition use algebraic s-boxes generated in the same way

as the AES s-box. But the results of [56] and [176] caused the designers of some

ciphers in the more recent NESSIE competition to use randomly selected, filtered

s-boxes, avoiding the simple algebraic expression possessed by the AES s-box.

Heterogeneous structures are intended to complicate cryptanalysis. None of

the ciphers using heterogenous structures have been broken, but there are too

few of these to draw definite conclusions. There appears to be no other pattern

2.3. Summary 47

inherent in this classification that indicates which ciphers have been broken. In-

tuitively, ciphers with adhoc structures are more likely to broken since they are

less studied, but the difficulty of analyzing new structures may act as a deterrent

to effective cryptanalysis. Also, there is no clear pattern to indicate that ciphers

with Type 1 key schedules are especially vulnerable to complete breaks. But as

evidence in the next chapter indicates, they nevertheless decrease the strength of

these ciphers.

48 Chapter 2. Block Ciphers

Cipher Heterogenous Key Schedule
Cipher

Structure Cipher
S-boxes

Class

Advanced Encryption Standard

Cast-256 Feistel-1
√

Filtered 2C
Crypton SPN Filtered 1B
DEAL Feistel-1 Filtered 1B
DFC Feistel-1 Random 2B
E2 Feistel-1 Algebraic 2C

Frog∗ Adhoc Random 2C
HPC Adhoc Keyed 1B

LOKI97∗ Feistel-1 Algebraic 2C
Magenta∗ Feistel-1 None 1A

Mars Feistel-3
√

Filtered 2C
Rijndael SPN Algebraic 1B

RC6 Feistel-2 None 2C
SAFER+ SPN Algebraic 1B
Serpent SPN Filtered 2C
Twofish Feistel-1 Keyed 2C

Japanese IPA CRYPTREC

Camellia Feistel-1
√

Algebraic 1B
CipherUnicorn-A Adhoc Algebraic 1B

Hierocrypt-3 SPN Algebraic 2C
SC2000 Feistel-1 / SPN Algebraic 2C
SEED Feistel-1 Algebraic 2C

NESSIE

Anubis SPN Filtered 1C
Grand-Cru SPN Filtered 1B
Noekeon∗ SPN Algebraic 1A/1B
NUSH∗ Adhoc None 1A

Q∗ SPN Algebraic 1B
SAFER++ SPN Algebraic 1B
SHACAL Adhoc

√
None 1B

SHACAL-2 Adhoc
√

None 1B

ISO/IEC/JTC1/SC27-Korea

Xenon Feistel-1 None 2A
Zodiac∗ Feistel-1 Algebraic 2A

Table 2.2: Summary of Properties of Contemporary Block Ciphers

Chapter 3

An Improved Key Schedule for

the AES

The Advanced Encryption Standard (AES) [62] is the American standard for

block ciphers, and has also been adopted de facto worldwide so its robustness

against attacks is essential. To date, no practical attacks succeeding against

full-round AES have been published. However, the key schedule of the AES is

categorized by both Carter et al. [45] and the scheme developed in Chapter 2

of this work, as Type 1B. Consequently, the AES may be vulnerable to attacks

that: target the key schedule directly to identify round keys or the master key; or

indirectly exploit the key schedule to launch an attack on the cipher algorithm.

Some cryptographers have gone as far as to deride research on block cipher key

schedules [27], [61]. This is despite the fact that published block ciphers are

vulnerable to known attacks that exploit the weaknesses of their key schedules

[14], [59], [130]. Weak key schedules also affect the security of ciphers used in

hashing mode [129], [132]. The nature of block cipher attacks is one of exploiting

the weakest parts of the cipher system.

To avoid the potential vulnerabilities of the AES key schedule, we propose a

different approach to its design that puts its security on an equal standing with

that of the cipher algorithm. Although not as fast as the original on Intel Pentium

processors, the new AES key schedule is nevertheless efficient and in constrained

environments may even be faster, due to the smaller code footprint. There is

frequently a trade-off between speed and security; however, there is no reason to

49

50 Chapter 3. An Improved Key Schedule for the AES

choose a fast key schedule that possesses exploitable weaknesses, when there are

reasonable compromises that offer greatly increased security at a slight reduction

in speed.

The analysis of weak key schedules has led to guidelines for robust key schedule

design that borrows from well-known and accepted design principles for block

cipher algorithms. Our design follows these principles.

In Section 3.1, we review the principles that aid the production of strong

key schedules. In Section 3.2, we review serious security weaknesses in the key

schedule of AES which assist published attacks on reduced-round versions. These

key schedule weaknesses may be used directly as targets of attack or to extend

other attacks. A more secure key schedule for the AES cipher is presented and

analysed in Section 3.3. The throughput of the new key schedule is diminished

compared to the original, but justification is given, in terms of speed and security,

as to why the new version of the key schedule is more suitable for the AES

standard than the original. This is performed in the context of the speeds of the

key schedules of the other short-listed AES cipher candidates, which are still in

use by parties concerned that selecting a single AES candidate leads to a single

point of failure. Finally, Section 3.4 summarizes the contribution of this chapter.

3.1 Block Cipher Key Schedules

Most block ciphers’ key schedules expand a short master key into a longer ex-

panded key, which is used to generate round keys for each round in the block

cipher. With the use of Type 2 key schedules, the round keys appear to bear

no relation either to other round keys or to the master key. Consequently an

attacker who discovers a round key will not find any shortcuts to discovering the

master key. This strategy also prevents related-key attacks [14], since Type 2

related master keys do not generate strongly related round keys.

Knudsen [131] listed four necessary but not sufficient properties for secure

Feistel ciphers. Two of these, no simple relations and all keys are equally good,

are achievable with strong key schedules. The remaining two properties relate

to protection against differential and linear cryptanalysis, which are not directly

related to key schedules.

Strong key schedules should also have the following properties:

3.2. The Advanced Encryption Standard 51

Non-invertibility A block cipher acts as a one-way function when its master

key is unknown. Using components from a cipher algorithm in the associated key

schedule is a common practice for providing the schedule with non-invertibility

[6], [61], [149], [192], [193], [204]. Reuse of components improves the ease of

implementation and reduces code size in software.

Freedom From Bit Leakage Reduction of bit leakage between round keys

and the master key increases the complexity of some attacks on block ciphers, by

forcing the attacker to do more work to retrieve additional round keys. Examples

include differential and linear cryptanalysis of the Data Encryption Standard

(DES) [26], [158] and the AES attacks in [72] where the authors summarize that

“Some of our attacks make use of the relations between expanded key bytes and

would have a higher complexity if these relations did not exist.” Using master

key bits directly in round keys is the degenerate case of bit leakage. Leakage of

information between adjacent round keys is directly prevented by non-invertibility

in the key schedule, so the two properties are closely coupled.

Efficient Implementation The cipher algorithm and the key schedule should

complement each other in both security and implementation facets. It is advan-

tageous that the execution time of a key schedule be of the same order of speed

as the cipher itself, as is the case with all the short-listed AES candidates. This

is particularly important for use in wireless paradigms or when the cipher is used

as a hash function.

3.2 The Advanced Encryption Standard

The AES block cipher [62] allows master keys of 128, 192 and 256 bits. For these

key sizes, the AES iterates ten, twelve and fourteen rounds of the round function

respectively. Each round uses a single 128-bit round key.

The round function is based upon the SQUARE round function [60], and

the theoretical underpinning provided by the wide-trail strategy, as discussed in

Section A.2. It operates on a 128-bit block conceptually divided into a four by

four array of bytes.

In the round function, the array undergoes four operations:

52 Chapter 3. An Improved Key Schedule for the AES

• Byte Substitution (γ), a non-linear operation in which each byte is inde-

pendently transformed by the AES 8× 8 s-box.

• Shift Row (π), a linear operation in which each row (indexed from zero) of

the array is shifted to the left byte-wise, by the row number.

• Mix Column (θ), a linear operation in which each 32-bit column is used as

input to a Maximum Distance Separable (MDS) matrix. The 32-bit output

of the MDS directly replaces its input.

• Key Addition (σ), in which each byte is combined with a corresponding

round key byte using the exclusive-or operation.

The round function can be summarized as:

b = σ(k) · θ · π · γ(a)

where a is the input, b is the output, and k is the round key.

In addition to n iterations of the round function, there is a pre-round key

addition to the plaintext. From the master key, the key schedule is required to

generate n + 1 round keys. In the next section, the key schedule is analysed in

detail, to highlight weaknesses that may be introduced to the cipher algorithm

through the key schedule.

3.2.1 Description of the AES Key Schedule

The AES key schedule is based on 32-bit words, with the master key used to

directly supply the initial words. The remaining words in the expanded key are

generated through an iterated process. Groups of four adjacent 32-bit words in

the expanded key are concatenated to produce the 128-bit round keys. Table

3.1 shows the key schedule algorithm for all three permitted key sizes. In this

algorithm, MK is the master key, RKi is the round key for round i, W [i] is a

32-bit word, γ(x) is the parallel application of four s-boxes to the bytes in the

32-bit words, ≪ is a byte rotation, % is a modulus reduction operation and Cr

is a predefined round constant.

3.2. The Advanced Encryption Standard 53

128-bit key:
W [0..3] = RK0 = MK
rs = 1, #rk = 10

192-bit:
W [0..5] = MK
W [6] = W [2]⊕W [5]
W [7] = W [3]⊕W [6]

RK0 = W [0..3], RK1 = W [4..7]
rs = 2, #rk = 12

256-bit:
W [0..7] = MK

RK0 = W [0..3], RK1 = W [4..7]
rs = 2, #rk = 14

for (r = rs to #rk) {
128-bit key, 192/256-bit key (r % 2 = 0):

W [4r] = W [4r − 4]⊕ γ(W [4r − 1] ≪ 8)⊕ Cr

256-bit key (r % 2 != 0):
W [4r] = W [4r − 4]⊕ γ(W [4r − 1])

192-bit key (r % 2 != 0):
W [4r] = W [4r − 4]⊕W [4r − 1]

all cases:
W [4r + 1] = W [4r − 3]⊕W [4r]

128/256-bit key, 192-bit key (r % 2 = 0):
W [4r + 2] = W [4r − 2]⊕W [4r + 1]

192-bit key (r % 2 != 0):
W [4r + 2] = W [4r − 2]⊕ γ(W [4r + 1] ≪ 8)⊕ Ci

all cases:
W [4r + 3] = W [4r − 1]⊕W [4r + 2]

RKr = W [4r] ‖ W [4r + 1] ‖ W [4r + 2] ‖ W [4r + 3]
}

Table 3.1: The AES Key Schedule

54 Chapter 3. An Improved Key Schedule for the AES

3.2.2 Previous Cryptanalysis

This section overviews previous cryptanalysis of the AES in which the attacks

exploit its key schedule. Other types of cryptanalysis on AES, to which its key

schedule is not relevant (for example, XLS), are described in generic terms in

Appendix A. No attacks on full-round AES have been found and published

The most prominent attack on reduced-round AES is the integral (formerly

SQUARE) attack [139], as described in Appendix A. This is a chosen-plaintext

attack that exploits the byte-oriented structure of AES to recover the last round

key. Because of the bit-leakage of the key schedule, all other round keys, and

indeed the master key can be recovered from knowledge of this key. The basic

attack uses a three round characteristic to attack four rounds with a complexity

of 29 texts and 29 operations [62]. The three round characteristic can be used to

launch an attack on six rounds, by guessing four bytes each of the first and sixth

round key, and an additional byte of the fifth round key. Integral cryptanaly-

sis relies on a key distinguishing feature to determine the accuracy of key byte

guesses. This feature does not apply until at least the fourth round; therefore,

for ciphers owning a Type 2 key schedule, the attack would not automatically

provide any of the first three round keys, or the master key.

In [72], Ferguson et al. note that for a 192-bit key, the characteristic can be

used to launch an attack on seven rounds, by guessing the sixteen bytes of the

seventh round key. This leads to a complexity of 2200. However, they find that

bit leakage provide two bytes of the sixth round key and a byte of the fifth round

key, based on the seventh round key guess. This gives a complexity of 2176, which

is quicker than a brute force attack. If the key schedule of the AES were Type 2,

this attack would not successfully apply to seven rounds of the cipher.

In [72], Ferguson et al. also identify key splitting but are unable to use it to

launch an attack. By guessing the fourteen bytes through which one half of the

expanded key interacts with the other, the master key can be split into halves,

each of which controls half the round keys. This suggests a meet-in-the-middle

attack, but the non-linearity of the key schedule has prevented its discovery.

In [72], Ferguson et al. describe a 9-round related-key attack against AES

with a 256-bit master key. This attack is a variant of integral cryptanalysis, and

uses 256 related master keys for which the fourth round keys differ in a single

byte. Plaintext differences are used to cancel out differences in the earlier round

keys, so that three bytes in the sixth round key balance. This allows the attacker

3.2. The Advanced Encryption Standard 55

to guess key bytes of the last three rounds, and to use the balance in the sixth

round key as verification of the guesses. By guessing twenty-seven bytes of the

master key, bit leakage allows acquisition of sixty-six bytes of the expanded key.

If the key schedule were Type 2, the differences between the texts could not be

tracked throughout the nine rounds; insufficient key bytes could be guessed to

lead to a more efficient attack than brute force. Ferguson et al. note the small

number of non-linear elements and slow diffusion in the key schedule structure

when compared to the cipher algorithm.

3.2.3 Our Analysis

The overriding security concern with the AES key schedule is the fact that, given

knowledge of a round key (or part of a round key), other round keys are partially

or fully derivable. In fact, the AES cipher is the only one of the five finalists in

the AES competition to be categorized with a Type 1 key schedule.

We now explicitly define the bit leakage in the AES key schedule. From the

key schedule algorithm given in Table 3.1, it can be observed that each W [i]

value is related to previous values W [k], k < i. Given a 128-bit key, one example

shows that knowledge of half a round key (for example, W [41] and W [42]) imme-

diately determines a quarter of the previous round key (W [38] = W [41]⊕W [42]).

The iterative nature of the key schedule is used to enhance the efficiency of the

implementation, but in this case, it is too simplistic, leading to the bit leakage

problem. Additionally, all master key bits are not involved in the generation of

round key bits until at least W [6] (in the case of 128-bit keys). It is clear that

the key schedule does not satisfy the properties of “non-invertibility” or “freedom

from bit leakage” defined in Section 3.1.

Having defined the problem we wish to avoid, we outline our approach to the

new design. In general the cipher designer strives to obtain rapid mixing of input

bits (confusion), and also to ensure that each input bit affects each output bit

(diffusion). Unlike the key schedule, the AES cipher algorithm achieves these

properties elegantly by the fourth round.

To measure the confusion and diffusion properties of the key schedule pro-

posal against those of the original key schedule, we use two basic statistical tests

available in the CryptX [87] statistical package.

The frequency test measures the bit mixing property, a basic measure which

is fundamental in achieving bit confusion. The result of this test is a single

56 Chapter 3. An Improved Key Schedule for the AES

Round Freq (p) SAC (D*)
2 0.0000 96.083
3 0.0048 20.687
4 0.7560 1.183

Table 3.2: CryptX Statistical Results for the AES Cipher Algorithm

Round Key Freq (p) SAC (D*)
1 0.0000 125.053
2 0.0000 105.433
3 0.0000 72.563
4 0.0000 46.858
5 0.0593 31.840
6 0.0000 28.057
7 0.0000 28.153
8 0.0034 28.237
9 0.0000 28.161
10 0.0110 28.215

Table 3.3: CryptX Statistical Results for the AES Key Schedule

probability (p) value where a small p indicates a significant result. A p value

greater than 0.01/0.001 indicates that bit mixing is satisfied at the 1%/0.1%

critical level.

The Strict Avalanche Criterion (SAC) test measures the bit diffusion property.

This test checks that a one-bit change in the input block produces, on average,

changes to half the bits in the output block, which is a good measure of bit

diffusion. The resulting test statistic is the Kolmogorov-Smirnoff statistic denoted

by D*. See [87] for more details. A D* value less than 1.628/1.949 indicates that

bit diffusion is satisfied at the 1%/0.1% critical level.

Test results for the AES encryption algorithm are detailed in Table 3.2, indi-

cating that both the frequency and SAC tests are satisfied after four rounds. The

reason that the SAC test is not satisfied until the fourth round of AES encryp-

tion is that the MixColumn operation is removed from the final round. The AES

authors state that the MixColumn function was omitted from the final round

“in order to make the cipher and its inverse more similar in structure”. If the

MixColumn function is included in the final round, then the SAC test is satisfied

after three rounds, as shown in Table 3.4.

In comparison to the AES cipher algorithm, the key schedule’s test results,

3.2. The Advanced Encryption Standard 57

Round Freq (p) SAC (D*)
2 0.0000 21.113
3 0.2663 1.282
4 0.3110 1.347

Table 3.4: CryptX Statistical Results for the AES Cipher Algorithm including
Final Round MixColumn

detailed in Table 3.3, show that the key schedule is less successful in achieving

rapid bit diffusion and confusion. Row i, 1 ≤ i ≤ 10, gives the test results after

applying the frequency test and the SAC test to the Round i key. The majority

of round keys do not gain complete bit mixing. The process does not satisfy the

SAC test for any of the round keys.

3.2.4 AES Implementation Metrics

The AES key schedule is very fast. Two metrics for expressing this are the

number of clock cycles required to generate the round keys and the ratio of the

number of blocks that can be encrypted by the cipher algorithm in the time it

takes to execute the key schedule. As it is a relative measure, the second metric

is a more successful method to demonstrate key agility, which is important when

an algorithm needs to be frequently rekeyed.

Table 3.5 lists both metrics for the five AES short-listed block ciphers bench-

marked with 128-bit keys. These metrics are taken from two third-party imple-

menters [11], [80], who both use Intel Pentium processors to profile the implemen-

tations. The first column under each reference in Table 3.5 shows the number of

cycles to complete the key schedule, while the second column shows the number

of cycles to encrypt a block. The third column under each reference is the ratio of

key setup time to single block encryption time. In this table, AES is shown as the

cipher with the fastest key schedule, and also with the best keying to encryption

ratio. Given the deficiencies explained previously, we believe that it is too fast.

The other ciphers are classified by both Carter et al. and our scheme in Section

2.2, as possessing Type 2 key schedules. These have been designed with a better

balance between key setup and encryption time, and consequently between speed

and security.

58 Chapter 3. An Improved Key Schedule for the AES

Reference [11] Reference [80]
Key Encrypt K:E Key Encrypt K:E

MARS 6934 656 7.5 2118 364 5.8
RC6 2278 318 7.2 1697 269 6.3
AES 1289 805 1.6 215 362 0.6
Serpent 6944 1261 5.5 1300 953 1.4
Twofish 9263 780 11.9 8520 366 23.3

Table 3.5: Bench-marking the Key Schedules of the AES Finalists

3.3 A New AES Key Schedule Proposal

Efficient bit mixing and bit diffusion techniques have already been developed for

the AES cipher algorithm (as is shown in Table 3.2), so it seems logical to include

these techniques in the production of a strong key schedule.

A proposed AES key schedule is detailed in Table 3.6.

128-bit key:
#rk = 10

192-bit key:
#rk = 12

256-bit key:
#rk = 14

for r = 0 to #rk
for j = 0 to 15

128-bit key:
aj = bj = MKj ⊕ S[16r + j]

192-bit key:
aj = MKj ⊕ S[16r + j]⊕ S[MKj+8]
bj = MKj+8 ⊕ S[16r + j]⊕ S[MKj]

256-bit key:
aj = MKj ⊕ S[16r + j]⊕ S[MKj+16]
bj = MKj+16 ⊕ S[16r + j]⊕ S[MKj]

for i = 0 to 2
a = σ(b) · θ · π · γ(a)

KRr = a

Table 3.6: Proposed Key Schedule for the AES

The schedule is required to produce eleven, thirteen, or fifteen round keys for

master keys MR of 128, 192 and 256 bits respectively (the number of round keys

3.3. A New AES Key Schedule Proposal 59

is denoted by #rk).

The master key is not used directly as inputs to the AES round function.

Instead, it is used to populate two 128-bit values a and b, which are dependent

on the master key bytes and round number, so differ for each round key.

For any given round key, each byte aj, 0 ≤ j ≤ 15 in a is initialized from the

combination of the corresponding master key byte MKj, and a constant that is

non-linearly dependent upon the byte index j and the round key number r. The

non-linearity is generated through the use of the AES s-box. When the master

key has 192 or 256 bits, an extra key byte, masked by the s-box, is added to the

a value. This allows more than 128 bits to be incorporated into the value.

Each byte bj, 0 ≤ j ≤ 15 in a 128-bit value b is initialized in almost the same

way as for aj. The position of the corresponding master key byte is offset by a

constant dependent on the length of the key. These offsets are zero, eight, and

sixteen bytes for 128-, 192- and 256-bit master keys respectively. The offset for

the additional masked master key byte is zero.

Round key RKr, 0 ≤ r ≤ 15 is populated with the ciphertext of AES cipher

algorithm, reduced to three rounds, using a as the plaintext and b as the key.

The addition of the s-box constants at the start of each round key generation

not only isolates each round key from the others, but also breaks up possible

weak keys (for example, if all the master key bytes were identical).

Table 3.7 gives CryptX test results for generating a single round key, where

the number of AES encryption rounds used in the generation is given in the first

column. Results are included for 128-, 192-, and 256-bit master keys. These re-

sults indicate that, for each round key generated using the proposed key schedule,

complete bit mixing and bit diffusion is reached after three rounds, independently

of the chosen key size. Increasing the number of rounds will slow the key schedule

without necessarily increasing the security. Using fewer than three rounds will

not achieve the necessary levels of mixing and diffusion.

The most important achievement of the proposed key schedule is that the

frequency and SAC tests are satisfied, thus ensuring complete bit confusion and

diffusion is achieved for every round key. This is in contrast to the AES key

schedule, which does not satisfy the frequency test in the majority of round keys

generated, and does not satisfy the SAC test for any round key.

60 Chapter 3. An Improved Key Schedule for the AES

3.3.1 Implementation of the Proposed Key Schedule

For a 128-bit master key, the proposed key schedule executes thirty-three cipher

encryption rounds to generate the eleven round keys, which are used in ten rounds

of encryption. So for any implementation, there is a theoretical key schedule

setup to encryption ratio of 3.3. Respectively for 192- and 256-bit keys, this falls

to 3.25 and 3.21. This is still faster than most of the other short-listed AES

candidates. These figures are shown in Table 3.8, along with benchmarks and the

key encryption setup to encryption ratio for the standardized key schedule.

3.3.2 Security Analysis of the Proposed Key Schedule

The major problem with the standardized AES key schedule is bit leakage. In

our proposal, as each round key is generated independently, there is minimal

bit leakage between round keys, and the master key is not used directly as a

round key. Non-invertibility is achieved by encrypting the master key using a

well-analysed function, with the key being used both as the data block and the

key block. According to the classifications of Carter et al. and that of Chapter 2,

the proposed key schedule is categorized as the strongest (for Carter et al., Type

2B; for the classification of Chapter 2, Type 2C) which exhibits much stronger

security properties than the Type 1B category to which the standardized schedule

belongs.

In contrast to the current AES key schedule, even if an entire 128-bit round

key is known, it is infeasible to invert the three-round function and retrieve the

master key. It is not possible to obtain round key bits from one round using

material purely from another.

Related-key attacks As evidenced by Table 3.7, there is a high diffusion of

each master key bit across each round key. This is useful in preventing related-key

attacks, since altering a single bit in the master key changes approximately half

the bits in each round key. Consequently it is difficult for an attacker to coerce

the relationship between two master keys to exist as relationships of any form

between the corresponding round keys. In the standardized key schedule, the

master keys are used directly in the pre-round addition, and for 192- and 256-bit

keys, also in the first round, providing an attacker with a foothold to launching

a related key attack. Since the master key is not used directly in our proposal,

this opportunity does not exist.

3.3. A New AES Key Schedule Proposal 61

Round Freq (p) SAC (D*)
128-bit master key

2 0.1557 15.775
3 0.8757 1.212
4 0.3498 1.689

192-bit master key
2 0.5593 11.891
3 0.2002 1.268
4 0.2041 1.155

256-bit master key
2 0.8900 21.158
3 0.6766 1.196
4 0.9029 1.189

Table 3.7: CryptX Statistical Results for Proposed Key Schedule

Reference [11] Reference [80] Our proposal
128-bit master key

Key Setup 1289 215 -
Encrypt block 805 362 -
K:E 1.60 0.59 3.30

192-bit master key
Key Setup 2000 215 -
Encrypt block 981 428 -
K:E 2.04 0.50 3.25

256-bit master key
Key Setup 2591 288 -
Encrypt block 1155 503 -
K:E 2.24 0.57 3.21

Table 3.8: Comparison of the Speed of the AES and Proposed Key Schedules

62 Chapter 3. An Improved Key Schedule for the AES

Additionally the strong non-linearity of the proposed key schedule and the ad-

dition of constants to each of the master key bytes aids in preventing conventional

related-key attacks [14].

The primary attack on the cipher algorithm is integral cryptanalysis [62]. The

attack can be applied to the key schedule as a differential related-key attack. In

this attack, a single plaintext is repeatedly encrypted under a set of 256 master

keys, a Λ-set [60], where a single byte of each text differs such that the binary

sum of the texts is zero. An example of this is given on the standardized key

schedule in [72]. However, we could find no way to practically exploit this with

the new key schedule, due to its strong non-linearity. Guessing bytes in a 128-bit

master key gives an equivalent number of bytes in each round key, rather than

giving free bytes as per the attack in [72]. For 192- and 256-bit master keys, two

master key bytes must be guessed to determine each round key byte.

Differential and Linear Cryptanalysis Conventional techniques applied to

three rounds of the AES cipher algorithm, such as differential cryptanalysis and

linear cryptanalysis, do not hold for direct attacks upon the proposed key sched-

ule. These attacks typically require collections of chosen- or known-plaintexts.

The analogs of these texts, as keys, are not available under the conditions of

related-key attacks.

The minimum assumption for a key-schedule attack is that, given a known

difference between round keys, there is a mapping to an exploitable feature within

the cipher algorithm. We could find no such mapping, so it is difficult to determine

how conventional differential or linear cryptanalysis could weaken the proposed

key schedule.

Weak Keys It is unavoidable that a key schedule that determines a 128-bit

round key from a 192- or 256-bit master key generates key collisions that produce

identical 128-bit round keys. The best that can be hoped is that the key schedule

does not generate large classes of weak keys, from which key collisions can be

engineered. Since every round key in the proposed key schedule satisfies the SAC

test, this means that if one bit of the master key is changed, approximately half

the bits of the round key will change. This is the best diffusion possible, so any

collisions that do occur are the one-off result of two randomly-chosen master keys,

and do not form a class of weak keys.

3.3. A New AES Key Schedule Proposal 63

Aiding attacks on the cipher algorithm Many attacks on the cipher algo-

rithm use weaknesses in the key schedule to reduce the complexity of the attack.

A prime example of this is the integral attack on reduced-round AES cipher ver-

sions which, when combined with the bit leakage property of the key schedule,

recovers all the round keys including the master key. Since our proposed key

schedule does not allow bit leakage, its adoption would prevent this extension of

the attack.

Related Cipher Attacks Appendix A describes the new class of attacks by

Wu [226] under the umbrella name of the “Related Cipher Attack”. This attack

works on the same principle as slide attacks [32]: by gaining the text produced

by the cipher just a few rounds (round m) from the end of the cipher (round n),

the rounds between m and n can be treated as a reduced version of the cipher,

which is more easily broken, exposing the round keys.

Slide attacks rely on homogenous round functions to acquire the ciphertext

at round m and round n, using ’slid pairs’. Whereas, related cipher attacks rely

on using two versions of the cipher, one of which has m rounds, and the other n

rounds. The AES is a perfect example of this type of cipher, since the number of

the rounds differs slightly with key lengths.

However, the original key schedule of the AES avoids the related-cipher attack

by combining, with each round key, a constant that is dependent upon the length

of the key. Thus the changing constant ensures that the round key for the mth

round is different between the two cipher instances, and no ’slid pair’ analog will

be obtained.

In [226], Wu asks the reader to contemplate using two versions of the AES with

the modified key schedule, one of which uses a 192-bit master key (and therefore

twelve rounds), and the other a 256-bit master key (with fourteen rounds). His

attack relies on concatenating a 64-bit value three times to form the 192-bit

master key, and on concatenating the same value again to form the 256-bit master

key. Concatenating a key of length k for which gcd(k, 64) 6= k will not work.

This is because the initialization stage of the key schedule differs between the

two master key lengths, in that it offsets the location of the byte of the master

key chosen to form each a and b value by 64 bits.

If the resulting two rounds can be broken with less than 264 effort, the cipher

can be broken with less than the designed bit security of the key. The attack can

be defeated by changing the constants that control the offsets by which master

64 Chapter 3. An Improved Key Schedule for the AES

key bytes are selected. If the constants are co-prime, concatenating the 64-bit

value to form a master key will still produce different round keys under each

cipher. However this attack is valid only under very constrained conditions, so

the proposal comes with the recommendation that all bits of the master key

should be randomly generated. This is a common operational parameter for use

with all block ciphers.

Algebraic Attacks Courtois and Pierprzyk [56] hint that ciphers that possess

key schedules that are similar to the cipher algorithm may be targeted by a specific

form of XLS (see Section A.6), but this theory is never publicly developed. We

are unable to find any evidence that our key schedule contributes to a reduction

in complexity of the XLS attack on the AES block cipher.

We believe the proposed key schedule to be safe from conventional methods

of cryptanalysis.

3.4 Summary

In this chapter, we described and analyzed the AES key schedule. We also pre-

sented and justified an alternative and strengthened key schedule, based upon the

standard information principles of confusion and diffusion, which still permeate

cryptographic design.

Block cipher key schedules have not received the same focus as cipher algo-

rithm design in the past, but are nonetheless vital to the overall security of the

cipher system. A weak schedule can provide a means through which an otherwise

secure cipher system is attacked.

We demonstrated that the current key schedule does not satisfy the bit fre-

quency mixing test for the majority of round keys and does not satisfy the

avalanche (bit diffusion) test for any of the round keys. This indicates poor

pseudo-randomness properties in the key schedule. There is also a high level of

bit leakage between round keys which is exploited in some theoretical attacks on

reduced round AES.

In contrast, for the proposed key schedule, every round key is independent

from each other round key, preventing bit leakage. Each round key also satisfies

the frequency and SAC tests indicating good pseudo-randomness properties.

The key schedule proposal is between approximately one and a half to six times

3.4. Summary 65

slower than the original, depending upon the key length and the implementation

used for comparison. But we believe this decrease in speed is justified when held

in the context of improved security. Using the new proposal, the round keys for

AES can be created in the time it takes to encrypt three AES blocks. This ratio is

faster than three of the five AES finalists (the exceptions being the AES standard

and Serpent). Since none of the candidates were disqualified on the basis of key

agility, we do not believe our proposal is unduly slow, or prevents its use in hash

functions or applications with high key turn-over.

The primary goal of a symmetric block cipher is to provide security, with its

speed of implementation a very important secondary goal. This proposal achieves

increased security by limiting the extent to which previously published attacks

can exploit the key schedule, at a modest increase in initial key setup times.

In the two and a half years since the publication of the proposal, the only

attack suggested to date has been the Related Cipher Attack by Wu [226]. This

attack relies on owning multiple instances of the cipher, each with a different

master key length, and each with a master key constructed from a repeated 64-

bit seed. This is an unrealistic model of attack, and as the master key is not

constructed randomly, certainly not consistent with how the cipher should be

used. No other attacks on the AES cipher with the modified key schedule have

been forthcoming.

66 Chapter 3. An Improved Key Schedule for the AES

Chapter 4

Stream Ciphers

Traditionally the realm of stream cipher design has focussed on bit-based linear

feedback shift registers (LFSRs), which are well studied and satisfy common sta-

tistical criteria. Non-linearity is instilled into the keystream by irregular clocking,

or a non-linear filter or combiner. Some stream ciphers include multiple mecha-

nisms, such as LILI-128 [214] which uses both irregular clocking and a non-linear

filter.

Bit-based stream ciphers are for the most part, blazingly fast in hardware.

They are also excruciatingly slow in software when compared to block ciphers.

For example, the Advanced Encryption Standard (AES) [62] outputs blocks of

128 bits at the cost of 14 cycles/byte on the Intel Pentium 3 [151], while LILI-128

outputs single bits at 580 cycles/byte on the same machine [189].

There is a tendency in some cryptographers to promote pro-stream cipher

sophistry along the lines of software performance and security being mutually ex-

clusive, or the forerunner in one arena (hardware speed) not needing to compete

in others (software speed). Aside from slowing the uptake of symmetric cryp-

tography, this is misleading for two reasons. Military domains have ready access

to hardware; commercial companies with casual users of cryptography and finite

budgets do not. Personal computers are ubiquitous but seldom equipped with

cryptographic accelerators. Secondly, there are increasingly many ciphers that are

good in software and hardware and not yet insecure. New (non-experimental)

ciphers need to justify themselves in the three areas of security, hardware perfor-

mance and software performance.

67

68 Chapter 4. Stream Ciphers

There is one piece of very telling evidence against slow but secure bit-based

stream ciphers in the public domain. Inarguably the most used stream cipher is

RC4 [5]. It is word-based rather than bit-based, and is faster in software than in

hardware. Because it is also significantly faster than most block ciphers (at seven

cycles/byte), it is deployed more frequently, despite a trail of literature ([74] [155]

[200] [220]) acting as a beacon to its deficiencies. Slower ciphers with a better

track record of security are eschewed in favour of speed.

The balance is being redressed with a new generation of word-based stream

ciphers, in which the boundaries with block ciphers are blurred. The size of the

blocks that stream ciphers generate are by and large unconstrained (for exam-

ple, RC4 outputs blocks of eight bits, but Turing [201] outputs blocks of 160

bits). Design methodologies have to some extent remained similar; for example

building LFSRs over GF(28) or GF(232) rather than GF(2), but many traditional

cryptanalytic methods do not apply without substantial modification.

Word-based stream ciphers based on block ciphers may be naturally faster

than block ciphers. Block cipher cryptanalysis takes the form of dynamic analysis,

in which an attacker can manipulate the inputs to the block cipher regularly.

However, a stream cipher takes a key and an initialization vector and produces

a long length of keystream. A cryptanalyst attacks stream ciphers using static

analysis, in which the cipher output is passively examined. This strategy appears

to be less successful in attacking ciphers than dynamic analysis, so directs design

of stream ciphers towards complex key initializations but very lightweight update

functions [73], which have an intrinsic efficiency advantage over the complex or

highly iterated round functions of block ciphers.

Until recently, there have been only a handful of word-based stream ciphers,

including SEAL [198], SOBER [93] and RC4. In Section 4.1 of this chapter, we

survey recent word-based ciphers, describing in each case the influence that block

ciphers have played upon their their development. In Section 4.2, we provide a

brief description of stream cipher attack techniques as they apply to word-based

stream ciphers. In Section 4.3 we add to the literature analyzing the RC4 block

cipher by refuting recent claims that the first byte in each keystream is biased.

4.1. Modern Word Based Stream Ciphers 69

4.1 Modern Word Based Stream Ciphers

This section describes the design strategies for a selection of word-based ciphers,

with a focus on how block ciphers have influenced them. It examines how these

strategies affect the performance and security of the ciphers. The ciphers include

HC-256 [227], Helix [73], Hiji-Bij-Bij [203], MUGI [224], Rabbit [34], RC4 [5],

Scream [88], SNOW [67], and Turing [201]. The SOBER [94] family shares much

in common with Turing, so is not discussed here. Discussion of BMGL [92] which

is in reality a filtered block cipher running in an OFB-like mode of operation is

deferred to Section 4.2.

Word-based stream ciphers are allowed, by virtue of generating large keystream

blocks, increased complexity and consequently flexibility in design. This has re-

sulted in a wide range of styles in modern stream ciphers, when compared to the

LFSR bit-based ciphers of the past.

Some stream cipher designers have elected to choose conservative strategies,

and as a result, ciphers like MUGI, SNOW and Turing retain a close resemblance

to bit-based LFSR ciphers. SNOW and Turing both use a single LFSR, whereas

MUGI uses an NLFSR.

Ciphers like Helix and Scream eschew shift registers in favor of a state modified

by a block-like non-linear component. Their update functions resemble the rounds

of block ciphers. The key initialization of Helix uses a Feistel structure to chain

key words. Scream iterates its round function in the same way as does a block

cipher.

Ciphers based upon dynamic permutations bear little resemblance either to

LFSR-based stream ciphers or block ciphers. Due to their simplicity, they have

the potential to run extremely quickly. They use indices and counters that point

to locations in a state table. The indices select the inputs for the update function,

and a monotonic counter selects a target word for modification. The use of a

counter ensures that all words in the table are modified in a given time-frame.

RC4 is a dynamic permutation. HC-256 is not a guaranteed permutation, but is

strongly influenced by RC4.

Other ciphers have unique design strategies that borrow components and

structures from other stream ciphers, or from block ciphers. Two examples

are Hiji-Bij-Bij, which is based upon cellular automata, and Rabbit, which uses

chaotic mapping for non-linearity.

70 Chapter 4. Stream Ciphers

Update Functions of many word-based stream ciphers borrow heavily from

the round function of the AES cipher. In particular, they may borrow the AES

s-box to provide non-linearity or the MixColumn operation, with its MDS matrix

that provides efficient diffusion.

That the AES algorithm was successful in winning a well-scrutinized com-

petition gives impetus to borrowing components for new stream ciphers. That

it comes with a proof of security against two standard and powerful methods

of block cipher cryptanalysis also gives it important credentials. But the stream

ciphers surveyed here, which borrow components from the AES, do not follow the

Wide-Trail Strategy that underlies the success of the AES algorithm. Borrowing

components from the AES for use in stream ciphers may be considered a cheap

design technique that improperly leverages analysis while removing it from its

proper context. When it occurs, it should be accompanied by fresh analysis that

justifies the inclusion of those components within the new cipher.

There is work by Fuller et al. [76] and Youssef et al. [232] that show redun-

dancy within algebraically generated s-boxes such as the AES s-box, although

the cryptographic significance is not clear. Also, the work by Courtois et al.

[56] on using the s-box to produce over-defined equations (see Section 4.2.9) calls

into question the wisdom of basing too many cryptographic primitives on a sin-

gle technique for providing non-linearity. Ciphers like Turing and Dragon (see

Chapter 7) construct their own s-boxes using well-established boolean theory;

this originality is to be commended.

Rekeying Strategies are frequently overlooked in block and stream ciphers

(see Section 4.2.8 for more on related-key attacks on stream ciphers). However,

almost all of the candidates surveyed here adopt a sensible keying strategy that

utilizes both a master key and an IV to protect against related-key attacks. The

exceptions are RC4 (for which keying issues are well documented), Rabbit and

Hiji-Bij-Bij, all of which omit incorporation of an IV. This means their keys must

be more carefully managed to prevent resynchronization attacks.

In some ciphers, the rekeying strategy is partitioned, such that in the first

phase, the key is added to the state and processed, and in the second phase, the

IV is injected and mixed. It can be argued that as the IV is publicly available, it

requires less mixing. When the cipher is rekeyed with an IV, the keying strategy

omits the first phase, improving IV-keying agility. Ciphers that follow this two-

phase rekeying strategy include Helix, MUGI, Scream and Turing.

4.1. Modern Word Based Stream Ciphers 71

All but two ciphers (RC4 and Turing) make use of the update function to

mix the state during the rekeying strategy. As with block ciphers, reuse of the

update function provides the advantages of a smaller implementation footprint

and leverage of existing security analysis. There are few reasons not to reuse it – it

is designed to be optimal in terms of confusion and diffusion, which are quantities

equally required in the key initialization algorithm. However, comparative to the

state size, the output generated by the update function is small. This is necessary,

otherwise the keystream provides too much insight into the internal state.

Consequently the larger the state to be keyed, the more inefficient this process

becomes, which may affect key agility. Some ciphers use a modified update func-

tion which incorporates a larger output filter to populate the state in a shorter

time. One example is Dragon (see Chapter 7), which during keystream genera-

tion, uses an output filter of 64 bits. During key initialization, the output filter

generates 128 bits to populate the 1,024 bit state. As a result its key agility is

better than most of the ciphers surveyed here. The key agility of a cipher that

is most penalized by a large state belongs to HC-256, which needs to iterate the

update function 4,096 times to mix each element in its tables twice. Another

example of poor key agility occurs in MUGI, which is scrutinized more closely in

Chapter 6.

The update function can be reused within the rekeying strategy in a number of

ways. Ciphers like Helix, MUGI and Scream use the update function to generate

the contents for the initial state. Other ciphers populate the state by a different

means, but use the update function at the end of the process as a simple and

effective way to mix it; Hiji-Bij-Bij and Rabbit populate the state directly with

the key prior to mixing, whereas HC-256 applies a more complicated method

involving SHA-2 functions and chaining. Chaining, also used by Scream in its

rekeying strategy, is an effective way to rob an attacker of control over the initial

state. This is because small changes in the master key are amplified in the internal

state by the chaining; however, non-linear mixing needs to occur after the chaining

has taken place, to prevent the attacker from utilizing the amplification. An ideal

way to do this is to invoke the update function on the state.

4.1.1 HC-256

HC-256 obtains high throughput by trading memory for speed, and utilizing the

super-scalar features of Intel Pentium family.

72 Chapter 4. Stream Ciphers

HC-256 is a simple cipher that operates on a 2,048 element table of 32-bit

words. During the update function, the table is logically split into halves, P and

Q. The location of the counter i determines the roles of P and Q. When i points

to an element in P , Q is treated as a series of 8 × 32 s-boxes. The keystream is

formed by combining the values of four words from Q indexed by the bytes of a

word Px. The index x is calculated using the values of four words in P and one

in Q. All indices are calculated using binary and modular addition, and fixed

rotations. When the counter iterates to the first element of Q, the roles of P and

Q in the update function are swapped.

Block cipher aspects of the HC-256 update function include the treatment of

half of the state table as a series of s-boxes, and using primitive operations to

provide diffusion across the table elements in selecting indices.

The key initialization of HC-256 uses a 256-bit master key and an additional

256-bit IV. These are concatenated to form the first sixteen words of a 2,560 word

array W . The remaining words Wi are generated using chaining, in which the

SHA-2 functions are applied to previous words in the array. The initialization

is concluded by iterating the update function 4,096 times, with the resulting

keystream being discarded. Consequently the key initialization modifies each

element of the large table twice, causing key agility issues. IV rekeying is also

slow, as the master key and IV are combined before the update function is called

for the first time.

The throughput of HC-256 is 4.1 cycles/byte on the Pentium 4, which makes

it the second fastest of the ciphers surveyed here. But the state size of HC-256 is

65,536 bits, coupled with an additional 16,384 bits for key setup. This prohibits

its use in constrained environments.

4.1.2 Helix

Helix’s update function is similar to a block cipher’s iterated round function. The

update function consists of interwoven helices that operate upon five strands of

the 160-bit state.

Each helix contains ten iterations of a very simple round function operating

on a target (T) and source (S) word: T = T ⊗ S; S ≪ Cr where the ⊗ operator

is either binary addition (⊕) or modular addition (+) in GF(232); Cr is a round

dependent constant. There are two special round function instances: key injection

T = (T +K)⊗S, and the plaintext injection T = (T ⊕P)⊗S. Key injection uses

4.1. Modern Word Based Stream Ciphers 73

two round keys: one comes from a working key, the other from the combination

of a partial working key, the IV, and a round constant. At the end of the round

function, the source S and target T words cycle right by one strand.

Helix outputs 32-bit blocks of keystream and is unique among the ciphers

surveyed here in that it provides a MAC for integrity. When the final keystream

word has been emitted, the MAC is generated by modifying the first helix strand

with a constant, and updating the state eight times, discarding the keystream.

Four further keystream words are produced and combined to produce a 128-bit

MAC tag. The rationale of its authors in providing a MAC for a small cost is that

significant vulnerabilities are introduced by encrypting without authenticating,

but traditionally, authentication has been operationally expensive. However, in-

jecting the plaintext into the state has lead to a differential-style attack by Muller

[175], which is discussed further in Section 4.2.7.

The round function of Helix is inspired by block ciphers like RC5 [196] and

RC6 [197]. It contains no s-boxes, instead relying upon the weak non-linearity of

the ¢ addition relative to the ⊕ operator, amplified through many iterations of

the round function. The inclusion of a MAC is inspired by block cipher modes

of operation that provide integrity for almost no cost. One example is Integrity-

Aware Cipher-Block Chaining (IACBC) [116].

Helix has a complex rekeying strategy to defeat dynamic analysis. The in-

ternal state is populated using a master key padded to 256 bits. Together the

master key, and an encoding of its length are used to populate the state. As with

Turing, this encoding serves to ensure that different length keys do not generate

equivalent states. The eight-word working key is produced by iterating the up-

date function eight times in a block-cipher Feistel-type structure, so that later

words are chained to all of their predecessors. The update function is then iter-

ated a further eight times, with the resultant keystream being discarded. This

is an efficient strategy that provides high key agility. Helix does not use the IV

in the key initialization algorithm; instead, it incorporates it directly into the

keystream generation algorithm, so that IV rekeying is exceptionally fast. The

strategy of injecting the IV late is a weakness that aids in the attack by Muller

[175].

Helix is optimized for 32-bit platforms, through its use of simple operations

that are readily parallelized on super-scalar architectures. Its small state is wholly

containable within the registers of the Intel Pentium family, although overheads

74 Chapter 4. Stream Ciphers

may generate some register pressure. This means that Helix is easily capable of

encrypting at seven cycles/byte on modern platforms.

4.1.3 Hiji-Bij-Bij

Hiji-Bij-Bij [203] is in some ways a conventional word-based stream cipher, but

replaces LFSRs with non-chaotic cellular automata (CA). It has a linear state of

512 bits, representing two 256-bit cellular automata and a 128-bit non-linear state

(NLS). The rationale for using CA is that the shift of two sequences obtained from

a CA is exponential, rather than linear, in their length. Hiji-Bij-Bij is unusual in

that it can be used in synchronous or self-synchronous mode.

Hiji-Bij-Bij’s update function has two stages. The first stage invokes the AES

s-box on each byte in the 128-bit NLS, which it folds into a 32-bit variable. It

adds this variable into each 32-bit block of the NLS and rotates each block by

a constant. It transposes the NLS (by interpreting it as a 4 × 32 matrix) and

reapplies the AES s-box to each byte. This component of the update function

resembles a block cipher SPN layer, using the structure S-P-S, where S is the

s-box layer, and P is the permutation (in this case, the transposition of the NLS).

One example of a block cipher using this structure is E2 (see Section 2.2).

The second stage modifies the cellular automata using rules 90 and 150. Each

rule involves exclusive-oring the contents of the automata with two copies of itself

(shifted one bit to the left, and one bit to the right respectively). A rule-dependent

constant is added to each automata.

The cipher emits the 128-bit keystream word, which consists of a combination

of the NLS words with fixed automata words. The automata words not used in

the keystream are folded into the NLS.

Hiji-Bij-Bij has a very simple rekeying strategy. It takes a key of 128 or 256 bits

and initializes the linear state as K‖K‖K‖K or K‖K respectively, where K is the

complement of K. The key strategy compresses the key to 64-bit K64 by exclusive-

oring key segments, and initializes the non-linear state as K64‖K64. The complex

update function is iterated sixteen times, causing key agility problems, and the

last four keystream blocks are concatenated and combined with the automata

linear state. No IV is incorporated into the scheme.

The designer of Hiji-Bij-Bij acknowledges that cellular automata are much

less efficient than LFSRs, but judges the trade-off towards security as necessary.

Given that the cipher is one of the slowest surveyed, and that it was demolished

4.1. Modern Word Based Stream Ciphers 75

by a guess and determine attack ([127], see Section 4.2.4), this viewpoint seems

incorrect.

4.1.4 MUGI

MUGI borrows heavily from the stream cipher PANAMA [58], in that its two

components – a 1,024-bit buffer based upon a non-linear feedback shift register,

and a 192-bit non-linear internal state – provide feedback to each other. If this

feedback is ignored, the cipher bears strong resemblance to a traditional LFSR

based cipher with a heavy filter function. Another way to view the cipher is as a

single 19-stage NLFSR in which each stage consists of 64 bits.

The update function of MUGI includes a target-heavy Feistel primitive that

contains two invocations of a modified 64-bit AES round, in which the RowShift

operation is removed, and the outputs of the two MixColumn operations are

permuted. The function provides a high-degree of non-linearity to the cipher.

The buffer is clocked like a standard sixteen-stage LFSR, with additional feedback

coming from stage one of the internal state, and two modified intermediate stages

from within the buffer. The 64-bit keystream word comes from one of the three

stages of the internal state.

MUGI borrows many of its security claims from the provable security of the

AES block function. This gives it immunity to highly correlated linear approx-

imations, related-key attacks based upon integral cryptanalysis, and variants of

differential and linear cryptanalysis. However, the complex structure of MUGI is

difficult to analyze.

MUGI uses a key of 128 bits, and an IV of 128 bits. It has a complicated

rekeying strategy that includes iterating the update function forty-eight times

for full rekeying, and thirty-two times for IV-rekeying. This causes serious key

agility problems, which are addressed in Chapter 6.

MUGI’s performance is poor on 32-bit architectures, principally because it

is designed for 64-bit architectures. This makes it the slowest of the ciphers

surveyed here.

4.1.5 Rabbit

Rabbit [34] is a very simple cipher based upon chaotic maps. It aims to combine

the random properties of real-valued chaotic maps with the speed and precision

76 Chapter 4. Stream Ciphers

of integer representations. It has an internal state of 513 bits. This includes eight

32-bit variables, eight 32-bit counters and one counter carry bit. The keystream

output consists of eight 16-bit words, where each word is a simple linear mix of

one half of each of two state variables.

The update function of Rabbit consists of modifying each variable xi, 0 ≤ i < 8

according to the equation xi+1 = gi + (gi−1 ≪ ai) + (gi−2 ≪ bi), where g is the

quadratic function gi = ((xi + ci)
2 ⊕ ((xi + ci)

2 À 32)) mod 232. Counters ci are

updated according to ci = ci + ai + φi mod 232 where ai is a constant and φi is

a carry bit based upon counter additions. This approach has no analog in block

ciphers, and overlooks lessons learned by the designers of the RC6 and MARS

block ciphers about the inefficiencies of variable rotation and multiplication on

the Intel Pentium 4. The keystream output consists of eight 16-bit words, where

each word is a simple linear mix of different halves of two state variables.

The key initialization algorithm of Rabbit divides the 128-bit key supplied

by the user and places each 16-bit fragment directly into one half of each of two

state variables and one half of each of two counters. It iterates the internal state

four times and updates each counter by combining it linearly with the contents

of a single state variable. Rabbit is highly key-agile due to a lightweight rekeying

scheme. However, the initially published version does not permit IVs.

On the Pentium III, Rabbit is the fastest of the surveyed ciphers. It uses

primitive operations which account for its efficiency. However, in one update

function, it performs sixteen multiplication operations. On the Pentium 4, and

pre-Pentium Intel processors, it will perform more slowly than the stated 3.7

cycles/byte.

4.1.6 RC4

RC4 is the most widely used stream cipher in software. Its popularity is due to

its speed, size and simplicity. It has been incorporated into mainstream crypto-

graphic protocols including Secure Sockets Layer (SSL) [187] and Wireless Equiv-

alent Privacy (WEP) [100]. RC4 is the oldest stream cipher presented in this

section, predating most block and stream ciphers, so has little in common with

other word-based ciphers. It has a parameterized word size, which is typically

eight bits. This represents a respectable trade-off between efficiency and security.

RC4 has an internal table S of 2n bytes, a counter i and an index j. The size of

the keystream block matches the parameter n.

4.1. Modern Word Based Stream Ciphers 77

RC4’s update function in shown in Figure 4.1. In the function, the counter

i is incremented modulo 2n, and table element indexed by i is added to the j

index, also modulo 2n. The elements referenced by the indices are swapped, and

added to form the index of the element returned as the keystream word.

i = (i + 1) mod 256

j = (j + S[i]) mod 256

swap(S[i], S[j])

z = S[S[i] + S [j]] mod 256

Figure 4.1: RC4 Update function

RC4’s key initialization algorithm does not incorporate the use of an IV. This

has lead to related-key and distinguishing attacks upon RC4, as described in the

next section. The problematic RC4 key initialization algorithm is shown in Figure

4.2. It is very similar to the update function, but not identical, so that object

code size almost doubles by its inclusion. Each element in the table is initialized

with the value of its index. In each round, the value of the index j is incremented

by the value of the element to which the counter i points, and the value of the

key byte indexed by i modulo the length l of the key in bytes. The value of the

jth element is swapped with the value of the element referenced by the counter i,

which is incremented.

for i = 0 to 255

S[i] = i

j = 0

for i = 0 to 255

j = (j + S[i] + K[i mod l]) mod 256

swap(S[i], S[j])

i = j = 0

Figure 4.2: RC4 Key Initialization Algorithm

During the initialization phase, the counter i touches each element in the S

table once. Assuming that the values of the j index are uniformly distributed,

it covers approximately 63% of the elements in S, the remainder of which are

swapped only once. As a result, Roos [200] observed that for at least 1 in every

78 Chapter 4. Stream Ciphers

256 RC4 keys, part of the key is strongly correlated with the first byte of the

keystream. This reduces exhaustive search of the RC4 key by up to 5 bits.

Shortly after, Wagner [220] discovered another class of weak keys. Grosul and

Wallach [86] described a related-key attack for keys of length greater than two

kilobytes. A related-key attack on RC4 by Fluhrer, Mantin and Shamir [74] is

discussed in Section 4.2.8.

RC4 has been subjected to many other attempts at cryptanalysis. Golic [82]

and Fluhrer and McGrew [75] reported small correlations between bytes in RC4’s

keystream. Mantin and Shamir [155] discovered a bias in the second byte of the

RC4 keystream (discussed in Section 4.2.2). Mihalejevic [167] devised a time-

memory tradeoff attack on RC4 with 252 data, 240 memory and 276 processing

time, after a one-off preprocessing time of 280 operations. This is discussed further

in Section 4.2.1.

Because RC4 has a small state that fits into the L1 cache of Pentium proces-

sors, and uses simple byte-based operations, it is one of the fastest stream ciphers

available, operating at under 10 cycles/byte on most architectures. However, it is

an unusual symmetric cipher in that it is inherently serial and does not lend itself

to parallel application in either hardware or software. Also its key initialization

algorithm features no IV, meaning that it needs to be executed in totality upon

rekeying.

4.1.7 Scream

Scream is a family of word-based stream ciphers based upon the word-based

stream cipher SEAL [198]. The Scream family – consisting of Scream-0, Scream,

and Scream-F – aims to avoid security flaws in SEAL, while maintaining a very

high throughput in software for 32-bit processors.

The internal state in Scream consists of 3×128-bit blocks and a masking table

W , which uses 16 × 128-bit elements for a total of 2,432 bits. Scream outputs

128-bit blocks of keystream. Although Scream uses a 128-bit master key, the

stated design strength is 64 bits. This approach contrasts with the consensus

used by cryptographers, in which the security of a cipher equals the length of the

master key.

In each cipher of the Scream family, approximations to the non-linear com-

ponent are disguised by linear masking aspects. The designers show how the

masking can be removed after observing about 272 bits of keystream, and how

4.1. Modern Word Based Stream Ciphers 79

this can be used to form the basis of a distinguishing attack [88]. The designers

describe a low-diffusion attack using fixed s-boxes, in which output bytes of the

non-linear function F depend on only six out of eight bytes. This attack style is

discussed further in Section 4.2.3.

At the heart of Scream’s update function F are two 64-bit modified AES sub-

functions G1 and G2, each of which operate upon two 128-bit registers, x and

y. Each sub-function consists of the AES ByteSub, RowShift and MixColumn

operations. In Scream, and Scream-F, the ByteSub s-boxes are key dependent;

in Scream-0, the AES s-box is used.

The non-linear function F is a hybrid Feistel ladder/SP network that is iter-

ated as per a block cipher, each time producing 128 bits of keystream. During

each iteration, x is modified by the function x = F (x + y) + z over GF(2), and y

is rotated by a few bytes to protect against low diffusion attacks. After iteration

of sixteen rounds, y and z, and one element of the masking table W are modified

using the F function. The update function outputs 128 bits of keystream based

on a simple linear combination of x and a single element of W . The influence of

block ciphers upon the update function is evident. The function strongly resem-

bles the round function of a block cipher, including the use of the Feistel ladder,

the incorporation of the AES components, and the iteration over sixteen rounds.

Scream uses a very simple rekeying strategy in which it chains elements of

the masking table W . It modifies the 128-bit master key by a constant and

passes it through the non-linear function F five times (denoted F 5). It uses

the result as the first element of the table. Each subsequent element in the 16-

element table is derived from the result of F 4 on the previous element in the

table. Consequently, this process iterates the F function sixty-five times. The

supplied 128-bit IV modifies the linear masking table further and invokes F an

additional fourteen times. By introducing the IV late into the rekeying scheme,

IV agility is improved, but the subsequent invocations of the F function protect

the cipher from related-IV attacks.

Rekeying using a master key involves seventy-nine iterations of the non-linear

function, including fourteen iterations that mix the IV. As a result, Scream suffers

from the loss of key-agility.

The update function of Scream appears to be very fast in software on newer

Intel platforms, primarily through the use of look-up tables along the lines of an

AES implementation [178]. Additionally, Scream has a state slightly larger than

80 Chapter 4. Stream Ciphers

two kilobytes. This implies it will be quite slow on sub-32-bit platforms, and also

on the Pentium 4, which has a small L1 cache.

4.1.8 SNOW

SNOW is the most traditional of the designs surveyed here, in that it uses a simple

16-stage LFSR coupled with a modified finite summation generator. However, the

LFSR operates in GF(232) rather than the bit-based GF(2). This allows SNOW

to be fast in software and both fast and compact in hardware. The total state

size of the cipher, including both the LFSR and two 32-bit registers is 576 bits.

SNOW outputs 32-bit keystream blocks.

During each invocation of SNOW’s update function, the LFSR is regularly

clocked, and the results of the summation generator are modified by rotation and

a virtual 32 × 32 s-box. The 8 × 8 s-box components of the virtual s-box are

algebraically constructed using a non-linear mapping of a polynomial base com-

bined with a bit-based permutation. SNOW-2, which remedies several problems

with the original cipher, constructs the 32-bit s-box using the AES s-box and a

MixColumn operation, albeit one that uses a different polynomial to the AES

cipher.

SNOW uses a key of 128 or 256 bits and an optional 64-bit IV. The key

initialization algorithm places the key into consecutive LFSR stages (in groups of

four or eight, depending upon key sizes) until all sixteen stages have key material.

It modifies between one quarter and half of the stages, depending upon key length,

by a small constant, and exclusive-ors the IV (if present) into two non-adjacent

stages. The update function is invoked thirty-two times if an IV is supplied, or

sixty-four times if it is not. Because the master key and IV are combined prior to

the iterations of the update function, IV-rekeying is slow in comparison to Helix

and Turing.

Hawkes and Rose [95] broke SNOW using a guess and determine attack with a

complexity of 2100 keystream bits and 2224 operations. They achieved this by ex-

ploiting the single stage input to the FSM and the particular feedback polynomial.

Additionally, Coppersmith, Halevi and Jutla [49] discovered a distinguishing at-

tack based on a correlation to the FSM. This requires 2100 keystream bits and

2100 operations.

The designers of SNOW responded to the attack by defining SNOW-2 [68].

The FSM takes two input words from the LFSR, which uses a new feedback

4.1. Modern Word Based Stream Ciphers 81

polynomial. The size of the IV has increased to 128 bits, and the AES s-box is

used to change the internal state of the FSM.

SNOW and SNOW-2 are designed to be fast on modern 32-bit processors, and

to be usable in constrained devices where memory is at a premium. They use

relatively cheap operations, have modest state sizes, and provide high throughput

in software.

4.1.9 Turing

Turing is heavily based upon the NESSIE candidate SOBER-t32 [94]. The design

of Turing inherits much of the analysis performed on SOBER-t32 but addresses

the criticisms found in [43], [44], [66] and [69]. The state of Turing is wholly

contained within a regularly clocked LFSR consisting of 17× 32-bit stages. It is

modified by a keyed non-linear filter that uses many elements from block ciphers.

Turing targets 32-bit architectures but outputs 160-bit keystream blocks. For

this reason, the LFSR is clocked five times within each update function.

Turing’s non-linear filter contains two five-input pseudo-hadamard transforms

(PHTs), separated by a row of five 32 × 32 s-boxes. The first PHT is provided

with inputs from five stages in the LFSR, which is then clocked. The PHT

output is applied to the s-boxes; their outputs are in turn used by the second

PHT. Following execution of the second PHT, the LFSR is clocked four times

to provide whitening material to the filter, and to involve more than half of the

LFSR stages within the production of the resulting 160-bit keystream block. Like

Scream, Turing uses keyed s-boxes: its virtual 32×32 s-boxes are composed from

random 8× 8 and heuristically constructed 8× 32 s-boxes. This avoids algebraic

attacks while maintaining good statistical properties. The influence from block

ciphers is clear: the use of PHTs within the filter function is inspired by the

SAFER [157] block cipher, although the former uses 5-input rather than 2-input

PHTs; also keyed s-boxes were popularized by the AES Twofish [205] candidate.

The design criteria for Turing apparently stop guess and determine attacks,

through the optimization of a full positive difference set to provide the set of

LFSR taps. The design of the non-linear filter is claimed to limit the correlation

of low-order approximations, thus prohibiting Courtois’ algebraic attack [51] and

the linear masking attack [49].

Turing’s rekeying strategy makes much use of block cipher components, in-

cluding keyed s-boxes and PHTs. Permissible keys range in size from 32 to 256

82 Chapter 4. Stream Ciphers

bits, with an accompanying IV of not more than 352 bits. Together the key and

IV may total as many as 384 bits. In the rekeying strategy, the user provided

key is altered at the byte and word levels, by applications of fixed s-boxes and

PHTs respectively. These mixed key words are placed in the LFSR and the key-

dependent s-boxes. The IV is mixed using the fixed s-boxes and prepended to

the mixed key words in the LFSR. A constant modified by the lengths of the

IV and master key is appended to the LFSR, and each of the words are chained

using addition. Each word is applied to, and overwritten by the application of the

32×32 s-box. Finally the LFSR is modified by a 17-PHT. The final mixing stage

that combines the key and IV makes it difficult to launch a related-IV attack,

when compared to the lightweight mixing scheme employed by Helix. Non-linear

key loading thwarts related-key attacks, and the 17-PHT used in the rekeying

strategy causes small changes in related IVs to be hugely magnified.

The key initialization algorithm processes the master key first, followed by

the initialization vector, and then a mixing stage than combines both together.

This means that master key and IV rekeying are comparatively efficient.

Turing is one of the slower stream ciphers described here because of its com-

plexity, despite the fact that the large size of the key stream output allows a more

complex function for a given cycle-to-byte ratio.

4.1.10 Summary

Modern word-based ciphers have a wide range of design strategies. This includes

basing ciphers upon LFSRs, or upon block-cipher-like update functions. Other

ciphers are constructed as dynamic permutations, or using novel concepts that

bear little relation to either block or stream ciphers.

LFSR-based ciphers reviewed in this section include MUGI, SNOW and Tur-

ing. MUGI uses a non-autonomous non-linear 1,024 bit LFSR in conjunction with

a 192-bit non-linear state. Its filter function is based upon a modified AES round.

SNOW and SNOW-2 are conventional word-based stream ciphers that use 512-

bit regularly clocked LFSRs in conjunction with a finite state machine (FSM).

The AES s-box is used to modify the FSM in SNOW-2. Turing is based upon

a 544-bit LFSR and a block-cipher like non-linear function that makes extensive

use of keyed s-boxes and PHTs.

RC4 is a dynamic permutation. It is one of the few ciphers listed here that

bears little resemblance to a block cipher. Although not a dynamic permutation,

4.1. Modern Word Based Stream Ciphers 83

HC-256 strongly resembles RC4, and contains two tables. It iterates methodically

through the tables, treating one as a series of 8×32 s-boxes. The rekeying strategy

is influenced by hash functions, through its use of SHA-256 functions.

Scream has strong ties to the AES block cipher. Its internal state is modified

by a 16-round Feistel ladder containing a modified AES round function. Helix

also draws strongly from the block cipher paradigm. Its 160-bit state is updated

by a block cipher style function that incorporates primitive operations such as

addition and rotation, but excludes s-boxes.

Hiji-Bij-Bij is based upon additive cellular automata. It contains a 512-bit

state based on the automata and a separate 128-bit NLS. It makes extensive use

of the AES s-box in an SPN update sub-function on the NLS.

Rabbit is based on chaotic maps. Its 513-bit FSM is updated by a function

constructed from addition, multiplication and rotation, as per the RC6 block

cipher, but its construction is unlike any block cipher.

Comparison of Ciphers

Table 4.1 compares the key features of each of the stream ciphers included in

this section. Traditional style stream ciphers are based on LFSRs. However, in

some ciphers, the feedback may be modified by a non-linear filter, in which case

the cipher is classified as a NLFSR. Other ciphers eschew LFSRs in favour of

finite state machines (FSM) or Dynamic Permutations (DP). For comparative

purposes, the Dragon cipher discussed in Chapter 7 is also included here.

The table is ordered by speed, in terms of the number of cycles required to

generate one byte of keystream (the slowest ciphers are towards the end of the

table). The table also shows the key and IV sizes of each cipher, along with the

block size of the output filter and the memory used by the cipher state. It indi-

cates the key agility of the cipher in terms of full- and IV-only rekeying. It shows

whether the cipher is flexible enough to be readily used on both general pur-

pose (32-bit) machines and in constrained environments such as on smart cards.

The table indicates whether the cipher shares code between key initialization and

keystream generation routines, thus reducing the cipher’s footprint.

84 Chapter 4. Stream Ciphers

C
ip

h
er

C
lass

K
ey

IV
O

u
tp

u
t

M
em

ory
S
p
eed

K
ey

IV
F
lex

ib
le

C
o
d
e

(b
its)

(b
its)

(b
its)

(b
its)

(cy
cles)

A
gile

A
gile

U
sage

R
eu

se
R

ab
b
it

F
S
M

128
-

128
513

3.7
Y

es
-

Y
es

Y
es

H
C

-256
F
S
M

256
256

32
81,920

4.1
N

o
N

o
N

o
Y

es
S
cream

F
S
M

128
128

128
2,432

4.9
N

o
Y

es
Y

es
Y

es
S
N

O
W

L
F
S
R

128
–

256
128

32
576

5.5
N

o
N

o
Y

es
Y

es
D

ragon
N

L
F
S
R

256
256

64
1,088

6.7
Y

es
N

o
Y

es
Y

es
H

elix
F
S
M

≤
256

128
32

160
7.0

Y
es

Y
es

Y
es

Y
es

R
C

4
D

P
128

-
8

2,048
7.2

Y
es

-
Y

es
N

o
T
u
rin

g
L
F
S
R

≤
256

≤
352

160
544

9.2
Y

es
Y

es
Y

es
N

o
H

iji-B
ij-B

ij
F
S
M

128
-

128
640

≥
16

N
o

-
Y

es
Y

es
M

U
G

I
N

L
F
S
R

128
128

64
1,216

25.2
N

o
N

o
N

o
Y

es

T
ab

le
4.1:

S
u
m

m
ary

of
M

o
d
ern

W
ord

B
ased

S
tream

C
ip

h
ers

4.2. Survey of Attacks on Stream Ciphers 85

4.2 Survey of Attacks on Stream Ciphers

Of the word-based ciphers reviewed in Section 4.1, Hiji-Bij-Bij and Helix were

broken. The organizers of the NESSIE competition declined to accept any of

the stream cipher candidates for standardization on the basis that all suffered

security flaws [181].

Here we perform a brief review of the techniques used to identify flaws in

these stream ciphers. Those techniques which have not been successfully applied

to any ciphers reviewed in this chapter, include correlation attacks, discussed in

Section 4.2.6; and algebraic XL attacks, discussed in Section 4.2.9.

Attacks which have been successfully applied to ciphers, but without recovery

of key material, include statistical attacks and distinguishers in Section 4.2.2,

and linear masking attacks, which are used to generate distinguishers, in Section

4.2.3.

The attacks which have been most successful include time-memory-data trade-

off attacks, discussed in Section 4.2.1; divide and conquer attacks, discussed in

Section 4.2.5; guess and determine attacks, discussed in Section 4.2.4; and related-

key attacks, discussed in Section 4.2.8.

4.2.1 Time-Memory-Data Trade-Off Attacks

Time-memory-data trade-off attacks [30] rely on pre-computation to reduce the

effort required for a key recovery attack on a keystream. The attack comprises

two steps. The first, the preprocessing step, involves the attacker calculating a

table of keys or internal states and corresponding keystream prefixes. The table is

ordered by prefix. The second step involves observing keystreams, using a sliding

window, and attempting to match each against a prefix in the table. If the match

is successful, then with some likelihood the internal state is known by reading the

opposing entry in the table. The parameters in an attack are time (T), memory

(M), and amount of data (D). Generally, T ×M2×D2 = S2 where S is the state

space of the cipher, and D2 ≤ T [30]. The pre-computation time P is equal to

S ÷D.

Particularly valuable to time-memory-data trade-off attacks is sampling resis-

tance [31], which measures the difficulty of finding states that produce rare but

recognizable output sequences. For ciphers with low sampling resistance, time-

memory-data attacks require many fewer disk probes to store the state-sequences

86 Chapter 4. Stream Ciphers

pairs.

RC4 is well recognized for its low sampling resistance [154]. Mihalejevic used

the low sampling resistance of RC4 to derive a time-memory-data attack [167], by

finding a bias given the three-byte master key prefix of [0, 0, 253]. He calculated

that, with a probability of 0.05, master keys with this prefix produced keystream

output prefixed with [0, 0]. By storing only output sequences with this prefix, an

adversary is able to reduce expensive disk probing in a time-memory-data trade-

off attack. This accelerates the attack by a factor of 218, allowing an attack with

252 data, 240 memory and 276 processing time, after a one-off preprocessing time

of 280 operations.

Another time-memory-data trade-off attack is applicable to BMGL [92]. BMGL

is a simple construction based upon the AES block cipher running in Key Feed-

back Mode (KFM). In KFM, the ciphertext xi = f(pi, ki) is used as the key ki+1

in the next iteration. The keystream ci is produced from xi using hardcore func-

tions, in which the output is provably indistinguishable from random assuming

that the underlying function f (in this case, the AES round function) is secure.

However, KFM mode is a dual to OFB, and as such, is vulnerable to the same

time-memory-data trade-off attacks that occur when the block size of BMGL is

less than double its key size [181].

4.2.2 Statistical Attacks and Distinguishers

A stream cipher should generate a pseudo-random keystream that does not ex-

hibit any statistical anomalies or biases. One example of an attack that exploits

statistical properties is the Berlekamp-Massey algorithm [13]. This algorithm is

successful with keystreams that have low linear complexity, defined as the number

of stages in the shortest LFSR that can generate the keystream. For a cipher of

linear complexity l, the Berlekamp-Massey algorithm can construct an equivalent

LFSR, from which the initial state is trivially recoverable, given only 2l bits of

keystream. Secure ciphers should have linear complexities that exceed the length

of the maximum keystream produced under a single key.

It is easy to verify the basic statistical properties of a stream cipher by ap-

plying a statistical package such as CRYPT-X [87] to a sufficient number of

keystreams generated using random keys. However, it is not possible at this

stage to automatically determine whether the statistical properties of the cipher

lead to the development of distinguishers, which differentiate the cipher’s output

4.2. Survey of Attacks on Stream Ciphers 87

from a random keystream. Distinguishers for iterated block ciphers can usually be

converted to key recovery attacks, but this does not necessarily apply to stream

ciphers unless the bias caused by the distinguisher is particularly strong.

One famous example of a distinguishing attack on a stream cipher is the attack

on RC4 by Mantin and Shamir [155], who discovered an unconditional bias in the

second byte of RC4 keystream, which contains zero twice as many times as would

be expected in a random source of bytes. For n = 8, zero occurs with probability
1

128
. From this, Mantin and Shamir devised a distinguisher, which with 256

output words from unrelated keys, differentiates RC4 from a random keystream.

A related attack, also in [155], recovers the second plaintext word of a broadcast

message encrypted under multiple keys. Both of these attacks are due to RC4’s

simplistic key initialization algorithm. Distinguishing attacks on RC4 are further

explored in Section 4.3, and a specific type of distinguisher applied to a class of

stream ciphers is discussed in Section 4.2.3.

Almost all of the stream cipher entrants to the NESSIE competition — Leviathan,

LILI-128, RC4, SNOW, SOBER-t16 and SOBER-t32 — are vulnerable to dis-

tinguishing attacks [181]. BMGL, the exception, was broken quickly by other

means, so may also be vulnerable.

4.2.3 Linear Masking Attacks

Coppersmith, Halevi and Jutla [49] describe a generic attack technique that uses

linear masking.

The technique applies to stream ciphers composed of a non-linear component

that looks like a block-cipher primitive, and a linear process such as an LFSR.

Potential ciphers to which the attack may apply include SEAL, PANAMA, and of

the ciphers surveyed in this chapter, MUGI, Scream and SNOW. In these ciphers

the non-linear component decorrelates distant states, while the linear process

masks correlated local states.

The attack works by identifying approximations to the non-linear state that

exhibit some bias. The linear process masks this bias, so the attack involves

finding some combination of consecutive steps such that the masking vanishes.

Coppersmith et al. [49] apply this to SNOW. They cause linear masking to vanish

over six consecutive steps by identifying and applying to the observed bits, poly-

nomials that are divisible by the LFSR feedback polynomial. The probability of

the non-linear approximation is 2−8.3; applied to six consecutive steps, it becomes

88 Chapter 4. Stream Ciphers

2−49.8. The workload for the distinguishing attack is around 2100 operations and

requires 295 texts. It does not pose a serious threat to the security of SNOW.

The authors describe a variant of this technique, termed the low diffusion at-

tack. This technique involves identifying dependencies between input and output

bits of the non-linear function over a single step. They guess some bits, iterate

the function, and check that the dependent bits have consistent states, using the

above technique to remove the effect of the linear masking. They apply this to

Scream-0 using 243 output bytes and 280 operations. This is a form of guess and

determine attack, which is discussed in the next section.

4.2.4 Guess and Determine Attacks

In a guess and determine attack, the cryptanalyst acquires an amount of keystream

and makes assumptions about values within the internal state of the cipher that

was used to produce it. These assumptions are treated as correct, and in a

successful attack, allow the cryptanalyst to calculate other values within the

state, with a complexity less than that required for a brute-force search. Once

the entire state has been deduced, this candidate state is used to produce an

amount of keystream that is cross-checked against the known keystream. If the

two keystreams mismatch, the candidate state is rejected, and the assumptions

altered, before the attack is attempted once more.

Guess and determine attacks have proven effective against the SNOW, which

was attacked by Hawkes and Rose [95] with a complexity of 2224 operations and 295

bits of keystream. The attack involved guessing values for the two 32-bit registers

within SNOW’s FSM at two different points in time, and using these guesses

to deduce the contents of its 512-bit LFSR. Hiji-Bij-Bij was attacked in both

its synchronous and self-synchronous modes by Klima [127] with, in the former

case, a complexity of 2140 (for a 256-bit master key) and thirty-four consecutive

keystream blocks. A guess and determine attack was launched against SOBER-

t32, by De Canniére [43], with an operational complexity of 2304, exceeding the

brute-force complexity of 2255.

A guess and determine attack is presented on registers two and three of the

Alpha1 bit-based stream cipher in Section 5.3.4. A guess-and-determine attack

on Helix is discussed in Section 4.2.7.

4.2. Survey of Attacks on Stream Ciphers 89

4.2.5 Divide and Conquer Attacks

A divide and conquer attack partitions a stream cipher into components. By

attacking and finding a solution to the most vulnerable component first, the

cipher can be reduced, and the attack reiterated until the entire state is deduced.

A divide and conquer attack may incorporate many other techniques of attack.

For one example of this attack against a bit-based stream cipher, see Chapter 5.

For bit-based ciphers that use n LFSRs, a successful attack may have com-

plexity
∑n

i=1(2
Li − 1), compared to a brute-force complexity of

∏n
i=1(2

Li − 1).

With word-based stream ciphers, the attacks become more difficult, particularly

in the case where large homogenous NLFSRs or LFSRs are used in conjunction

with a small number of internal state registers. The components in the cipher

may not be independent, which means isolating them for individual attacks be-

comes problematic. When the size of one of the components is larger than the

design strength of the cipher, a divide and conquer attack is not likely to lead to

a complexity that is better than exhaustive search. One example of a word-based

stream cipher exhibiting immunity in both of these ways is MUGI. The properties

that give it this immunity are discussed further in Chapter 6.

4.2.6 Correlation Attacks

Stream ciphers with multiple components that are strongly or weakly correlated

to each other may be vulnerable to correlation attacks. An example of a correla-

tion attack on a bit-based cipher composed of four LFSRs can be seen in Chapter

5, in which one of the registers is only weakly correlated to the keystream. How-

ever, correlation attacks have proved ineffective on word-based stream ciphers

to date. This may be because the components of many of these ciphers are not

autonomous, leading to difficulties in determining correlation measures.

4.2.7 Block Cipher Style Attacks

In general, block cipher style attacks are applied only as analysis tools to block

cipher-like components within stream ciphers, to gain confidence about their con-

fusion and diffusion properties. See, for example, the analysis of MUGI in [223]

and [63]. This is because of the difference in the attack models for the cipher. An

attacker can use a chosen-plaintext to control intermediate values during a block

cipher encryption, but it provides no control over the internals of a synchronous

90 Chapter 4. Stream Ciphers

stream cipher.

Self-synchronous stream ciphers may be more vulnerable to block-cipher style

attacks. One example is Helix, which was subjected to a differential attack by

Muller [175]. Firstly, as a self-synchronous cipher, Helix uses plaintext to generate

a MAC. Secondly, as noted in Section 4.1, the nonce (IV) is injected into the

cipher state during the keystream generation, rather than the rekeying phase.

Together, these form the cipher’s undoing. By encrypting two messages P and

P ′ with a difference in word i, such that ∆Pi−1 = Pi−1⊕P ′
i−1, a distinguisher can

be formed, by observing the difference ∆′Ci, with a probability that depends on

the characteristic ∆ → ∆′. The characteristic can be used in conjunction with

a guess and determine attack that requires the cryptanalyst to guess 96 bits of

internal state. The attack provides the remaining 64 bits of the internal state

with a complexity of 299 and a text requirement of 218 bits. Note that the attack

scenario involves encrypting both messages with the same key and nonce, which is

forbidden under the standard usage of stream ciphers. Muller converts this to an

attack in which the difference is induced in the nonce, rather than the plaintext,

with a complexity of 2120 bits, for any key length. Although the specification of

Helix requires that the key is changed after encryption of each 267 bits, this is a

successful certificational attack on key sizes of 128 bits and greater.

4.2.8 Related-Key Attacks

Many cryptographic protocols use stream ciphers over unreliable channels, or

impose limits on the amounts of ciphertext encrypted with a single key. As

a result, the protocol needs a strategy by which the key of the stream cipher

can be quickly and effectively changed. One strategy for inexpensively rekeying

stream ciphers concatenates an IV and the master key to form the cipher key.

Changing the IV, which is public, also changes the cipher key, without the need

for generating new secret material.

However, the need for resynchronization plays into an attacker’s hands, par-

ticularly if the IVs are related in some way (which is often the case; for example,

counters or consecutive frame numbers may be used). If the rekeying strategy

relates the inputs to the internal state with insufficient non-linearity, the cipher

may become prone to a related-key attack. In a related-key attack, an attacker

can control, in different invocations of the cipher, differences in the internal state

through selections of the master key or IV. This is analogous to differential crypt-

4.2. Survey of Attacks on Stream Ciphers 91

analysis in block ciphers.

One notorious example of a related-key attack that affected practical imple-

mentations of a cryptographic protocol is due to Fluhrer, Mantin and Shamir [74].

They describe a related key attack on RC4 due to an invariance property of the

Key Initialization Algorithm. The attack is possible because both the designer of

RC4, and the authors of the 802.11 WEP protocol in which it is used, neglected

to design robust key initialization routines.

The attack is performed as follows. Given the first x words of the RC4 key,

and the initial output word, an attacker is able to compute the first x stages in the

Key Initialization Algorithm, and with a probability of more than 5%, deduce

a new target keyword. Provided with the first output word for the keystream

of around sixty related keys (in which each differs only by an initial and known

prefix), the attacker can calculate the entire initial state for any key. Furthermore,

the complexity of the attack increases linearly rather than exponentially with the

length of the RC4 key.

As a result of the Fluhrer et al. attack [74], Stubblefield, Ioannid and Rubin

devised a practical related-key attack on the WEP protocol using around 222

packets [217]. Many vendors of the WEP protocol constructed the RC4 key by

concatenating a 24-bit counter and a secret key, incrementing the counter once

for each RC4 key. The counter provided attackers with a readily available pool

of strongly related keys. The attack was further facilitated by known-plaintext in

the form of encapsulating headers, and poor key management strategies in which

passphrases were used directly as secret keys.

The attack is mitigated by discarding the first 256 bytes of RC4 output or

by hashing the master key with a strong hash function such as MD5 prior to

creating the RC4 initial state [195]. To prevent this attack, Housely and Whiting

produced a rekeying scheme specifically for RC4 that is less heavyweight than the

MD5 hash function [99]. That these strategies were required is undesirable since

they both increase the footprint (and complexity) and reduce the key agility and

efficiency of the implementation.

4.2.9 Algebraic Attacks

A class of algebraic attacks known as the XL attacks caused a commotion in

the stream cipher world when it was claimed they broke, with low complexity,

popular stream ciphers, including the summation generator [147], LILI-128 [64]

92 Chapter 4. Stream Ciphers

and Toyocrypt [51]. Because they are a new class of attacks, in which research

progress is rapidly being made, they are discussed at length here.

Algebraic attacks upon stream ciphers are known-plaintext attacks in which

the initial register state of n bits (k0, ..., kn−1) is recovered by solving a system of

multivariate equations. For bit-based ciphers, the system of multivariate equa-

tions is derived as:





b0 = f(k0, . . . , kn−1)

b1 = f(L(k0, . . . , kn−1))

b2 = f(L2(k0, . . . , kn−1))
...

where f is a highly-non linear filter function, L is the linear connection function,

and bi is the ith consecutive output bit.

Generally one keystream bit yields one equation. Most attacks (including fast

algebraic attacks, discussed in Section 4.2.9) use m consecutive keystream bits to

solve the system of equations. However, some attacks [54] relax the restriction

that the keystream bits must be consecutive.

The attacks are possible because:

• there exist efficient algorithms for solving systems of nonlinear multivariate

equations of low degree [209].

• due to the linear nature of the connection polynomials in LFSR-based

stream ciphers, a multivariate equation of low degree in certain state bits

retains its low degree in the initial state bits.

Attack Methodology

Basic algebraic attacks consist of three steps.

Step 1 — Identify a System of Equations

This step is a pre-computation in which equations are identified that relate

bits of initial state to bits of keystream. This stage needs only to be performed

once for multiple keystreams produced by a single algorithm.

Step 2 — Substitute Keystream Into System of Equations

4.2. Survey of Attacks on Stream Ciphers 93

In this step, key bits observed from the keystream are substituted into the

system of equations obtained in the previous step.

Generally, one multivariate equation is obtained for each observed key bit,

and becomes part of a over-defined system of equations.

Step 3 — Solve System of Equations

In this step, the system of equations is solved to determine the initial cipher

state and consequently the secret key K. The solution can be identified if there

are a sufficient number of independent low-degree equations within the system.

The complexity of this step is exponential in the degree of the equations.

The fast algebraic attacks discussed later in this document focus on reducing the

degree of the equations to optimize this step.

Solving the System

There are a number of methods for generating over-defined systems of equations,

in which the number of equations is sufficiently large compared to the number of

variables. These methods include linearization [7] and the XL algorithm [51].

Linearization

The linearization technique applies to a system of non-linear equations with m

equations, in which there are T different terms, such that m ≤ T . By replac-

ing every monomial with a new variable, the system is transformed to have T

unknowns.

This algorithm is applicable when there are
(

n
d

)
keystream bits available, where

n is the number of variables within the equation and d is the degree of the

equations. The system can be solved using Strassen’s algorithm in about 7 ·T log27

operations [7].

Using a variant – the relinearization algorithm of [126] – the system can be

solved with about one-fifth that number of equations.

The XL algorithm

When there are fewer than
(

n
d

)
bits of keystream, linearization is not applicable.

However, the XL algorithm can succeed in finding a solution to the system at the

cost of a higher computation complexity.

94 Chapter 4. Stream Ciphers

The XL algorithm works by multiplying all equations with all possible mono-

mials of degree less than some D.

Given a system of m equations, li(x0, ..., xn−1) = 0 with i = 1...m, the XL

algorithm generates a new system of equations
∏k

j=1 xij · li such that k ≤ D− d.

Consequently the total degree of each of these equations is less than D. This

step may allow the number of obtained equations to equal or exceed the number

of variables. In this case the linearization step can be applied, in which each

monomial is considered a new variable. The resulting system can be solved using

Berlekamp’s algorithm.

The XL algorithm does not guarantee that all new linear equations are inde-

pendent. Consequently there has some been some debate on the validity of early

algebraic attacks on stream and block ciphers (for example, [173]).

Applying Algebraic Attacks

Conventional algebraic attacks can be launched on filter functions f when

• the function f has a low algebraic degree; or

• the function f can be approximated with a probability close to 1 by a

function h with a low algebraic degree

In [51], Courtois attacks the Japanese stream cipher Toyocrypt using a low-

order approximation to its combining function f . Other than one monomial of

degree 17, and another of 64, the highest terms in the filter function of Toyocrypt

have degree 4. Thus Courtois’ approximation succeeds because the higher-order

terms almost always have the value zero. He claims that the operational com-

plexity of this attack is 292 operations.

Courtois and Meier [54] introduce faster attacks in which additional possibil-

ities for successful key retrieval are considered:

• the function f has a multiple fg of low algebraic degree where g is some

non-zero multivariate polynomial

• the function f has a multiple fg that can be approximated by a function

of low algebraic degree with a probability of close to 1.

In this paper, Courtois and Meier improve upon the Toyocrypt attack of [53]

by factoring the polynomial f to obtain degree 3 equations. They claim the attack

4.2. Survey of Attacks on Stream Ciphers 95

succeeds with 249 CPU clocks. They also attack LILI-128 by approximating the

degree-6 boolean combiner with less complex equations of degree 4. They claim

this allows an attack on LILI-128 with an operational complexity of 296 opera-

tions. LILI-128 is an irregularly clocked cipher but they circumvent the clocking

by guessing the internal state of the 39-bit clock-control register, increasing the

computational complexity by a factor of 239.

Courtois and Meier generalize the result of the attack upon LILI-128 by show-

ing that for any stream cipher with linear feedback, for a filter of k variables, it

is possible to generate at least one equation with degree k
2
. They warn against

designing linear feedback stream ciphers in which the feedback uses only a small

subset of state bits: these ciphers will be vulnerable to fast algebraic attacks, dis-

cussed in the next section, irrespective of their immunity to other conventional

attacks.

In [52], Courtois describes breaking stream ciphers with stateful combining

functions. He shows the complexity of such attacks decreases rapidly if the cipher

outputs several bits during each clocking cycle. He demonstrates this new result

on modified (but unused) versions of LILI-128, Bluetooth E0, and the word-based

stream cipher SNOW.

Fast Algebraic Attacks

A new class of fast algebraic attacks was introduced by Courtois in [53] and

improved upon by Armknecht in [8].

Fast algebraic attacks introduce a new step in to the methodology of the at-

tack. This is:

Step 1a - Degree Reduction within the System of Equations

This step involves generating linear combinations of the equations within the

system, which cancels out terms of high degree. Since the complexity of Step 3

is exponential in the highest degree within the system, Step 1a contributes sub-

stantially to a reduction in the time taken to perform Step 3.

The “fast” aspect of the attack comes from considering
(

n
d

)
consecutive equa-

tions (and consequently consecutive keystream bits), and identifying a linear de-

pendency that does not depend on output bits. The recursive structure within

96 Chapter 4. Stream Ciphers

these equations allows the system to be solved using only a single dependency on(
n
e

)
successive windows of

(
n
d

)
equations, rather than using

(
n
e

)
dependencies.

Courtois [53] estimates the complexity of the fast algebraic attack to be

O(DE) where D is the size of the linear combination and E is the size of the

system of equations.

However, in [96], Hawkes et al. claim that [53]’s complexity analysis is wrong.

The error stems from the substitution of the keystream into the penultimate

system of equations. Hawkes et al. argue that while the time complexity is

O(DE) when bitwise operations of the substitution are run in parallel, the true

complexity is closer to O(DE2).

Further Improvements

In [96], Hawkes and Rose note that in previous papers, the substitution technique

is inefficient because the equations reuse the same values of gt(zt) when computing

g′t(z
′
t) and all use the same linear combination. Hawkes and Rose show how to

reduce the complexity of this step to 2E · D· log2D using a Discrete Fourier

Transform. They also show how to reduce the complexity of step 1a (in the fast

algebraic attack) from D2 to D(logD)2.

In [8], Armknect improves the efficiency of the fast algebraic attack by intro-

ducing a new parallelizable pre-computation step that examines the structure of

the filter and connection polynomial prior to deriving the system of equations.

He presents empirical evidence to demonstrate the improvement of the attack:

the conventional method takes 18 days to break a version of E0 with a key size

of 25 bits, while with the additional pre-computational phase, the attack takes

14 hours. However, the improvement degrades as the key size increases.

4.3. A Note on the Biases in the RC4 Keystream 97

4.3 A Note on the Biases in the RC4 Keystream

RC4 has been subjected to many attempts at cryptanalysis related to its key ini-

tialization algorithm. In the most significant of these, Mantin and Shamir [155]

discovered a bias in the second byte of the RC4 keystream, which for separate,

randomly keyed samples, has the value of zero twice as frequently as expected.

Inspired by this result, Mironov [170] sought to determine whether other biases

existed within the keystream, and the length of the prefix in which they occurred.

The methodology that he used was to model both the Key Initialization Algo-

rithm and Keystream Generation Algorithm as random shuffles. This involved

idealizing the algorithms (described in Section 4.1.6), in which changes to j are

assumed to be random. Consequently j is independent of index i and state S.

Mironov justifies the idealization by claiming that Rivest’s design principles con-

form to the randomization of j. Yet this is a flimsy justification; it is a cipher’s

specification that is analysed, not its design principles.

The idealization models the Key Initialization Algorithm as the exchange

shuffle Pt, which is shown in Figure 4.3.

S = identity permutation

for i = 0 to t-1 do

swap(S[i mod n], S[random(n)])

Figure 4.3: Idealized RC4 Key Initialization Algorithm — Pt shuffle
[170]

Using this model, Mironov devises two distinguishers of the exchange shuffle

from random, including a distinguisher that differentiates the permutation’s sign

— the parity of the transpositions that compose it — from random with 56%

probability; and a position distinguisher, in which the likelihood of swapping

the ith and jth elements is not uniform, but is dependent upon i, j and n. He

uses these distinguishers to show that, following a single invocation of the Key

Initialization Algorithm, the internal state of RC4 is not random.

Mironov claims that because the shuffling algorithm used in the Key Initial-

ization Algorithm and Key Generation stages is imperfect, there is a strong bias

in the first byte of output. This bias, he states, is unrelated to the second byte

bias, and has a variation of around 0.6% from the mean value. Figure 4.4, from

the Mironov paper, depicts this claim.

98 Chapter 4. Stream Ciphers

Figure 4.4: Claimed Bias in First Byte of RC4 output
[170]

This graph appears to be Mironov’s main support in the claim of a bias in

the first byte of RC4, yet it does not illustrate any application of a uniform

distribution, is not clearly explained, and is not supported by any concrete data

or statistical results.

Mironov furthers the claim by stating that this bias persists throughout all of

the bytes up to (and including) the 768th byte, although by this stage, he says

it is very difficult to detect. From this observation he constructs a theoretical

distinguisher against non-idealized RC4 with the first 1,700 bytes of output. To

prevent against this potential attack, he recommends discarding the first 3,072

bytes of keystream output.

Our analysis

In order to examine the possible bias in the output bytes of RC4, we carried out

a statistical analysis, using the frequency test, on the first ten byte positions in

the output stream of 100, 000 different RC4 keystreams. The only weakness that

was identified was a strong bias in the second byte of the keystream [155].

If no byte bias exists, then we would expect an equal number of each of the 28

byte patterns to appear. As we analysed 100, 000 keystreams, then for unbiased

output, the expected count ei for each byte pattern is 100,000
256

= 390.625. A χ2 test

of goodness-of-fit to a uniform distribution was applied, using the null hypothesis

that there are no biases in the keystream patterns.

4.3. A Note on the Biases in the RC4 Keystream 99

The χ2 statistic is calculated as

χ2 =
255∑
i=0

(oi − ei)
2

ei

, (4.1)

using 255 degrees of freedom, where oi is the observed frequency of ones in the

keystream. Using standard tables, χ2 values can be converted to p-values. A

p-value beneath a chosen significance level indicates that the null hypothesis has

failed, and that there are biases in the keystream. We chose a significance level of

0.001: a p-value less than this indicates a bias in the corresponding byte pattern.

The equivalent χ2 statistic for this threshold is 330.535: if the statistic exceeds

this value, the null hypothesis has failed.

Table 4.2 summarizes the statistic (χ2 with 255 degrees of freedom) and p-

value for the first ten output bytes. These results strongly support a bias in the

second byte position, but not in any other position.

Position χ2 Statistic p-value
1 217 0.9589
2 644 0.0000
3 216 0.9628
4 304 0.0179
5 288 0.0780
6 300 0.0283
7 287 0.0834
8 274 0.1997
9 235 0.8075
10 251 0.5615

Table 4.2: Uniformity Test on Byte Positions in RC4 Keystream

As mentioned in Section 4.2.1, Mihalejevic identified a bias in the RC4 keystream

given a three-byte prefix in the master key of [0, 0, 255]. To detect this bias in the

above analysis, the sample of keystreams generated would need to be increased

significantly. This [0, 0, 255] pattern in the first three bytes would be expected

to occur once in every 16, 777, 216 (= 224) randomly generated keystreams and

is unlikely to account for the second byte bias detected in the sampling methods

applied here, or also for any first byte bias claimed by Mironov [170].

We were unable to find any evidence for Mironov’s claim of a bias in the

first keystream byte of RC4, so believe that his advice to discard 3,072 bytes of

100 Chapter 4. Stream Ciphers

keystream output is unnecessarily conservative. Instead we recommend following

the advice of [195], which is intended to avoid the WEP attack of [217]. This

advice includes discarding the first 256 output bytes of the RC4 generator prior

to commencing encryption.

4.4. Summary 101

4.4 Summary

In this chapter, we reviewed nine modern word-based stream ciphers. All of these

ciphers, with the exception of RC4, were influenced by block ciphers in some way.

In particular, Helix and Scream were notable for their block-function-like update

functions, the latter incorporating a modified AES round.

Many of the ciphers reused the update function in their rekeying strategies,

enabling a reduction in the cipher footprint. Those that did not were RC4 and

Turing, although RC4’s rekeying strategy bears a strong resemblance to its update

function. Almost all of the ciphers incorporated an initialization vector into the

rekeying strategy. The exceptions were Hiji-Bij-Bij, RC4 and Rabbit, which

require careful key management strategies.

Most of the word-based stream ciphers reviewed in this section outperform

block ciphers on the Intel Pentium family. An exception is MUGI, which is

targeted towards 64-bit architectures, so performs poorly on 32-bit architectures

such as the Intel Pentium family. Also Hiji-Bij-Bij has a complex update function

so suffers from poor throughput.

Of the attacks presented in this chapter, the most successful on synchronous

word-based stream ciphers are guess and determine attacks, time-memory-data

trade-off attacks, and distinguishing attacks. The first and second of these can

be prevented by designing the stream cipher with a state size that is significantly

larger than the key, a strategy that also appears to defeat divide and conquer

attacks. But as shown in Section 4.1 and Chapter 6, this affects key agility, and

a compromise between security and efficiency is required.

RC4 is vulnerable to a distinguishing attack, due to a bias that occurs in the

second byte of its keystream [155]. Following this discovery, Mironov [170] sought

to determine whether other biases existed within the keystream, and the length of

the prefix in which they occurred. He claimed that additional biases exists in the

keystream, including a prominent bias in the first keystream byte. The attendant

advice is to discard 3,072 bytes of keystream following the initialization.

Using statistical methods, in which we analyzed 100,000 independently-keyed

10-byte keystreams, we were unable to find any evidence for Mironov’s claim of

a bias in the first RC4 keystream byte. We endorse the advice of Mantin and

Shamir, and subsequently Rivest, in discarding the first 256 output bytes of the

RC4 generator. This has less of a performance penalty upon the cipher than does

the advice of Mironov.

102 Chapter 4. Stream Ciphers

Chapter 5

Cryptanalysis of the Alpha1

Stream Cipher

Alpha1 [140] was proposed in 2001 as a stream cipher algorithm for mobile and

wireless devices. It was designed to remedy the weaknesses of A5, a GSM cipher

algorithm that came in two flavours, a strong version A5/1, a weaker export-

friendly version A5/2. Although the A5 algorithm was never released publicly, the

details were allegedly leaked in 1994; following this, it was broken by Golic in [81].

In 1999, the algorithm was verified by Briceno et al. [37] who performed a physical

reverse-engineering exercise on a cellphone that implemented A5/1. Biryukov and

Shamir [30] superceded Golic’s cryptanalysis; together with Briceno’s work, they

reinforced the lesson that secrecy does not equal security.

Both A5 and Alpha1 are based on linear feedback shift registers (LFSRs) and

use irregular clocking driven by feedback data. A5 uses three irregularly clocked

LFSRs, with a total internal state and key size of 64 bits. Alpha1 attempted

to remedy the small internal state size of A5 through the use of an additional

LFSR, and a total key and state size of 128 bits. One of Alpha1’s four registers is

regularly clocked; the other three registers are irregularly clocked. The contents

of two stages from each of these irregularly clocked registers are used to control

the clocking according to a majority function.

Several weaknesses and inaccuracies in the Alpha1 specification are noted

in [171], which also outlines a theoretical attack on R1, the shortest register of

Alpha1. Wu [225] uses a similar approach to recover the initial state of this

103

104 Chapter 5. Cryptanalysis of the Alpha1 Stream Cipher

register, but leaves recovery of the remaining three registers (totalling 99 bits) as

an open problem. This chapter solves that problem, by presenting a divide and

conquer attack on Alpha1 that begins with a slight improvement of Wu’s attack,

and continues the divide and conquer approach to recover the initial states of the

remaining three registers.

This chapter is organized as follows: Section 5.1 contains a description of

Alpha1. Weaknesses and previous attacks are outlined in Section 5.2. The new

divide and conquer attack is outlined in Section 5.3. Finally, some concluding

remarks on the security provided by Alpha1 are given in Section 5.4.

5.1 Description of Alpha1

Alpha1 uses four binary LFSRs of lengths 29, 31, 33, and 35, respectively. These

registers are denoted R1, R2, R3, and R4, as shown in Figure 5.1. For clarity,

clocking information is omitted.

R1

R2

R3

R4

-

-

f -

-

-

z(t)

R1(t)

R2(t)

R3(t)

R4(t)

Figure 5.1: Alpha1 Stream Cipher

The LFSRs have the following feedback polynomials:

f1(x) = x29 ⊕ x27 ⊕ x24 ⊕ x8 ⊕ 1

f2(x) = x31 ⊕ x28 ⊕ x23 ⊕ x18 ⊕ 1

f3(x) = x33 ⊕ x28 ⊕ x24 ⊕ x4 ⊕ 1

f4(x) = x35 ⊕ x30 ⊕ x22 ⊕ x11 ⊕ x6 ⊕ 1

At time t, denote the output of Ri as Ri(t) and the output keystream of

Alpha as z(t). The keystream bit is a function of the output bit of each of the

5.2. Known Weaknesses and Previous Analysis 105

four registers.

z(t) = f(R1(t), R2(t), R3(t), R4(t))

= R1(t)⊕R2(t)⊕R3(t)⊕R4(t)⊕ (R2(t) AND R3(t))

= R1(t)⊕R4(t)⊕ (R2(t) OR R3(t))

Let Rij denote the jth stage of LFSR i. R1 is regularly clocked and the other

three LFSRs are irregularly clocked in a stop/go fashion (the output bits of the

LFSRs occur one or more times in the LFSR output sequence). Each of R2,

R3 and R4 has two clocking taps. These six clocking taps are divided into two

groups, each containing one tap from each of the three irregularly clocked LFSRs:

Group 1 : R210, R322, R411

Group 2 : R221, R310, R424

For each group, the majority bit is calculated. For group 1, the majority bit is

calculated as:

Maj1(R2, R3, R4) = (R210 + R322 + R411) À 1

where À denotes the right shift operation.

For group 2, the majority bit is calculated as:

Maj2(R2, R3, R4) = (R221 + R310 + R424) À 1

Register Ri (i = 2, 3, 4) is clocked when both of its clocking taps agree with

the majority bit of the respective groups. For example, R2 is clocked only if R210

agrees with the majority bit of group 1 and R221 agrees with the majority bit of

group 2. For each keystream bit produced, between two and four of the Alpha1

registers are clocked, including R1, which is always clocked.

5.2 Known Weaknesses and Previous Analysis

In [171], Mitchell notes two weaknesses and an inaccuracy in the specification

of Alpha1. Firstly, the feedback polynomial f4(x) is not irreducible. Secondly,

the combining function f can be approximated by a linear function. Also, as he

106 Chapter 5. Cryptanalysis of the Alpha1 Stream Cipher

points out, the authors of Alpha1 miscalculated the clocking probability.

The feedback polynomial f4(x) is not irreducible, which can be seen by its

even number of terms. This polynomial can be factored into four smaller degree

polynomials, one of degree 22, one of degree 11, and two of degree 1. As f4(x)

is not primitive, the sequence generated by f4(x) is not of maximal length. For

example, if R4 is initialized as 11 . . . 11, then the R4 output sequence will also

be 11 . . . 11. This implies Alpha1 has at least 293 weak keys, because in this case,

the contribution from R4 to both the clocking and the combining function is

constant, and the Alpha1 output keystream depends only on R1, R2 and R3.

The authors of Alpha1 claimed that R2, R3 and R4 will each be clocked with

a probability of 7
13

. In [171] it is noted that if the inputs to the six clocking

taps are randomly distributed, then R2, R3 and R4 will each be clocked with a

probability of 9
16

.

The combining function f(R1(t), R2(t), R3(t), R4(t)) is closely approximated

by a linear combination of the output from registers R1 and R4. The output

function

z(t) = R1(t)⊕R4(t)⊕ 1

holds with probability equal to 0.75. Together the correct clocking probability

and the combining function bias can be exploited in a known-plaintext attack out-

lined in [171] to recover the initial state of R1. The attack involves exhaustively

searching through all 229 initial states of R1, to produce a length of candidate

keystream from which a correlation measure is tested. Note that this attack is

not implemented, therefore the complexity of testing each guess is estimated. Let

k denote the complexity of testing each R1 candidate state, then the complexity

of this attack on R1 is 229 ·k. Once the initial state of R1 is recovered, this leaves

the initial states of the other three registers (totalling 99 bits) to be obtained

through exhaustive search. Thus applying the attack to recover the initial state

of all four registers has the complexity 229 · k + 299.

Wu [225] shows that the clocking taps are biased, and uses an attack similar

to that described in [171], to recover the initial state of R1. The keystream can

be rewritten as the regularly clocked R1 output sequence plus the sub-keystream

of the remaining registers:

z(t) = R1(t)⊕ z(t)

5.3. Divide and Conquer Attack on Alpha1 107

By guessing the initial state of R1, the corresponding z(t) can be produced.

Using the biased clocking, the distributions of digraphs 00, 01, 10, 11 in z(t) are

calculated to be 19
64

, 13
64

, 13
64

, and 19
64

, respectively. If the distribution of digraphs

in z(t) agrees with the calculated values above, the guessed initial state of R1 is

deemed correct. It is claimed that this attack has complexity 229 and requires

about 3,000 bits of known keystream for a success rate of about 90%. Note that

the estimated complexity of 229 ignores the work required to test each candidate.

As the algorithm iterates through 3,000 bits of keystream for each of the 229 pos-

sible R1 initial states, we estimate a complexity of 229 · 3, 000 ≈ 240.6 operations.

We express the complexity in terms of operations to permit a comparison with

our attack presented in Section 5.3.

5.3 Divide and Conquer Attack on Alpha1

In this section, we outline our divide and conquer attack against Alpha1 which

sequentially recovers the initial states of all four registers. Firstly, the initial

state of R1 is recovered using a slightly improved version of the attack presented

in [225]. Secondly, we recover the initial state of R4 using a probabilistic correla-

tion attack. Thirdly, we exhaustively search through the initial states of R2, and

reconstruct the initial state of R3.

5.3.1 Recovery of R1

In [225], the initial state of R1 is recovered by measuring the distribution of

digraphs in z(t) for each candidate R1 initial state, and comparing that with the

expected distribution for the correct initial state. Note that the digraphs can

be divided into two groups, one with identical bit values (00 and 11) and the

other with different bit values (01 and 10). For the correct initial state of R1, the

distribution is symmetric: both 00 and 11 occur with the same probability (19
64

)

and 01 and 10 both occur with probability 13
64

. We can combine these probabilities

and detect the correct initial state of R1 by calculating the binary derivative d′(t)

of z(t):

d′(t) = z(t− 1)⊕ z(t) for t ≥ 1

This is a similar approach to that taken by Mitchell in [171]. The binary

derivative measures the number of bits in a binary sequence that differ from

108 Chapter 5. Cryptanalysis of the Alpha1 Stream Cipher

the previous bit value. The digraphs with identical bit values have a binary

derivative of 0; the remaining digraphs have a binary derivative of 1. Based on

the probabilities calculated in [225], the bias in the binary derivative is derived

for the correct R1 initial state. The distribution of zeros and ones in the binary

derivative for the correct state is 38
64

and 26
64

, respectively. For an incorrectly

guessed initial state, there is no discernable bias.

Having observed keystream {z(t)}n
t=0 of Alpha1, we use the following algo-

rithm to recover the initial state of Alpha1:

Output: initial register of R1

1. Guess R̂1, a candidate initial state for R1, and produce the R̂1 output

sequence { ˆR1(t)}n
t=0

2. Calculate {z(t)}n
t=0 by exclusive-oring { ˆR1(t)}n

t=0 to {z(t)}n
t=0

3. Calculate the binary derivative {d′(t)}n
t=1 of {z(t)}n

t=0

4. Calculate the sample distribution for {d′(t)}n
t=1. If the proportion is less

than 26
64

+c (where c is a one-sided threshold based upon keystream length),

then put the guessed R1 state into the list of candidate initial states.

This attack requires exhaustive search over all 229 states of R1 and the pro-

duction of n bits of output keystream for each state. The attack therefore has an

operational complexity of 229 · n and text requirements of n bits.

Experimental Results

To efficiently recover R1, optimal values for the required keystream length n and

the threshold value c have to be determined. If the threshold value is too small,

then the correct candidate may be inadvertently discarded. If it is too high, then

a large number of false positives may result.

We experimented with five different threshold values 2
128

≤ e ≤ 6
128

(in steps

of 1
128

) and six keystream lengths 512 ≤ n ≤ 5, 120. The attack was run 216 times

for each threshold value and keystream length. The results of the experiment

are shown in Table 5.1. The proportion of cases for which the true initial state

was successfully identified and the average number of false positives are recorded

in columns 3 and 4 respectively. For example, for c = 3
128

and n = 2, 048 re-

spectively, the attack successfully identified the correct initial case in 96.8% of

cases with around eight false positives. Increasing the length of keystream to

5.3. Divide and Conquer Attack on Alpha1 109

n = 3, 072 found correct initial states in 98.8% of cases, with no false positives

being identified. Generalizing this, an increase in the keystream length allows a

corresponding decrease in the threshold without generating extra false positives.

However, the keystream length is linearly related to the time that the attack re-

quires to determine the correct initial state, so a trade-off between accuracy and

efficiency exists.

threshold c keystream length n success rate false positives
512 0.750 217

768 0.788 212

2
128

1,024 0.816 28.0

2,048 0.895 0
3,072 0.935 0
4,096 0.960 0
512 0.840 219

768 0.878 215

3
128

1,024 0.910 211

2,048 0.968 23.0

3,072 0.988 0
4,096 0.995 0
512 0.900 220

768 0.938 217

4
128

1,024 0.961 214

2,048 0.993 24.0

3,072 0.999 0
4,096 1.000 0
512 0.944 222

768 0.973 219

5
128

1,024 0.986 217

2,048 0.999 28.1

3,072 1.000 1
4,096 1.000 0
512 0.971 223

768 0.989 221

6
128

1,024 0.996 220

2,048 1.000 213

3,072 1.000 25.8

4,096 1.000 24.5

Table 5.1: Table of Success Rates in Recovering Register 1 of Alpha1

For the parameters c = 3
128

and n = 2, 048, it takes around thirty minutes to

run the attack on a Pentium 4 3.2 GHz desktop with a success rate of 96.8%.

110 Chapter 5. Cryptanalysis of the Alpha1 Stream Cipher

The complexity of the attack is 229 · n = 240 for n = 2, 048. The memory

required is equal to 3n. This is a marked improvement over the attack presented

in [225], which took several hours on a Pentium 4, with a success rate of 90%

for n = 3, 000. Note that the attack described in [225] calculates the distribution

across four digraphs for every initial R1 state. Our attack on R1 only needs to

calculate a distribution with two states, and is therefore more efficient than that

of [225].

The running time of our attack can be further reduced by running a two stage

process. In the first stage of the process, use a small length of keystream with

a higher threshold to remove most of the incorrect candidates, while maintain-

ing a larger than desired number of false positives. This stage can be quickly

completed due to the short length of the keystream. The second stage is a more

precise analysis of the much reduced pool of candidates. The keystream length

is increased, so that false positives from the first stage can be quickly identified;

however, the pool is much smaller so the time taken is smaller than that for

the unoptimized attack. Using parameters of n = 1, 024 and c = 56
128

for the

first stage, and n = 2, 048 and c = 55
128

reduces the time required to recover R1

to about 20 minutes, with a complexity of just over 239 and a success rate of

93%. This is almost a ten-fold improvement over the attack of [225], but uses less

keystream and has a greater success rate.

5.3.2 Reduced Version of Alpha1

As the initial state of R1 has already been recovered in Section 5.3.1, in the re-

mainder of this section we consider a reduced version of Alpha1 with R1 removed,

as shown in Figure 5.2.

R2

R3

R4

-

-

-f ′- z(t)

R2(t)

R3(t)

R4(t)

Figure 5.2: Reduced Version of Alpha1 Stream Cipher (R1 Removed)

Denote the keystream for reduced Alpha1 as z(t). As noted in Section 5.2, this

5.3. Divide and Conquer Attack on Alpha1 111

can be obtained from the keystream of Alpha1 by exclusive-oring the regularly

clocked R1 output sequence {R1(t)}n
t=0 to the observed keystream {z(t)}n

t=0. Let

f ′ define the combining function for the reduced Alpha1. The output keystream

at time t can be written as

z(t) = f ′(R2(t), R3(t), R4(t))

= R4(t)⊕ (R2(t) OR R3(t))

The clocking mechanism for registers R2, R3 and R4 forming the reduced ver-

sion of Alpha1 is identical to that of the original Alpha1, described in Section 5.1.

R2(t) R3(t) R4(t) z(t)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

Table 5.2: Truth Table for Update Function f ′ in Reduced Version of Alpha1

From Table 5.2, note that z(t), the output of the reduced version of Alpha1, is

strongly correlated to the input value R4(t). R4(t) disagrees with z(t) in six cases

out of eight, so P (z(t) 6= R4(t)) = 0.75. This bias enables a correlation attack

targeting R4, provided an appropriate measure of correlation can be found. The

correlation measure used in our attack is the joint probability, and is described

in the next section.

5.3.3 Recovery of R4

The classical correlation attack described in [213], using correlation measures

based upon Hamming distance, is useful when the underlying sequences are of

identical length. Irregular clocking of LFSRs, as occurs for Alpha1, produces

a keystream sequence that has a different length from the underlying LFSR se-

quence. This provides resistance to the classical correlation attack. However, a

correlation attack can still be performed, but with a different correlation measure.

112 Chapter 5. Cryptanalysis of the Alpha1 Stream Cipher

Model for the Probabilistic Attack

For the correlation attack on R4, view the keystream of the reduced Alpha1,

z(t), as a version of the underlying R4 sequence, to which bit insertion and ad-

ditive noise have been applied, as shown in Figure 5.3. Bit insertion allows for

the increased length of the keystream segment compared to the regularly clocked

R4 sequence (due to the stop/go clocking) and the additive noise allows for the

contribution from R2 and R3. The task of the cryptanalyst is to determine the

correct initial state of R4 given a segment of keystream {z(t)′}n
t=1. A possible

correlation measure is the joint probability proposed in [84]. This is based upon

Levenshtein distances, and has been successfully used in attacking another irregu-

larly clocked keystream generator, the shrinking generator [50]. The Levenshtein

distance is the minimum number of edit operations needed to transform one se-

quence to another. Valid operations include bit insertion, bit deletion and bit

complementation. To attack R4 of the reduced Alpha1 where stop/go clocking

has been used, bit insertion and bit complementation are required.

l-Clock Control - Random Binary Sequence -

6

noise

z(t)

Figure 5.3: Model for Keystream Generation

Joint Probability

The joint probability P (Am, Bn) for arbitrary binary input and output strings

Am = {a(t)}m
t=1 and Bn = {b(t)}n

t=1, respectively, is computed using a recursive

algorithm [84] based on string prefixes. Let As = {a(t)}s
t=1 denote the prefix of

Am of length s and Be+s = {b(t)}e+s
t=1 denote the prefix of Bn of length e + s.

Let P (s, e) denote the partial joint probability for As and Be+s, for 1 ≤ s ≤ m

and 0 ≤ e ≤ n − m. Let δ(a, b) denote the complementation probability, with

δ = (1 − noise probability) if a = b and δ = noise probability otherwise. Let

p denote the bit insertion probability (1 − clocking probability). The partial

probability satisfies the recursion

P (s, e) = P (s, e− 1)p + P (s− 1, e)(1− p)δ(a(s), b(e + s))

5.3. Divide and Conquer Attack on Alpha1 113

% Random Correlated Random Correlated Random Correlated
n = 100 n = 200 n = 300

0 0 1.24E-26 0 4.81E-54 0 2.07E-82
10 0 3.45E-23 0 2.96E-48 0 1.23E-74
20 0 1.66E-22 0 2.15E-47 0 1.21E-73
30 0 4.81E-22 0 8.59E-47 0 6.91E-73
40 2.94E-29 1.19E-21 0 2.90E-46 0 3.23E-72
50 8.46E-28 2.72E-21 0 9.53E-46 0 1.24E-71
60 7.94E-27 6.46E-21 0 3.06E-45 0 4.70E-71
70 5.21E-26 1.63E-20 0 9.84E-45 0 2.00E-70
80 3.13E-25 4.56E-20 0 4.38E-44 0 1.12E-69
90 2.50E-24 1.99E-19 4.29E-64 3.15E-43 0 1.15E-68
95 9.51E-24 6.63E-19 1.21E-57 1.74E-42 0 8.86E-68
100 6.73E-21 1.32E-15 1.00E-50 3.55E-38 1.32E-84 5.14E-63

Table 5.3: Joint Probabilities for Random and Correlated Strings with p= 7
16

for 1 ≤ s ≤ m and 0 ≤ e ≤ n−m, with initial values P (1, e) = pe, 0 ≤ e ≤ n−m,

and P (s,−1) = 0, 2 ≤ s ≤ m.

Experiments were conducted to ensure the suitability of joint probability as

an effective correlation measure for reduced Alpha1. These compared the joint

probability values for random strings of length n and m, and the values for

correlated strings of length n and m, where m was set to n × p − 2 × √n. The

experiments were conducted for the three string lengths n = 100, 200, and 300

bits respectively, with a bit insertion probability p of 7
16

and noise probability of

0.75.

For each experiment, 10,000 trials were conducted. The results are given in

Table 5.3. The left column shows the percentage of random or correlated strings

that achieve a given joint probability, which is shown in a column to the right,

according to the length of n. For strings of lengths n = 100, the minimum joint

probability between correlated strings was 1.24E-26. More than 60% of tested

random strings with length 100 failed to achieve this level of correlation, as can

be seen by their lower joint probability of 7.94E-27. For n = 200, the joint

probability of the correlated strings was higher than that for 95% of random

strings. For n = 300, the joint probability clearly distinguished all correlated

strings from all random strings. The results indicated that joint probability is an

effective correlation measure.

114 Chapter 5. Cryptanalysis of the Alpha1 Stream Cipher

Attacking R4

Let {R4(t)}n
t=0 be the binary sequence under some unknown clock control. As-

sume the clocking probability of R4 is 15
28

, based on the results presented in [225].

That is, R4(t) has 13
28

probability of being repeated. Assume the distributions of

R2(t) and R3(t) are uniformly random, then

R2(t) OR R3(t) = 1

with probability 0.75. In a correlation attack on R4, the input from R2 and R3

can be considered noise.

The correlation attack on R4 requires exhaustive search through all possible

initial states of R4. For each initial state, a segment of the LFSR sequence of

length m is produced under regular clocking. Given the known keystream z(t),

a joint probability value can then be calculated for every state. The joint proba-

bility for the actual R4 initial state should be greater than the joint probability

for the vast majority of the incorrect states. Also, from Table 5.3, we expect the

difference between the joint probability value for the correct state and the joint

probabilities for the incorrect states to increase if the length of known keystream

increases. The attack requires exhaustive search over the 235 initial states of R4;

for each of the 235 candidate R̂4 initial states:

Input: reduced Alpha1 keystream {z(t)}n
t=0

Output: the joint probability value of R4

1. Generate {R̂4(t)}n
t=0, the regularly clocked R̂4 output sequence

2. Calculate the joint probability of {R̂4(t)}n
t=0 and {z(t)}n

t=0, using the iter-

ative procedure discussed previously in this section.

The joint probability values are stored and indexed by the candidate initial

states. This array is then sorted on the joint probability value. One of the

candidate R̂4 initial states with the highest joint probability is likely to be the

correct initial state.

The joint probability algorithm compares the two input strings, the random

binary string and the keystream. This attack has complexity 235 · n2. There is a

trade-off between the length of the known keystream n and the accuracy of the

attack.

5.3. Divide and Conquer Attack on Alpha1 115

In one computer simulation, we calculated the joint probability value for the

correct R4 initial state and 100,000 other random R4 initial states using 7,000

bits of keystream. We repeated the experiment 100 times to observe that the

joint probability values of the correct R4 initial states were always in the top 1%

of the values. Using this attack to search through all 235 initial states of R4 gives

228.4 candidate states. Using a further 7,000 bits of keystream to search through

the pool of candidates reduced it to 221.8 members. A total of five iterations is

required to reduce the pool to a handful of candidates. For each iteration, the

pool of candidates is reduced by a factor of 99. The text requirement of this

attack is 35,000 bits, and the complexity

235 · 7, 0002 + 228.4 · 7, 0002 + . . . + 28.6 · 7, 0002 ≈ 261

The memory requirement is roughly equal to n2. For n = 7, 000, 229.8 bits of

memory are required by this stage of the attack.

5.3.4 Recovery of R2 and R3

Following the recovery of the correct initial states of R1 and R4, the next target

in the divide and conquer attack is R2, due to its shorter length comparative to

R3. The attack proceeds by exhaustively searching through all possible initial

states of R2 and reconstructing R3 for each of the R2 states. If the wrong R2

state is used in the reconstruction of R3, the reconstruction eventually fails. For

the correct R2 state, successful reconstruction of R3 is possible. The following

algorithm is used:

Inputs: reduced Alpha1 keystream {z(t)}n
t=0, initial register state R4

Outputs: initial register states R2 and R3

1. Guess R̂2, a candidate initial state for R2. Set t = 0

2. Calculate R̂3(t):

• if z(t)⊕R4(t) = 0 and R̂2(t) = 0 then R̂3(t) = 0

• if z(t)⊕R4(t) = 0 and R̂2(t) = 1 then R̂2 is wrong; go to 1

• if z(t)⊕R4(t) = 1 and R̂2(t) = 0 then R̂3(t) = 1

• if zt⊕R4(t) = 1 and R̂2t = 1 then guess R̂3(t).

3. Guess the value of two clocking taps, R̂310(t) and R̂322(t)

116 Chapter 5. Cryptanalysis of the Alpha1 Stream Cipher

4. Clock R̂2, R̂3 and R4 according to majority function

• if R̂3 did not clock but R̂3(t) 6= R̂3(t−1) then R̂3 is wrong; decrement

t and backtrack to 2

5. If R̂3 has clocked fewer than eleven times, increment t and go to 2

6. Reset R4 to initial state. Set R̂2 and R̂3 to guessed states

• Clock cipher to produce ẑ(t). If ẑ(t) 6= z(t), R̂2 is wrong; go to 1

• Iterate clocking of the previous step until t = n

• Output R̂2 and R̂3

In the algorithm above, all possible clocking taps are tested before changing

the guess for the R̂3(t) value. If all the guesses are exhausted, that is, if the

reconstruction of R3 fails, then the next R̂2 state is tested. This algorithm will

give a candidate R̂3 initial state for the guessed R̂2 state after R3 clocks eleven

times (since there are eleven stages between the top of the R3 register and the

first clocking tap). This result can be checked by running the Alpha1 generator

until R3 clocks another twenty-two times (to cycle through R3 completely). If the

output sequence agrees with the observed z(t), then the guessed R2 state and the

reconstructed R3 state are the correct initial states. The clocking probability of

R3 is 15
28

, so thirty-three clocks of R3 produce sixty-two bits of output keystream

on average, which is therefore the text requirement of the attack.

R2(t) = 0

R2(t) = 1

R2(t) = 0

R2(t) = 1

1

1

1
2

1
2

0
wrong

R3(t) = 0

R3(t) = 1

R3(t) = 0

R3(t) = 1

1
8

1
8

3
8
3
16

3
16

1
2

©©©
HHH

©©©
HHH ©©©

HHH

R4(t) = z(t)1
4

3
4 R4(t) 6= z(t)

1
2

1
2

1
2

Figure 5.4: Probability Tree of Guessing Register 3 in Alpha1

Figure 5.4 shows the probability tree of Step 2 of the algorithm. Making a

wrong guess for the value of R3(t) or the initial state R2 can be detected with

5.4. Summary 117

correct taps

wrong taps

detect

not detect

65
224

159
224

detect

not detect

13
64

2535
14336

6201
14336
195
3584

477
3584

159
224

¡
¡

¡

@
@

@

©©©
HHH

©©©
HHH

©©©
HHH

correct R3(t)13
16

3
16 wrong R3(t)

1
4

3
4

65
224

Figure 5.5: Probability Tree of Guessing Register 3 Clocking Taps in Alpha1

probability 1
8
. Assuming the guess for R2 is correct, the value of R3(t) can be

calculated with probability 4
8

or guessed with probability 3
8
. The probability that

a register does not clock in a given cycle is 13
28

. Wrong guesses of the clocking

taps, R3(t) and R2 could be detected with probability 5
8
· 13

28
= 65

224
(including the

1
8

mentioned above).

Figure 5.5 shows the probability for guessing the correct R3, clocking taps and

also the probability of detecting wrong guesses. The probability of wrong guesses

not being detected is 8109
14336

= 0.5656 at each branch, meaning that when eight

levels of the search tree are traversed, the probability of not detecting wrong

branches diminishes to 0.01. The probability of following a correct branch is

therefore 0.99. There are seven wrong branches at each step, giving a search

space of 78 ≈ 222.5 in the worst case scenario. Therefore, to break R2 and R3

using the method described requires 231 · 222.5 = 253.5 operations. This is less

effort than exhaustive search of the R2 and R3 initial states (264), and also less

than the complexity of recovering R4 (259). Negligible memory is required in this

stage of the attack.

5.4 Summary

Alpha1 is designed to have an effective key space of 128 bits. However, in this

chapter we have presented a divide and conquer attack that reduces the security

level to approximately sixty bits. This attack recovers the initial states of Al-

pha1’s four registers, unlike previous partial attacks which dealt only with the

shortest and regularly clocked register.

118 Chapter 5. Cryptanalysis of the Alpha1 Stream Cipher

The attack described in this chapter begins with an improved recovery of R1,

followed by a new probabilistic correlation attack on R4, and finally a guess and

check attack to recover the initial states of R2 and R3. The attack on R1 has

complexity 241, uses 213 bits of memory and requires 3,000 bits of keystream. The

correlation attack on R4 takes 261 operations, and requires 229.8 bits of memory

and 35,000 bits of keystream. This is the dominant stage of the attack in terms

of the complexities. The initial states of R2 and R3 can be recovered with about

253.5 operations and sixty-two bits of keystream, using negligible memory.

The complexity of the complete attack on Alpha1 is 261 operations. It requires

35,000 bits of keystream and 230 bits of memory. A time-memory-tradeoff attack

with comparable operational complexity uses 268 bits of memory and 230 bits of

keystream. Our attack is the most effective against Alpha1 to date. The failure

of Alpha1 to meet its designed security level of 128 bits means it is not an ideal

candidate for securing mobile and wireless applications.

Chapter 6

Rekeying Issues in the MUGI

Stream Cipher

MUGI [224] is a Pseudo Random Number Generator (PRNG) designed for use as

a stream cipher. It uses a 128-bit master key and a 128-bit initialization vector.

Its design strength, of 128 bits, is commensurate with the length of the key.

MUGI’s structure is based on the PANAMA PRNG [58], which can be used ei-

ther as a stream cipher or hash function. A schematic generalization of PANAMA

and MUGI is shown in Figure 6.1. The update function Υ is composed of a lin-

ear sub-function λ and a non-linear sub-function ρ. The function λ updates the

buffer, using input from both the buffer and the state. The function ρ updates

the state, again input from the buffer and the state. An output filter f operating

on the state produces the keystream.

The cipher is targeted towards 64-bit architectures, which means it is currently

non-competitive with most of the 32-bit word-based ciphers discussed in Section

4.1. This is a situation that will almost certainly change when 64-bit architec-

tures finally become commonplace. MUGI’s mediocre performance in software

is not due entirely to the mismatch between the algorithmic requirements and

implementation characteristics. It has a large state space, which as discussed in

Section 4.1, can lead to poor key agility, through its complex and lengthy key ini-

tialization process. In this chapter, we show how to improve MUGI’s key agility

for both 32- and 64-bit architectures. In Section 6.1, we describe the MUGI

keystream generation and key initialization algorithms. In Section 6.2, we review

119

120 Chapter 6. Rekeying Issues in the MUGI Stream Cipher

Figure 6.1: Generalization of the PANAMA and MUGI structures

previous cryptanalysis of MUGI, which leads to an interesting insight on the role

of the buffer in the cipher. In Section 6.3, we discuss a peculiarity with the key

initialization algorithm. In Section 6.4, we analyze further the performance of

MUGI relative to other word-based stream ciphers, and suggest strategies that

could be used to improve it, culminating in an algorithm for a ‘modified MUGI’

in Section 6.5. In Section 6.6 we perform a security and implementation analysis

for the new algorithm. In Section 6.7, we summarize the contribution of this

chapter.

6.1 The MUGI Algorithm

The MUGI algorithm uses 64-bit words. MUGI’s internal state contains a 3-stage

Non-linear Feedback Shift Register (NLFSR) denoted a, and a 16-stage Linear

Feedback Shift Register (LFSR), denoted b. The output filter produces 64 bits

of the output from state a at each iteration.

The non-linear function ρ is a target-heavy Feistel network structure:

a0[t + 1] = a1[t]

a1[t + 1] = a2[t]⊕ F (a1[t], b4[t])⊕ C1

a2[t + 1] = a0[t]⊕ F (a1[t], b10[t] ≪ 17)⊕ C2

where C1 and C2 are known constants, (M ≪ k) indicates leftwise k-bit rotation

of M , and F is a function that uses the components of the round function of

6.1. The MUGI Algorithm 121

the AES [62]. Note that the state receives at most 128 bits of new material each

time ρ is called. Each of the state words is used in a different way: a0 is used to

provide new material to the buffer; a1 is used for mixing in the F function; and

a2 is used for output and feedback.

Figure 6.2: MUGI F Function

The details of the F function are shown in Figure 6.2. The function has four

layers. In the first layer, which resembles key addition in an SPN, eight bytes

from a buffer word are added to each of eight state bytes. In the second layer,

the state is modified by eight parallel applications of the AES s-box. The third

layer contains a repeated Maximum Distance Separable (MDS) matrix. The final

layer consists of byte shuffling. The polynomials used in the MDS are identical

to those used in AES.

Denoting stage i (0 ≤ i ≤ 15) of the buffer as bi and stage j (0 ≤ j ≤ 2) of

the state as aj, the details of function λ are as follows:

bi[t + 1] = bi−1[t](i 6= 0, 4, 10)

b0[t + 1] = b15[t]⊕ a0[t]

b4[t + 1] = b3[t]⊕ b7[t]

b10[t + 1] = b9[t]⊕ (b13[t] ≪ 32)

where bi[t + 1] and ai[t + 1] are the content of stage i of buffer b and respectively

state a after the completion of t iterations.

Because of the interaction of the state and the buffer it is possible to view

MUGI as a 19-stage NLFSR as in Figure 6.3 below. This view gives a clearer

122 Chapter 6. Rekeying Issues in the MUGI Stream Cipher

picture of the interactions between buffer and state and makes it easier to trace

the path of the contents of each stage during operation.

Figure 6.3: Alternative View of MUGI

Output Filter

Each application of the Υ function produces new values within the state a. The

output filter selects the 64-bit block a2 to output as the keystream.

Initialization and Rekeying

The initialization process of MUGI consists of five phases. All must be executed

in full during rekeying of a master key. Only phases three, four and five are

executed during rekeying of an initialization vector.

Phase 1: Master Key Injection The 192-bit MUGI state a is initialized

using the 128-bit master key K. The key is divided into two segments K0 ‖ K1

and state a set, using known constant C0, as follows:

a0 = K0

a1 = K1

a2 = (K0 ≪ 7)⊕ (K1 ≫ 7)⊕ C0

Phase 2: State Mixing and Buffer Initialization The non-linear state

function ρ is used to mix the state a a total of sixteen times, using a null buffer.

6.2. Related Work 123

After each iteration, a stage in the NLFSR buffer is filled with key-dependent ma-

terial from the state word a0. The last stage in the buffer is filled first; therefore,

the first stage is filled using key material which has undergone the most mixing:

b(K)15−i = (ρi+1(a[−48], 0))0 0 ≤ i ≤ 15

Phase 3: Initialization Vector Injection The 128-bit initialization vector

I = I0 ‖ I1 is added to the mixed state a in a similar way to the key injection.

a[−32]0 = a[−33]0 ⊕ I0

a[−32]1 = a[−33]1 ⊕ I1

a[−32]2 = a[−33]2 ⊕ (I0 ≪ 7)⊕ (I1 ≫ 7)⊕ C1

Phase 4: Further State Mixing The state is again mixed, using a null buffer,

sixteen times. At the end of this phase, the state is represented by:

a[−16] = ρ16(a[−32], 0)

Phase 5: State and Buffer Mixing The rekeying procedure is finished by

iterating the state and buffer sixteen times using the Υ function, and discarding

the resulting keystream.

a[0] = Υ16(a[−16]), b(K))

6.2 Related Work

In [223] the designers of MUGI analyze their cipher. They claim that MUGI is

immune to linear cryptanalysis because the minimum number of active s-boxes

within an approximation is 22, and the maximum linear probability of an s-box is

2−6. Consequently the maximum probability of an approximation is 2−132; this is

insufficient to attack the cipher given its design strength of 128 bits. They leverage

the studied properties of the AES round function to claim immunity against a

resynchronization attack that uses differential, linear or integral cryptanalysis.

124 Chapter 6. Rekeying Issues in the MUGI Stream Cipher

In [63], it is shown that MUGI is not vulnerable to a linear masking attack

due to the difficulty in finding a biased linear combination of the inputs and

outputs of the non-linear function ρ. Also the large size of the state (1,216 bits)

precludes a time-memory-data attack. The dependence of the state and buffer

upon each other makes discovery of divide and conquer and correlation attacks

non-trivial, and to date, none have been discovered. They note that MUGI passes

all statistical tests from the CRYPT-X package [87].

In [166], Mihaeljevic studies a variant of MUGI in which MDS matrices are

excluded from the F component of the ρ update function. Because MUGI uses the

AES s-box, which is well known to produce over-defined and sparse equations, the

simplified MUGI can be subjected to an XL attack. However, Mihaeljevic does

not produce any definite conclusions about the complexity of the attack, except

that increasing the length of the key could increase the design strength above the

attack complexity (which would make the attack successful). Also Mihaeljevic

need not exclude linear operations like the MDS from the attack; these enable

the production of additional equations which should reduce the complexity of the

attack, although increase the difficulty in rendering the over-defined equations.

In [83], the linear function λ is analysed using a system of recurrences in b4

and b10 , and solved using generating functions. From this, the author discovers

the period of the subsequences related to the recurrences is equal to or less than

48, and the linear complexity is 32. These properties are considered too small for

use in a cryptographic application, although no attack has been forthcoming on

this basis. He studies a simplified MUGI in which the buffer is made autonomous

by decoupling the feedback from the state. Linear cryptanalysis is applied to

both the simplified and full versions of MUGI: in both cases, the attack succeeds

when compared to the large state size, but requires greater complexity than brute

forcing the key. The attack is much easier on the simplified version, proving the

success of the non-linear feedback between the buffer and the state. Golic finds

that the algorithm is immune to the XL attack due to the large state and complex

rekeying algorithm.

6.3 An Observation on Key Initialization

As shown in Section 6.1, the rekeying strategy of MUGI consists of five phases. In

phase two, the fifteenth word of the buffer (b15) is assigned the output (ρ1(a, 0))0,

6.3. An Observation on Key Initialization 125

which is the value of the state variable a0 after a single invocation of the ρ

function. In the ρ function, the a0 word is modified simply by replacing its value

with that of a1 (that is, one third of the state is not changed by the ρ function).

Since each buffer word is only updated once in the second phase, at the end of

phase two, b15 contains the unmodified key word K1, which entered the state as

a1.

Stages three and four of the initialization do not touch the buffer at all,

meaning that at the start of the final stage, after thirty-two rounds of the ρ

function, half of the key material is present in the buffer in its unmixed state. An

attacker has to work backwards through only sixteen rounds of ρ to obtain K1.

While there is no known way of doing this faster than brute force, this is still

significantly less effort than is suggested by the lengthy and complex initialization

process.

The contents of the buffer at the end of stage four are shown in the following

equations

b15 = K1

b14 = (K0 ≪ 7)⊕ (K1 ≫ 7)⊕ F (b15, 0)⊕ C1

b13 = K0 ⊕ (K0 ≪ 7)⊕ (K1 ≫ 7)⊕ F (b14, 0)⊕ C2

For b12 . . . b0:

beven = K0⊕(K0 ≪ 7)⊕(K1 ≫ 7)⊕F (beven+1)⊕b15⊕beven+2⊕beven+1⊕C1

bodd = K0⊕ (K0 ≪ 7)⊕ (K1 ≫ 7)⊕F (bodd+1)⊕ b15⊕ bodd+2⊕ bodd+1⊕C2

The state at the end of phase two is shown in the equations below.

a0 = b0

a1 = b2 ⊕ F (b1, 0)⊕ F (b0, 0)⊕ C1 ⊕ C2

a2 = b1 ⊕ F (b0, 0)⊕ C2

In phase five, all the key material, including K1, quickly becomes mixed with

other buffer and state.

Following initialization, the first word of output contains the key material K1,

but by now it is thoroughly mixed in the form of a0[15]⊕F (a1[15], (b11[0]⊕a0[4]⊕
b15[0]⊕ a0[0]⊕ b3[0]⊕ b7[0]) ≪ 17)⊕ C2 .

126 Chapter 6. Rekeying Issues in the MUGI Stream Cipher

6.4 Improving Key Agility of MUGI

Compared to all but three of the other ciphers reviewed in Section 4.1, MUGI

has a large ratio of key size to state size. This can be seen in Table 6.1, which

is ordered by increasing ratio of key to state size. One implication of a large

state size is reduced key agility, since the key initialization algorithm needs to

touch each element of the state. A rule of thumb observed in Snow, Dragon,

HC-256 and MUGI, all of which mix the internal state using the update function,

is that the function should be called twice for each element in the state. Scream

chains each element in its masking table by iterating the update function four

times on the previous element. Consequently, MUGI, Scream and HC-256, all of

which have large states, also have lengthy key initialization functions and are poor

performers in terms of key agility. While Dragon and MUGI have comparable

state sizes, Dragon’s key is twice the length, providing better security per byte

of state. Its update function is much faster, so the key initialization algorithm,

at a throughput of 11 cycles/byte, is completed in approximately twenty percent

of the time required by MUGI.

Cipher Key Size State Size Ratio
(bits) (bits)

Helix 256 160 1:0.6
Turing 256 544 1:2.1
Snow 256 576 1:2.2
Rabbit 128 513 1:4.0
Dragon 256 1,088 1:4.2
Hiji-Bij-Bij 128 640 1:5.0
MUGI 128 1,216 1:9.5
RC4 128 2,048 1:16.0
Scream 128 2,432 1:19.0
HC-256 256 65,536 1:256.0

Table 6.1: Key to State size of Modern Word Based Stream Ciphers

There are two obvious strategies that can be considered to improve the per-

formance of MUGI. The first is to migrate the cipher from a 64- to 32-bit design,

by halving the size of each of the components, including the stages in the NLFSR

and the words within the non-linear state. This has the added advantage that

the design of MUGI now matches the architecture on which it is most likely to be

implemented. It has the fatal weakness that the non-linear state naturally houses

6.4. Improving Key Agility of MUGI 127

a 96-bit rather than 128-bit key. This key size is too small. Also the reduction

in size of components necessitates rethinking the design of the core function F ,

which contains eight 8 × 8 s-boxes and two 32 × 32-bit MDS matrices. Using

eight 4× 4 s-boxes increases the maximum characteristic probability across four

rounds from 2−132 to 2−50, and using four 8 × 8 s-boxes increases the maximum

probability across four rounds to 2−100. In both cases, this is a significant loss of

security. In this case the trade-off of security to benefit efficiency is inappropriate.

An alternative strategy is to leave the non-linear state and its ρ update func-

tion as they are, and act upon the deficiencies of the buffer. By reducing the

buffer to 8 × 64-bit stages, for a total state size of 512 + 192 = 704 bits, the

speed of the rekeying strategy is increased significantly, the speed of the update

function is slightly increased, and the security is marginally decreased. The state

size is still more than five times the size of a 128-bit master key. This is the

strategy that will be adopted in the modification of MUGI.

Shrinking the buffer means altering the taps used for feedback, and also the

indices to stages used by the non-linear filter function. From halving the size of

the buffer, the natural progression is to halve the indices of the taps and stages,

leaving the order unaltered. This means that the distance between the taps

decreases, to the point that the stages receive feedback from their neighbours.

Another improvement is to remove phase four of the keying scheme. In stan-

dard MUGI, this phase mixes the non-linear state sixteen times. Consequently,

by the end of the initialization, each element of the non-linear state and the buffer

has been modified forty-eight and thirty-two times respectively. By removing this

stage, each element of the non-linear state and buffer has been altered sixteen

times. This brings the cipher into line with the design principles of other ciphers,

and the rule of thumb that each element of the state should be touched by a

non-linear function (at least) twice.

To remove the property discussed in Section 6.3, we change the state word

that is fed into the buffer in phase two. If a1 is used as feedback to the buffer, then

the state word a0 reflects the contents of the buffer word last modified. This is a

benign property, since it is destroyed immediately upon commencement of phase

three. But using a2 as feedback in phase two avoids this relationship, with the

obvious proviso that as it is used post-initialization to generate output, its role in

providing feedback to the buffer is localized to the key initialization algorithm.

128 Chapter 6. Rekeying Issues in the MUGI Stream Cipher

6.5 The MUGI-M algorithm

In the modified algorithm, denoted MUGI-M, the only changes that effect the

update sub-function ρ are the changes in the buffer words used as inputs:

a0[t + 1] = a1[t]

a1[t + 1] = a2[t]⊕ F (a1[t], b2[t])⊕ C1

a2[t + 1] = a0[t]⊕ F (a1[t], b5[t] ≪ 17)⊕ C2

The update sub-function λ operates on the buffer as follows:

bi[t + 1] = bi−1[t](i 6= 0, 2, 5)

b0[t + 1] = b7[t]⊕ a0[t]

b2[t + 1] = b1[t]⊕ b3[t]

b5[t + 1] = b4[t]⊕ (b6[t] ≪ 32)

The initialization process of MUGI-M consists of four phases. All must be

executed in full during rekeying of a master key. Only phases three and four are

executed during rekeying of an initialization vector.

Phase 1: Master Key Injection The 128-bit MUGI-M state a is initialized

as per Phase 1 of the MUGI algorithm.

Phase 2: State Mixing and Buffer Initialization The non-linear state

function ρ is used to mix the state a a total of eight times, using a null buffer.

After each iteration, a stage in the buffer is filled with key-dependent material

from the state word a2. The last stage in the buffer is filled first; therefore, the

first stage is filled using key material which has undergone the most mixing:

b(K)7−i = (ρi+1(a[−16], 2))0 0 ≤ i ≤ 7

Phase 3: Initialization Vector Injection The 128-bit IV is added to the

mixed state a as per Phase 3 of the MUGI algorithm.

6.6. Analysis of MUGI-M 129

Phase 4: State and Buffer Mixing The rekeying procedure finishes by it-

erating the state and buffer eight times using the combined Υ function, and

discarding the resulting keystream.

a[0] = Υ8(a[−8]), b(K))

Code (using the C language) for this algorithm is presented in Appendix E.

6.6 Analysis of MUGI-M

Cipher Keystream Key Initialization Key Initialization
Generation (IV) (Full)

Ratio

Units per iteration
MUGI 181 4987 7540 1:27.6:41.7
MUGI-M 140 1652 2784 1:11.8:20.0

Cycles per byte
MUGI 25.2 36.8 55.7 1:1.5:2.2
MUGI-M 19.4 12.2 20.6 1:0.6:1.1

Ratio 1.3:1 3.0:1 2.7:1

Table 6.2: Comparison of the Speed of MUGI and MUGI-M

Table 6.2 shows the contrast in efficiency between MUGI and MUGI-M on

the Intel Pentium 4 processor. In particular, there is an improvement of 200% in

the speed of rekeying an IV, and 170% in full rekeying. The modified rekeying

is not as efficient as the rekeying of the Dragon stream cipher (see Chapter 7),

which is due to the different architectures for which the designs were intended.

There is a modest 30% increase in the speed of the keystream generation, which

is likely due to reduced register pressure and smaller buffer loops.

The attacks discussed in Section 6.2 are ineffective against MUGI for the fol-

lowing reasons: the effectiveness of the highly non-linear state function ρ, which

leverages the properties of the AES block cipher; the large size of the buffer; the

feedback between the internal state and the buffer; and the complex rekeying

strategy. None of the attacks rely on properties of the buffer other than its size.

Golic [83] argues that the properties of the buffer, when considered autonomously,

are cryptographically poor. This argument is deflected by the fact that the buffer

is coupled to the non-linear state, and that he is ignoring one of MUGI’s great

strengths. However, from this it can be claimed that by changing the location

130 Chapter 6. Rekeying Issues in the MUGI Stream Cipher

of the taps in the buffer, we are not altering any special properties of the buffer,

which was constructed in an ad-hoc manner. We are aiming to repair the per-

formance of MUGI rather than engender it with additional security properties.

In the remainder of this section, the resistance of MUGI-M against individual

attacks is considered.

Block-cipher style attacks

Block-cipher style attacks rely on the properties of the non-linear function: for

example, the maximum differential and linear probabilities across the function.

Given that only the size of the buffer, and the location of its taps have been

changed, the resistance of MUGI-M against block-cipher style attacks remains

unchanged from that of MUGI.

This resistance is due to the properties of the F function, which is a modified

AES round function containing key additions, the AES 8 × 8 s-box, and two in-

terwined MDS matrices. It is well-known that this function is resistant against

differential and linear attacks. This is due to the combined effect of the s-boxes

and the MDS matrices. The s-boxes in the F function have a maximum proba-

bility of 2−6, although almost half of the s-box characteristics have a probability

of 2−7.

A well-known property of the AES MDS matrix is that it has a branch number

of five, which is the lower bound on the sum of non-zero input bytes and output

bytes. When combined with the other diffusion elements in the AES, the MDS

causes the number of active S-boxes in four rounds of AES to be lower-bounded by

twenty-five [62]. Because in MUGI and MUGI-M, the outputs of MDS matrices

are permuted, the branch number does not strictly hold, and over four rounds as

few as twenty s-boxes may be activated.

To launch a successful attack against the F function requires a differential

that incorporates fewer than ten active s-boxes, as 2−7×10 < 2−64. If a differential

style attack can be launched against MUGI or MUGI-M, it will need to use fewer

than four words of keystream. The F function exhibits a vulnerability to integral

cryptanalysis across no fewer than four, and no more than nine rounds. The

synchronous nature of the cipher means that the attacker does not have sufficient

control over the inputs to launch it on either MUGI or MUGI-M. The resilience

of MUGI-M against block-cipher style attacks appears to be the same as that of

MUGI. If an attack of this style affects one, it will presumably affect the other.

6.6. Analysis of MUGI-M 131

Linear cryptanalysis

The self-evaluation report of MUGI [223] includes an analysis of linear crypt-

analysis incorporating both the non-linear state and the buffer. This form of

linear cryptanalysis consists of two phases: the first determines a linear approxi-

mation of ρ. In the second, a path is searched to acquire an approximation that

consists only of output bits (as the internal state is not available to the attacker).

For MUGI-M, the first phase remains unaltered from that of MUGI: if an ap-

proximation can be found that includes fewer than twenty-two active s-boxes,

linear cryptanalysis may be possible. The second phase does not depend upon

the length of the buffer; since the nature of the buffer has not been fundamentally

altered, the analysis of MUGI applies equally to MUGI-M.

Time-Memory-Data trade-off attacks

MUGI-M is immune to time-memory-data trade-off attacks because it has a small

key size relative to the size of the buffer. For a brute-force equivalent attack with

T = 2128, M2 × D2 = 2896. Assuming that a limit is placed on generating 2128

bits of keystream under one key, then to launch an attack requires 2287 gigabytes

of memory. This is clearly infeasible.

Divide and conquer attacks

A successful divide and conquer attack on MUGI that determines the contents of

the components sequentially, has a complexity of 2192 + 21024, assuming that the

components are autonomous. This is contrasted to a brute-force complexity of

2192×21024. The shorter buffer length of MUGI-M reduces this complexity to 2192+

2512. This analysis ignores the fact that the components are not autonomous, and

that the complexity may be much higher. The complexity of the attack needs to

be less than 2127 to be considered successful, given the 128-bit design strength of

MUGI. Therefore, divide and conquer attacks are very unlikely to succeed against

MUGI-M.

Correlation attacks

A correlation attack on MUGI or MUGI-M requires a measure of correlation

between the NLS and the NLFSR. No measure has been found in either cipher,

due to the absence of a perceivable bias in the non-linear filter, and to the feedback

132 Chapter 6. Rekeying Issues in the MUGI Stream Cipher

between the NLS and the NLFSR. A correlation attack against MUGI-M seems

unlikely.

Guess and determine attacks

Guess and determine attacks, as shown in Section 4.2.4, have been successful

against a number of word-based ciphers. In a guess and determine attack against

a PANAMA-style cipher, a cryptanalyst can adopt one of three approaches: fix

elements within the non-linear state and use them to guess the contents of the

NLFSR; fix elements within the NLFSR and use them to guess the contents of the

NLS; or a hybrid approach in which elements from both components are guessed.

MUGI has shown resistance to guess and determine attacks because of the

high non-linearity in the ρ function, and the large sizes of both the state and

the buffer. Adopting either of the first two approaches outlined is fruitless, be-

cause the material guessed exceeds the number of bits in the master key, so a

hybrid approach needs to be adopted. While this may be possible, no guess and

determine attack has been possible, because no simple relationship between the

non-linear state and the buffer has been discovered. As the buffers in MUGI and

MUGI-M are similar in structure and size (relative to the master key size), and

the ρ function is essentially unchanged, a guess and determine attack on one of

the ciphers is likely to apply (with modifications) to the other.

Linear masking attacks

Linear masking attacks depend on two factors: finding a linear approximation to

the non-linear filter, and finding a linear combination of the buffer that causes

the bias in the non-linear filter to vanish. To date, no effective bias has been

discovered in the non-linear filter ρ of MUGI, which is unaltered in MUGI-M. We

do not expect that MUGI-M is vulnerable to linear masking attacks.

Algebraic attacks

Algebraic attacks depend upon developing systems of equations on the non-linear

components of ciphers. In MUGI-M, the sole non-linear component is the AES

s-box, which is well-known to be over-defined. The linear components of the

non-linear filter and buffer allow extra equations to be added to the system. In

principle, MUGI-M is vulnerable to an XL attack, with a complexity similar to

6.6. Analysis of MUGI-M 133

Round State Differences Buffer Differences

∆a0 = ∆x ∆b7 = 0
1 ∆a1 = F (∆x)

∆a2 = 0

∆a0 = F (∆x) ∆b6 = ∆x⊕ F 2(∆x)
2 ∆a1 = F 2(∆x)

∆a2 = F 2(∆x)⊕∆x

∆a0 = F 2(∆x) ∆b5 = F (∆x)⊕ F 3(∆x)
3 ∆a1 = F 3(∆x)⊕∆x⊕ F 2(∆x)

∆a2 = F 3(∆x)⊕ F (∆x)

∆a0 = ∆x⊕ F 2(∆x)⊕ F 3(∆x) ∆b4 = F (∆x⊕ F 2(∆x)⊕
4 ∆a1 = F (∆x⊕ F 2(∆x)⊕ F 3(∆x))⊕ F 3(∆x))⊕ F 2(∆x)

F (∆x)⊕ F 3(∆x)
∆a2 = F (∆x⊕ F 2(∆x)⊕ F 3(∆x))⊕ F 2(∆x)

Table 6.3: Propagation of Differences through the MUGI-M State and Buffer

that on MUGI, which shares the same non-linear filter. However, in both cases,

the complexity of the XL attack exceeds the design strength of the 128-bit master

key [166], and is therefore not practical.

Rekeying Attacks

MUGI-M appears to be secure from rekeying attacks, despite the fact that the key

initialization algorithm mixes the non-linear state sixteen instead of forty-eight

times, and the buffer sixteen instead of thirty-two times. The level of mixing per

buffer stage remains the same.

Also the attacker has no control over any stage in the buffer, except indirectly

through the non-linear state. No raw key material enters the buffer at any time.

Consider a resynchronization attack using multiple master keys, in which there

are differences between the keys. For extra freedom, the attacker is allowed to

control the difference in the initial a2 state word. For simplicity, constants and

134 Chapter 6. Rekeying Issues in the MUGI Stream Cipher

rotations are ignored. In the best known attack, the attacker uses two keys with

the word differences (F (∆x), ∆x, 0). The state and buffer differences for the first

four iterations of the ρ function are shown in Table 6.3. Because the F function is

optimized against differential cryptanalysis, and because each of the stages in the

buffer is chained to previous stages, the attacker very quickly loses the ability to

track differences within the keystream. As shown in previously in this section (see

Block-cipher style attacks), no differentials through the F function are possible

after it has been iterated four times. Table 6.3 shows that after b6 and b7 have

been populated, subsequent words are affected by at least four iterations of the

F function and therefore activate too many s-boxes for an effective related-key

attack to be launched. In phase four, b6 and b7 are filled with material dependent

upon all buffer words, so the low non-linearity present in these words in phase

two is not a weakness.

6.7 Summary

In this chapter we have reviewed past cryptanalysis of the MUGI stream cipher,

and pointed out a peculiarity in the key initialization algorithm, whereby one key

word was visible in the buffer after thirty-two out of forty-eight iterations of the

update function.

We determined that MUGI had poor key agility, compared to other word-

based stream ciphers because its design targets 64-bit architectures, which are

not yet commonly available, and because its large state size requires a lengthy

key initialization process. The state size is large relative to the key size, so does

not serve well the security-efficiency trade-offs in MUGI’s design.

We suggested a variant of the MUGI algorithm, MUGI-M, in which the size

of the buffer was halved, and the key initialization reduced from forty-eight to

sixteen steps. This resulted in an improvement of 200% in the speed of rekeying

an IV, and 170% in full rekeying. We analysed the new variant with respect to

security and determined that it remains secure against attacks. This is because:

we made no significant alterations to the non-linear filter; each stage in the buffer

is sufficiently modified by the key initialization algorithm; and the buffer is still

large relative to the key size. This alteration will serve the security-performance

trade-off of MUGI well, both now and in the future, when 64-bit architectures,

for which MUGI was designed, become commonplace.

Chapter 7

Dragon: A Fast Word-Based

Stream Cipher

This chapter presents Dragon, a new 32-bit word-based stream cipher designed

to fulfill stringent security and efficiency targets.

Dragon uses a word-based non-linear feedback shift register (NLFSR), in con-

junction with a non-linear filter to produce key stream in blocks of 64 bits. The

update function of Dragon has two optimal s-boxes and, like many of the stream

ciphers reviewed in Chapter 4, is comparable to a reduced round block cipher.

We have analysed the security of Dragon using modern cryptanalytic techniques,

and believe it is suitable for use as a secure cryptographic primitive for at least

the next decade. Dragon has a throughput of gigabits per second in both mod-

ern software and hardware, and requires around four kilobytes of memory, so is

suitable for use in constrained environments. Both the keystream generation and

key scheduling algorithms of Dragon are efficient, making it especially suitable

for applications that require frequent rekeying, as are found in the mobile and

wireless communications paradigms.

Dragon can be considered an evolution of the output feedback mode (OFB)

of block ciphers that overcomes a shortcoming of that mode: that the output

keystream is also the feedback to the internal state. For many ciphers in OFB

mode, birthday paradox attacks exploit this knowledge of the feedback, but are

prevented from doing so with Dragon, which produces separate output and feed-

135

136 Chapter 7. Dragon: A Fast Word-Based Stream Cipher

back words from the update function. Dragon follows the rule-of-thumb that the

internal state size of a stream cipher must be at least twice the designed security

level, in order to prevent time-memory-data trade-off attacks [30]. To increase

the difficulty of the guess and determine attacks [95], Dragon selects taps from

the NLFSR according to a Full Positive Difference Set (FPDS).

Section 7.1 presents the specification of the cipher. Section 7.2 describes

the design decisions behind the Dragon algorithm. Section 7.3 outlines some

of the properties of the cipher, including its expected period, absence of weak

keys and a statistical analysis. Section 7.4 includes a security analysis of Dragon

using modern cryptanalytic techniques. Section 7.5 discusses the performance of

Dragon in software and hardware, and associated implementation issues. Section

7.6 concludes this chapter with a summary.

7.1 Specification of Dragon

Dragon is a stream cipher constructed using a single word based 1,024-bit NLFSR

and a 64-bit memory register M . From the 1,092-bit state, the combined update

function/output filter F , which is called once per round, produces a 64-bit word

of output. The state is initialized by processing a 256-bit secret master key

in conjunction with a 256-bit initialization vector (IV) through Dragon’s key

scheduling algorithm.

7.1.1 Dragon’s State Update Function (F Function)

The F function is a 192-to-192 bit three-stage reversible mapping that is used

in both the key initialization and keystream generation algorithms. It takes six

32-bit words as input (denoted a, b, c, d, e, and f) and produces six 32-bit words

as output (denoted a′, b′, c′, d′, e′ and f ′). The F function has two component

functions denoted G and H, as described below. It uses the G and H functions to

provide algebraic completeness [117] and high non-linearity. Diffusion is provided

through a network of modular and binary additions. The F function is depicted

in Figure 7.1. It is also notationally described in Table 7.1, where ⊕ denotes

exclusive-or and ¢ denotes addition mod 232.

7.1. Specification of Dragon 137

Figure 7.1: Schematic of Dragon’s F Function

Input = { a, b, c, d, e, f }
Pre-mixing Layer:

1. b = b⊕ a; d = d⊕ c; f = f ⊕ e;
2. c = c ¢ b; e = e ¢ d; a = a ¢ f ;

S-box Layer:
3. d = d⊕G1(a); f = f ⊕G2(c); b = b⊕G3(e);
4. a = a⊕H1(b); c = c⊕H2(d); e = e⊕H3(f);

Post-mixing Layer:
5. d′ = d ¢ a; f ′ = f ¢ c; b′ = b ¢ e;
6. c′ = c⊕ b; e′ = e⊕ d; a′ = a⊕ f ;

Output = { a′, b′, c′, d′, e′, f ′ }
Table 7.1: The F Function: Core of the Dragon Stream Cipher

138 Chapter 7. Dragon: A Fast Word-Based Stream Cipher

Input = { x }

1. x = x0‖x1‖x2‖x3

2. y = S(x0)⊕ S(x1)⊕ S(x2)⊕ S(x3)

Output = { y }
Table 7.2: Virtual S-box Construction in the Dragon Cipher

G and H Functions

The G and H functions are constructed from two 8×32-bit s-boxes, S1 and S2 to

form virtual 32 × 32 s-boxes. These s-boxes are the only components of Dragon

that are explicitly non-linear, and are included in Appendix D. In the virtual

mapping process, the 32-bit input x is broken into four bytes xi (0 ≤ i < 4).

Each byte is passed through an 8 × 32 s-box and the four 32-bit outputs yi

combined using binary addition. This process is shown in Table 7.2.

The individual G and H functions are defined as:

G1(x) = S1(x0)⊕ S1(x1)⊕ S1(x2)⊕ S2(x3)

G2(x) = S1(x0)⊕ S1(x1)⊕ S2(x2)⊕ S1(x3)

G3(x) = S1(x0)⊕ S2(x1)⊕ S1(x2)⊕ S1(x3)

H1(x) = S2(x0)⊕ S2(x1)⊕ S2(x2)⊕ S1(x3)

H1(x) = S2(x0)⊕ S2(x1)⊕ S1(x2)⊕ S2(x3)

H1(x) = S2(x0)⊕ S1(x1)⊕ S2(x2)⊕ S2(x3)

7.1.2 Key Scheduling Algorithm

Dragon has a simple keying (and rekeying) strategy that uses a 256-bit key K

and a publicly known 256-bit initialization vector IV . Dragon’s 1,024-bit internal

state W is divided into eight 128-bit words, labelled W0 to W7 and is initially

filled by concatenating K and IV with their bitwise sum and its complement

such that W = K ‖ K ⊕ IV ‖ K ⊕ IV ‖ IV . A 64-bit register M is initially

filled with a constant and updated in each round using two of the output words

of the F function. The state initialization process makes extensive use of the F

function, which simplifies analysis and increases implementation efficiency. The

initialization involves sixteen iterations of the F function, as shown in Figure 7.2

and Table 7.3. To protect against unknown future attacks, and against attacks

7.1. Specification of Dragon 139

that require large amounts of keystream, the cipher should be rekeyed at least

once for every 264 bits of keystream generated.

Figure 7.2: Dragon’s Key Initialization Algorithm

Input = { K, IV }
1. W0 ‖ ... ‖ W7 = K ‖ K ⊕ IV ‖ K ⊕ IV ‖ IV
2. M = 0x0000447261676F6E

Perform steps 3-8 16 times
3. a ‖ b ‖ c ‖ d = (W0 ⊕W6 ⊕W7)
4. e ‖ f = M

5. {a′, b′, c′, d′, e′, f ′} = F (a, b, c, d, e, f)

6. t = (a′ ‖ b′ ‖ c′ ‖ d′)⊕W4

7. Wi = Wi−1, 1 ≤ i ≤ 7
8. W0 = t
9. M = e′ ‖ f ′

Output = {W0 ‖ ... ‖ W7}
Table 7.3: Dragon’s Key Initialization Algorithm

7.1.3 Keystream Generation Algorithm

Dragon has a large NLFSR of one kilobyte divided into thirty two 32-bit words

Bi, 0 ≤ i ≤ 31. During each round, six words from the internal state are used

as inputs to the F function. The indices to these words form a Full Positive

140 Chapter 7. Dragon: A Fast Word-Based Stream Cipher

Difference Set (FPDS): these are 0, 9, 16, 19, 30 and 31. The 64-bit register M

acts as a counter in keystream generation, with the initial value for keystream

generation being the final value of M defined by the key initialization algorithm

(that is, the value of the counter is maintained between algorithms). Each round

of the keystream generation results in the output of a 64-bit word k, an updated

state B and memory M . Figure 7.3 and Table 7.4 show one round of keystream

generation.

Figure 7.3: Dragon’s Keystream Generation Function

Input = { B0 ‖ ... ‖ B31,M }
1. (ML ‖ MR) = M
2. a = B0, b = B9, c = B16, d = B19, e = B30 ⊕ML, f = B31 ⊕MR

3. (a′, b′, c′, d′, e′, f ′) = F (a, b, c, d, e, f)
4. t0 = b′, t1 = c′

5. Bi = Bi−2, 2 ≤ i ≤ 31
6. B0 = t0, B1 = t1
7. M = M + 1
8. k = a′ ‖e′

Output = { k, B0 ‖ ... ‖ B31,M }
Table 7.4: Dragon’s Keystream Generation Function

7.2. Design Principles of Dragon 141

7.2 Design Principles of Dragon

The following section outlines the theory behind the design of different compo-

nents within Dragon, including the F function used in both the key initialization

and keystream generation algorithms, the s-boxes incorporated into the F func-

tion, and the key scheduling algorithm.

7.2.1 Design of F Function

The F function is a reversible mapping of 192 bits to 192 bits. It can be divided

to three parts: pre-mixing, substitution, and post-mixing. Each step is designed

to allow for parallelization, giving Dragon its speed.

All the keystream words and feedback words are dependent on all inputs, both

at the bit level and word level. A single bit change in any of the six input words

results in completely different keystream and feedback words.

7.2.2 Design of S-boxes

Dragon uses two 8 × 32 s-boxes that have been designed heuristically to satisfy

a range of important security related properties. As shown in Table 7.2, these

s-boxes are used in the construction of the 32 × 32-bit non-linear functions G and

H. Both s-boxes were designed to have balanced component boolean functions

with:

• best known non-linearity of 116;

• optimum algebraic degree 6 or 7 according to Siegenthaler’s trade-off [212];

• low autocorrelation;

• distinct equivalence classes;

• all XOR pairs satisfying:

– better than random non-linearity with 102 minimum;

– almost balanced (the imbalance is not more than 16);

– distinct equivalence classes;

– same optimal degree as the components.

142 Chapter 7. Dragon: A Fast Word-Based Stream Cipher

We adopt a standard notation (n, t, d, x, y) to describe Boolean function prop-

erties where n is the number of variables, t is the order of resiliency (where t = 0

indicates a balanced function), d is the algebraic degree, x is the non-linearity and

y is the largest magnitude in the autocorrelation function. All the components

of S1 are (8,1,6,116,y) where 32 ≤ y ≤ 48 which is considered sufficiently low.

S1 functions achieve the highest non-linearity possible for resilient functions. All

the components of S2 are (8, 0, 7, 116, 24), where we note that the achieved

autocorrelation of 24 is the lowest known for balanced functions of this size.

These s-boxes were created one output bit at a time using heuristic techniques.

Existing methods [169] were adopted to generate the individual functions, then

they were compared to the existing s-box functions to check the above-listed

requirements for the XOR pairs. When the candidate function was acceptable, it

was appended to the s-box, otherwise another function was tested. We found it

was possible to generate thirty-two functions for each s-box, while satisfying the

stringent requirements outlined above.

7.2.3 Design of Key Initialization Algorithm

The key initialization and keystream generation algorithm of Dragon both use the

F function for ease of analysis, implementation and efficiency. However, the key

setup of Dragon is deliberately designed to be different to keystream generation,

so that the mapping of internal state to the feedback is different.

There are three differences between the key setup and the keystream genera-

tion: the way in which the 64-bit register M is used, the size of the feedback and

the FPDS selection used.

The F function is a reversible mapping, and the design of the key setup

network uses this property of F to produce a bijective process. For any unique

pair of K and IV , the key setup procedure initializes the internal state and M

to unique values.

A small number of rounds (sixteen) in key setup translate directly into high

rekeying performance. This makes Dragon very competitive in practical appli-

cations that require frequent rekeying, such as mobile and wireless transmissions

that usually use the frame number as the IV . The feedback of Dragon consists of

four words of the F function outputs, totalling 128 bits (in the keystream genera-

tion, it is only sixty-four bits). This means that F can mix K and IV effectively

with minimum number of rounds.

7.3. Analysis of Dragon 143

A different FPDS has to be chosen for the key setup because of the change in

size of the feedback. The indices from the internal state – 0, 4, 6 and 7 — form

a FPDS both in the forward and reverse direction. This is designed to frustrate

the cryptanalysis of key setup by guess and determine techniques.

7.3 Analysis of Dragon

This section discusses properties of the Dragon cipher, in terms of its statistical

properties, its period length, and the absence of weak keys.

7.3.1 Statistical Tests

The frequency, binary derivative, change point, subblock and runs tests were

executed with thirty streams of Dragon output, each eight megabits in length.

The sequence and linear complexity tests were executed for the thirty streams

with two hundred kilobits each. Dragon passed all pertinent statistical tests

provided by the CRYPT-X [87] package.

7.3.2 Period Length

Given that Dragon has a 1,024-bit internal state, the expected period of the

internal state is 2512, assuming the mapping is pseudo-random [47]. Each round

of Dragon is under the influence of a 64-bit counter, M . Since the counter M

has a period of 264, the period of Dragon’s internal state is lower bounded by 264

64-bit words, or 270 bits. Taken together, the internal state and the counter M

give Dragon an expected period of 2576 64-bit words, or 2582 bits.

The amount of keystream produced by a unique pair of K and IV is limited

to 264 bits (in most applications the actual keystream would be much smaller).

This is a small fraction of the lower bound of the period (and an even smaller

fraction of the expected period), and therefore avoids the possibility of keystream

collision attacks.

7.3.3 Weak Keys

Weak keys are those keys that cause some operations to have no effect on the

calculation of the feedback or the output keystream.

144 Chapter 7. Dragon: A Fast Word-Based Stream Cipher

Dragon is designed to avoid weak keys. The internal state is a non-linear feed-

back shift register that avoids fixed points through its use of a counter. Therefore

the all-zero state, which is problematic in many LFSR-based ciphers, does not

produce weak keys in Dragon.

While it is easy to bypass the pre-mixing phase of a single iteration of the

F function by having repetitive inputs, such as all zeroes, or all ones, it is only

possible for the first of the sixteen iterations of F in the key scheduling algorithm.

Also, selected values are limited to the first four inputs of the F functions, as the

last two inputs take the value of M , which is beyond the control of the attacker.

The network of G and H functions ensure that the initial states which bypass the

pre-mixing phase cannot bypass the s-box or post-mixing layers in F . We believe

that the above design features provide a strong guarantee that there are no weak

keys for Dragon.

7.4 Cryptanalysis of Dragon

The following section demonstrates how Dragon prevents different methods of

cryptanalysis.

7.4.1 Related Key and IV Attacks

The Dragon rekeying strategy is simple, and the use of initialization vectors

provides a way to reuse a master key without generating identical keystreams.

The rekeying strategy prevents related key and IV attacks before even the first

word of output is produced using the keystream generation algorithm. During

each iteration of the highly non-linear F function, the 128 leftmost bits of the

internal state are populated with the four outputs of the F function (the state is

shifted by 128 bits before the following iteration). After eight rounds, all of the

initial keying material in the state has been replaced by unknown output from

the F function. After sixteen rounds, each bit of the key is mixed into all words

of the initial state.

Of the six inputs to the F function, four words are taken directly from the

keyed internal state, while two are taken from the 64-bit register M . The contents

of this register are initially known, since it is determined by a published constant.

Also, the register cannot be manipulated by the attacker in the same way as the

internal state, since it is not keyed. Two outputs from the function feedback to

7.4. Cryptanalysis of Dragon 145

1 0 ∆A 0 0 0 0 0 0
2 0 0 ∆A 0 0 0 0 0
3 0 0 0 ∆A 0 0 0 0
4 0 0 0 0 ∆A 0 0 0
5 ∆A 0 0 0 0 ∆A 0 0
6 ∆B ∆A 0 0 0 0 ∆A 0
7 ∆C ∆B ∆A 0 0 0 0 ∆A
8 ∆D ∆C ∆B ∆A 0 0 0 0
9 ∆E ∆D ∆C ∆B ∆A 0 0 0
10 ∆F ∆E ∆D ∆C ∆B ∆A 0 0
11 ∆G ∆F ∆E ∆D ∆C ∆B ∆A 0
12 ∆H ∆G ∆F ∆E ∆D ∆C ∆B ∆A

Table 7.5: Propagation of Non-zero Differences In Internal State of the Dragon
Stream Cipher

the memory, making its value hard to determine after the first round. All output

words of F are affected by the memory, increasing the difficulty that the attacker

faces in controlling inputs to subsequent rounds.

Diffusion One strategy in an attack is to minimize the number of words with a

non-zero difference in the internal state. The aim of this strategy is controllability.

The larger the number of non-zero words used as input to the non-linear function,

the more complex the resulting output. The key schedule of Dragon is designed

so that after twelve rounds, even a initial single word difference is propagated to

all words in the internal state. This is demonstrated in Table 7.5, which is formed

by an examination of the outer structure of Dragon, treating the F function as a

highly non-linear black box with the characteristic ∆A → ∆B.

Having non-zero differences in all words after twelve out of sixteen rounds

leaves an ample margin to ensure an attacker is unable to determine the state

contents after rekeying. The speed of this diffusion is aided by the fact that the

first word of the state is used as input to F function, and the the output of the

F function replaces the first word.

Even a single round of Dragon F function prevents high probability differen-

tials due to its use of the G and H functions, and its high diffusion. A single

input difference is propagated to differences in each of the six outputs. The F

function consists of three layers: pre-mixing, confusion through s-box application,

and post-mixing. Referring to the notation of section 7.1, only inputs a, b, c and

146 Chapter 7. Dragon: A Fast Word-Based Stream Cipher

d can be initially and indirectly controlled by an attacker, since e and f come

from internal and inaccessible memory.

The attacker may wish to make use of the fact that b and d are mixed with

only one other word in the pre-mixing phase, while a and c are mixed with two

others. For the input

−(e⊕ f), b,−(b⊕ e⊕ f),−(b⊕ e⊕ f), e, e⊕ f)

the pre-mixing stage produces the output

(0, b⊕−(e⊕ f), 0, 0, e, e⊕ f)

For difference input ∆b, this produces the difference (0, ∆b, 0, 0, 0, 0) since e and

f are at this stage constants. This bypasses the G row of s-boxes and activates a

single s-box in the second row to produce the post-mixing input

(∆H1(∆b), ∆b, 0, 0, 0, 0)

The post-mixing output is

(∆H1(∆b), ∆b, ∆b, ∆H1(∆b), 0, 0)

At this stage, all of the feedback words to the internal state are non-zero.

However, the difference of the feedback to the internal state is still zero. During

the next round, the attacker can choose to keep the memory M to zero, by

choosing an appropriate value of W5. During the third round, the attacker needs

to choose the correct value of W4, which has already been used to influence

previous inputs to the F function. Combined with the fact that the inputs to

the F function in the third round come from all but two of the NLFSR words,

the attacker cannot meet the input differences necessary to keep the value of the

memory to zero. Consequently Dragon is not vulnerable to related key attacks

that are more efficient than a brute force search of the 256-bit key.

7.4.2 Time-Memory-Data Trade-off Attacks

As discussed in Section 4.2.1, Time-Memory trade-off attacks [30] rely on pre-

computation to reduce the effort required for a key recovery attack on a keystream.

7.4. Cryptanalysis of Dragon 147

The pre-computation increases the memory requirements of the attack, but since

it can be performed off-line, reduces the time complexity of the attack. The off-

line computation involves determining the relationships between internal states

and keystream prefixes. By observation of online keystream prefixes, the associ-

ated internal states can be determined.

One way to thwart time-memory-data attacks is to increase the internal state

of a cipher relative to its stated design strength. Dragon has an internal state

space of 1,088 bits (including the 64-bit memory). Since the design strength of

Dragon is 256 bits, the time-memory trade-off attack is infeasible. For the brute-

force equivalent attack with T = 2256, data requirements are limited to 264 bits,

which imposes a lower bound on memory for the attack of 2896 bits. As of 2004,

a state-of-the-art computer, between its physical memory and hard-disk, possess

around 237 bits of memory. No network of computers in the world comes close to

2896 bits of memory, so the attack is infeasible.

7.4.3 Guess and Determine Attacks

The indices {0, 9, 16, 19, 30, 31} of the state elements used in Dragon’s update

function form a full positive difference set. This is a design decision to prevent

guess and determine attacks [95].

In keystream generation, guessing six inputs (192 bits) to F in a round allows

an attacker to calculate the feedback words b′ and c′ and the keystream words a′

and e′, which can be used to discard most incorrect guesses. At this point the

attacker has knowledge of the state words at indices {0, 1, 2, 11, 18, 21} and some

information about the value of M . The only state word that is both known by

the attacker and used in the next round, has the index 0, so the attacker needs to

guess the inputs for {9, 16, 19, 30, 31}, constituting a further 160 bits of guessed

material. This exceeds the operational requirements for mounting a brute-force

attack. The attacker can attempt to jump ahead to a future keystream word

pair; for example, to the third round, in which case he needs to guess the inputs

for {2, 3, 4, 13, 20, 23}, for a total of 384 bits of guessed material. If he skips

too far ahead, his knowledge of the state words diminishes as the values become

shifted off the NLFSR. In fact, the best attempt the attacker can make is to

jump to the sixth round and guess the indices for {8, 10, 26, 28} which requires

guessing a further 128 bits. This still exceeds the 256 bits required for a brute

force attack. In addition, the interplay of B30, B31 and M means there will be

148 Chapter 7. Dragon: A Fast Word-Based Stream Cipher

more than one set of values for these three elements for an unique pair of e and f ,

further complicating the cryptanalytic attempt by guess and determine attack.

The attacker is unable to reduce the complexity of a guess and determine

attack by guessing individual state bytes, rather than whole words. The use of

large s-boxes (G and H functions are effectively 32 × 32 s-boxes) means that

guessing three of the four input bytes is insufficient to deduce any byte of the

s-box output.

To calculate keystream words from two rounds of Dragon, the attacker is

required to guess more than 256 bits of the internal state. This is worse than

exhaustive key search, and makes guess and determine attacks on Dragon infea-

sible.

7.4.4 Distinguishing Attacks

If the output sequence of a stream cipher can be statistically distinguished from

a random sequence, then the cipher is not strong enough for cryptographic ap-

plications. Dragon is designed with a large state and complex initialization and

update function. It has no linear masking, and is therefore immune to this type

of distinguishing attack [49]. Dragon is expected to have a very large period

of 2582 and it passes standard statistical tests for randomness. The amount of

keystream output for an unique pair key and initialization vector is limited to 264

bits. We conjecture that it is impractical to collect an amount of output sufficient

to distinguish Dragon keystream output from a random binary sequence.

7.4.5 Linear Approximations

Lemma 15 from [208] conjunctures that the non-linearity of a composite function

can be calculated as follows. Let g be a function on Vs+t defined by

g(x1, . . . , xs, y1, . . . , yt) = f1(x1, . . . , xs)⊕ f2(y1, . . . , yt).

Then the non-linearity of g satisfies Ng ≥ 2s+t−1 − 1
2
P1 · P2, where P1 and P2 are

the maximum Walsh-Hadamard transform values of f1 and f2 respectively.

The G and H functions of Dragon are composed from two 8 × 32 s-boxes,

S1 and S2. Both s-boxes have all outputs with nonlinearity 116, therefore PS1 =

PS2 = 28 − 2 · 116 = 24. The non-linearity of the output bits of the G and H

functions can then be calculated as NG = NH ≥ 28+8+8+8−1− 1
2
· 24 · 24 · 24 · 24 =

7.4. Cryptanalysis of Dragon 149

231 − 165888. The best affine approximation to the G or H function output

bits has bias no greater than 231−231+165888
231 = 2−14.66. At any given round, the

keystream words of Dragon are the results of five G or H functions each, hence

the best affine approximations to the Dragon F function output bits has bias no

greater than (2−14.66)5 = 2−73.3.

Linear cryptanalysis requires equations relating the key bits to the internal

state bits, and in turn the keystream bits, where the internal state variables can

be cancelled. The complete mixing of Dragon’s key setup avoids the divide and

conquer approach, therefore all the internal state variables are needed in the

linear equations. The output keystream will be dependent on all 1,024 bits of

the initial internal state after eight iterations of F . The bias of the best affine

approximation over eight iterations of F is no greater than (2−73.3)8 = 2−586.4. As

the key size of Dragon is 256 bits, an attack on Dragon using linear approximation

has complexity greater than exhaustive key search.

7.4.6 Algebraic Attacks

Algebraic attacks on keystream generators [53] to date have been concentrated on

LFSR based generators. The general attack model consists of the internal state

S, the linear update function L and the output function f . Let S0 denote the

internal state at time t = 0, and Lt(S0) denote the internal state at time t. The

attacker constructs a system of equations relating the internal state bits with the

observed keystream bits, where zt = f(Lt(S0)) at time t. The attacker can set up

a large number of equations just by merely collecting keystream bits, since the

internal state at time t can easily be derived from the linear nature of LFSRs.

This model cannot be applied to Dragon since the update function is non-

linear. Let the non-linear update function be N , then the equation becomes

zt = f(N t(S0)). Note that N has a poor linear approximation of 2−73.3 as shown

in Section 7.4.5. The lack of the linear update function means the attacker can not

simply calculate the internal state at time t to construct the system of equations.

Suppose that the attacker finds a method for constructing a system of equa-

tions for Dragon; however, he or she will find that the degrees of equations grow

exponentially, since any output of G or H is a degree seven function of the inputs

because S2 has algebraic order seven. If we linearize the system by approximating

¢ operation with ⊕, we can then write equations of degree 72 = 49 that maps

the 192 input bits to the first 64 output keystream bits. However, the feedback is

150 Chapter 7. Dragon: A Fast Word-Based Stream Cipher

used immediately in the production of the next 64 bits of keystream, and results

in degree 74 = 2, 401 equations. Note that at this point, the inputs consist of

only 352 bits, and therefore the equations would in fact be of degree 352. The

degree of the equations would grow to the full size of the internal state, 1,024,

after eight iterations of the F function, or equivalently, after 512 bits of keystream

were produced.

Using the technique published in [55] to describe the 8×32 s-boxes of Dragon

using quadratic equations results in 565 quadratic equations in 256 monomials for

each s-box (identical to the analysis of CAST [2]). Again, approximate ¢ with ⊕;

after eight iterations of F , the system of equations also has degree 1,024 as well.

This is to say, even if there exist some annihilators [165] that reduce Dragon’s

Boolean functions to quadratic, the degree of the overall equations would still

grow to unmanageable sizes.

It is clear that the system of equations for Dragon will be very difficult to

solve, if it is solvable at all. Furthermore, it will require far more effort than

exhaustive key search since solving techniques all have complexities exponential

in the degree of the equations. It is interesting to note that with the modular

addition in place, it will be even more difficult for algebraic attacks to work on

Dragon.

7.5 Implementation and Performance

Dragon is designed to be efficient in both software and hardware, in terms of

throughput and a small implementation footprint. Its 32-bit word size is chosen

to match that of the ubiquitous Intel Pentium family, since this leads to the best

software efficiency on that platform. See Chapter 8 for more information relating

to the implementation-related design principles for the cipher. Test vectors for

the cipher are given in Appendix C.

7.5.1 Software

Dragon is very efficient in software. Most operations are expected to perform

with latencies of 1
2

or 1 cycles on modern processors, such as the Intel Pentium

family.

On an Intel Pentium 4, a näıve C implementation of Dragon produces one

byte of keystream every 6.74 clock cycles. This is competitive with many of its

7.6. Summary 151

peers, including SNOW 2 (5.5 cycles/byte), Turing (6.1 cycles/byte) and RC4

(7.1 cycles/bytes) [97]. On a 3.2 GHz Pentium 4 (Northwood), the throughput

of Dragon is 3.8 gigabits per second. Complete rekeying of Dragon takes 1,395

cycles.

Storage requirements include 2,048 bytes to store Dragon’s two 8×32 s-boxes,

1,024 bits (128 bytes) for the internal state, and a further eight bytes for the 64-

bit counter. Including temporary variables and an object code size of 2,810 bytes,

Dragon has memory requirements totalling 5,890 bytes. This is suitable for even

very constrained environments.

7.5.2 Hardware

The design of Dragon allows high degree of parallelization in hardware. The op-

erations on the six inputs of the F function can be divided into three groups, each

operating on two inputs. The pre-mixing and the post-mixing are implemented

using 32-bit modular adders. The G and H functions are implemented using

look-up tables and exclusive-or operations. The hardware complexity is about

6,524 gates and 196,672 bits of memory. On Samsung 0.13um ASIC running at

2.6 GHz, the minimum delay is 2.774 ns with a throughput of 23 Gbps.

The speed in hardware can be improved by using m-parallel-structure pro-

posed in [148]. This hardware implementation strategy applies to all shift reg-

isters, and achieves an m times increase in efficiency with m times increase in

hardware complexity. On Altera FPGA/CPLD running at 16.67 MHz, an im-

plementation of Dragon achieves a throughput of 1.06 Gbps with sixteen times

hardware complexity.

7.6 Summary

This chapter presents Dragon, a new stream cipher constructed upon a word

based non-linear feedback shift register. The key and initialization vector are

both 256 bits in length. Dragon is designed with both security and efficiency in

mind. It has been shown that the keystream sequence produced by Dragon is

secure against all known cryptanalytic attacks. The most effective attack is brute-

forcing the key, which assuming a known initialization vector, has an expected

complexity of 2255 bits.

152 Chapter 7. Dragon: A Fast Word-Based Stream Cipher

Chapter 8

Implementation of Symmetric

Ciphers on the Intel Pentium 4

The days of slow block and bit-based stream ciphers that operate in the range

of megabits per second are over. In today’s busy networked world, where e-

commerce demands rapid transactions and data transfer, efficiency of ciphers is

nearly as important as their security.

Certainly the number of seemingly secure block and stream ciphers demands

that new entrants into the arena must distinguish themselves in ways other than

estimated bit-security. The metric by which the speed of symmetric ciphers is

measured is either in gigabits of throughput per second, or clock cycles consumed

to produce one byte of ciphertext or keystream. The Advanced Encryption Stan-

dard [62] set a benchmark for block ciphers of about 25 cycles/byte on the Intel

Pentium family. Ciphers which fail to approach this benchmark are not com-

petitive. Recent times have seen the emergence of word-based stream ciphers

with clock cycle metrics of single digits, one of the more notable being RC4 [5]

at around seven cycles/byte on the Pentium 4. In a cipher, size and speed are

inextricably linked, and an improvement in one of these measurements is not

necessarily to the detriment of the other.

This chapter investigates issues pertaining to the implementation of symmet-

ric ciphers on the Intel Pentium 4, the most ubiquitous personal processor. The

Pentium 4 boasts a range of features that Intel claimed would revolutionize the

performance of many personal applications, of which cryptography was named as

153

154 Chapter 8. Implementation of Symmetric Ciphers on the Intel Pentium 4

one [102]. Section 8.1 describes the features of the Pentium 4’s high-level archi-

tecture that are pertinent to symmetric cipher design. Section 8.2 gives a brief

overview of platform-independent optimization rules. These rules apply particu-

larly to programmers of high-level languages, since assembly-level programmers

require more awareness of the underlying architecture. Section 8.3 investigates

the performance of some cryptographic primitives on the Pentium 4. Finally,

Section 8.4 describes the implementation and optimization of the Dragon stream

cipher on this chip.

8.1 Architecture

Programmers of high-level applications generally do not need to be overly aware

of the architectures on which they are programming. They value portability, for

the reduction of programming effort that it brings, but which is antithetical to

architecture-based optimizations. For them, optimization advice comes in the

form of “code in high-level languages; leave assembly language to optimizing

compilers”.

Implementation of symmetric ciphers is an exception. These ciphers have

extremely small code sizes, limited to hundreds of instructions, and speed is

paramount. Optimization at the assembly level can be extremely rewarding,

particularly when writing for recent architectures, for which compilers may not

be capable of squeezing the last cycle of computing power.

Even when using high-level languages to implement ciphers, knowledge of the

underlying architecture can be vital. For example, a cipher that requires more

registers than are available, can never be optimal, irrespective of the compiler

used. Knowledge of the register set can prevent unfortunate designs that lead to

bad performance.

The Intel Pentium 4 uses a new “Netburst” architecture. The architecture is

complex and more fully described in [101], [102], [103]. Computer architectures

change rapidly and optimization rules that apply to one chip may not apply to

their successors. For example, the U-V pipeline pairing rules for the Pentium

processor, as described by [189] did not apply to the Pentium Pro processor or its

successors; likewise the 4-1-1 decoding rules for the Pentium III processor [104]

no longer apply to the Pentium 4.

The rules for optimizing the Pentium 4 are fewer than those for its recent pre-

8.1. Architecture 155

decessors. In some ways, it is a more difficult target since its increased complexity

makes optimization effects unpredictable.

The following sections describe some of the architectural features that design-

ers and implementers of symmetric ciphers should bear in mind. Section 8.1.1

describes the register set of the Pentium 4, which should influence the number of

variables used within a cipher design. Section 8.1.2 discusses memory, and high-

lights a problem with using large tables or code blocks in fast ciphers. Section

8.1.3 describes the mechanism for executing programs. This affects the constructs

that cryptographers choose for their cipher designs or implementations.

8.1.1 The Register Set

Registers are very fast memory locations that reside in the core of the processor.

Because they operate at clock speed, rather than the speeds of slower general

memory, they are highly prized to the programmer. Consequently either the

programmer, or the compiler, attempts to map variables within high-level code

directly to these registers, to achieve optimal performance.

Unlike other architectures, such as the Alpha and Intel’s failed iTanium ar-

chitecture, the Intel Pentium family (and its predecessors in the x86 family) are

register poor. Initially for reasons of cost, and later for backwards compatibility,

all members of the x86 family have sported only a small set of general purpose

registers to which the majority of the processor’s instruction set applies. For

the Intel Pentium 4, this set (shown in Figure 8.1) consists of eight 32-bit reg-

isters labelled EAX, EBX, ECX, EDX, EBP, ESP, ESI and EDI. Not all

registers are treated equally: for example, the IMUL and MUL multiplication

instructions work exclusively upon the EAX and EDX registers, which must be

available by the time the instruction is ready for processing. Likewise, ESI and

EDI are used for string operations and EBP and ESP are reserved for stack

operations.

The registers are general purpose in the sense that they can be used by the

programmer for any task, but when the number of variables used in a code seg-

ment exceeds the number of registers available within the processor, the register

contents need to be preserved to the stack (using the PUSH instruction), and

later retrieved from the stack (using the POP instruction). This represents an

unexpected and possibly expensive cost (a cumulative latency of at least 3 cy-

cles) to the programmer unfamiliar with the x86 architecture. The situation that

156 Chapter 8. Implementation of Symmetric Ciphers on the Intel Pentium 4

occurs when there are fewer available registers than cipher variables, is termed

register pressure.

Register pressure on the Pentium 4 processor is frequently a major concern to

cipher developers. The designers of Helix [73] specifically chose to use a 160-bit

state because this maps to five 32-bit registers, allowing the remaining two general

purpose registers to be used without the need for expensive stack swapping.

Under pressure from graphics consortiums seeking fast multimedia capabili-

ties, the later version of the Intel Pentium chip introduced Multimedia eXtensions

(MMX), which duplexed a series of 64-bit registers on the back of the Floating

Processor Unit (FPU), and introduced a limited set of Single Instruction Multiple

Data (SIMD) instructions that applied exclusively to those registers. One idio-

syncracy of the chip was that floating point and MMX modes could not be used

concurrently. The operation that switches between modes has a long latency. To

cipher designers, this is not particularly important, since floating point operations

are rarely called into use in cipher design. It used to be that some symmetric

ciphers performed better when implemented on the floating point registers, be-

cause of general purpose register pressure, but as the integer-based MMX uses

the same registers as the floating-point unit, this is no longer the case.

The Intel Pentium III introduced Streaming SIMD Extensions (SSE) which

applied an extended set of floating-point instructions to the 64-bit MMX registers.

The Intel Pentium 4 considerably improved the SIMD capabilities of the family

by bringing a wide range of integer operations to an additional set of eight 128-bit

SSE2 registers that are independent of the FPU registers. A significant cost is

still incurred in transferring data between the general purpose and SSE2 registers,

and the number of SSE processing units within the chip core have been halved.

8.1.2 Memory

One of the major issues to affect performance of ciphers in software is the way in

which they access computer memory.

The registers in the core of the Pentium 4 are accessible at clock speed (be-

tween 1.5 GHz and 3.8 GHz depending upon the chip). The memory from which

the registers acquire their data is very much slower; typical memory operates at a

frequency of only 133 MHz. Even the system bus that connects the main memory

to the CPU may act as a limiting factor; at between 400 MHz and 800 MHz, it

has a throughput of between 3.2 and 6.4 Gigabytes/second. Clearly this has the

8.1. Architecture 157

Figure 8.1: Intel Pentium 4 Register Set
[101]

158 Chapter 8. Implementation of Symmetric Ciphers on the Intel Pentium 4

potential to impose an upper limit on the speed of a symmetric cipher, as the

data being encrypted comes from main memory.

A series of high-speed caches are positioned between the CPU and the main

memory. Data is summoned, on demand, to the caches to reduce the effect of the

disparity in speeds of the CPU and memory. When the data is not available, a

latency penalty is incurred to bring it to the cache. This may cause delays within

the associated application.

The Pentium 4 has two or more caches: the first, the L1 cache, operates

at clock speed but has a capacity of eight kilobytes for data. This is half the

capacity of the Pentium III L1 cache, but enables smaller latency penalties. For

integer operations, the penalty for the L1 cache is only two clock cycles, but for

floating-point operations, it is six. The later Prescott version of the chip enlarges

the data portion of the L1 cache to sixteen kilobytes; the penalty for this is an

integer latency of three cycles.

The L2 cache has a much larger capacity of between 256 kilobytes and two

megabytes, but runs at about one-third clock speed, so has the capacity to impose

significant performance penalties. The Intel Xeon subfamily offers a slower but

larger L3 cache. The cache structure for the Intel Pentium 4 is shown in Figure

8.2.

The caches need to be shared between system and user processes, and in a

multitasking environment, there are no guarantees on how much of the cache is

available for a particular process. However, the sizes of the caches act as upper

bounds. In particular, generating amounts of data in excess of eight kilobytes,

such as large s-boxes (for example, those of HC-256 [227]) result in frequent L1

cache misses, and the resultant penalties as the data is brought in from slower

memory sources.

Data is loaded into the cache in sixty-four byte chunks (called a line). It is

loaded at the explicit request of the programmer (in an action called a pre-fetch,

which uses a member of the PREFETCHxxx instruction set), or automatically

when the data is required but not available in the cache. Pre-fetching, when

managed correctly, can alleviate the delays associated with cache loading. Twelve

clock cycles are required for the pre-fetch to reach the system bus and return data

to the processor through all of the caches.

The Pentium 4 has a 4-way L1 cache (8-way for the Prescott variant). This

means that the cache is grouped into rows, each containing four lines. To allow

8.1. Architecture 159

Figure 8.2: Intel Pentium 4 Architecture
[102]

fast retrieval of data from the cache, each row within the cache is associated with

a set of addresses in the main memory. If the row is full, and data is loaded from

an associated address, a conflict occurs, and a line is displaced to make room for

the new data, even if other rows in the cache are empty. Attempting to access

the earlier data will result in a cache miss.

A further cache issue concerns misaligned data that cross line boundaries. In

these events, two cache loads are required. Most higher level compilers ensure

data alignment, but the assembly programmer needs to be particularly aware of

this issue.

One of the issues associated with bench-marking ciphers is the kinds and

speeds of memory, buses and caches available on a bench-marking machine. For

example, an implementer who tests on a Pentium 4 Xeon with an L3 cache and

a bus speed of 800 MHz is may have superior metrics to the owner of an older

machine even though the processors are the same model. Also, due to the longer

pipeline and integer latencies, some small programs may run slower on the newer

Prescotts than on earlier models with slightly lower clock speeds.

160 Chapter 8. Implementation of Symmetric Ciphers on the Intel Pentium 4

8.1.3 Execution Pathway

The Intel Pentium 4 has a three-stage instruction execution pathway, beginning

with the instruction front-end, followed by the out-of-order execution core, and

terminating in the instruction retirement section. This is seen in Figure 8.2,

alongside the cache architecture discussed in Section 8.1.2.

Instruction Front-End

The Instruction Front-End fetches assembly program instructions that are to be

executed, decodes them into micro-operations and supplies them in order through

the instruction portion of the L1 cache to the Instruction Execution core. This

holds up to 12,000 micro-operations. The assembly language instructions may

already have been decoded from a high-level language by a compiler.

Instruction Execution

The Pentium 4, like all members of the Pentium family, is super-scalar, meaning

that it has the ability to execute multiple operations in a single clock cycle. This

is the job of the Instruction Execution core, which executes the micro-operations

supplied by front-end in the fastest possible order. The core has four ports that

provide access to its execution units. Each port can be accessed concurrently

by the front-end, to complete six micro-operations in one clock cycle. The ports

include:

• a port with a fast integer unit and a floating point (FP) move unit. The

associated units can dispatch two fast integer operations per cycle; or one

fast integer operation and one floating point move or store operation.

• a port with a fast integer unit, a normal integer unit and a floating point

execute unit. The associated units can dispatch two fast integer operations

per cycle. An integer multiply, shift or rotate, or FP/MMX/SSE operation

can be substituted for the second fast integer operation.

• a port that deals with memory loading or pre-fetching. The associated unit

can dispatch one operation per second.

• a port that deals with memory storage. The associated unit can dispatch

one operation per second.

8.1. Architecture 161

This means that the cipher designer needs to consider the types and order

of operations used within a cipher. Reducing dependencies within a cipher is

not necessarily going to create opportunities for parallelization. For example, if

two competing operations are multiplications, no gain will be made, as there is

only one port available to them. But it is possible to execute an addition on the

fast integer port, and a multiplication on the normal integer port concurrently

(although, all things being equal, the addition will finish first).

The architecture uses dynamic data flow analysis to execute instructions out-

of-order. This reduces delays caused by cache misses, and allows the execution of

dependency-free instructions before others that are waiting upon some resource.

In some ways, this feature conflicts with one of the central ambitions in symmetric

cipher design: to create as many dependencies between variables as possible in

order to maximize diffusion.

The CPU uses deep branch prediction, in which it attempts to analyze which

path a branch takes, execute the path, and have the results ready by the time the

branch expression is evaluated. When the branch is mis-predicted, the results

are discarded and as many as thirty-one cycles of the CPU time are wasted,

depending upon the length of the execution pipe-line, and where in the pipe-line

the branch is situated. Unfortunately, it is difficult to utilize branch prediction

in symmetric cipher design, since it performs poorly with random data; when the

result of the branch expression is random, the prediction is on average correct

only fifty percent of the time. Cipher designers should strive to minimize the

number of branches in their code.

One effect of the strategies employed by the Instruction Execution Core is that

the time taken to complete an instruction is not always predictable. However, a

lower bound can be calculated.

Instruction Retirement

The Instruction Retirement unit takes the completed micro-operations from the

Instruction Execution Core, and retires them in the correct order to maintain

program correctness. It also sends updated data to the Branch Target Buffer

(seen in Figure 8.2), which generates the branch prediction information.

Although the instruction core can execute six micro-operations in parallel,

the instruction retirement unit retire threes operations in one clock cycle; this

is a limiting factor on the CPU throughput, and should be considered by cipher

162 Chapter 8. Implementation of Symmetric Ciphers on the Intel Pentium 4

designers when they are estimating the throughputs of their ciphers on paper.

Dependencies

One of the important rules to note when designing a cipher, or theoretically

calculating its throughput is to avoid, where possible, write-read or write-write

dependencies. The value of a variable cannot be read or written if a calculation

that affects its value is still being undertaken (that is, if the corresponding in-

struction has not been retired). This has obvious implications on parallelization

opportunities. Where two consecutive operations act upon the same variable, in

which the first performs a modification, a bottleneck in the code is created.

8.1.4 Streaming SIMD Extensions 2

The streaming SIMD Extensions 2 (SSE2) are a new feature introduced with the

Pentium 4. They extend the Single Instruction Multiple Data (SIMD) technology

first introduced with the Pentium processor in the form of Multimedia Media

Extensions (MMX) and evolved in later processors.

SSE2 is associated with eight 128-bit XMM registers that can be accessed

from the general purpose registers and vice versa indirectly via memory. Each

register can be treated as a single 128-bit register, two 64-bit registers, four 32-bit

registers, eight 16-bit registers or sixteen 8-bit registers. A set of 144 instructions

can be applied to each of the registers. This set largely resembles the instruction

set for the general purpose registers, and includes many instructions that are

useful to the implementation of symmetric ciphers, but which may be faster

when applied in the SSE2 mode. The Intel Pentium 4 Instruction Set Manual

[102] cites RC5 as an application benefited by the use of SSE2.

Most of the SSE2 integer operations have a throughput and latency of two

cycles, which put them on an even footing with the fast integer operations on

general purpose registers, which operate on 32-bits and execute in half a cycle.

However, the XMM registers are not capable of indirectly addressing memory (for

example, to implement s-boxes). The MOVDQU instruction is used to transfer

memory to the XMM registers and costs six cycles, although a new instruction

can be scheduled on each cycle. This makes operating in SSE2 mode less flexible

than operating on the general purpose registers.

SSE2 also lacks branching instructions. The data in the XMM registers can

be masked to generate a branch indicator, which needs to be transferred to gen-

8.2. General Optimization Rules 163

eral purpose registers, on which the conventional branching instructions can be

applied.

An additional eight 64-bit MMX registers are available for use in conjunction

with the XMM registers and are directly accessible using the costly MOVDQ2Q

instruction, which requires a latency of eight cycles and a throughput of two

cycles. Considering the cost of the MOVDQ2Q operation, it is unlikely that the

cipher designer will make use of the MMX registers. Between the general purpose

registers and the XMM registers, the available fifteen registers should be sufficient

for any canny designer to produce a secure and fast cipher. An additional one-off

cost is required to tidy the MMX registers when the application is complete, due

to the EMMS instruction, which costs twelve cycles.

A treatment of the relevant SSE2 instructions to symmetric cipher implemen-

tation can be found in Section 8.3. SSE3 instructions were introduced with the

Prescott variant of the processor, but appear to have no bearing on symmetric

cipher development.

8.2 General Optimization Rules

Cryptography and compiler technology are the last bastions of assembly lan-

guage. In almost every field, compilers are smarter than the average programmer

in squeezing extra clock cycles out of increasingly complex code. However, sym-

metric ciphers are small and simple applications, and a deep knowledge of the

underlying architecture can put the programmer at an advantage over the com-

piler. At the very least, every programmer concerned with optimization should

be able to read assembly code generated by the compiler.

There are general optimizing techniques that benefit the programmer of the

higher level language. Almost all of the simple high-level rules proposed for cipher

design by [206] in 1997 still hold, even though the architecture of the Intel chips

has changed substantially.

The most important rule in optimizing cipher performance is consideration of

algorithmic optimization prior to implementation optimization. A good compiler

matches the program to the underlying architecture and inserts useful implemen-

tation shortcuts, but there is little it can do with a poorly designed algorithm.

A block cipher that iterates sixty hefty rounds will always be slow; likewise, a

stream cipher in which complex and widespread dependencies cripple opportu-

164 Chapter 8. Implementation of Symmetric Ciphers on the Intel Pentium 4

nities for parallelism, will never reach target metrics irrespective of the compiler

that is used.

8.2.1 Know Your Compiler

In [77], Fuller et al. describe important techniques such as loop unrolling and

strength reduction, and proceed to empirically demonstrate how such techniques

improve the speed of simple cryptographic algorithms. But the authors do not

describe the limitations on these techniques, or indicate performance penalties

caused by over-use of these techniques. More importantly, they neglect to mention

that most compilers implicitly support these techniques. In fact it is easy to

improve upon the metrics provided by [77] as they omit examination of specific

processor techniques.

One of the most common C compilers, gcc supports multiple levels of opti-

mization which can be invoked on the command line. Actually most compilers

support similar levels, which can be viewed with a cursory inspection of the rel-

evant software.

gcc dragon.c

supports the default level of optimization, which is none, so as not to interfere with

debugging tasks, particularly at the assembly level. Optimization does strange

things to assembly code, such as destroying direct mappings between variables

and registers, which are invaluable during the debugging process.

However,

gcc -Ox dragon.c

where -Ox represents -O0, -O1, -O2, -O3, or -Os. The first four of these

options implement increasing levels of optimization in terms of speed, while -Os

optimizes according to size.

At the default level of optimization, the EBP register is reserved exclusively

for debugging, which means that only six general purpose registers are available

(assuming that ESP is also used only for stack operations). One of the most

interesting and important optimizations made at the -O1 and all subsequent

levels, is the

omit-frame-pointer

8.2. General Optimization Rules 165

directive, which on the Intel Pentium 4, frees the EBP register for use in the

compilation.

The -O2 level supports all optimizations made by -O1 in addition to all opti-

mizations that do not involve a time-space trade-off, including strength reduction

(as reviewed in [77]) and automatic alignment (see Section 8.1.2).

The -O3 level supports almost all optimizations, including function in-lining

(see Section 8.2.3) and register renaming (which utilizes an advanced feature of

the Intel Pentium 4 architecture related to pipelining).

The -Os level optimizes for size rather than speed. This can benefit symmet-

ric ciphers, given that this trade-off may make the difference between the cipher

fitting into the L1 cache or otherwise. This level disables alignment-related op-

timizations, reordering of program blocks to minimize branching and automatic

pre-fetching instructions.

For optimal performance, the programmer may wish to mix-and-match opti-

mization flags rather than use a generic -Ox switch.

There are additional optimization flags that are not covered by the -O3 switch.

One example is the switch unroll-loops that unrolls all loops where the number

of iterations is known at compile time, or unroll-all-loops, for loops where the

number of iterations is not known. However, the latter option can frequently

make programs run more slowly.

Switches specified later on the command line override those specified earlier.

So, for example, to get the most speed, the programmer may wish to use -Os

including the disabling of the alignment, but with branching minimized, and

pre-fetching enabled, and basic loop unrolling. This is actualized as

gcc -Os -freorder-blocks -fprefetch-loop-arrays -funroll-loops

dragon.c

It is important to let the compiler know the architecture for which it is com-

piling. This allows it to take maximum advantages of the underlying instruction

set, optimal alignment, etc . For gcc, this is done by supplying -march and -cpu

flags; in the case of the Pentium 4 processor, it is simply a case of compiling with

gcc -march=pentium4 -mcpu=pentium4 -O2 dragon.c

166 Chapter 8. Implementation of Symmetric Ciphers on the Intel Pentium 4

8.2.2 Loop Unrolling

Loop unrolling is one of the most common optimizations and is generally handled

well by compilers. However, there are some cases where compilers fail to unroll

loops appropriately; also assembly-level programmers need to be aware of the

benefits and limitations of loop unrolling.

When a loop is fully unrolled, the overhead caused by the loop construct

disappears, and frees the register that would otherwise hold the indexing variable.

This can be extremely useful for ciphers that are otherwise using only five or six

variables in the locality of the loop. One example involves unrolling the loop that

iterates rounds within a block cipher. For example:

for (int i = 0; i < 4; i++) {

block_round(plaintext[i], ciphertext[i], k[i]);

}

becomes

block_round(plaintext[0], ciphertext[0], key[0]);

block_round(plaintext[1], ciphertext[1], key[1]);

block_round(plaintext[2], ciphertext[2], key[2]);

block_round(plaintext[3], ciphertext[3], key[3]);

which both frees the register containing the variable i and hard-codes the ad-

dresses for the pointers to plaintext, ciphertext and key. When an additional

variable becomes available, it may free ciphers from register pressure if they con-

servatively use registers (such as Helix [73]).

The final iteration of the loop always creates a branch mis-prediction and

the associated cycle penalty. Loops also hide data dependencies and even create

additional dependencies that reduce opportunities to exploit parallelism [79].

However, unrolling loops means that the size of the code increases. This has

two effects: excessive unrolling may cause the code not to fit within the L1 cache;

also the number of instructions that the processor has to decode increases, and

this may cause a decrease in performance.

The Intel Pentium 4 handles loop unrolling better than its predecessors. The

optimization guide for the Pentium II and III processors advised against com-

pletely unrolling loops of more than four iterations [104]. For the Pentium 4, this

is relaxed to loops of more than sixteen iterations for loops that do not contain

8.2. General Optimization Rules 167

branches. Unrolling loops that contain branches may cause additional branch

prediction penalties if more than 16
#cb

loops are unrolled, where #cb is the number

of conditional branches [105].

In stream and block ciphers, where the bodies of loops are generally short,

branch mis-prediction penalties and loop overheads may damage performance.

In [79], Gerber advises that where the compiler does not adequately unroll the

loops (observed in the generated assembly code), manual unrolling is useful in

loops with low loop counts or short bodies. Loops with high loop counts and long

bodies should only be manually unrolled where data dependencies can be visibly

reduced.

Generally the only loop that should be incorporated into a stream cipher is

that one that iterates the update function to produce keystream. In a block

cipher with fewer than sixteen rounds, a single loop should provide plaintext;

in a block cipher with sixteen or greater rounds, an additional loop should be

utilized to handle partially unrolled round functions. All other loops should in

general be designed out of the cipher.

8.2.3 Inlining

Inlining is a common technique in which the contents of a short procedure are

substituted into each procedure call. For example, the following procedure:

void function mutex(bool locked) {

this.lock = locked;

}

mutex(true);

do_something();

mutex(false);

when inlined becomes:

this.lock = true;

do_something();

this.lock = false;

Inlining is commonly implemented using macros in C. C++ discourages the

use of macros, but possess an inline keyword that implements a similar technique.

168 Chapter 8. Implementation of Symmetric Ciphers on the Intel Pentium 4

Because inlining can have a significant and positive effect on the speed of ciphers,

it is not uncommon to see an entire cipher implemented using macros, with only

the public interface being implemented as a procedure call.

Each procedure call sets up a stack frame, which involves manipulating the

ESP and EBP registers, shifting out any prior contents, and restoring them

to the registers once the stack frame is destroyed. Parameters that are passed

to the procedure may be copied into the stack along with the return address.

This activity represents a moderate amount of computation, and may actually

overshadow the resources required by the body of a short procedure, in addition

to increasing register pressure caused by reserving EBP.

Inlining avoids this. The disadvantage of inlining is that it increases code size;

as with loop unrolling, this increases the number of instructions to decode, and

may cause the resulting code not to fit in the L1 cache. Both the compiler and

the processor can automatically perform certain amounts of inlining.

8.2.4 Removing Branches

Unpredictable branches in symmetric ciphers fall foul of the Pentium 4’s branch

prediction capability and cause hefty penalties. The cipher designer should con-

sider omitting unpredictable branches from the algorithm.

Where branches can not be omitted, [105] has four suggestions to improve

their performance:

• partially or fully unroll loops, as discussed in Section 8.2.2.

• rearrange code to make basic blocks contiguous when applicable. Sym-

metric ciphers are concise segments of code, so the use of branches as an

organizational device seems unlikely.

• use CMOV or SETcc instruction to remove unpredictable conditional ex-

pressions and replace the contents of their branch statements. CMOV

performs a conditional move based on a status flag that may represent the

result of the branch expression, whereas SETcc sets the value of a register

based on a status flag that may indicate the result of an operand com-

parison. Modern compilers may automatically perform this optimization,

but the assembly code should be checked manually to ensure its correct

implementation.

8.3. Cryptographic Primitives on the Intel Pentium 4 169

• for branches with forward targets (if statements and for loops), make the

fall-through code (that which is accessed when the branch fails) the most

likely target. For branches with backward targets (loops), make the fall-

through code the least likely target. This is consistent with the branch-

prediction algorithm on the Pentium 4.

8.3 Cryptographic Primitives on the Intel Pen-

tium 4

This section indicates the efficiency of different cryptographic primitives on the

Intel Pentium 4. The efficiency of an operation is described in terms of its latency

(the number of clock cycles it takes to complete) and its throughput (the mini-

mum number of clock cycles that elapse between the scheduling of two successive

instances of an operation).

8.3.1 Additions and Subtractions

Modular (+) and binary additions (⊕) and subtractions (−) without carry are

cheap and easy to implement on the Intel Pentium 4. All of the ciphers reviewed

in Section 4.1 use at least one of these operations; many use two. These operations

are implemented using the ADD, XOR and SUB instructions respectively. Pro-

vided that there are no dependencies between arguments, the two integer ports

can be used to schedule and complete two of these types of operations in each

clock cycle.

Sixty-four-bit additions and subtractions require carry between words, and

are implemented using ADC and SBC respectively. One of these operations can

be scheduled on the normal-speed integer port every three cycles. The operation

takes eight cycles to complete, but only influences the higher thirty-two bits of

the calculation. An additional ADD or SUB operation is required to complete

the operation on the lower bits, but can be scheduled for free on the last cycle.

The SSE2 PADDD, PXOR and PSUBD instructions are executed on the

MMX ALU and all have throughputs and latencies of two cycles. Speedwise, the

use of SSE2 instructions offers no advantages.

Assembly programmers should note that the Intel Pentium 4 penalizes the use

of the increment and decrement instructions INC and DEC respectively, which

170 Chapter 8. Implementation of Symmetric Ciphers on the Intel Pentium 4

on older processors are useful for implementation of counters (for example, the

M register of Dragon’s keystream generation, or the i index of the RC4 cipher).

Although throughput of INC and DEC is only half a cycle, the latency is double

that of an ADD or SUB operation, which should be used instead.

8.3.2 Logical Operations

Logical operations like AND and OR are treated as fast integer operations and

like addition and subtraction, have a latency and throughput of a half cycle.

The SSE2 PAND, POR and PNAND instructions are executed on the

MMX ALU and have throughputs and latencies of two cycles. They offer no

intrinsic advantages over the conventional general purpose instructions.

8.3.3 Shifts and Rotations

On the Pentium 4, shifts and rotations in the general purpose registers are

strongly penalized. Generally they take four cycles to complete, although they

may be quicker if the shift/rotate operand has a value of 1. Variable and fixed

shifts or rotations have the same performance characteristics. In the Prescott

version of the chip, the shifts and rotations can be executed on the fast ALU

units, so have latencies and throughputs of 1 cycle.

The SSE2 PSLLD instruction simultaneously shifts four 32-bit operands left

with a latency and throughput of two cycles. The corresponding right shift in-

struction is PSRLD and bears the same performance characteristics. However,

the SSE2 instruction set does not contain a rotate: this needs to be synthesised

using two shift instructions, two masking instructions and a single OR instruc-

tion, totalling ten cycles on a 128-bit operand. This places it at a slight advantage

over the general purpose rotate instruction.

8.3.4 Multiplications

On the Pentium III architecture, the multiplication operation, which has a through-

put of one per cycle and a latency of four cycles [104], provides excellent diffusion

for such a simple operation. This prompted the designers of block ciphers like

RC6 [197] and MARS [42], as well as designers of stream ciphers like Rabbit [34],

to adopt the use of native multiplication as a cipher primitive.

8.3. Cryptographic Primitives on the Intel Pentium 4 171

However, the performance of the multiplication instruction IMUL unexpect-

edly took a nose dive, when its implementation upon the Pentium 4 chip was

shifted to the FPU (the Pentium 4 is a massive chip that fits 55 million transis-

tors and has an area of 145 mm2). When the Pentium 4 executes a multiplication

operation, it shifts the operands from the integer unit to the FPU, and the results

back to the integer unit. Consequently the operation has a throughput of five

cycles and a latency of fifteen cycles. The Prescott edition of the Intel Pentium

4 chip has a dedicated multiplier. However, the latency remains at ten cycles,

meaning that the operation is generally to be avoided in symmetric ciphers.

Ciphers like IDEA [143] use multiplication in the field of integers modulo

216 + 1. Hence, each multiplication operation had to be coded in software as a

sequence of operations, including a native multiplication modulo 216 . For such

ciphers, performance due to the multiplication operation is even worse.

The SSE2 PMULUDQ instruction simultaneously multiplies two 32-bit mul-

tiplicands by their multipliers and stores the resulting 64-bit results. This has

a throughput of two cycles and a latency of eight cycles, making it much more

efficient than the corresponding general purpose MUL instruction.

8.3.5 Permutations

Permutations, such as those used by the Camellia [6] and DES [177] block ciphers,

can be implemented using the MOV instruction and logical operators where

necessary. The MOV instruction between registers is a fast integer operation

that has a latency and throughput of a half cycle. The speed of movement

between registers and memory depends on whether relevant data is held in the

L1 cache.

SSE2 includes PSHUFLW, PSHUFHW, and PSHUFD instructions to

shuffle sixteen and thirty-two bit quantities within the XMM registers. In terms

of latency and throughput, these are on an equal footing per byte with mov-

ing between general purpose registers. Both PSHUFLW and PSHUFHW

which operate on 64-bit quantities have throughputs and latencies of two cycles.

PSHUFD has a throughput of four cycles and a latency of two cycles.

8.3.6 S-box Lookups

S-box lookups are slow.

172 Chapter 8. Implementation of Symmetric Ciphers on the Intel Pentium 4

A single 8 × 8 s-box lookup y = S(x) on a 32-bit machine may take up to

four operations, as shown in Figure 8.3. The first copies the source word x to an

index register (in this case, EAX). The second masks out the higher bits in the

index. The third copies the address of the s-box to an index register (in this case,

ECX), and the fourth stores the result of the lookup in a register or an address

in memory (in this case, the location of the y parameter in the stack).

y = sbox(x);

mov eax, DWORD PTR _x$[ebp]

and eax, 255

mov ecx, DWORD PTR _sbox[eax*4]

mov DWORD PTR _y$[ebp], ecx

Figure 8.3: Assembly Code for 8× 8 S-box Lookup

Of course, use of m× n s-boxes with larger input sizes is impractical, due to

the size of the resulting table (2m × n bits). More efficient virtual s-boxes can

be constructed, as shown in Chapter 7. Performing a lookup on Dragon’s virtual

32×32 s-box is much slower than an 8×8 s-box lookup, since the former consists

of four 8×32 s-box lookups, in addition to accessing individual bytes in the source

word, and combining the results. If the operations are performed in parallel, this

requires the use of four index registers, which places pressure on the usage of the

Pentium 4’s limited register set. The pressure is alleviated in the example shown

in Figure 8.4, generated by Visual C++ 6.0, since the addresses of the s-boxes

are not loaded into registers, but accessed directly from slower memory. Also

ECX is reused, which creates a dependency between the processing of BYTE2

and BYTE0, reducing opportunities for parallelism.

S-boxes can be expensive in terms of the precious L1 cache. In [206], the

authors suggest limiting total table sizes to four kilobytes for a combined instruc-

tion and data cache size of sixteen kilobytes. This rule also holds for the Intel

Pentium 4, with its L1 data cache of eight kilobytes.

The block cipher LOKI97 [39] uses two s-boxes, one 13×8 and the other 11×8.

Together this amounts to ten kilobytes of memory, so many s-box lookups cause

cache misses. If, for a stream cipher such as Dragon, four separate 8× 8 s-boxes

are used to compose a virtual 8× 32 s-box, this means a table consisting of four

kilobytes of entries, which begins to place pressure on the L1 cache. This is one

reason why Dragon only uses two 8× 32 s-boxes totalling only two kilobytes.

8.4. Implementing the Dragon Stream Cipher on the Intel Pentium 4 173

y = sbox1(BYTE0(x)) ^ sbox2(BYTE1(x)) ^

sbox1(BYTE2(x)) ^ sbox1(BYTE3(x));

mov eax, DWORD PTR _x$[ebp]

and eax, 255 ; eax contains BYTE3(x)

mov ecx, DWORD PTR _x$[ebp]

shr ecx, 8

and ecx, 255 ; ecx contains BYTE2(x)

mov eax, DWORD PTR _sbox1[eax*4]

xor eax, DWORD PTR _sbox2[ecx*4]

mov edx, DWORD PTR _x$[ebp]

shr edx, 16

and edx, 255 ; edx contains BYTE1(x)

xor eax, DWORD PTR _sbox1[edx*4]

mov ecx, DWORD PTR _x$[ebp]

shr ecx, 24

and ecx, 255 ; ecx contains BYTE0(x)

xor eax, DWORD PTR _sbox1[ecx*4]

mov DWORD PTR _y$[ebp], eax

Figure 8.4: Assembly Code for 32× 32 S-box Lookup in Dragon

Note that other operations such as permutations and multiplications can be

simulated by s-box or lookup tables. The Advanced Encryption Standard (AES)

is optimized in this way on many processors. As noted by [231], the AES performs

badly on the Pentium 4 because the large tables do not fit in the L1 cache.

8.4 Implementing the Dragon Stream Cipher on

the Intel Pentium 4

Dragon was not specifically designed for the Intel Pentium 4 processor. In the

early stages of its conception, the design team were mostly using Intel Pentium

III machines, but the Pentium 4 was gaining in popularity and it was clear that it

would become a principal architecture for the cipher. As a consequence, generic

optimization rules for the Pentium family in general were applied to the design

first, but decisions were avoided that would have harmed performance on the

Pentium 4.

174 Chapter 8. Implementation of Symmetric Ciphers on the Intel Pentium 4

Design Decisions In one early design for Dragon, its update function used four

input variables, and the output filter produced a 32-bit keystream. To increase its

performance, the cipher was altered to a produce 64-bit output, and the number

of variables increased to six (resulting in a net performance increase of about

50%). Using six variables in the update function is less than optimal in terms of

register pressure, and requires some of the variables to be swapped in and out of

the stack, since some registers are required for indexing and addressing. However,

the use of fewer variables was deemed to have a negative effect on security, and

early designs incorporating more variables were discarded due to the expected

impact on performance.

An implementation of the Dragon update function is shown in Figure 8.5. It

is used in both the keystream generator and the initialization algorithm since the

commonality reduces the size of the code (and consequently the number of L1

trace-ops cache misses), and also the number of instruction decodes.

It is easy to observe a number of parallelization opportunities. Any two of

the instructions in (1) can be scheduled concurrently on the fast integer ports

(likewise in (2), (5) and (6)). The third instruction in (1) can be scheduled with

any from (2), although at this stage a dependency is formed between the write

on a variable in (1) and the read on the same variable in (2); since all right-

hand side expressions in (2) are written to in (1), there is no way to avoid this

through a different choice of variables. Later in (2), these dependencies can be

partially mitigated by interleaving with processing of (3). Similar dependencies

exist between (4) and (5), and (5) and (6). The s-box lookups in (3) and (4)

are complex operations which are more amenable to parallelization except that

register pressure means that the best performance will come from dealing with

one or two lookups at a time. The limitations in parallelism come from dealing

equally with all variables in a concise cipher that offers little choice in the way of

implementation. In a variant of Dragon with more variables, more opportunities

for parallelization would exist, but the gains would be more than offset by the

penalties caused by register pressure.

With the exception of the s-box lookups, which are slow, all of the other

operations in the Dragon update function are fast and can be scheduled on the

fast-integer ports to complete two operations in each cycle. Because these op-

erations are so effective using the general registers, Dragon is not amenable to

optimization using SSE2. Because SSE2 has no means of indirectly addressing

8.4. Implementing the Dragon Stream Cipher on the Intel Pentium 4 175

(1) b ^= a; d ^= c; f ^= e;

(2) c += b; e += d; a += f;

(3) d ^= g1(a); f ^= g2(c); b ^= g3(e);

(4) a ^= h1(b); c ^= h2(d); e ^= h3(f);

(5) b += e; d += a; f += c;

(6) a ^= f; c ^= b; e ^= d;

Figure 8.5: Parallelization Opportunities in the Dragon Update Function

memory, the bulk of the s-box lookups needs to be performed in the general pur-

pose registers. It would be beneficial to have an SIMD instruction that could

perform a lookup on four 32-bit words in an XMM register. In that case, an

SSE2 version of Dragon would outperform the general purpose register version,

but the fact that Dragon uses two s-boxes rather than four, within the update

function, means that the instruction would probably not be applicable.

The combined data and state of the Dragon cipher was chosen to fit in about

four kilobytes. This meant a trade-off between the size of the internal state and

the number of 8×32 s-boxes used to compose the virtual 32×32 s-box. The final

decision was to choose a state consisting of thirty-two 32-bit words (totalling one

kilobyte) and two 8× 32 s-boxes (totalling two kilobytes). An alternative, which

was deemed less secure, was an internal state of sixteen 32-bit words and four

8 × 32 s-boxes. Because of the smaller state size, this could be more vulnerable

to time-memory-data trade-off or guess and determine attacks.

Timing the Code No two programmers produce the same code from the same

cipher specification (with the possible exception of the beautifully simple RC4

[5]). Likewise, it seems that no two profilers time the same cipher code in the

same way. Should the cache be warmed by filling it with data before the timing

begins, thereby removing latency penalties? Is this cheating, because in the real

world, the cache will never be warmed? Or by not warming the cache, are we

profiling the cache specifications as well as the algorithm? Should real data be

read from the hard-disk (which gives an accurate measurement of the deployment

of the cipher, so long as all machines use hard-disks with the same latency and

throughput)? Or should random data generated in memory be used instead?

How should profilers measure only the cipher application and not other threads

176 Chapter 8. Implementation of Symmetric Ciphers on the Intel Pentium 4

or processes running in the same system?

A wide range of methods are used, of which two extremes are mentioned

here. The timing method employed by [189] uses the RDTSC (read time-stamp

counter) assembly instruction to average the speed of encrypting only three data

blocks using random data and keys. RDTSC is a serializing instruction that acts

as a fence around out-of-order execution, and ensures that the right operations

are being timed. However, it needs to be executed three times prior to execut-

ing the timed code, once to serialize, and twice to determine an overhead offset,

which is deducted from the benchmark. It is, to say the least, a messy procedure,

but ensures that the only instructions being measured are relevant ones. The

approach taken by the authors of [201] is to bulk encrypt one megabyte of ran-

dom data and to derive the throughput using the C system call clock(). While

[189] cites this as inaccurate, the call measures only the CPU time used by the

algorithm, and the vast quantities of data are more than enough to smooth out

any irregularities caused by the operating system. Additionally the precision of

clock() is in the order of hundreds of microseconds, which is more than sufficient

during bulk encryption. The very popular OpenSSL [187] library uses a similar

approach to [201] but encrypts with real data, reflecting the commercial focus of

that application.

The metrics obtained for Dragon use a similar approach to that taken by

[201] and are obtained by encrypting gigabytes of random data. This procedure

takes less than one minute because Dragon is fast, but averages out small-scale

disturbances that are endemic to multi-threaded processors. Each metric is ob-

tained from five runs of the cipher, discarding outliers, and averaging the results.

Random rather than stored data is encrypted.

Results Four sets of Dragon code were generated and the code listings are

included in Appendix B. This includes the un-optimized Dragon C Code, hand-

optimized C code, optimized assembly code, and optimized assembly code that

uses SSE2 instructions and registers. Benchmarks for each implementation are

included in Table 8.1. Throughputs for the two sets of C code are given for both

implementations generated using gcc using no compiler optimization (-O0) and

with full optimization for speed (-O3, -funroll-loops).

In the un-optimized C code, the update function and the s-boxes are located

in their own procedures, as dictated by the software principle of modularity.

Whenever the update function is invoked, or the s-boxes called, the implementa-

8.4. Implementing the Dragon Stream Cipher on the Intel Pentium 4 177

Code Throughput Throughput (Compiler-Optimized)
(cycles/byte) (cycles/byte)

Un-optimized C 34.7 13.2
Optimized C 13.3 7.4
Optimized ASM 6.7 N/A
Optimized SSE2 8.8 N/A

Table 8.1: Metrics for Dragon Code

tion endures the construction and destruction of a stack frame on the procedure

stack. This is a process that involves many hidden instructions, including re-

serving the contents of registers, pushing procedure parameters and the return

address onto the stack and unconditionally branching between code areas. When

the un-optimized code is compiled using the -O3 switch, the compiler is able to

determine that some registers and parameters don’t need to be reserved. This

amounts to a significant saving in stack-based overheads, resulting in a reduction

of 21.5 cycles per keystream byte.

However, even using the -O3 switch, the compiler seems unable to determine

that the s-box procedures can be inlined in the un-optimized code. This is one

advantage of the hand optimized code, in which the update function and s-box are

inlined within the cipher algorithm. The other advantage is that manual selection

enables the update function inputs to be placed directly in registers. The compiler

does a poor job of this, reserving these variables in the stack, which resides in

the L1 cache. Use of the -O3 switch is still able to improve upon the hand-

optimized code. It saves 6.1 cycles per byte, by ordering instructions for optimal

architecture performance, determining which variables to map to registers, and

other small optimizations.

The comparatively poor performance of the SSE2-encoded algorithm is due

to two factors: firstly, the dependencies within the cipher make it unable to

take advantage of the parallelism offered to 32-bit operands within the larger

XMM registers. Secondly, the dominating factor within the update function

are the s-boxes, which reference memory locations within the L1 cache. The

SSE2 instructions are incapable of referencing memory, so this routine must be

performed within the general purpose registers. The cost of transferring operands

between the general purpose and the XMM registers negates the advantages of

having additional registers at the programmer’s disposal.

178 Chapter 8. Implementation of Symmetric Ciphers on the Intel Pentium 4

8.5 Summary

Symmetric cipher design is an area in which there are a lot of successful candi-

dates, fulfilling both security and efficiency requirements.

Consequently, a cipher designer who does not understand at a high-level, the

architecture of the machine on which the cipher will be deployed, should expect

sub-optimal performance from the cipher. This results in a non-competitive ci-

pher. All that is required to provide better results is some knowledge about

the characteristics of the architecture, including the register set, the number of

general purpose registers; the memory layout including the size and speed of

the caches; the types, throughputs and latencies of available instructions in the

processor instruction set; special features of the architecture, such as the Intel

Pentium 4’s Streaming Single Instruction Multiple Data Extensions; and general

optimization tricks such as seizing opportunities for parallelization.

Because of modern compiler technology, implementation optimization is less

important than algorithmic optimization. However, the implementer, who may

have a different identity to the designer, should at least have a working knowledge

of assembly language, to capture any opportunities caused by deficiencies in the

compiler optimizer. Additionally, he or she should have an intimate knowledge

of the compiler to ensure its correct operation.

This chapter demonstrated some of the design decisions made to ensure the

new stream cipher Dragon met its efficiency goals through the awareness of its

designers and implementers about the target architecture. It also showed how to

achieve a five-fold improvement in the throughput of the cipher, from 34.7 cy-

cles/byte to 6.7 cycles/byte, due to judicious use of the compiler and of assembly

language.

Chapter 9

Conclusion and Future Research

This thesis investigated the efficient implementation of secure symmetric ciphers,

with particular focus on generating agile and robust key schedules, and designing

stream ciphers using efficient block cipher components. In Section 9.1, the con-

tributions of this thesis are reviewed. In Section 9.2, further avenues for research

are explored.

9.1 Review of Contributions

Chapter 2 modifies the key schedule classification proposed by Carter et al. [45] to

remedy problems that occur when key schedules exhibit polymorphic behaviour,

depending upon the number or identities of round keys held by an attacker. As

with the original classification, the modification indicates whether a key schedule

is a Type 1 (weak) or Type 2 (robust) key schedule. The most important contri-

bution of this classification is the Type 2A category. This category is missing in

Carter et al.’s classification, but yields critical information about the vulnerabil-

ity of the cipher when the attacker holding more than one round key, can with less

effort than exhaustive search, identify extra round key or master key bits. The

new classification also remedies other problems with Carter et al.’s classification,

and can be used as a simple bench-mark of the security of a cipher’s key schedule.

This modification was applied, as part of a wider classification, to the block

ciphers entered into four international competitions, each with the aim of stan-

dardizing a cipher. Of the twenty-nine block ciphers surveyed, fifteen have Type

179

180 Chapter 9. Conclusion and Future Research

1 key schedules, emphasizing the need for cipher designers to understand the

importance of robust key schedules. One surprising result is that the winner of

the Advanced Encryption Standard has a Type 1B key schedule, as do many

of its descendants in the NESSIE competition, such as Anubis, Grand-Cru and

Noekeon. The categorization has the purpose of clarifying the nature of compo-

nents used in block ciphers, which is necessary in studying the influence of block

ciphers upon stream ciphers.

Chapter 3 verifies the Type 1B classification of the AES key schedule, by

demonstrating statistically that it suffers from bit leakage and poor diffusion. It

reviews attacks on reduced rounds of the AES that received footholds through

its key schedule. The chapter contains a new and efficient key schedule for the

AES cipher that reuses the AES round function, exhibiting good diffusion and

minimal bit leakage. The performance of the key schedule is contrasted to the

AES competition finalists, using a benchmark of the number of blocks each cipher

can encrypt in the time it takes to initialize the cipher’s key schedule. With the

new key schedule, the AES still outperforms all but one of the finalists, which

it surpasses in terms of raw throughput. The security of the key schedule was

analyzed, and found to be satisfactory. The key schedule was defended against a

claimed attack by Wu [226], which uses an unrealistic attack model.

Chapter 4 reviews some recent word-based stream ciphers, indicating how

their designs have been influenced by block ciphers, and examining their key

agility. Almost all of these ciphers use components from block ciphers, including s-

boxes (frequently the AES s-box), PHTs, and even Feistel structures. The update

function of some ciphers, such as Scream and Helix, bear strong resemblance to

the round functions of block ciphers. Most of these ciphers reuse their update

functions in their rekeying strategies. The conclusion is drawn that this strategy

in conjunction with a large internal state causes poor key agility. The chapter

conducts a literature review of attack methodologies on word-based block ciphers.

It finds that Leviathan, LILI-128, RC4, SNOW, SOBER-t16, SOBER-t32 and

Scream are vulnerable to distinguishing attacks; that Snow, Hiji-Bij-Bij, Helix are

broken by guess-and-determine attacks; that RC4 can be attacked using related

keys; and that RC4 and BMGL are vulnerable to time-memory-data attacks.

However, it identifies that only one cipher - the self-synchronous cipher Helix -

can be attacked using a block cipher methodology. The chapter concludes with

a rebuttal of a claim by Miranov [170] that states the first byte of each RC4

9.1. Review of Contributions 181

keystream is biased. It reiterates the need for a strong key schedule.

Chapter 5 presents an attack against the proposed cellular stream cipher Al-

pha1. This is a conventional irregularly clocked bit-based stream cipher with a

128-bit state spread over four LFSRs. The attack is a divide and conquer attack,

in which two of the registers are broken using a guess-and-determine attack, and

another by a correlation attack, using joint probability based upon Levenshtein

distances as the correlation measure. Despite the cipher’s design strength of 128

bits, this chapter shows how to break it with 261 operations, 229.8 memory, and

215 bits of keystream, demonstrating that the algorithm is not suitable for use.

Chapter 6 describes MUGI, which is immune to correlation and divide and

conquer attacks because of its large 1,024 bit NLFSR state, and a block-cipher-

inspired non-linear filter. However MUGI suffers from key agility problems iden-

tified in Chapter 4 because it uses the update function to modify a single stage

of its large state at a time. The state is unnecessarily large for its 128-bit key.

A variant, MUGI-M, is proposed, for which the rekeying strategy is 200% faster.

The accompanying cryptanalysis does not find any problems with the security of

the new proposal.

Chapter 7 presents the specification for the Dragon cipher, which has been

developed at an optimal trade-off between security and efficiency on 32-bit archi-

tectures. It uses a 256-bit master key and 256-bit initialization vector. The cipher

uses only operations that are known to be efficient on the Intel Pentium 4, which

is one of the most common processors at the time of the writing. The keystream

throughput is 6.7 cycles/byte and it rekeys the 128-byte state in 1,395 cycles.

Dragon is a secure cipher that is competitive with other modern word-based

stream ciphers, and is much faster than block ciphers with equivalent security

estimations.

Chapter 8 provides general guidelines for fast cipher designs and implemen-

tation, and specific advice for development of ciphers for the Intel Pentium 4. It

indicates that it is necessary to understand the architecture of the machine for

which the cipher is being designed; that ignorance of these details will present

themselves in a cipher that has a mediocre performance. It also reiterates that

while algorithmic optimization is more important than implementation optimiza-

tion, knowing the tools of implementation well pays dividends when the cipher is

being profiled.

182 Chapter 9. Conclusion and Future Research

9.2 Future Directions

In the last two years, following the conclusion of the AES and CRYPTREC com-

petitions, interest in symmetric ciphers has shifted from block ciphers to stream

ciphers. This is not surprising; block ciphers are slow compared to the new breed

of word-based stream ciphers. Additionally, security in block ciphers has become

well understood, whereas word-based stream ciphers are only distant cousins to

the bit-based stream ciphers, for which a wealth of theory has been developed.

This provides opportunities to better understand the design and cryptanalysis of

word-based stream ciphers.

One of the few new block cipher proposals to emerge in the last year is the

FOX family [115], which is targeted towards the media distribution industry. This

family consists of 64-bit and 128-bit block ciphers, and avoids algebraic s-boxes

and weak key schedules. The high level structure is neither SPN nor Feistel, but

instead the Lai-Massey scheme, which permits provable immunity against linear

and differential cryptanalysis. The cipher is designed with efficiency on a wide

range of platforms in mind. The ratio of key setup to encryption is 6:1 and the

key schedule appears to be Type 2C. It is pleasing to see a new block cipher

designed with an optimal security-efficiency tradeoff in mind, and this family

deserves attention in the form of cryptanalysis.

Klimov and Shamir [128] recently proposed T-functions as a replacement to

stream ciphers. They claim that T-functions are n−to−n mappings where each

bit i ≤ n of output depends only on bits 0 . . . i of the input, and that have guaran-

teed large periods (for example, n = 256 gives a period of 2256). The advantage of

T-functions over stream ciphers is ostensibly speed. They claim T-functions may

be an order of magnitude faster, although the example that they provide - RC4

- is not particularly fast compared to stream ciphers like Rabbit, Dragon or HC-

256. Additionally, it is penalized by lack of parallelization opportunities on the

Pentium 4, on which the T-function benchmarks were obtained. Clearly, both

the security and performance properties of T-functions comparative to stream

ciphers need to be examined further.

The hot topic in stream cipher cryptanalysis is the XL series of algebraic at-

tacks. This requires further investigation because of the lack of empirical evidence

– only implementations of attacks on toy ciphers have been produced to date, as

the systems of equations grow extremely rapidly with the size of the cipher state.

Also, the attack has so far been impotent on word-based stream ciphers, yet as

9.2. Future Directions 183

each block of keystream provides many additional equations to add to the over-

defined systems, the ciphers should in theory be at least as vulnerable to the

attack as bit-based ciphers.

In the recent paper [188], Paul and Preneel reinforce the claim by Mironov

[170] that there is a bias in the first byte of RC4 keystream. In the case when

the second word of the RC4 table, after key initialization, has a value of two, the

first two output bytes will always be different. This contradicts the statistical

results of Section 4.3, which failed to detect a statistical bias in the first byte of

keystream output. Both an empirical statistical approach using a larger collec-

tion of keystream, and a theoretical analysis of the biases within RC4 should be

conducted.

Improvements can be made to the MUGI-M variant of MUGI. The non-linear

state is 192 bits wide, and is inelegantly keyed using the 128-bit master key.

Currently, the third word of the state is filled by combining the two 64-bit key

words, each rotated by a small offset. Using the third key-word of a 192-bit

master key, to directly populate the state word may increase the security by

bringing more entropy into the buffer. Research by Mihaeljevic in [166] indicates

that increasing the design strength of MUGI may make it vulnerable to XLS

attacks (by the nature of increasing the complexity of the brute-force attack

which acts as a measure of success for other attacks). However, it is clear that

the estimation of the XLS (or more appropriately the XL attack) needs to be

refined for an accurate judgement to be made. Neither MUGI nor MUGI-M

have been successfully attacked, and further cryptanalysis needs to be conducted.

As stream ciphers targeted towards 64-bit architectures, their value should not

under-estimated, because these architectures will become commonplace in the

next decade. When this occurs, MUGI and its variants are likely to outperform

many of the currently proposed 32-bit block and stream ciphers.

Dragon is a valuable cipher due to its high throughput on 32-bit architectures,

but the only cryptanalysis published to date has been conducted by its designers.

It is one of the most competitive stream ciphers in terms of keystream generation,

key agility and security, and this means that it warrants further analysis.

Implementation issues differ between processors. Although the Intel Pentium

4 is still ubiquitous, other processors will become increasing popular, including

64-bit processors such as the Athlon processor. There is a need to investigate

how the performance of block and stream ciphers differ on these architectures,

184 Chapter 9. Conclusion and Future Research

and whether the guidelines for the Intel Pentium still hold on these processors.

Appendix A

Block Cipher Cryptanalysis

It is good practice in cryptanalysis to adhere to Kerchoff’s principle, which is

the assumption that the cryptanalyst has full knowledge of the algorithm that is

being studied. The goals and text requirements of the cryptanalyst vary. The

cryptanalyst may be attempting a certificational attack, in which the strength

of the cipher is reduced by only a single bit below its design strength, or try to

recover all of the plaintext from an encrypted transmission. More formally, a

cryptanalytic attack may have one of the following goals [107]:

• distinguisher. This attack distinguishes the ciphertext of a cipher from a

random permutation. The footprint of the cipher may be found in patterns

in the keystream; the cryptanalyst can use the patterns to identify the al-

gorithm used to generate the ciphertext. Unless the keystream possesses

sufficient bias, this kind of attack is frequently certificational in that it is

not of any practical use. For example, many protocols already explicitly in-

dicate “in the clear” the algorithm used for encryption in a handshake [106],

[187]. For some cryptographers, a certificational attack is enough to dimin-

ish confidence in the algorithm, given that the output of a strong cipher is

supposed to be indistinguishable from random. Additionally, development

of a distinguisher may be the first step along the road to a complete cipher

break.

185

186 Appendix A. Block Cipher Cryptanalysis

• key recovery. The goal of this attack to find some or all of the key material

used in an encryption. The attack may identify the master key, in which

case, once collected, decryption of other texts enciphered under the same

key becomes trivial. A key recovery attack may be generated from a dis-

tinguisher with a sufficiently strong bias. In this process, the distinguisher

is applied to all but a small number of final cipher rounds; the attacker

anticipates that by correctly guessing key bytes in the remainder of the ci-

pher, and decrypting to the point where the distinguisher occurs, evidence

of the bias will be identified. Incorrectly guessing key bytes will not lead to

evidence of the bias. A successful key recovery attack will discredit a cipher

completely.

• instance deduction. The goal of this type of attack is to find an algorithm

that simulates the cipher algorithm, enabling the encryption of some plain-

texts into ciphertexts (or the reciprocal decryption), without knowledge of

secret key material. This kind of attack is rare.

• global deduction. The goal of this kind of attack to find an algorithm that

simulates the cipher algorithm, enabling the encryption of all plaintexts

into ciphertexts, without knowledge of secret key material. This is the

most difficult goal to achieve in cryptanalysis.

Before a cryptanalytic attack is launched, texts must be collected and analysed

for key material. Different attacks have different text requirements. Each attack

may be categorised (in decreasing order of practicality) as:

• ciphertext-only attack. In this attack, the cryptanalyst possesses encrypted

text. This is easily acquired, for example, through the use of a network

sniffer. Most cryptanalysts assume more demanding requirements in an

attack, since only very simple ciphers can be broken using only ciphertexts.

• known-plaintext attack. In addition to ciphertexts, the cryptanalyst knows

at least some of the corresponding plaintext. The goals in this attack are to

acquire more of the plaintext, or some of the secret master key. Direct ob-

servation of the plaintext is not necessary; if the type of encrypted material

187

is known, then the attacker may be able to guess some of the plaintext (for

example, a greeting or a date). The combination of the guessed plaintext

and the corresponding ciphertext is known as a crib.

• chosen-plaintext attack. In this attack, the cryptanalyst is able to use the

encryption device (with a fixed but unknown key) to produce ciphertext

from the plaintext of choice. This attack style is feasible when the attacker

is able to coerce the owner of the key to encrypt some material, or when

the attacker is able to use a device with the unknown key embedded within

it.

• chosen-ciphertext attack. In this attack, the cryptanalyst is able to choose

ciphertext to be decrypted. The means by which this occurs may be similar

to in a chosen-plaintext style.

• chosen-key attack. In this attack, the cryptanalyst knows of a relationship

between keys used to encrypt material, and has observed ciphertext and

possibly some plaintext. Some cryptographers believe this attack is im-

practical [61], or that it is only possible in conjunction with a protocol flaw

that permits unacceptable manipulation of keys.

• adaptive chosen-plaintext or ciphertext. In this attack, the cryptanalyst

is able to modify the plaintext for encryption or ciphertext for decryption

based upon previous results. In most cases this is a highly theoretical attack.

The success of an attack is measured using the number of texts and operations

(and sometimes memory) required to derive a certain number of key bits. Most of

the attacks described in subsequent sections are more of theoretical than practi-

cal interest for two reasons: the limited distributed computing power around the

world makes implementation of attacks with complexity greater than 264 prob-

lematic; and many protocols demand the cycling of keys after a specific amount

of ciphertext has been generated, which means that a cryptanalyst may find it

difficult to amass the required text generated under a single key.

When the number of operations in an attack is less than 2r where r is the de-

sign strength of the cipher, the cipher is considered broken. However, confidence

188 Appendix A. Block Cipher Cryptanalysis

may remain in the cipher, unless the break is significant. Irrespective of the de-

sign strength of the cipher, a break with complexity of 2112 operations is beyond

the reach of implementation, and remains of interest theoretically. A break with

complexity of 264 operations may be implemented.

A.1 Basic Attacks

In the following section, generic attacks that apply to all block ciphers are de-

scribed. These include exhaustive search and dictionary attacks.

Exhaustive Search

The exhaustive search attack is the most rudimentary style of practical crypt-

analysis. Also known as the brute-force attack, it is a known-plaintext attack in

which the attacker acquires a group of plaintexts and corresponding ciphertexts,

and the algorithm known to have encrypted them. The attacker methodically

guesses keys, which are applied to the algorithm, using a single plaintext, until

the correct ciphertext results. The other plaintext-ciphertext pairs in the group

can be used to verify the key guess. For a cipher with a key size of k, it is expected

that the average complexity of the attack is 2k−1.

If sufficient redundancy is present in the ciphertext, the brute force attack

may be launched as a ciphertext-only attack. In this form, keys are successively

guessed, until the decrypted ciphertext possess some meaning. For example, if the

plaintext is written in English, guessing a key that was not used for decryption

will not produce a meaningful passage of Hamlet. However, guessing the right key

will produce an obviously successful attack when the rendered plaintext appears

legible.

Whether the attack is launched as known-plaintext or ciphertext-only, brute-

force attacks are rarely practical, but serve as a base-line against which other

attacks are measured. In the case of 56-bit key ciphers like the Data Encryption

Standard (DES), throwing sufficient computer power on a distributed network will

succeed in a matter of hours or days [70]. However, against key lengths used in

contemporary ciphers – 128 bits of more – brute force cryptanalysis is completely

A.1. Basic Attacks 189

infeasible. Moore’s law dictates that computing power doubles every three years,

effectively removing one bit from the size of the key. This year, an organization

hoping to launch a brute-force attack on a single encryption produced by the

AES, will require 270 of Intel’s best processors. This is the equivalent of 250

billion Pentium 4 processors for each person on the Earth.

Against modern ciphers – those with 128-bit master keys– brute-force attacks

are not practical. They are useful as benchmarks against which the success of

other attacks can be measured.

Dictionary Attacks

All block ciphers are theoretically vulnerable to dictionary attacks. For this kind

of attack, it is the size of the cipher block that is important, rather than the size

of the cipher’s master key. In its simplest form, the dictionary attack involves

a cryptanalyst collecting blocks of ciphertexts and analyzing their frequencies

for patterns [27]. The attack that follows this step is tailored to the resulting

statistics.

In a more sophisticated form, the attacker makes collections of plaintexts

and ciphertexts related under a single key, indexed on the value of the ciphertext

block. This is the attacker’s dictionary, which is valid only for a single master key.

While the key continues to be used, any ciphertext observed by the attacker can

be decrypted with complexity O(1) as long as it is available within the dictionary.

The birthday paradox indicates that, for a cipher with a block size of n,

approximately 2
n
2 ciphertexts need to be collected for the attack to commence,

assuming that the plaintexts being encrypted are random.

There are three solutions that are guaranteed to make dictionary attacks

impractical. The most obvious is to increase the block size of the encrypting

cipher. This is the principle motivator for the stipulation that candidates in the

Advanced Encryption Standard competition possess 128-bit blocks. For DES

and other 64-bit ciphers, the attack is practical since modern hard disks can

store around 240 bits, more than the 232 bits required by the birthday paradox.

However, for block ciphers with a block size of 128 bits, it will be a long time until

technology is ready to cope with the extremely heavy-duty storage requirements.

190 Appendix A. Block Cipher Cryptanalysis

Chaining modes of operation such as CBC introduce dependencies between

ciphertexts, so that no ciphertext depends only upon a single plaintext.

Another solution is to change the master key of the cipher after every 2
n
2

bytes are encrypted. This is a common practice in protocols such as SSL [187]

and IPsec [106].

A.2 Differential Cryptanalysis

Differential cryptanalysis exploits the fact that the difference between inputs to

non-linear components does not always provide a uniform distribution of output

differences. It is arguably the most powerful method of cryptanalysis, given that

it is a generic method, and a large number of ciphers have exhibited vulnerability.

It was the first key-recovery technique [26] to attack the DES with greater success

than the brute force attack (in terms of the number of required operations).

The core tool of differential cryptanalysis is the difference distribution ta-

ble (DDT). This maps how differences between inputs to non-linear components

evolve to differences between the outputs. For a component with m inputs and n

outputs, the DDT contains 2m rows and 2n columns. Each of the 2m+n cells in the

DDT contains a value between 0 and 2n. The cell (∆I, ∆S(I)) counts the number

of times that pairs of inputs with difference ∆I produce pairs with the output

difference ∆S(I). Without knowing the input pairs, so long as the difference

between them is known, the output difference can be assigned probabilistically.

This is useful because: either the first operation in the round is a key addi-

tion; or the first round in a block cipher is preceded by key whitening. In each

case, knowledge of the individual input values are lost following the key mixing.

However, if the key mixing operator is invertible, it does not change the input

difference. For two inputs X and X ′ with input difference ∆X, the key addition

operation causes the output difference (X⊕K)⊕(X ′⊕K) = (X⊕X ′)⊕(K⊕K) =

(X ⊕X ′) = ∆X.

By constructing a DDT for each non-linear component in the round function,

a probability model of the round function, and ultimately the cipher, can be con-

structed. This is possible because linear components in the round function do not

A.2. Differential Cryptanalysis 191

disrupt differences; that is, for linear component L, L(I)⊕L(I ′) = ∆I. Operators

other than ⊕ can be used to provide the measure of difference; these include the

¢ operator, and under constrained circumstances, even modular multiplication

[35].

The extension of the component mapping to a round is called a characteris-

tic. The characteristic α → β (with p) predicts that for two inputs to round i,

Pi and P ′
i , chosen such that Pi ⊕ P ′

i = α, then with probability p, the difference

between the two output texts of the round Ci and C ′
i will be β.

In practice, attacks are launched using multiple round characteristics - it is

necessary for a characteristic to approximate the number of rounds employed by

the cipher it is attacking. One useful technique for creating large characteristics

is to compose smaller characteristics. For example, α → γ (with p) can be joined

to γ → β (with q) to form α → γ → β with probability p × q, assuming in-

dependence of the characteristics. Characteristics which self-iterate (ie. α → α)

are particularly useful [26]. As characteristics cover an increasing number of

rounds, their probabilities are diminished by the non-linear components within

the rounds. So long as the probability of the multi-round characteristic exceeds

2−m where m is the number of bits in the block size, it is useful in applying an

attack on (at least a reduced round) version of the cipher. Typically, the charac-

teristic covers all but the last round of the cipher. Knowledge of the characteristic

difference β, the difference between the ciphertexts ∆C = C⊕C ′, and the values

of the ciphertexts lead to a description of the round in which the round key is

the only unknown.

An attack is implemented by collecting chosen-plaintext pairs, and filtering

out those that do not meet the input differences of the characteristic (these are

called wrong pairs). The attack proceeds from the ciphertext end - the attacker

guesses key bits in those rounds not covered by the characteristic, and decrypts to

the β end of the characteristic. For a characteristic of probability one, upon the

correct guess of the key bits, the expected β differences can be observed. Unless

the probability of the characteristic is one, some ciphertext pairs misrepresent

the key bits. By collecting and analyzing sufficient pairs, the right key bit values

become evident as the frequency of their representation towers over that of wrong

192 Appendix A. Block Cipher Cryptanalysis

key bit values (which are represented by a random distribution). Once the last

round’s round key is deduced, the round can be peeled from the cipher, and the

attack can recommence on the reduced version.

The concept of the characteristic is subsumed by that of a differential, in

which the plaintext and ciphertext differences are still considered, but in which

the intermediate stages (the inputs and outputs of sub-characteristics) are aban-

doned. Conceptually, a differential contains multiple characteristics, and usually

has a slightly higher probability [144].

The number of ciphertexts required to launch a chosen-plaintext attack is

suggested by the signal-to-noise ratio: S/N =
|K|×p
γ×λ

, where K is the size of the

key-space, p is the probability of the differential, γ is the number of keys suggested

by each pair of plaintexts, and λ is the ratio of non-filtered pairs to all pairs. In

[133], Knudsen states that the signal-to-noise ratio must be greater (hopefully,

significantly) than one for the attack to succeed; that if the ratio is less than one,

then the right key bits cannot be distinguished. Biham et. al [17] debunk this

theory using impossible differentials. Generally for a differential with probability

p, the text requirements for the attacks are p−1. When p is smaller than 2−n, the

attack cannot succeed.

Some attacks involve the use of multiple, simultaneous differentials. This

would appear to proportionally increase the number of ciphertexts required. How-

ever, Biham and Shamir [26] devised the method of using structures to minimize

the plaintext count. Where two characteristics are to be met, a structure called

a quartet is used (for three characteristics, an octet is used and so on.) A quartet

that meets characteristics A (α → β) and B (γ → δ) consists of four plaintexts

(p1 = P, p2 = P ⊕ α, p3 = P ⊕ γ, p4 = P ⊕ γ ⊕ α). Two plaintext pairs meet

characteristic A (p1 and p2, and p3 and p4), and another two meet characteristic

B (p1 and p3, and p2 and p4). This effectively gives the second characteristic at

no extra cost (in terms of ciphertext pairs).

Because of the potency of differential cryptanalysis, there has been a lot of

interest in methods to proof block ciphers against differential cryptanalysis.

One of the most obvious ways is reducing the probability of each one-round

characteristic. This can be achieved by diminishing the counts of high-frequency

A.2. Differential Cryptanalysis 193

output differences in the DDT [184] (the optimal case being a differentially uni-

form non-linear component, in which the probability of each of p output differ-

ences is 1
p
). Increasing the output size of non-linear components reduces their

differential probabilities, but increases their susceptibility to linear cryptanaly-

sis, and does not always succeed [17]. Some ciphers have been immunized against

conventional differential cryptanalysis, using bent or near-perfect non-linear func-

tions [185].

Immunity may be achieved by impregnating the round with operations that

differential cryptanalysis does not model well. One commonly perceived example

is the modular multiplication operation, which has the added bonus of performing

high-quality diffusion. However, as shown in [35], multiplicative differentials can

be developed which, in certain circumstances, approximate exclusive-or. For

example, −x mod 2l = x⊕ 11 . . . 10 which holds for some l when x is odd.

One particularly elegant strategy, made popular by the Advanced Encryption

Standard (AES), and adopted by ciphers frequently thereafter, is the Wide-Trail

Strategy [62]. The aim of this strategy is to maximize the number of active s-

boxes (that have an non-zero input difference) in a small number of rounds, using

high diffusion components such as maximum distance separable matrices (MDS).

In AES, the MixColumn MDS has a branch number of five, meaning that the

number of its input and output bytes containing non-zero input differences is not

less than five. The non-zero output bytes of the MDS activate s-boxes in the

next round. Consequently, AES provides a guarantee that in four consecutive

rounds, there are a minimum of twenty-five active s-boxes. Since each s-box has

a single maximum characteristic probability of 2−6, this means that the highest

probability for a four round characteristic is 2−150. So there are not enough texts

in the AES codebook to allow the characteristic to succeed. The strategy has

proven so popular that it has even been adopted by some stream ciphers [224].

The design criteria of all modern block ciphers should include optimal re-

sistance against differential cryptanalysis. Mistakes can be made; although the

cipher purported immunity to differential cryptanalysis, a fifteen-round charac-

teristic was discovered in LOKI97, with a probability of 2−56 [136]. This enabled

an attack on the full sixteen rounds of the cipher, reducing its effective keyspace

194 Appendix A. Block Cipher Cryptanalysis

from 2128 to 256.

Truncated Differential Cryptanalysis

A differential α → β predicts all of the key bits used in studied components in the

last round of a cipher. In some cases where the cipher is immune to conventional

differential cryptanalysis, it is still possible to deduce some of the key bits, using

a truncated differential. A truncated differential has the form α′ → β′ where α′

is a subsequence of the bits of α, and β′ a subsequence of the bits of β [133].

Attacks using truncated differentials are similar to those for full differentials,

and involve the collection and analysis of chosen-plaintexts.

In addition to increased applicability, truncated differentials offer two further

advantages over full differentials. Firstly, probabilities are frequently higher, since

they need to approximate fewer non-linear components. Secondly, it is easier to

form structures (which reduce plaintext requirements) because of the extra free-

dom allowed by the reduced text specifications [138]. Despite the partial mapping

between differences in ciphertexts and plaintexts, use of truncated differentials al-

lows recovery of all the key bits in the last cipher round key, albeit at the expense

of increased complexity [26], [133].

Recent ciphers have large block sizes, which exponentially increases the search

time for bit-based truncated differentials. Additionally, as these ciphers tend to

use byte- or word-based operations, it has become standard practice to search

for byte- rather than bit-based differentials. For the round of a block cipher

with m× n−bit words, an input difference (∆x1, ∆x2, . . . , ∆xm), and an output

difference (∆y1, ∆y2, . . . , ∆ym), a word-based truncated differential is defined as:

δx = (δx1, δx2, . . . , δxm) → δy = (δy1, δy2, . . . , δym) with probability p where

(δx, δy) ∈ (GF (2)n)m and δx = χ(∆x), δy = χ(∆y). The χ(x) function evaluates

to 0 if δx = 0, otherwise it evaluates to 1. In these differentials, all non-zero

differences are considered to be equivalent.

The complexities of some successful differential attacks on modern ciphers are

shown in Table A.1. In this table, the abbreviation CP denotes a chosen-plaintext

attack.

A.2. Differential Cryptanalysis 195

Key Complexity
Cipher

Size
Rounds

Data Time

Camellia [218] All 10 2112 CP 2112

E2 [161] All 8 2107 CP 2128

FROG [222] All All 258 CP 256

LOKI97 [136] All All 256 CP 256

Q [25] All All 2125 CP 2128

SC2000 [229] All 4.5 2104 CP

Table A.1: Differential Attacks Against Recent Ciphers

Higher-order Differential Cryptanalysis

A conventional characteristic or differential, as discussed in the previous section

can be expressed as having inputs Ri and R′
i, with difference α that map through

round function f to outputs Ro and R′
o with difference β; that is, it can be

modelled as a first-order derivative 4αf(Ri) = f(Ri+α)−f(Ri) with probability

P (4Ro = β|4Ri = α) = P (4αf = β), given that Ri is uniformly random [142].

An obvious extension to the idea is to model the ith order derivative

4(i)
α1,...,αif(Ri) = 4αi

(4(i−1)
α1,...,αi−1f(Ri)) where α1, ..., αi are all linearly indepen-

dent. In this case, the second order derivative is 4β 4α f(Ri) = f(Ri + α + β)−
f(Ri + α)− f(Ri + β) + f(Ri).

The non-linearity of a non-constant ith derivative is at least i degrees less

than that of a polynomial approximating the round function. Practically, high-

probability ith order differentials can be used simultaneously with 2i ciphertexts

to recover key bits.

Jakobsen and Knudsen [107] claim that for a cipher in which the output bits

of the second-to-last round can be approximated by a polynomial of degree d,

and with a last round key of b bits, that a dth order attack can be made with

complexity 2b+d and 2d+1 chosen plaintexts. The methodology of the chosen-

plaintext attack is the same for first order differentials.

Theoretically, a cipher can be immunized against higher-order differential

cryptanalysis as for conventional methods [142]. In practice, by using highly

non-linear components, few ciphers succumb to higher-order differentials, al-

though one such differential was developed for ten rounds out of eighteen of cipher

Camellia in [118]. Also, boomerang attacks and rectangle attacks (described later

in this section) are a specialized case of higher-order differentials that apply to

196 Appendix A. Block Cipher Cryptanalysis

heterogenous ciphers in which different round groups exhibit varying levels of

diffusion.

Miss in the Middle Attacks and Impossible Differentials

The goal of all of the previous variants of differential cryptanalysis is to: identify

a high-probability differential; apply it to all but the last round of the cipher;

use the known outputs, and the high probability inputs to the last round to

identify probable key bits. However, miss in the middle attacks are based on the

reverse approach - they identify key material that can never occur. They sieve

this material, to suggest a smaller pool of potentially correct key candidates [17].

A miss in the middle attack is constructed by identifying two differentials of

probability one. The two differentials should never simultaneously hold, concate-

nating to form a impossible differential of probability 0. The attack uses chosen

plaintexts that match the input to the impossible differential. The correspond-

ing ciphertext pairs are obtained and decrypted, using guessed keys, to meet the

output of the differential. If the differential holds using a guessed key, the key is

incorrect and can be discarded. It is shown in [17] that an impossible differential

is sufficient to uniquely identify the correct key.

The miss in the middle attack is applicable to ciphers which are provably

secure to conventional differential cryptanalysis. In particular, it demonstrates

that m × n non-linear components with larger output spaces do not necessarily

offer better security. When m is significantly smaller than n, there are many

values of n to which m does not map, potentially leading to one-round impossible

differentials which can be concatenated. In [18], an impossible differential in

CAST-256 is identified, and the large s-box of Twofish mentioned as a candidate

in which they could be detected.

There is at least one 5-round impossible differential (0, α) 7→ (α, 0), (α 6= 0)

in any Feistel structure with bijective round functions. This is used to launch

an attack on 6-round DEAL [134]. It is also used to attack DFC, but the attack

is executed using chosen ciphertexts rather than plaintexts. The reason for this

is that, according to our classification, DFC has a Type 2B key schedule - the

first round key contains only half the entropy of the master key, and is easier to

attack than the last round key. These attacks are shown in Table A.2, in which

CP denotes chosen plaintext, and CC chosen ciphertext.

A.2. Differential Cryptanalysis 197

Key Complexity
Cipher

Size
Rounds

Data Time

Camellia [218] All 9 Unknown
DEAL [134] All 6 270 CP 2121

DFC [135] All 6 270 CC 2126

Zodiac [98] All All 2103.6 CP 2119

Table A.2: Impossible Differentials Against Recent Ciphers

Boomerang and Rectangle attacks

The boomerang attack [221] is an adaptive chosen-plaintext chosen-ciphertext

attack that shares some similarities with higher-order differential cryptanalysis.

It attacks block ciphers that exhibit poor first-order characteristics, but that

can be conceptually split into two segments, such that each contains a short,

high-probability characteristic. The boomerang attack glues these characteris-

tics together with a second-order characteristic. The second-order characteristic

is satisfied using chosen-plaintext and chosen-ciphertext requests, via a quartet

structure that simultaneously holds for the first-order characteristic from each seg-

ment. The result simulates a high-probability characteristic that extends across

segments, and attacks ciphers that are provably immune to basic differential

cryptanalysis. The attack is particularly effective for ciphers in which diffusion is

stronger in the direction of output to input in the first segment, and from input

to output in the second.

Consider a cipher E = E1 ◦E0, with characteristics of α → β with probability

p for E0 and γ → δ with probability q for E−1
1 . The text requirements and

complexity of the attack are related to the probability (p×q)2. If this probability

exceeds the probability of a conventional differential across the cipher, it may be

more effective to launch a boomerang attack.

To construct a boomerang quartet, the attacker adaptively requests a right

plaintext pair (P, P ′) with the difference α. After encryption across E0, the

corresponding pair (A,A′) has the difference β. Since there is no characteristic

for E1 with input difference β, the difference between (C, C ′) is not predicted.

So the attacker constructs new ciphertext pairs (C, D = C ⊕ δ) and (C ′, D′ =

C ′ ⊕ δ) and requests the decryption of these pairs across E−1
1 . The difference

between the pairs (A,B) and (A′, B′) according to the characteristic is γ. Since

A ⊕ A′ = β, A ⊕ B = γ and A′ ⊕ B′ = γ then B ⊕ B′ = β. Thus the attacker

198 Appendix A. Block Cipher Cryptanalysis

Figure A.1: Constructing a Boomerang

has a right pair for decryption across E0 such that Q⊕Q′ = α. See Figure A.1.

In this figure, full arrows represent differences chosen by the attacker; partial

arrows represent differences fulfilled by characteristics. By checking that this

relationship holds for a sufficient number of plaintexts, the attacker can mount a

distinguishing attack. This can be turned into a key recovery attack by guessing

the key bits in the first and last rounds and checking that the quartet holds. If

the quartet holds, the key guess is correct, the rounds can be removed, and the

attack remounted on the reduced cipher.

In [221], Wagner considers using truncated differentials within a boomerang

attack, but notes that while a differential used on plaintext P to cover α → β

can also be used to discover plaintext Q from β → α, the same does not hold

for truncated differentials. Consequently while the probability for a successful

boomerang attack with full differentials is Pr(α → β)2×Pr(γ → δ)2, in the case

of truncated differentials it is Pr(α → β)× Pr(δ → γ)2 × Pr(β → α)× Pr(w ⊕
x⊕ y ∈ β|w ∈ β, x, y ∈ γ)

The boomerang attack works from the outside of the cipher inwards. A related

attack is the inside-out attack, also in [221] which works from the join of the

A.2. Differential Cryptanalysis 199

segments outwards. It uses differentials (β → α) through E0 and (β → γ)

through E1. By collecting sufficient texts with the difference (β) at the join

between E0 and E1, the cipher can be distinguished by recognizing differences

between the plaintext and ciphertext pairs at a much greater rate than would be

normally expected.

The amplified boomerang attack [120] is a chosen-plaintext variant of the

boomerang attack that uses the inside-out attack to establish the quartet by

chance, rather than by using adaptive queries. By choosing sufficiently many

plaintexts pairs that match the first characteristic α → β through E0, some of

the pairs can also be grouped to match β → γ through E1 without the need to

adaptively establish their identities. For m pairs of texts, the attacker can expect

to acquire m2×2−n× (pq)2 correct quartets, where n is the size of the block (and

2−n the chance that two pairs that succeed through the first characteristic will

match the starting requirements of the second).

Consequently the amplified boomerang attack uses much more text than the

boomerang attack. However, this penalty is offset in three ways. If key guesses

are used in conjunction with the attack, no extra text is required (which is not

the case for an adaptive attack). Furthermore, the amplified-boomerang attack

is able to work with tuples of texts, rather than just pairs. It is also amenable to

extension with truncated differentials or differential-linear characteristics.

In [20], Biham et al. develop the rectangle attack by noting that the amplified

boomerang attack counts the number of quartets that satisfy both the charac-

teristics α → β and γ → δ. However, these characteristics can be converted to

differentials - it does not matter what the values of β and γ are so long as the

characteristics are suitably low-probability. Also for two pairs that cover E0, one

with output difference a, the other with output difference b, the attack can be

continued by recombining the pairs such that one covers E1 using γ → δ and

the other using (γ ⊕ a ⊕ b) → δ. This improves the probability of acquiring

a right quartet to 2−
n
2 p′q′ where p′ is the probability of covering E0 and q′ the

probability of covering E1. However, finding the right quartets involves analyzing

the ciphertext, which is a task quadratic in the number of pairs, so the rectangle

trades a reduction in text pairs for an increase in time complexity. An improved

algorithm in [23] improves the time complexity by performing preliminary tests

on the ciphertexts before conducting a more thorough analysis on the texts that

survive .

200 Appendix A. Block Cipher Cryptanalysis

The results of the amplified-boomerang and rectangle attacks applied to con-

temporary ciphers are shown in Table A.3. In this table, CP refers to chosen

plaintext and APCP to adaptive chosen-plaintext chosen-ciphertext.

Key Complexity
Cipher

Size
Type of Attack Rounds

Data Time

MARS 256 Amplified Boomerang [120] 11 265 CP 2229

SAFER++ 128 Boomerang [29] 5.5 2108 APCP 2108

SHACAL-1 512 Amplified Boomerang [125] 47 2158.5 CP 2508.4

SHACAL-1 512 Rectangle Attack [24] 49 2151.9 CP 2508.5

Serpent 256 Amplified Boomerang [120] 8 2114 CP 2179

SC2000 Rectangle [23] 3.5 267 APCP 267

Table A.3: Boomerang and Rectangle Attacks Against Recent Ciphers

Integral Cryptanalysis

Integral cryptanalysis is a differential technique that was originally applied to

reduced versions of SQUARE [60] and SQUARE-like ciphers such as the AES

[62] and Hierocrypt-3 [186]. For other types of cryptanalysis, the pivotal points

in the success of the attack are the strength of the s-boxes. But for integral

cryptanalysis, so long as the s-boxes are bijective, they are irrelevant to the

details of the attack. Instead the strength of the diffusion components have been

the primary effecting factor in the complexities of the attack. This caught some

designers off-guard, who were content to use AES-like diffusion elements such

as the MDS. As a result, many integral attacks are uninteresting and virtually

unmodified applications of the AES attack to similar ciphers such as [10]. The

primary interest of recent attacks concerns how they need to adapt to modified

diffusion elements [65], how they have become strengthened or weakened by flaws

in the key schedule [65], [230], or by their application to non-SPN structures such

as Feistel ciphers [153] or even bit-based ciphers such as IDEA [112] and DES

[139].

Integral cryptanalysis is built around a key distinguisher that extends to some

point in the cipher. The attacker then guesses key bits in the final rounds: if these

guesses are correct, then the distinguished bytes can be identified; if they are

incorrect, then the distinguished property will not appear. What is interesting

about integral cryptanalysis is it takes some time for the distinguishing property

A.2. Differential Cryptanalysis 201

to appear, and also that if it is not destroyed, the attacker has no measure to

verify the correctness of the guessed key bytes. This limits the extent to which

peeling off rounds can occur, so an Integral attack may be ineffective in identifying

the master key of a cipher with a Type 2 key schedule. For many of the AES-like

ciphers with Type 1 key schedules, only one or two round keys are necessary to

retrieve the master key, without recourse to further iterations of the attack.

The integral attack is a chosen-plaintext attack, in which groups of plaintexts

are chosen such that a single word of the block across the plaintexts is saturated.

For byte-oriented ciphers like AES, this implies that the group contains 256 texts.

For 32-bit word ciphers, such as Twofish, the group size is 232 texts.

In all word positions but one, each of the texts in the group share the same

value (denoted by in Figure A.2 by an empty cell). In the remaining word position,

which situates the saturated word, each text has a unique value. This set of texts

is called, in the terminology of [60], an Λ-set, and the saturated word called an

active word (denoted by ’Λ’). The properties of each word position across the

set of texts changes as the encryption progresses. When the texts at a particular

position no longer have unique values, but their sum modulo 2 equals zero, the

position is referred to as balanced (and denoted by ’⊕’). This property of balance

is the key distinguishing property. At some stage in the attack, each word position

will lose this property and become neither constant, active, nor balanced. This

is denoted by ’?’, and its only use in the attack is during decryption, when the

correct guess of the key words restores the ’?’ bytes to ’⊕’ bytes.

From the distinguisher, a key recovery attack can be built. This involves

guessing key bytes, the number of which is determined by the branch number of

the diffusion element in those rounds involving guesses. Thus, the smaller the

branch number of the cipher, the less complex the attack, as shown by the relative

complexities of the attacks on Crypton (with a branch number of four) and the

AES (with a branch number of five).

The crucial aspect of building a distinguisher is maintaining the balance for

as many rounds as possible. Any non-linear bijective component, such as the

AES s-box, will leave an active set unaltered, since it acts as a permutation on

the complete set of inputs. It will destroy a balanced set in which some input

values are missing. In AES, and similar ciphers, it is the interplay between the

bijective substitution component ByteSub (γ) and the non-bijective high diffusion

component MixColumn (θ) that both enables and limits the key distinguisher.

202 Appendix A. Block Cipher Cryptanalysis

Figure A.2: Three-Round Integral Distinguisher for AES

When passed an array of bytes of which only one is active, the MixColumn

propagates the active byte to all bytes in the output. When passed an array in

which multiple bytes are active, and the others constant, it produces an output

in which the bytes are balanced but not active. This enables an attacker to guess

on any of the key bytes, since even though only one byte is initially active, the

MixColumn ensures that all of the key bytes become active and then balanced.

The subsequent ByteSub operation destroys this balance, and creates the point

at which key guesses are verified.

As a concrete example, the three-round AES distinguisher, is shown in Figure

A.2. The AddKey operation is not shown in this figure, since it has no effect on

the development of the byte status throughout. In the distinguisher, the input

differences are represented by a single active byte, which is transformed into a

column of active bytes by the θ operation in the first round. The bijective, non-

linear s-boxes in the γ operation do not change the active status of any of the

differences. However, the π operation of the second round moves three of the

active byte positions so that each column has a single active byte, each in a

different row position. The θ operation in this round acts upon the single active

byte in each column, transforming it to an entire column of active bytes. In the

A.2. Differential Cryptanalysis 203

third round, the θ operation destroys the active status of each of the bytes as

the operation is not bijective on its inputs. Now a complete set of values is not

available in each byte position; the subsequent ByteSub operation (not shown)

in the fourth round generates the distinguisher by destroying the balance of all

of the bytes.

As shown in [153] and [139], the integral attacks can be wide ranging in their

targets. For example, DES can be attacked, because for each of its 6 × 4 s-

boxes, a set of all possible inputs produces a balanced set containing each output

value four times. Since the other components in DES are linear, they behave in

a similar way to AES’s MixColumn, by propagating active sets and eventually

transforming them to balanced sets.

In [139], Knudsen et al. note the similarities between Integral and Truncated

Cryptanalysis, since both are concerned with the properties of bytes but not

their actual values. They speculate that an Integral Attack may be combined

with an Interpolation Attack, by treating each half of the cipher separately, and

gluing the attacks in the middle. This approach is similar to Differential-Linear

Cryptanalysis in Section A.4 and the Boomerang and Rectangle attacks in Section

A.2.

Key Complexity
Cipher

Size
Rounds

Data Time

AES [72] 256 8 2119 CP 2204

Camellia [230] 256 9 260.5 CP 2202.2

Crypton [65] 256 6 232 CP 256

Hierocrypt-3 [10] 256 7 236 CP 2176

SAFER++ [29] 128 4.5 294.5 CP 294.5

Twofish [153] 256 8 2127 CP 2253

Table A.4: Integral Attacks Against Recent Ciphers

A selection of attacks upon contemporary 128-bit block ciphers is shown in

Table A.4. The complexities generated by the distinguishers are relatively low,

but the attacks are extended across additional rounds by brute-force key word

guessing. While a distinguisher enables verification of these guesses, it does not

enable any short-cuts to be made in the number of bits guessed in each key word.

This accounts for the high text complexity within each attack. An additional

implication is that further research advances need to be made, before the attack

can be extended to cover entire ciphers.

204 Appendix A. Block Cipher Cryptanalysis

At present, the best defence against integral cryptanalysis has two elements.

Firstly, use high diffusion components; these help minimize the number of rounds

that the distinguisher covers, while increasing the number of key words that need

to be guessed in later rounds. Secondly, use a sufficient number of rounds to

prevent key guessing from the ciphertext to the point at which the distinguishing

property emerges. The large block size of modern ciphers is a natural aid in

making the number of key guesses prohibitive.

A.3 Linear Cryptanalysis

Linear cryptanalysis is a known-plaintext attack that replaces non-linear compo-

nents within ciphers by probabilistic linear approximations. It is able to exploit

the linear relationships between plaintext, ciphertext and key material, to derive

a small number of round key bits in the first and/or last rounds. The remaining

round key bits are derived via other means, typically a brute-force attack.

Linear cryptanalysis was developed in [162], but its power was demonstrated

in [158] when it was used to break the DES with 247 known-plaintexts, and again

in [159] when the attack was refined with 243 known-plaintexts and an 85% chance

of success. In [114], Junod empirically found, that for some keys, the attack was

successful with only 239 texts. This is the best attack implemented on the DES.

A summary of attacks by linear cryptanalysis on contemporary ciphers is shown

in Table A.5. In this table, the notation KP refers to known plaintexts.

Linear cryptanalysis relies on replacing non-linear components with linear

relationships, termed approximations of the form P [χP]⊕C[χC] = K[χK], where

χP represents a selection of plaintext bits p1, p2, ..., pa, P [χP] its one-bit parity,

and similarly for ciphertext C and key K.

The bias of an approximation is ε = |p− 1
2
|, where p is the probability that the

approximation is successful. The larger the value of ε, the fewer the number of

plaintext-ciphertext pairs required to launch an attack using the approximation

[158]. A negative bias, which means the approximation is wrong more often than

it is right, is still useful, since the approximation can be complemented, and the

bias inverted. But if ε = 0, the approximation fails to model the component in

as many cases as it succeeds, and is not useful in reconstructing key bits.

The plaintext, ciphertext and key bits in the approximation are selected specif-

ically to optimize its probability. The probability p of an approximation is derived

A.3. Linear Cryptanalysis 205

from the linear approximation tables (LAT) calculated for each non-linear com-

ponent. The LAT is very similar to the DDT of differential cryptanalysis. It

contains entries for each combination of the input and output patterns of the

component. These are calculated by masking out bits of the input and output

not involved in the approximation, and counting the number of times, for all

desired inputs, that the linear parity of the selected inputs bits equals the linear

parity of selected output bits. If the component is linear, then the parities will

always match. If the component is affine, then the parities will never match. For

non-linear components, the parities will sometimes match and sometimes not.

LATs are usually calculated for s-boxes. For m× n s-box S, with input mask

α and output mask β, the LAT entry (α, β) is defined [158]:

#{x|0 ≤ m, (⊕log2m
s=0 (x[s] • α[s])) = (⊕log2n

t=0 (Sa(x)[t] • β[t]))}

where • indicates masking. The probability that an approximation associated

with (α, β) is valid is close to LAT (α,β)
2n . Good approximations for the non-linear

component are acquired by choosing bits for those LAT cells with counts that

deviate most from 2n−1.

The approximations derived across non-linear components have to be ex-

panded to cover single rounds, and ultimately, all but a few rounds in the ci-

pher. They are concatenated so that the common terms between them cancel.

According to the piling-up lemma, the probability of the resultant approximation

is 1
2
+ 2n−1

∏n
i=1(pi− 1

2
), if the component approximations are independent [158].

In reality, the probability is usually close, regardless of independence [15].

An attacker constructs an approximation that covers all but the first and last

rounds of the cipher, and uses it in one of two ways. In a Type I attack, an

attacker collects N text pairs and derives a single key bit from an approximation

P [χP]⊕C[χC] = K[χK] which has bias ε. To derive the bit, the attacker calculates

T , being the number of plaintext pairs for which P [χP]⊕C[χC] equals 0. If T > N
2

then the attacker guesses K[χK] = 0 when ε > 0 or K[χK] = 1 when ε < 0.

If T < N
2

then the attacker inverts the guesses. By using the approximation

multiple times in parallel, guessing other key material, and using counters to

probabilistically observe successful guesses, many more key bits can be deduced.

The number of known-plaintexts required to successfully execute a type I attack

is approximately p−2 where p is the probability of the approximation used [158].

A Type II attack uses an approximation (P [χP]⊕ C[χC]⊕ F1(PL, K1)[χF1]⊕

206 Appendix A. Block Cipher Cryptanalysis

Fr(CL, Kr)[χFr] = K[χK] with bias ε, which is correlated to key bits used in

the first (F1) and last (Fr) rounds. The attacker considers only a small pool of

key bits in these rounds (bits g in the F1 and bits h in Fr) to optimize success

of the attack. The approximation is expected to hold with a reasonable bias

only if these key bits are guessed correctly [159]. For all possible values g and

h, the attacker calculates statistics Tg,h as the number of plaintexts in which

P [χP]⊕ C[χC]⊕ F1(PL, K1)[χF1]⊕ Fr(CL, Kr)[χFr] equal 0.

From the set of Tg,h statistics, the attacker selects two statistics; Tmax, which

has the greatest value in the set, and Tmin, which has the smallest value. If

|Tmax − N
2
| > |Tmin − N

2
|, the attacker selects the key candidate corresponding

to Tmax and guesses K[χK] = 0 when ε > 0 or 1 when ε < 0. If |Tmax − N
2
| <

|Tmin − N
2
|, the attacker selects the the key candidate corresponding to Tmin and

guesses K[χK] = 1 when ε > 0 or 0 when ε < 0.

The algorithm can be used to collect extra key bits from Feistel ciphers by

inverting the roles of the plaintext and ciphertext and running it again [110].

Guessing key bits associated with round keys forces consideration of the role

the key schedule plays, in choosing Type II approximations. The number of

known-plaintexts required to execute a type II attack is roughly 8ε−2 texts [137].

By using approximations that are limited to a only one non-linear component, the

pool of key candidates can be kept small, reducing the complexity of the attack.

For either attack method, the success rate is defined as Φ(2
√

Nε), where Φ is the

normal cumulative distribution function [110].

Attacks using linear cryptanalysis can be prevented by ensuring a sufficiently

large input size of non-linear components [137]. This produces approximations

with lower probabilities. Additionally, the values within the LAT of each non-

linear component should be roughly uniform so that there are no prime candi-

dates for generating approximations. Alternatively, the number of rounds of the

cipher can be increased, resulting in a reduced probability for the resulting best

approximation.

Using Multiple Linear Approximations

By increasing the number of plaintext-ciphertext pairs used in a linear crypt-

analytic attack, the variance of the statistic T is diminished, and the key bits

predicted by the statistic are more reliable - the chance of success increases.

However, the variance can also be decreased by simultaneously using multiple

A.3. Linear Cryptanalysis 207

approximations on the same key bits. If collection of the statistic Ti is carried

out for i approximations, statistic U =
∑n

i=1 aiTi can be calculated, where the

weight of approximation i is ai = εi/
∑n

i=1 εi. The statistic U has a comparable

bias to each Ti but a reduced variance. The success rate of the attack improves

to Φ(2
√

N
√

nε), where n is the number of approximations [110].

For each non-linear component with b output bits, there are 2b − 1 linear

approximations that have the same input mask, and operate on the same round

key bits. However, multiple linear approximations have to operate on the same

master key bits, so the key schedule has to be considered in calculating compatible

approximations.

Using multiple linear approximations in an attack is quite effective if each

linear approximation is linearly independent and has near maximal probability

[210].

Key Type Complexity
Cipher

Size
Rounds

Data Time

FROG [222] All Linear All 256 KP < 256

LOKI97 [136] All Linear All 256 KP 256

NUSH [228] All Linear All 262 KP 253

Q [119] 256 Linear All 297 KP
RC6 [210] 256 Multiple Linear 14 2119.68 KP 2185.86

SAFER++ [111] 256 Linear 3.5 281 KP 2178

(1 in 2−13 keys)
SC2000 [229] All Linear 4.5 2115.17 KP 242

Serpent [19] 192, 256 Linear 11 2118 KP 2187

Table A.5: Linear Cryptanalysis Against Recent Ciphers

Using Non-linear Approximations

For a given non-linear component, there are far more non-linear than linear ap-

proximations, including those with much better probabilities than for the best lin-

ear approximations. This means that using non-linear approximations can signif-

icantly reduce the number of ciphertexts required to launch an attack. However,

there are difficulties in using non-linear approximations. For example, one-round

non-linear approximations do not concatenate effectively [110].

Nevertheless, non-linear approximations can be used in the first and last

rounds of a cipher, and in some cases, the second and penultimate rounds. These

208 Appendix A. Block Cipher Cryptanalysis

approximations are concatenated with linear approximations, to extend across

the cipher with greater effectiveness than pure multiple-round linear equivalents.

The methodology of attacking ciphers with non-linear approximations is sim-

ilar to that for standard linear cryptanalysis. In addition to those key bits nor-

mally retrieved in linear cryptanalysis, further key bits can be recovered when

input bits to which they are related are involved as products in the approxi-

mation. By guessing the bits associated with the products, and observing the

frequency of the resultant outputs in relation to the approximation probability,

the attacker can determine the veracity of the guesses.

Despite the potential for this attack, no contemporary ciphers appear to have

been studied, or at least successful attacked, from this angle.

Partitioning Cryptanalysis

In [90], Harpes et al. describe a generalization of linear cryptanalysis that replaces

the linear approximation with an I/O sum. The I/O sum for the ith round of a

cipher is calculated as:

S(i) = fi(Y
(i−1))⊕ gi(Y

(i))

where fi is a balanced binary function of the round input Y (i−1) and gi is a

balanced binary function of the round output Y (i). Standard linear cryptanalysis

fixes the f and g functions to the parity function.

As with linear approximations, I/O sums can be composed, producing the

sum:

S(1..ρ) =

ρ⊕
i=1

S(i) = g0(Y
(0))⊕ gρ(Y ((ρ))

The bias of a linear approximation is replaced by the key-dependent imbalance

of the I/O sum, calculated as |2P [V = 0]−1|, where V is S(1...ρ)|k(1...ρ), conditioned

upon k being the round key. The larger the imbalance (up to a maximum of 1),

the more effective is the I/O sum.

An attack uses an I/O sum (for all but the last round), and N randomly

chosen plaintext-ciphertext pairs. For a pair, each possible last round key is used

to decrypt the ciphertext by one round. If the I/O sum of the plaintext and the

decrypted ciphertext is 0, a counter is incremented for that key. This is repeated

for the remaining pairs, and the keys chosen by the attacker are the ones for

A.3. Linear Cryptanalysis 209

which the distance between the corresponding counter and N
2

is greatest.

A shortcut can be applied to this technique, by finding equivalence classes in

which any two keys, k and k′, of the class satisfy gr−1(F
−1
k′ (y)) = gr−1(F

−1
k (y))⊕c

for some c and all ciphertexts y, where F is the round function and r − 1 is

the penultimate round number. By guessing only one key from each class, the

efficiency of the attack is significantly increased. The attack predicts the class

in which the correct key lies, with accuracy proportional to the imbalance of the

I/O sum.

Partitioning cryptanalysis is a further generalization of this technique, in

which chosen-plaintexts from a single partition are considered. The attack strat-

egy is similar to that of the linear generalization. It is applied to ciphers in which

bits in the output partition are non-uniformly distributed for random selections

of plaintexts in the input partition. This implies the imbalance in the output par-

tition is greater when the guessed key is correct. The computational complexity

of the attack is proportional to the number of equivalence classes [91].

One example of partitioning cryptanalysis is the technique developed in [124],

in which the partitions are simply formed modulo some prime integer. The tech-

nique is used to attack a modified form of RC5 in which the exclusive-ors are

replaced by modular additions. The rotations of RC5P are approximated by

X ≪ n mod 3 =

{
2Xmod 3 if n odd

X mod 3 if n even

and the additions by

(X + Y) mod 232 mod 3 =

{
X + Y mod 3 if no carry

X + Y − 1 mod 3 if carry

A chosen-plaintext attack based on these approximation works by exhaustively

searching on some key bits, and the partitions into which the last round key

falls. For each guess, the partition into which the last round’s input text falls

is predicted, and a χ-square test applied. The guess to which the highest score

applies is assumed to be the correct guess, and these key bits are used to aid in

the guessing of further key bits in the same manner.

The generalization of linear cryptanalysis is claimed to be more powerful than

linear cryptanalysis, and in turn, partitioning cryptanalysis is stronger still [107].

Both variants require small numbers of texts for successful identification of the

210 Appendix A. Block Cipher Cryptanalysis

correct key class. They have been theoretically applied to a number of ciphers,

including six-round DES [91] and LOKI97 [136], although no complexities are

given. In [124], it is suggested that a variant of RC5 that uses addition modulo

some value other than 232 may be vulnerable to the mod n range of attacks.

However, partitioning cryptanalysis has not been responsible for any concrete

attacks on contemporary block ciphers.

A.4 Differential-linear Cryptanalysis

Differential-linear (DL) cryptanalysis [146] is a chosen-plaintext attack that uses

both differentials and linear approximations.

In the technique, a cipher of r rounds is divided into three segments, E0 of m

rounds, E1 of n = r −m − 1 rounds, and the final round. The first segment E0

is covered by a a truncated differential α → β with probability p = 1, and the

second E1 by a linear approximation γ → δ with probability q. The final round

is used for guessing key bits.

Because both the differential and the approximation are linear operations that

use invertible combiners such as exclusive-or, in some cases they can be concate-

nated to cover all but the last round. The approximation can be successfully

joined to the differential if the input γ to the linear approximation does not use

bits changed by the differential α → β. The bits used by the approximation

γ → δ remain unchanged at the output of the approximation with probability

q2 + (1− q)2, according to the piling up lemma. By using a differential of prob-

ability one, the cipher appears to have only n rounds, which can be attacked in

the standard manner for linear cryptanalysis.

In [146], Langford applies this technique to six-round reduced DES, and re-

trieves ten key bits with a comparable complexity to differential and linear crypt-

analysis, but with many fewer text pairs (approximately 640 pairs). The use of

structures enables a further reduction in required text pairs.

In [21], Biham et al. relax the assumption that bits incorporated into the

linear approximation need to be unchanged by the differential, and also that the

probability of the differential needs to be 1. In the case that the differential bits

do change or that the differential is not satisfied, the input and output parities

behave randomly and do not suggest key bits correctly. Biham et al. successfully

use a 4-round differential with probability p < 1 in conjunction with a 3-round

A.5. Key Schedule Cryptanalysis 211

linear approximation, to launch a key recovery attack on 9 rounds of DES. The

probability of an enhanced DL-attack is 1
2

+ 4pq2. In [22], Biham et al. attack

Serpent with a 256-bit master key by joining a 3-round differential with p = 2−6

and a 6-round approximation with q = 2−27. The attack covers 11 rounds and

has a time complexity of 2139.2 and a data complexity 2125.3 chosen plaintexts.

A.5 Key Schedule Cryptanalysis

Differential and linear techniques are statistical attacks, in which the probability

of success deteriorates as the number of cipher rounds grow. As processor speeds

increase, it becomes easier to defeat these techniques by designing ciphers with a

large number of rounds.

However, there is a class of techniques that jointly use homogeneity within

the cipher algorithm and within the key schedule to engage in key recovery or

deduction attacks. The success of these techniques is independent of the number

of times a cipher round is iterated. Each technique relies on discovering the input

and output to a small number of rounds to recover the round keys.

Three categories are presented here: related-key attacks, which rely on sim-

plistic key schedules; slide attacks, which depend upon periodic key schedules

and round functions; and related-cipher attacks, in which separate instances of a

cipher are used with slightly different numbers of rounds.

Related-key Cryptanalysis

Related-key cryptanalysis [14] is a class of chosen-plaintext known- or chosen-key

attacks in which plaintext-ciphertext pairs are obtained, such that the relation-

ship between the keys used in each pair is well-known. In contrast to differential

and linear cryptanalysis, the methodology of the attack changes between ciphers.

The first well-known related key attack [14] exploits the simple key schedule

of LOKI89, in which each round key is derived from its predecessor using left

rotations. The attack involves pairs of encryptions, in which the first round key

of encryption X∗ equals the second round key of encryption X. This implies that

the second round key of encryption X∗ equals the third of X and so on. Thus,

if the plaintext of encryption X∗ equals the plaintext of X encrypted over one

round, then the ciphertext of X is identical to the ciphertext of X∗ decrypted by

212 Appendix A. Block Cipher Cryptanalysis

one round. This observation enables the derivation of a linear equation involving

plaintext, ciphertext and key bits, from which key bits can be easily acquired.

A particularly powerful form of related-key cryptanalysis uses differentials.

This is similar to the resynchronization attack discussed in Section 4.2.8. In [122],

Kelsey, Schneier and Wagner attack the cipher 3-Way [57]. The cipher has eleven

rounds consisting of three layers, including a parallel application of thirty-two

3× 3-bit s-boxes, a linear layer L, and a key addition layer in which a combined

96-bit round key and constant are added to the output of the linear layer. By

inducing a difference α ⊕ L(β) in the round key, they extend the characteristic

across the round as the iterative characteristic α → α. This allows them to build

a large high-probability differential, with which they break the cipher. The attack

succeeds on the full cipher, with one related-key query and 222 chosen plaintexts.

Related-key cryptanalysis is a potent tool and has theoretically attacked many

ciphers, including reduced round variants of the AES candidates DEAL [134] and

SAFER+ [123]. It is a contentious topic as to whether the attack model, in

which the attacker can choose related keys, is realistic. Master keys should be

generated randomly so the attacker should have limited ability to launch related-

key attacks; however cipher and protocol implementation details such as key

management issues should not be the first line of defence. That job belongs to

the block cipher key schedule. From this perspective, the realism of an attack is

unimportant.

It is easy to protect against related key attacks, by adopting a Type 2C key

schedule [122], [45]. Observing the number of Type 1 key schedules in Table 2.2

suggests this is a lesson that will only be learnt after related-key attacks inflict

more casualties.

Slide-attacks

Slide attacks [32] apply to homogeneous ciphers, in which a weak function F

is iterated several times. The function F is weak because given two instances

F (x, k) = y and F (x∗, k) = y∗, it is easy to deduce the key. The F function is

generalized from the round function - it is p self-similar if it consists of p iterations

of the round function [32]. This usually implies that the key schedule is periodic

over p rounds. In the case of ciphers with a Type 1A key schedule, p = 1. This

makes these ciphers particularly vulnerable to slide attacks.

The attack requires either known- or chosen-plaintexts, and involves identify-

A.5. Key Schedule Cryptanalysis 213

ing slid pairs within those texts. For text pairs (P, C) and (P ∗, C∗), a slid pair

occurs when F (P) = P ∗ and F (C) = C∗, as if for two parallel encryptions, one

has slipped forward a round.

According to the birthday paradox, one slid pair can be recovered from 2
n
2

texts, where n is the block size of the encrypting cipher. Slid pairs can be identi-

fied by checking that F (Pi) = P ′
i and C(Pi) = C ′

i both hold for some key k. This

has a complexity of 2n−1 operations, which is equivalent to exhaustive search. Im-

provements on this complexity can be based on particular function weaknesses,

or when plaintexts contain redundancy. Identification of a slid pair rapidly leads

to recovery of n round key bits.

Homogenous Feistel ciphers, and more generically, ciphers in which the length

of the round key is smaller than the length of the master key, are particularly

vulnerable to the slide attack. In the case of the homogenous Feistel cipher, the

round only operates on half the block size. This means that vulnerable ciphers

can be attacked with at most 2
n
2 texts and work.

In [33], Biryukov introduces further optimizations for the attack against Feistel

ciphers, in which they can be executed at the round level, even for self-similar

structures where p > 1. These are the complementation slide and sliding with a

twist.

The complementation slide applies to ciphers in which the period p of the

key schedule is two; that is, the key schedule alternates between keys K0 and

K1. With the complementation slide, the cipher is treated as though p = 1. The

difference between the round keys 4 = K0 ⊕K1 is cancelled out by introducing

the difference between the chosen plaintexts. This is similar to the attack on

3-Way by Kelsey et al. (described earlier in this section). The complementation

slide attack can be converted to a known-plaintext attack with complexity 2
n
2 .

The advantage of this technique is obvious, since it is easier to retrieve key bits

from a single weak round of the cipher than from two.

The sliding with a twist technique also applies to Feistel ciphers with self-

similarity p = 2, and follows because decryption under keys K1, K0 is the same as

encryption under K0, K1. By sliding a decryption one round against an encryp-

tion, parallel rounds use the same round key. This amplifies the self-similarity

to one round. Again, this technique also permits a known-plaintext attack with

complexity 2
n
2 .

These techniques can be combined to ciphers of self-similarity p = 4, with

214 Appendix A. Block Cipher Cryptanalysis

keys K0, K1, K2, and K3. After an encryption is slid by one round, keys K0 and

K2 always meet in parallel at the odd rounds, but encryptions at the even rounds

differ by K1 ⊕K3. By inducing a slid difference of [0, K1 ⊕K3], the differences

cancel. This technique allows a chosen-plaintext attack with complexity 2
n
4 .

The slide attack does not apply to heterogenous ciphers or those with Type

2 key schedules. It can be defeated by removing homogeneity within the round

function and within the key schedule (for example, introducing counters into the

key schedule, so that each round key is calculated in a slightly different way).

In [202], Saarinen presents slide attacks against some block ciphers based

upon hash functions. He examines slide attacks against the NESSIE candidate

SHACAL-1, and although he identifies slid pairs with complexity 232, he is unable

to launch a practical attack on the cipher.

Related Cipher Attacks

In [226], Wu introduces the ”Related Cipher Attack”. This attack works on the

same principle as slide attacks [32]: by gaining the text produced by the cipher

just a few rounds from the production of the ciphertext, the intermediate weak

rounds can be broken, exposing the round keys.

Slide attacks rely on homogenous round functions to acquire ‘slid pairs’. Re-

lated cipher attacks rely on using two versions of the cipher, one of which has

m rounds, and the other n rounds, m 6= n. In the case of slide attacks, the key

schedule needs to be periodic to produce a slid pair. But in the case of related

cipher attacks, one of the sequences of round keys needs to be a subset of the

round key sequence of the related cipher. Given that for most practical ciphers,

the number of rounds is fixed, or varies only as a function of the key length, the

conditions under which the attack succeeds are contrived. For one example in

which the attack is claimed to work, but which we refute due to an impractical

attack model, see Section 3.3.2.

A.6 Algebraic Attacks

Algebraic attacks operate by reducing ciphers, or cipher rounds, to systems of

equations in which key bits are unknown. By solving the system, some key

bits are recovered. There are two classes of attacks discussed in this section:

A.6. Algebraic Attacks 215

interpolation attacks, and XLS attacks, which are related to the XL attacks that

have devastated bit-based stream ciphers (see Section 4.2.9).

Interpolation Attack

The interpolation attack [107] applies to ciphers consisting of components in

which the output is of a low non-linear order of the input. The attack is based

upon Lagrange’s interpolation formula:

f(x) =
n∑

i=1

yi

∏

i≤j≤n,j 6=i

x− xj

xi − xj

for 2n elements x1, . . . , xn, y1, . . . , yn in a finite field.

The attack applies to ciphers where the ciphertext can be expressed as a poly-

nomial of the plaintext such that the number of coefficients n in the polynomial

is less than or equal to 2m, m being the block-size of the cipher. In this case,

a global deduction algorithm can be devised with complexity n and requiring n

known plaintexts.

Alternatively a key recovery algorithm can be devised, in which the polynomial

is expressed in terms of the output of the next to last round. By guessing b key

bits of the final round, the key recovery will succeed with complexity 2b−1(n + 1)

and n + 1 texts.

In [107], two simple Feistel ciphers are broken using the interpolation attack:

PURE and KN , both of which are defined around a low-order function f :

GF (232) → GF (232), f(x) = x3. Both ciphers are defined to be immune to first

order differential and linear cryptanalysis.

The same paper contains an attack on a modified version of the cipher SHARK,

an ancestor of AES. SHARK uses s-boxes generated by inversion in a Galois field,

which have a high algebraic degree, but could be simply expressed using rational

expressions.

It is easy to avoid the interpolation attack by using components with compli-

cated algebraic expressions. For example, although AES also uses s-boxes gener-

ated by inversion in a Galois field, it overcomes the problems experienced by the

SHARK cipher, by modifying the inversion with a complex affine transformation.

Consequently only a few ciphers have been broken using the interpolation attack,

such as SNAKE [174].

216 Appendix A. Block Cipher Cryptanalysis

XLS

In 2002, Courtois and Piepryzk [56] published an attack – XLS – that they claimed

theoretically broke the 256-bit version of the Advanced Encryption standard.

Without any concrete proof, this was bound to generate a lot of controversy

[173]. In an early version [56], attacking AES with a 256-bit key required only 287

operations, but after redoing their calculations, Courtois and Piepryzk retracted

this claim. Nevertheless, the cryptographic community has cautiously embraced

the attack in theory, and a related attack (XL) has been shown to break some

stream ciphers (see Section 4.2.9).

The crux of the attack is that ciphers can be represented as multivariate

equations in a field. The multi-quadratic (MQ) problem is known to be NP-

complete, but when there are more equations than unknowns (the system is over-

defined), then the complexity of the MQ problem drops substantially [209]. In

[56], Courtois and Pieprzyk extend this result by developing a new algorithm - the

XLS algorithm - for systems of over-defined equations that are regular and sparse.

This algorithm is applied to SPN ciphers consisting of alternating layers of key

addition, substitution boxes and linear transformations. Its designers conjecture

that the algorithm may be applied to SA-ciphers (which alternate s-box layers

and permutations) or even Feistel ciphers.

Two ciphers that Courtois et al. [56] specifically target are AES [62] and

Serpent [4]. The only non-linear components in these ciphers are the s-boxes. In

these ciphers, the s-boxes are constructed according to conventional wisdom that

explicit equations with the output bits yi, 0 ≤ i < n should have high algebraic

degree in the input bits xi, 0 ≤ i < m. However, this does not discount that there

can be equations of the form P (x1, ..., xm, y1, ..., yn) of low algebraic degree. The

number of explicit equations is necessarily fewer than n; however there can be

many more implicit equations, of the latter form. When the number of equations

r is close to the number of monomials t in the implicit equations, most of the

terms can be eliminated to produce a system of simpler equations that are sparse

and even linear.

In [56], Courtois and Pieprzyk show that 4 × 4 s-boxes always produce sys-

tems of over-defined equations. They also show that 8× 8 s-boxes, when chosen

randomly, are almost never over-defined. However, because the s-box for AES is

not random, but instead defined according to exponentiation in a Galois field, it

is strongly over-defined. They state a well-designed s-box should have a ratio of

A.6. Algebraic Attacks 217

t
r
≈ O(md−1)

The roots of XLS occur in relinearization [126]. The classical algorithm for

solving over-defined equations is Buchberger’s algorithm for constructing Grob-

ner bases. This has a complexity of O(22.7n) and cannot handle systems with

more than 15 variables. In [126], Kipnis and Shamir develop the process of re-

linearization. This simplifies the system of over-defined equations enabling it to

be solved more efficiently by Gaussian elimination, by adding nonlinear equa-

tions that express the fact that some of the variables are related rather than

independent.

XL [55] is an extension of relinearization. XL is a simple parameterized al-

gorithm that takes the system of m equations in n variables, each of which has

degree K. The parameter D determines the degree of the linearized equations in

the final system. The algorithm has three steps:

1. Using all possible monomials as multiplicands, multiply all equations within

the set by those monomials, such that the resulting equations have degree

less than or equal to D.

2. Consider each monomial in the system as a new variable and linearize the

system. The monomials must be ordered so that all terms containing a

single variable are eliminated last.

3. If only one univariate equation remains, solve this equation in the field using

Berlekamp’s reduction algorithm.

XLS differs from XL primarily in step 1 by carefully choosing the monomials

used as multiplicands to generate the sparseness within the system. The system

of equations on the s-boxes are extended to the entire cipher, by incorporating

linear equations for the diffusion layers. The linear components in the cipher add

extra equations but do not generate new variables in the system.

Courtois and Pierprzyk [56] infer that ciphers that possess key schedules that

are similar to the cipher algorithm may be targeted by a more specific form of

XLS, but this theory is never developed.

Attacking a cipher using XLS requires only a few known plaintexts. Courtois

and Pierpzryk [56] now claim that the complexity for the AES with a 256-bit

key is 2298, although they speculate that in combination with the result of [176],

this could fall to 287 which would be a spectacular break of the new standard.

However, three years later, someone has yet to show how to do this. They claim

218 Appendix A. Block Cipher Cryptanalysis

a marginal break on Serpent with a complexity of 2210. No concrete result has

been shown on reduced-round versions of either of these ciphers, because the

complexity of the attack grows very slowly with the number of rounds. In [28],

Biryukov et al. develop equations for an XLS attack on Camellia, but do not

expand it to an attack. Given the similarity of Camellia and other ciphers (see

Section 2.2), this is not a surprising result.

Appendix B

Fast Implementation of Dragon

Unoptimized Dragon

The following code is the header file for an unoptimized version of Dragon.

#include "libcipher.h"

#include "dragon_sboxes.h"

#define DRAGON_WORD_SIZE 32

#define DRAGON_STATE_SIZE 32

#define DRAGON_OUTPUT_SIZE 64

#define DRAGON_KEY_SIZE 256

#define DRAGON_IV_SIZE 256

typedef struct

{

word32 w[DRAGON_STATE_SIZE];

word32 m[2];

word32 i;

} DragonCtx;

#define STATE_OFFSET(ctx, offset) \

ctx->w[(ctx->i + offset) % DRAGON_STATE_SIZE]

/**

* Initialize the Dragon cipher

*/

int dragon_init(DragonCtx *ctx, word32 *k, word32 *iv);

219

220 Appendix B. Fast Implementation of Dragon

/**

* Generate a new word of keystream

* @param ctx [In/Out] the dragon context

* @param ks [Out] preallocated array containing ks_size words of

* keystream

* @param ks_size [In] size of the ks array in words

*/

void dragon_update(DragonCtx *ctx, word32 *ks, word32 size);

#endif _DRAGON_H_

The following code implements an unoptimized version of Dragon.

#include "dragon.h"

word32 g1(word32 x) {

return (sbox2[BYTE3(x)] ^ sbox1[BYTE2(x)] ^

sbox1[BYTE1(x)] ^ sbox1[BYTE0(x)]);

}

word32 g2(word32 x) {

return (sbox1[BYTE3(x)] ^ sbox2[BYTE2(x)] ^

sbox1[BYTE1(x)] ^ sbox1[BYTE0(x)]);

}

word32 g3(word32 x) {

return (sbox1[BYTE3(x)] ^ sbox1[BYTE2(x)] ^

sbox2[BYTE1(x)] ^ sbox1[BYTE0(x)]);

}

word32 h1(word32 x) {

return (sbox1[BYTE3(x)] ^ sbox2[BYTE2(x)] ^

sbox2[BYTE1(x)] ^ sbox2[BYTE0(x)]);

}

word32 h2(word32 x) {

return (sbox2[BYTE3(x)] ^ sbox1[BYTE2(x)] ^

sbox2[BYTE1(x)] ^ sbox2[BYTE0(x)]);

}

word32 h3(word32 x) {

return (sbox2[BYTE3(x)] ^ sbox2[BYTE2(x)] ^

sbox1[BYTE1(x)] ^ sbox2[BYTE0(x)]);

221

}

int update(word32 *v) {

v[1] ^= v[0];

v[3] ^= v[2];

v[5] ^= v[4];

v[2] += v[1];

v[4] += v[3];

v[0] += v[5];

v[3] ^= g1(v[0]);

v[5] ^= g2(v[2]);

v[1] ^= g3(v[4]);

v[0] ^= h1(v[1]);

v[2] ^= h2(v[3]);

v[4] ^= h3(v[5]);

v[1] += v[4];

v[3] += v[0];

v[5] += v[2];

v[0] ^= v[5];

v[2] ^= v[1];

v[4] ^= v[3];

}

/**

* Initialize the Dragon cipher

* @param ctx [Out] the dragon context (state)

*/

int dragon_init(DragonCtx *ctx, word32 *k, word32 *iv) {

word32 v[6] = { 0, 0, 0, 0, 0x00004472, 0x61676F6E };

word32 i;

ctx->i = 0;

for (i = 0; i < 8; i++) {

ctx->w[i] = k[i];

ctx->w[i+8] = k[i] ^ iv[i];

ctx->w[i+24] = iv[i];

ctx->w[i+16] = ctx->w[i+8] ^ 0xFFFFFFFF;

222 Appendix B. Fast Implementation of Dragon

}

for (i = 0; i < 16; i++) {

v[0] = STATE_OFFSET(ctx, 0) ^ STATE_OFFSET(ctx, 24) ^

STATE_OFFSET(ctx, 28);

v[1] = STATE_OFFSET(ctx, 1) ^ STATE_OFFSET(ctx, 25) ^

STATE_OFFSET(ctx, 29);

v[2] = STATE_OFFSET(ctx, 2) ^ STATE_OFFSET(ctx, 26) ^

STATE_OFFSET(ctx, 30);

v[3] = STATE_OFFSET(ctx, 3) ^ STATE_OFFSET(ctx, 27) ^

STATE_OFFSET(ctx, 31);

update(v);

ctx->i -= 4;

if (ctx->i < 0) {

ctx->i += 0x20;

}

STATE_OFFSET(ctx, 0) = v[0] ^ STATE_OFFSET(ctx, 20);

STATE_OFFSET(ctx, 1) = v[1] ^ STATE_OFFSET(ctx, 21);

STATE_OFFSET(ctx, 2) = v[2] ^ STATE_OFFSET(ctx, 22);

STATE_OFFSET(ctx, 3) = v[3] ^ STATE_OFFSET(ctx, 23);

}

ctx->i = 0;

ctx->m[0] = v[4];

ctx->m[1] = v[5];

return 0;

}

/**

* Generate a new word of keystream

* @param ctx [In/Out] the dragon context

* @param ks [Out] preallocated array containing ks_size words of

* keystream

* @param ks_size [In] size of the ks array in words

*/

void dragon_update(DragonCtx *ctx, word32 *ks, word32 size) {

word32 v[6] = {0, 0, 0, 0, ctx->m[0], ctx->m[1]};

word32 i;

223

for (i = 0; i < size;) {

v[0] = STATE_OFFSET(ctx, 0);

v[1] = STATE_OFFSET(ctx, 9);

v[2] = STATE_OFFSET(ctx, 16);

v[3] = STATE_OFFSET(ctx, 19);

v[4] = STATE_OFFSET(ctx, 30) ^ ctx->m[0];

v[5] = STATE_OFFSET(ctx, 31) ^ ctx->m[1];

update(v);

ctx->i -= 2;

STATE_OFFSET(ctx, 0) = v[1];

STATE_OFFSET(ctx, 1) = v[2];

ks[i++] = v[0];

ks[i++] = v[4];

ctx->m[1]++;

ctx->m[0] += ((ctx->m[1] == 0) & 0x1);

}

}

#endif

Optimized Dragon in C

The following code implements an optimized version of Dragon in C.

/**

* @file dragon.c

* Optimized implementation of the ISRC cipher Dragon

* @author Matt Henricksen, copyright asserted 2004

*/

#include "dragon.h"

#define XOR(t1, t2, t3, t4, t5, t6) \

t1 ^= t2; t3 ^= t4; t5 ^= t6;

#define ADD(t1, t2, t3, t4, t5, t6) \

t1 += t2; t3 += t4; t5 += t6;

224 Appendix B. Fast Implementation of Dragon

#define SBOX_G(t1, t2, t3, t4, t5, t6) \

t1 ^= G1(t2); t3 ^= G2(t4); t5 ^= G3(t6);

#define SBOX_H(t1, t2, t3, t4, t5, t6) \

t1 ^= H1(t2); t3 ^= H2(t4); t5 ^= H3(t6);

#define UPDATE(a, b, c, d, e, f) \

XOR(b, a, d, c, f, e); \

ADD(a, f, c, b, e, d); \

SBOX_G(d, a, f, c, b, e); \

SBOX_H(a, b, c, d, e, f); \

ADD(b, e, d, a, f, c); \

XOR(a, f, c, b, e, d);

/**

* Initialize the Dragon cipher

* @param ctx [Out] the dragon context (state)

*/

int dragon_init(DragonCtx *ctx, word32 *k, word32 *iv) {

word32 a, b, c, d;

word32 e = 0x00004472, f = 0x61676F6E;

word32 i;

ctx->i = 0;

for (i = 0; i < 8; i++) {

ctx->w[i] = k[i];

ctx->w[i+8] = k[i] ^ iv[i];

ctx->w[i+24] = iv[i];

ctx->w[i+16] = ctx->w[i+8] ^ 0xFFFFFFFF;

}

for (i = 0; i < 16; i++) {

a = STATE_OFFSET(ctx, 0) ^

STATE_OFFSET(ctx, 24) ^

STATE_OFFSET(ctx, 28);

b = STATE_OFFSET(ctx, 1) ^

STATE_OFFSET(ctx, 25) ^

STATE_OFFSET(ctx, 29);

c = STATE_OFFSET(ctx, 2) ^

STATE_OFFSET(ctx, 26) ^

STATE_OFFSET(ctx, 30);

d = STATE_OFFSET(ctx, 3) ^

225

STATE_OFFSET(ctx, 27) ^

STATE_OFFSET(ctx, 31);

UPDATE(a, b, c, d, e, f);

ctx->i -= 4;

ctx->i &= 0x1F;

STATE_OFFSET(ctx, 0) = a ^ STATE_OFFSET(ctx, 20);

STATE_OFFSET(ctx, 1) = b ^ STATE_OFFSET(ctx, 21);

STATE_OFFSET(ctx, 2) = c ^ STATE_OFFSET(ctx, 22);

STATE_OFFSET(ctx, 3) = d ^ STATE_OFFSET(ctx, 23);

}

ctx->i = 0;

ctx->m[0] = e;

ctx->m[1] = f;

return 0;

}

/**

* Generate a new word of keystream

* @param ctx [In/Out] the dragon context

* @param ks [Out] preallocated array containing ks_size words of

* keystream

* @param ks_size [In] size of the ks array in words

*/

void dragon_update(DragonCtx *ctx, word32 *ks, word32 size) {

word32 a, b, c, d, e, f;

word32 i;

for (i = 0; i < size;) {

a = STATE_OFFSET(ctx, 0);

b = STATE_OFFSET(ctx, 9);

c = STATE_OFFSET(ctx, 16);

d = STATE_OFFSET(ctx, 19);

e = STATE_OFFSET(ctx, 30) ^ ctx->m[0];

f = STATE_OFFSET(ctx, 31) ^ ctx->m[1];

UPDATE(a, b, c, d, e, f);

ctx->i -= 2;

STATE_OFFSET(ctx, 0) = b;

226 Appendix B. Fast Implementation of Dragon

STATE_OFFSET(ctx, 1) = c;

ks[i++] = a;

ks[i++] = e;

ctx->m[1]++;

ctx->m[0] += ((ctx->m[1] == 0) & 0x1);

}

}

Dragon Update Function in Intel x86 Assembly

The following code implements the Dragon function F in Intel x86 assembly
language.

%include "c32.mac"

global _dragon_update

extern _sbox_1

extern _sbox_2

extern _a;

extern _b;

extern _c;

extern _d;

extern _e;

extern _f;

section .text

proc _dragon_update

; now the roles of e and a are swapped around

; eax = e

; ebx = b

; edx = c

; edi = d

; esi = a

; ebp = f

mov esi, [_a]

mov ebx, [_b]

227

mov edx, [_c]

xor ebx, esi

mov edi, [_d]

xor edi, edx

mov eax, [_e]

mov ebp, [_f]

xor ebp, eax

mov [_b], ebx

add edx, ebx

mov [_d], edi

add esi, edi

mov [_f], ebp

add eax, ebp

mov [_c], edx

mov [_e], eax

; strict scheme for s-boxes

; 32-bit word is broken like this

; +-----------------------+

; | ebx | edx | edi | esi |

; +-----------------------+

;

; don’t use ecx because it is being

; used as a counter

;

; d ^= G1(a)

mov esi, [_a]

mov edi, [_a]

and esi, 0xFF

shr edi, 0x8

mov edx, [_a]

and edi, 0xFF

228 Appendix B. Fast Implementation of Dragon

mov eax, [_d]

shr edx, 0x10

mov ebx, [_a]

xor eax, DWORD [_sbox_1 + esi * 4]

and edx, 0xFF

xor eax, DWORD [_sbox_1 + edi * 4]

shr ebx, 0x18

xor eax, DWORD [_sbox_1 + edx * 4]

and ebx, 0xFF

mov esi, [_c]

xor eax, DWORD [_sbox_2 + ebx * 4]

mov edi, [_c]

; f ^= G2(c)

mov [_d], eax

and esi, 0xFF

shr edi, 0x8

mov edx, [_c]

and edi, 0xFF

mov eax, [_f]

shr edx, 0x10

mov ebx, [_c]

xor eax, DWORD [_sbox_1 + esi * 4]

and edx, 0xFF

xor eax, DWORD [_sbox_1 + edi * 4]

shr ebx, 0x18

xor eax, DWORD [_sbox_2 + edx * 4]

and ebx, 0xFF

mov esi, [_e]

229

xor eax, DWORD [_sbox_1 + ebx * 4]

mov edi, [_e]

; b ^= G3(e)

mov [_f], eax

and esi, 0xFF

shr edi, 0x8

mov edx, [_e]

and edi, 0xFF

mov eax, [_b]

shr edx, 0x10

mov ebx, [_e]

xor eax, DWORD [_sbox_1 + esi * 4]

and edx, 0xFF

xor eax, DWORD [_sbox_2 + edi * 4]

shr ebx, 0x18

xor eax, DWORD [_sbox_1 + edx * 4]

and ebx, 0xFF

mov esi, [_d]

xor eax, DWORD [_sbox_1 + ebx * 4]

mov edi, [_d]

; c ^= H2(d)

mov [_b], eax

and esi, 0xFF

shr edi, 0x8

mov edx, [_d]

and edi, 0xFF

mov eax, [_c]

shr edx, 0x10

mov ebx, [_d]

230 Appendix B. Fast Implementation of Dragon

xor eax, DWORD [_sbox_2 + esi * 4]

and edx, 0xFF

xor eax, DWORD [_sbox_2 + edi * 4]

shr ebx, 0x18

xor eax, DWORD [_sbox_2 + edx * 4]

and ebx, 0xFF

mov esi, [_b]

xor eax, DWORD [_sbox_1 + ebx * 4]

mov edi, [_b]

; a ^= H1(b)

mov [_c], eax

and esi, 0xFF

shr edi, 0x8

mov edx, [_b]

and edi, 0xFF

mov eax, [_a]

shr edx, 0x10

mov ebx, [_b]

xor eax, DWORD [_sbox_2 + esi * 4]

and edx, 0xFF

xor eax, DWORD [_sbox_2 + edi * 4]

shr ebx, 0x18

xor eax, DWORD [_sbox_1 + edx * 4]

and ebx, 0xFF

mov esi, [_f]

xor eax, DWORD [_sbox_2 + ebx * 4]

mov edi, [_f]

; e ^= H3(f)

mov [_a], eax

231

and esi, 0xFF

shr edi, 0x8

mov edx, [_f]

and edi, 0xFF

mov eax, [_e]

shr edx, 0x10

mov ebx, [_f]

xor eax, DWORD [_sbox_2 + esi * 4]

and edx, 0xFF

xor eax, DWORD [_sbox_1 + edi * 4]

shr ebx, 0x18

xor eax, DWORD [_sbox_2 + edx * 4]

and ebx, 0xFF

mov ebp, [_f]

xor eax, DWORD [_sbox_2 + ebx * 4]

mov edx, [_c]

; now the roles of e and a are swapped around

; eax = e

; ebx = b

; edx = c

; edi = d

; esi = a

; ebp = f

mov ebx, [_b]

add ebp, edx

mov esi, [_a]

add ebx, eax

mov edi, [_d]

add edi, esi

mov [_f], ebp

232 Appendix B. Fast Implementation of Dragon

xor edx, ebx

mov [_d], edi

xor eax, edi

mov [_c], edx

xor esi, ebp

mov [_a], esi

mov [_e], eax

mov [_d], edi

endproc

Appendix C

Dragon Test Vectors

Dragon test vectors for a 256-bit master key and 256-bit IV are presented below.

KEY:

00001111 22223333 44445555 66667777 88889999 AAAABBBB CCCCDDDD EEEEFFFF

IV:

00001111 22223333 44445555 66667777 88889999 AAAABBBB CCCCDDDD EEEEFFFF

KEYSTREAM:

BC020767 DC48DAE3 14778D8C 927E8B32 E086C6CD E593C008 600C9D47 A488F622

3A2B94D6 B853D644 27E93362 ABB8BA21 751CAAF7 BD316595 2A37FC1E A3F12FE2

5C133BA7 4C15CE4B 3542FDF8 93DAA751 F5710256 49795D54 31914EBA 0DE2C2A7

8013D29B 56D4A028 3EB6F312 7644ECFE 38B9CA11 1924FBC9 4A0A30F2 AFFF5FE0

KEY:

00112233 44556677 8899AABB CCDDEEFF 00112233 44556677 8899AABB CCDDEEFF

IV:

00112233 44556677 8899AABB CCDDEEFF 00112233 44556677 8899AABB CCDDEEFF

KEYSTREAM:

8D3AB9BA 01DAA3EB 5CBD0F6D E3ECFCAB 619AF808 CF9C4A42 E2877766 6D2D7037

EE6F94AC 29D1EEE5 340DB047 8E91A679 480D8D88 2367CE2A 31C96AD4 49E70756

815EBEB2 290DBA7A 3CCB76A2 257BD122 2B0B7AED 917FAFFF 6B58B2B2 B05F24F6

E271A016 9E897BEF F5C22451 DA6F9E40 52B78BE5 6C97C1A5 C6F8E791 0F7B9C98

233

234 Appendix C. Dragon Test Vectors

Appendix D

Dragon S-Boxes

The 8× 8 s-boxes which are used at the core of Dragon’s virtual 32 × 32 G and

H s-boxes are presented below.

unsigned_word_32 sbox1[256]={

0x393BCE6B,0x232BA00D,0x84E18ADA,0x84557BA7,0x56828948,0x166908F3,

0x414A3437,0x7BB44897,0x2315BE89,0x7A01F224,0x7056AA5D,0x121A3917,

0xE3F47FA2,0x1F99D0AD,0x9BAD518B,0x99B9E75F,0x8829A7ED,0x2C511CA9,

0x1D89BF75,0xF2F8CDD0,0x2DA2C498,0x48314C42,0x922D9AF6,0xAA6CE00C,

0xAC66E078,0x7D4CB0C0,0x5500C6E8,0x23E4576B,0x6B365D40,0xEE171139,

0x336BE860,0x5DBEEEFE,0x0E945776,0xD4D52CC4,0x0E9BB490,0x376EB6FD,

0x6D891655,0xD4078FEE,0xE07401E7,0xA1E4350C,0xABC78246,0x73409C02,

0x24704A1F,0x478ABB2C,0xA0849634,0x9E9E5FEB,0x77363D8D,0xD350BC21,

0x876E1BB5,0xC8F55C9D,0xD112F39F,0xDF1A0245,0x9711B3F0,0xA3534F64,

0x42FB629E,0x15EAD26A,0xD1CFA296,0x7B445FEE,0x88C28D4A,0xCA6A8992,

0xB40726AB,0x508C65BC,0xBE87B3B9,0x4A894942,0x9AEECC5B,0x6CA6F10B,

0x303F8934,0xD7A8693A,0x7C8A16E4,0xB8CF0AC9,0xAD14B784,0x819FF9F0,

0xF20DCDFA,0xB7CB7159,0x58F3199F,0x9855E43B,0x1DF6C2D6,0x46114185,

0xE46F5D0F,0xAAC70B5B,0x48590537,0x0FD77B28,0x67D16C70,0x75AE53F4,

0xF7BFECA1,0x6017B2D2,0xD8A0FA28,0xB8FC2E0D,0x80168E15,0x0D7DEC9D,

0xC5581F55,0xBE4A2783,0xD27012FE,0x53EA81CA,0xEBAA07D2,0x54F5D41D,

0xABB26FA6,0x41B9EAD9,0xA48174C7,0x1F3026F0,0xEFBADD8E,0x387E9014,

0x1505AB79,0xEADF0DF7,0x67755401,0xDA2EF962,0x41670B0E,0x0E8642F2,

0xCE486070,0xA47D3312,0x4D7343A7,0xECDA58D0,0x1F79D536,0xD362576B,

0x9D3A6023,0xC795A610,0xAE4DF639,0x60C0B14E,0xC6DD8E02,0xBDE93F4E,

235

236 Appendix D. Dragon S-Boxes

0xB7C3B0FF,0x2BE6BCAD,0xE4B3FDFD,0x79897325,0x3038798B,0x08AE6353,

0x7D1D20EB,0x3B208D21,0xD0D6D104,0xC5244327,0x9893F59F,0xE976832A,

0xB1EB320B,0xA409D915,0x7EC6B543,0x66E54F98,0x5FF805DC,0x599B223F,

0xAD78B682,0x2CF5C6E8,0x4FC71D63,0x08F8FED1,0x81C3C49A,0xE4D0A778,

0xB5D369CC,0x2DA336BE,0x76BC87CB,0x957A1878,0xFA136FBA,0x8F3C0E7B,

0x7A1FF157,0x598324AE,0xFFBAAC22,0xD67DE9E6,0x3EB52897,0x4E07E855,

0x87CE73F5,0x8D046706,0xD42D18F2,0xE71B1727,0x38473B38,0xB37B24D5,

0x381C6AE1,0xE77D6589,0x6018CBFF,0x93CF3752,0x9B6EA235,0x504A50E8,

0x464EA180,0x86AFBE5E,0xCC2D6AB0,0xAB91707B,0x1DB4D579,0xF9FAFD24,

0x2B28CC54,0xCDCFD6B3,0x68A30978,0x43A6DFD7,0xC81DD98E,0xA6C2FD31,

0x0FD07543,0xAFB400CC,0x5AF11A03,0x2647A909,0x24791387,0x5CFB4802,

0x88CE4D29,0x353F5F5E,0x7038F851,0xF1F1C0AF,0x78EC6335,0xF2201AD1,

0xDF403561,0x4462DFC7,0xE22C5044,0x9C829EA3,0x43FD6EAE,0x7A42B3A7,

0x5BFAAAEC,0x3E046853,0x5789D266,0xE1219370,0xB2C420F8,0x3218BD4E,

0x84590D94,0xD51D3A8C,0xA3AB3D24,0x2A339E3D,0xFEE67A23,0xAF844391,

0x17465609,0xA99AD0A1,0x05CA597B,0x6024A656,0x0BF05203,0x8F559DDC,

0x894A1911,0x909F21B4,0x6A7B63CE,0xE28DD7E7,0x4178AA3D,0x4346A7AA,

0xA1845E4C,0x166735F4,0x639CA159,0x58940419,0x4E4F177A,0xD17959B2,

0x12AA6FFD,0x1D39A8BE,0x7667F5AC,0xED0CE165,0xF1658FD8,0x28B04E02,

0x1FA480CF,0xD3FB6FEF,0xED336CCB,0x9EE3CA39,0x9F224202,0x2D12D6E8,

0xFAAC50CE,0xFA1E98AE,0x61498532,0x03678CC0,0x9E85EFD7,0x3069CE1A,

0xF115D008,0x4553AA9F,0x3194BE09,0xB4A9367D,0x0A9DFEEC,0x7CA002D6,

0x8E53A875,0x965E8183,0x14D79DAC,0x0192B555};

unsigned_word_32 sbox2[256]={

0xA94BC384,0xF7A81CAE,0xAB84ECD4,0x00DEF340,0x8E2329B8,0x23AF3A22,

0x23C241FA,0xAED8729E,0x2E59357F,0xC3ED78AB,0x687724BB,0x7663886F,

0x1669AA35,0x5966EAC1,0xD574C543,0xDBC3F2FF,0x4DD44303,0xCD4F8D01,

0x0CBF1D6F,0xA8169D59,0x87841E00,0x3C515AD4,0x708784D6,0x13EB675F,

0x57592B96,0x07836744,0x3E721D90,0x26DAA84F,0x253A4E4D,0xE4FA37D5,

0x9C0830E4,0xD7F20466,0xD41745BD,0x1275129B,0x33D0F724,0xE234C68A,

0x4CA1F260,0x2BB0B2B6,0xBD543A87,0x4ABD3789,0x87A84A81,0x948104EB,

0xA9AAC3EA,0xBAC5B4FE,0xD4479EB6,0xC4108568,0xE144693B,0x5760C117,

0x48A9A1A6,0xA987B887,0xDF7C74E0,0xBC0682D7,0xEDB7705D,0x57BFFEAA,

0x8A0BD4F1,0x1A98D448,0xEA4615C9,0x99E0CBD6,0x780E39A3,0xADBCD406,

0x84DA1362,0x7A0E984B,0xBED853E6,0xD05D610B,0x9CAC6A28,0x1682ACDF,

0x889F605F,0x9EE2FEBA,0xDB556C92,0x86818021,0x3CC5BEA1,0x75A934C6,

0x95574478,0x31A92B9B,0xBFE3E92B,0xB28067AE,0xD862D848,0x0732A22D,

237

0x840EF879,0x79FFA920,0x0124C8BB,0x26C75B69,0xC3DAAAC5,0x6E71F2E9,

0x9FD4AFA6,0x474D0702,0x8B6AD73E,0xF5714E20,0xE608A352,0x2BF644F8,

0x4DF9A8BC,0xB71EAD7E,0x6335F5FB,0x0A271CE3,0xD2B552BB,0x3834A0C3,

0x341C5908,0x0674A87B,0x8C87C0F1,0xFF0842FC,0x48C46BDB,0x30826DF8,

0x8B82CE8E,0x0235C905,0xDE4844C3,0x296DF078,0xEFAA6FEA,0x6CB98D67,

0x6E959632,0xD5D3732F,0x68D95F19,0x43FC0148,0xF808C7B1,0xD45DBD5D,

0x5DD1B83B,0x8BA824FD,0xC0449E98,0xB743CC56,0x41FADDAC,0x141E9B1C,

0x8B937233,0x9B59DCA7,0xF1C871AD,0x6C678B4D,0x46617752,0xAAE49354,

0xCABE8156,0x6D0AC54C,0x680CA74C,0x5CD82B3F,0xA1C72A59,0x336EFB54,

0xD3B1A748,0xF4EB40D5,0x0ADB36CF,0x59FA1CE0,0x2C694FF9,0x5CE2F81A,

0x469B9E34,0xCE74A493,0x08B55111,0xEDED517C,0x1695D6FE,0xE37C7EC7,

0x57827B93,0x0E02A748,0x6E4A9C0F,0x4D840764,0x9DFFC45C,0x891D29D7,

0xF9AD0D52,0x3F663F69,0xD00A91B9,0x615E2398,0xEDBBC423,0x09397968,

0xE42D6B68,0x24C7EFB1,0x384D472C,0x3F0CE39F,0xD02E9787,0xC326F415,

0x9E135320,0x150CB9E2,0xED94AFC7,0x236EAB0F,0x596807A0,0x0BD61C36,

0xA29E8F57,0x0D8099A5,0x520200EA,0xD11FF96C,0x5FF47467,0x575C0B39,

0x0FC89690,0xB1FBACE8,0x7A957D16,0xB54D9F76,0x21DC77FB,0x6DE85CF5,

0xBFE7AEE9,0xC49571A9,0x7F1DE4DA,0x29E03484,0x786BA455,0xC26E2109,

0x4A0215F4,0x44BFF99C,0x711A2414,0xFDE9CDD0,0xDCE15B77,0x66D37887,

0xF006CB92,0x27429119,0xF37B9784,0x9BE182D9,0xF21B8C34,0x732CAD2D,

0xAF8A6A60,0x33A5D3AF,0x633E2688,0x5EAB5FD1,0x23E6017A,0xAC27A7CF,

0xF0FC5A0E,0xCC857A5D,0x20FB7B56,0x3241F4CD,0xE132B8F7,0x4BB37056,

0xDA1D5F94,0x76E08321,0xE1936A9C,0x876C99C3,0x2B8A5877,0xEB6E3836,

0x9ED8A201,0xB49B5122,0xB1199638,0xA0A4AF2B,0x15F50A42,0x775F3759,

0x41291099,0xB6131D94,0x9A563075,0x224D1EB1,0x12BB0FA2,0xFF9BFC8C,

0x58237F23,0x98EF2A15,0xD6BCCF8A,0xB340DC66,0x0D7743F0,0x13372812,

0x6279F82B,0x4E45E519,0x98B4BE06,0x71375BAE,0x2173ED47,0x14148267,

0xB7AB85B5,0xA875E314,0x1372F18D,0xFD105270,0xB83F161F,0x5C175260,

0x44FFD49F,0xD428C4F6,0x2C2002FC,0xF2797BAF,0xA3B20A4E,0xB9BF1A89,

0xE4ABA5E2,0xC912C58D,0x96516F9A,0x51561E77};

238 Appendix D. Dragon S-Boxes

Appendix E

Implementation of MUGI-M

The following code is the header file for an implementation of MUGI-M, the
variant of MUGI described in Chapter 6

/**

* @file mugi.h

* Definitions for the MUGI PRNG

* @author Matt Henricksen

*/

#ifndef _MUGI_H_

#define _MUGI_H_

#ifdef __cplusplus

extern "C" {

#endif

#include "libcipher.h"

#include "mugi_sboxes.h"

/* MUGI constants */

#define C0 0x6A09E667F3BCC908

#define C1 0xBB67AE8584CAA73B

#define C2 0x3C6EF372FE94F82B

#define MUGI_WORD_SIZE 64

#define INT_STATE_SIZE 3

#ifdef _STANDARD_MUGI_

#define BUFFER_SIZE 16

#else /* _MUGI_M_ */

239

240 Appendix E. Implementation of MUGI-M

#define BUFFER_SIZE 8

#endif

#define MUGI_STATE_SIZE (BUFFER_SIZE + MUGI_STATE_SIZE)

#define MUGI_KEY_SIZE 4

#define MUGI_IV_SIZE 4

#define MUGI_OUTPUT_SIZE 1

#ifdef _STANDARD_MUGI_

/* ----------- STANDARD MUGI BUFFER UPDATE ----------- */

/* b_i[t+1] = b_{i-1}[t] (i \neq 0,4,10) */

/* b_0[t+1] = b_{15}[t] \oplus a_0[t] */

/* b_4[t+1] = b_3[t] \oplus b_7[t] */

/* b_{10}[t+1] = b_9[t] \oplus (b_{13}[t] \lll 32) */

/* */

/* Increment taps because buffer has already shifted */

#define MUGI_TAP1 8

#define MUGI_TAP2 14

#define MUGI_TAP1_TARGET 4

#define MUGI_TAP2_TARGET 10

#else /* MUGI_M */

/* -------------- MUGI-M BUFFER UPDATE --------------- */

/* b_i[t+1] = b_{i-1}[t] (i \neq 0,4,10) */

/* b_0[t+1] = b_7[t] \oplus a_0[t] */

/* b_2[t+1] = b_1[t] \oplus b_3[t] */

/* b_5[t+1] = b_4[t] \oplus b_6[t] \lll 32) */

/* */

/* Increment taps because buffer has already shifted */

#define MUGI_TAP1 4

#define MUGI_TAP2 7

#define MUGI_TAP1_TARGET 2

#define MUGI_TAP2_TARGET 5

#endif

/* MUGI context */

typedef struct {

int offset;

word64 a[INT_STATE_SIZE];

word64 b[BUFFER_SIZE];

} MugiCtx;

241

/**

* Initialize the MUGI PRNG

* @param m [In/Out] MUGI generator

* @param key [In] 128 bit key

* @param IV [In] 128 bit IV

* @returns MUGI_OK on success

*/

int mugi_init(MugiCtx* m, word32* key, word32* IV);

/**

* Extract a 64-bit word from the MUGI PRNG

* @param m [In/Out] MUGI generator

* @returns pseudo-random word

*/

word64 mugi_update(MugiCtx *m);

#ifdef __cplusplus

}

#endif

#endif

242 Appendix E. Implementation of MUGI-M

The following code is the source file for an implementation of MUGI-M de-
scribed in Chapter 6

/**

* @file mugi.c

* Reference implementation of cipher MUGI

* @author Matt Henricksen, copyright asserted 2005

*/

#include "mugi.h"

#define ROTATE_LEFT(x, r) ((x << r) | (x >> (64-r)))

/* Core function to the MUGI cipher */

word64 F(word64 a, word64 b)

{

word64 x = a ^ b;

word64 y = 0, y0, y1, z;

/* starting from the right-most byte, push the first

* first four bytes through the combined s-boxes/MDS */

FOUR_SBOXES(x, y)

y0 = y;

y = 0;

/* push the last four bytes through the s-boxes/MDS */

FOUR_SBOXES(x, y)

y1 = y;

/* execute the permutation */

z = (y0 << 32 | y0) & 0xFFFF00000000FFFF;

y1 = (y1 << 32 | y1) & 0x0000FFFFFFFF0000;

z |= y1;

return z;

}

/* RHO: state update function */

/* inputs: a - internal state */

/* b1 - buffer word 1 */

/* b2 - buffer word 2 */

/* tmp - temporary word */

#define RHO(a, b1, b2, tmp) \

tmp = a[2]; \

243

a[2] = a[0] ^ F(a[1], ROTATE_LEFT(b2, 17)) ^ C2; \

a[0] = a[1]; \

a[1] = tmp ^ F(a[1], b1) ^ C0;

#define OFFSET(base, offset) ((base + offset) & 0xF)

#define BUF(m, x) m->b[OFFSET(x, m->offset)]

/* LAMBDA: buffer update function */

/* inputs: m - context */

/* tmp - temporary word */

#define LAMBDA(m, tmp) \

tmp = ROTATE_LEFT(BUF(m, MUGI_TAP2), 32); \

m->offset--; \

BUF(m, MUGI_TAP2_TARGET) ^= tmp; \

BUF(m, MUGI_TAP1_TARGET) ^= BUF(m, MUGI_TAP1); \

BUF(m, 0) ^= m->a[0];

/**

* Initialize the MUGI PRNG

* @param m [In/Out] MUGI generator

* @param key [In] 192 bit key

* @param IV [In] 192 IV

* @returns MUGI_OK on success

*/

int mugi_init(MugiCtx* m, word32* k, word32* IV, int)

{

word64 temp;

int idx = 0;

m->offset = 0;

/* Phase 1: Master Key Injection */

m->a[0] = (k[0] << 32) | k[1];

m->a[1] = (k[2] << 32) | k[3];

m->a[2] = ROTATE_LEFT(m->a[0], 7) ^ ROTATE_LEFT(m->a[0], 57) ^ C0;

/* Phase 2: State Mixing and Buffer Initialization */

for (idx = 1; idx <= BUFFER_SIZE; idx++) {

RHO(m->a, 0, 0, temp);

m->b[BUFFER_SIZE-idx] = m->a[2];

}

/* Phase 3: Initialization Vector Injection */

244 Appendix E. Implementation of MUGI-M

temp = *(word64*)IV;

m->a[0] ^= temp;

m->a[2] ^= ROTATE_LEFT(temp, 7);

temp = *(word64*)(IV+1);

m->a[1] ^= temp;

m->a[2] ^= ROTATE_LEFT(temp, 57) ^ C1;

#ifdef _STANDARD_MUGI_ /* omitted from MUGI-M */

/* Phase 4: Further State Mixing */

for (idx = 0; idx < BUFFER_SIZE; idx++) {

RHO(m->a, 0, 0, temp);

}

#endif

/* Phase 5: State and Buffer Mixing */

for (idx = 0; idx < BUFFER_SIZE; idx++) {

mugi_update(m);

}

return 0;

}

/**

* Extract a 64-bit word from the MUGI PRNG

* @param m [In/Out] MUGI generator

* @returns pseudo-random word

*/

word64 mugi_update(MugiCtx *m)

{

word64 t1 = BUF(m, MUGI_TAP1_TARGET);

word64 t2 = BUF(m, MUGI_TAP2_TARGET);

word64 res = m->a[2];

word64 temp = 0;

LAMBDA(m, temp);

RHO(m->a, t1, t2, temp);

return res;

}

Bibliography

[1] Carlisle Adams. The CAST-128 encryption algorithm, May 1997. RFC

2144, Available at www.faqs.org/rfcs/rfc2144.html.

[2] Carlisle Adams. Designing aginst the Overdefined System of Equations

Attack, May 2004. Available at http://eprint.iacr.org/2004/110/.

[3] Carlisle Adams and Jeff Gilchrist. The CAST-256 encryption algorithm,

June 1999. RFC 2612, Available at www.faqs.org/rfcs/rfc2612.html.

[4] Ron Anderson, Eli Biham, and Lars Knudsen. Serpent: A

proposal for the Advanced Encryption Standard. Available at

http://www.cl.cam.ac.uk/ rja14/serpent.html.

[5] Anonymous. RC4 algorithm revealed. Posting to sci.crypt

usenet group on 14 September, 1994. Available at

ftp://idea.sec.dsi.unimi.it/pub/security/crypt/code/rc4.revealed.gz.

[6] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui,

Shiho Moriai, Junko Nakahima, and Toshio Tokito. Camellia: A 128-bit

block cipher suitable for multiple platforms. In Doug Stinson and Stafford

Tavares, editors, Selected Areas in Cryptography - SAC’2000, volume 2012

of Lecture Notes in Computer Science, pages 39–56. Springer-Verlag, 2002.

[7] Frederik Armknecht. A linearization attack on the Bluetooth keystream

generator. Cryptology ePrint Archive, Report 2002/191, 2002. Available at

http://eprint.iarc.org/2002/191.

[8] Frederik Armknecht. Improving fast algebraic attacks. In Bimal Roy and

Willi Meier, editors, Proceedings of the 11th International Workshop on Fast

Software Encryption, volume 3017 of Lecture Notes in Computer Science,

pages 65–82. Springer-Verlag, 2004.

245

246 BIBLIOGRAPHY

[9] Paulo Barreto and Vincent Rijmen. The

ANUBIS Block Cipher, 2001. Available at

https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions.html.

[10] Paulo Barreto, Vincent Rijmen, Jorge Nakahara Jr., Bart Preneel, Joos

Vandewalle, and Hae Kim. Improved SQUARE attacks against reduced-

round HIEROCRYPT. In Mitsuru Matsui, editor, Proceedings of the 8th

International Workshop on Fast Software Encryption, volume 2355 of Lec-

ture Notes in Computer Science, pages 165–173. Springer-Verlag, 2001.

[11] Larry Bassham. Efficiency testing of ANSI C implementations of round 2

candidate algorithms for the Advanced Encryption Standard. In Proceed-

ings from the Third Advanced Encryption Standard Candidate Conference,

National Institute of Standards and Technology (NIST), April 2000. Avail-

able at http://csrc.nist.gov/encryption/aes/.

[12] Olivier Baudron, Henri Gilbert, Louis Granboulan, Helena Handschuh, An-

toine Joux, Phong Nguyen, Fabrice Noilhan, David Pointcheval, Thomas

Pornin, Guillaume Poupard, Jacques Stern, and Serge Vaudenay. Report

on the AES Candidates, 1999. Available at http://www.nist.gov/aes.

[13] Elwyn Berlekamp, Hal Fredricksen, and R Proto. Minimum conditions for

uniquely determining the generator of a linear sequence. Utilitas Math,

5:305–315, 1974.

[14] Eli Biham. New types of cryptanalytic attacks using related keys. Journal

of Cryptology, 7(4):229–246, 1994.

[15] Eli Biham. On Matsui’s linear cryptanalysis. In Alfredo de Santis, editor,

Advances in Cryptology - Proceedings of EUROCRYPT 94, volume 950 of

Lecture Notes in Computer Science, pages 398–412. Springer-Verlag, 1994.

[16] Eli Biham, Alex Biryukov, Niels Ferguson, Lars Knudsen, and Bruce

Schneier. Cryptanalysis of MAGENTA. In Proceedings from the Sec-

ond Advanced Encryption Standard Candidate Conference, National In-

stitute of Standards and Technology (NIST), March 1999. Available at

http://csrc.nist.gov/encryption/aes/.

[17] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack

reduced to 31 rounds using impossible differentials. In Jacques Stern, editor,

BIBLIOGRAPHY 247

Advances in Cryptology - Proceedings of EUROCRYPT 99, volume 1592 of

Lecture Notes in Computer Science, pages 12–23. Springer-Verlag, 1999.

[18] Eli Biham, Alex Biryukov, and Adi Shamir. Miss in the middle attacks on

IDEA and Khufu. In Lars Knudsen, editor, Proceedings of the 6th Inter-

national Workshop on Fast Software Encryption, volume 1636 of Lecture

Notes in Computer Science, pages 124–137. Springer-Verlag, 1999.

[19] Eli Biham, Orr Dunkelman, and Nathan Keller. Linear cryptanalysis of

reduced round Serpent. In Mitsuru Matsui, editor, Proceedings of the 8th

International Workshop on Fast Software Encryption, volume 2355 of Lec-

ture Notes in Computer Science, pages 16–27. Springer-Verlag, 2001.

[20] Eli Biham, Orr Dunkelman, and Nathan Keller. The Rectangle Attack -

Rectangling the Serpent. In Birgit Pfitzmann, editor, Advances in Cryp-

tology - Proceedings of EUROCRYPT 2001, volume LNCS 2045 of Lecture

Notes in Computer Science, pages 340–357. Springer-Verlag, 2001.

[21] Eli Biham, Orr Dunkelman, and Nathan Keller. Enhancing differential-

linear cryptanalysis. In Yuliang Zheng, editor, Advances in Cryptology -

Proceedings of Asiacrypt 2002, volume 2501 of Lecture Notes in Computer

Science, pages 254–266. Springer-Verlag, 2002.

[22] Eli Biham, Orr Dunkelman, and Nathan Keller. Differential-linear crypt-

analysis of Serpent. In Joan Daemen and Vincent Rijmen, editors, Pro-

ceedings of the 9th International Workshop on Fast Software Encryption,

volume 2365 of Lecture Notes in Computer Science, pages 9–21. Springer-

Verlag, 2003.

[23] Eli Biham, Orr Dunkelman, and Nathan Keller. New results on boomerang

and rectangle attacks. In Joan Daemen and Vincent Rijmen, editors, Pro-

ceedings of the 9th International Workshop on Fast Software Encryption,

volume 2365 of Lecture Notes in Computer Science, pages 1–16. Springer-

Verlag, 2003.

[24] Eli Biham, Orr Dunkelman, and Nathan Keller. Rectangle attacks on 49-

round SHACAL-1. In Joan Daemen and Vincent Rijmen, editors, Pro-

ceedings of the 9th International Workshop on Fast Software Encryption,

248 BIBLIOGRAPHY

volume 2365 of Lecture Notes in Computer Science, pages 22–35. Springer-

Verlag, 2003.

[25] Eli Biham, Vladimir Furman, Michael Misztal, and Vincent Rijmen. Dif-

ferential cryptanalysis of Q. In Mitsuru Matsui, editor, Proceedings of the

8th International Workshop on Fast Software Encryption, volume 2355 of

Lecture Notes in Computer Science, pages 174–186. Springer-Verlag, 2001.

[26] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryp-

tosystems. Journal of Cryptology, 4(1):3–72, 1991.

[27] Alex Biryukov. Methods of Cryptanalysis. PhD thesis, Technion Institute

of Technology, Israel, 1999.

[28] Alex Biryukov and Christophe De Cannière. Block ciphers and systems

of quadratic equations. In Joan Daemen and Vincent Rijmen, editors,

Proceedings of the 9th International Workshop on Fast Software Encryp-

tion, volume 2365 of Lecture Notes in Computer Science, pages 274–289.

Springer-Verlag, 2003.

[29] Alex Biryukov, Christophe De Cannière, and Gustaf Dellkrantz. Crypt-

analysis of SAFER++. In Dan Boneh, editor, Advances in Cryptology -

Proceedings of CRYPTO 2003, volume 2729 of Lecture Notes in Computer

Science, pages 195–211. Springer-Verlag, 2003.

[30] Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data Trade-

offs for Stream Ciphers. In Tatsuaki Okamoto, editor, Advances in Cryp-

tology - Proceedings of Asiacrypt 2000, volume 1976 of Lecture Notes in

Computer Science, pages 1–13. Springer-Verlag, 2000.

[31] Alex Biryukov, Adi Shamir, and David Wagner. Real time cryptanalysis

of A5/1 on a PC. In Bruce Schneier, editor, Proceedings of the 7th Inter-

national Workshop on Fast Software Encryption, volume 1978 of Lecture

Notes in Computer Science, pages 1–18. Springer-Verlag, 2000.

[32] Alex Biryukov and David Wagner. Slide attacks. In Lars Knudsen, editor,

Proceedings of the 6th International Workshop on Fast Software Encryp-

tion, volume 1636 of Lecture Notes in Computer Science, pages 245–259.

Springer-Verlag, 1999.

BIBLIOGRAPHY 249

[33] Alex Biryukov and David Wagner. Advanced slide attacks. In Bart Preneel,

editor, Advances in Cryptology - Proceedings of EUROCRYPT 2000, vol-

ume 1807 of Lecture Notes in Computer Science, pages 589–606. Springer-

Verlag, 2000.

[34] Martin Boesgaard, Mette Vesterager, Thomas Pedersen, Jesper Chris-

tiansen, and Ove Scavenius. Rabbit: a new high-performance stream cipher.

In Joan Daemen and Vincent Rijmen, editors, Proceedings of the 9th In-

ternational Workshop on Fast Software Encryption, volume 2365 of Lecture

Notes in Computer Science, pages 325–344. Springer-Verlag, 2003.

[35] Nikita Borisov, Monica Chew, Rob Johnson, and David Wagner. Multi-

plicative differentials. In Joan Daemen and Vincent Rijmen, editors, Pro-

ceedings of the 9th International Workshop on Fast Software Encryption,

volume 2365 of Lecture Notes in Computer Science, pages 17–33. Springer-

Verlag, 2003.

[36] Johan Borst. The Block Cipher: GRAND CRU, 2001. Available at

https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions.html.

[37] Marc Briceno, Ian Goldberg, and David Wagner. A Pedagogical Implemen-

tation of A5/1, May 1999. Available at http://www.scard.org.

[38] Laurie Brown, Matthew Kwan, Josef Pieprzyk, and Jennifer Seberry. Im-

proving resistance to differential cryptanalysis and the redesign of LOKI. In

Hideki Imai, Ronald Rivest, and Tsutomu Matsumoto, editors, Advances in

Cryptology - Proceedings of ASIACRYPT ’91, volume 739 of Lecture Notes

in Computer Science, pages 36–50. Springer-Verlag, 1991.

[39] Laurie Brown and Josef Pieprzyk. Introducing the new LOKI97 block ci-

pher. In Proceedings from the First Advanced Encryption Standard Candi-

date Conference, National Institute of Standards and Technology (NIST),

August 1998. Available at http://csrc.nist.gov/encryption/aes/.

[40] Laurie Brown, Josef Pieprzyk, and Jennifer Seberry. LOKI - a crypto-

graphic primitive for authentication and secrecy applications. In Jennifer

Seberry and Josef Pieprzyk, editors, Advances in Cryptology - Proceedings

of AUSCRYPT ’90, volume 753 of Lecture Notes in Computer Science,

pages 229–236. Springer-Verlag, 1990.

250 BIBLIOGRAPHY

[41] Linda Burnett, Gary Carter, Ed Dawson, and William Millan. Efficient

methods for generating MARS-like s-boxes. In Bruce Schneier, editor,

Proceedings of the 7th International Workshop on Fast Software Encryp-

tion, volume 1978 of Lecture Notes in Computer Science, pages 300–314.

Springer-Verlag, 2000.

[42] Carolynn Burwick, Don Coppersmith, Edward D’Avignon, Rosario Gen-

naro, Shai Halevi, Charanjit Jutla, Stephen Matyas Jr, Luke O’Connor,

Mohammad Peyravian, David Safford, and Nevenko Zunic. MARS

— A Candidate Cipher for AES. In Proceedings from the First

Advanced Encryption Standard Candidate Conference, National Insti-

tute of Standards and Technology (NIST), August 1998. Available at

http://csrc.nist.gov/encryption/aes/.

[43] Christophe De Cannière. Guess and determine attack on SOBER. Public

report, NESSIE, NES/DOC/KUL/WP5/010, 2001.

[44] Christophe De Cannière, Joseph Lano, Bart Preneel, and Joos Vandewalle.

Distinguishing attacks on SOBER-t32. Proceedings of the Third NESSIE

workshop, 2002.

[45] Gary Carter. The Design, Analysis and Categorization of Block Ciphers

and Their Components. PhD thesis, Information Security Research Centre,

Queensland University of Technology, May 1999.

[46] Gary Carter, Ed Dawson, and Lauren Nielsen. Key schedules of iterative

block ciphers. In Colin Boyd and Ed Dawson, editors, Proceedings of In-

formation Security and Privacy - 3rd Australasian Conference, ACISP’98,

volume 1438 of Lecture Notes in Computer Science, pages 80–89. Springer-

Verlag, July 1998.

[47] William Chambers. On random mappings and random permutations. In

Bart Preneel, editor, Proceedings of the 2nd International Workshop on Fast

Software Encryption, volume 1008 of Lecture Notes in Computer Science,

pages 22–28. Springer-Verlag, 1995.

[48] Kevin Chen, Matt Henricksen, Leonie Simpson, William Millian, and

Ed Dawson. Dragon: A fast word based cipher. In Information Secu-

BIBLIOGRAPHY 251

rity and Cryptology - ICISC ’04 - Seventh International Conference, 2004.

To appear in Lecture Notes in Computer Science.

[49] Don Coppersmith, Shai Halevi, and Charanjit Jutla. Cryptanalysis of

stream ciphers with linear masking. In Moti Yung, editor, Advances in

Cryptology - Proceedings of CRYPTO 2002, volume 2442 of Lecture Notes

in Computer Science, pages 515–532. Springer-Verlag, 2002.

[50] Don Coppersmith, Hugo Krawczyk, and Yishay Mansour. The Shrinking

Generator. In Doug Stinson, editor, Advances in Cryptology - Proceedings

of CRYPTO 93, volume 773 of Lecture Notes in Computer Science, pages

22–39. Springer-Verlag, 1994.

[51] Nicholas Courtois. Higher order correlation attacks, XL algorithm and

cryptanalysis of Toyocrypt. Cryptology ePrint Archive, Report 2002/087,

2002. Available at http://eprint.iarc.org/2002/087.

[52] Nicolas Courtois. Algebraic attacks on combiners with memory and several

outputs, 2003. Available at http://eprint.iacr.org/2003/125.pdf.

[53] Nicolas Courtois. Fast algebraic attacks on stream ciphers with linear

feedback. In Dan Boneh, editor, Advances in Cryptology - Proceedings of

CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages

177–194. Springer-Verlag, 2003.

[54] Nicolas Courtois and Willi Meier. Algebraic attacks on stream ciphers with

linear feedback. In Eli Biham, editor, Advances in Cryptology - Proceedings

of EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science,

pages 345–359. Springer-Verlag, 2003.

[55] Nicolas Courtois and Jacques Patarin. About the XL Algorithm over GF(2).

In Marc Joye, editor, Proceedings of RSA Conference 2003, volume 2612 of

Lecture Notes in Computer Science, pages 141–157. Springer-Verlag, 2003.

[56] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of block ciphers with

overdefined systems of equations. In Yuliang Zheng, editor, Advances in

Cryptology - Proceedings of Asiacrypt 2002, volume 2501 of Lecture Notes

in Computer Science, pages 267–287. Springer-Verlag, 2002.

252 BIBLIOGRAPHY

[57] Joan Daemen. Cipher and hash function design strategies based upon on

linear and differential cryptanalysis. PhD thesis, K.U. Leuven, March 1995.

[58] Joan Daemen and Craig Clapp. Fast hashing and stream encryption with

PANAMA. In Serge Vaudenay, editor, Proceedings of the 5th International

Workshop on Fast Software Encryption, volume 1372 of Lecture Notes in

Computer Science, pages 60–74. Springer-Verlag, 1998.

[59] Joan Daemen, René Govaerts, and Joos Vandewalle. Weak keys for IDEA.

In Doug Stinson, editor, Advances in Cryptology - Proceedings of CRYPTO

93, volume 773 of Lecture Notes in Computer Science, pages 224–231.

Springer-Verlag, 1994.

[60] Joan Daemen, Lars Knudsen, and Vincent Rijmen. The block cipher

SQUARE. In Eli Biham, editor, Proceedings of the 4th International Work-

shop on Fast Software Encryption, volume 1267 of Lecture Notes in Com-

puter Science, pages 149–165. Springer-Verlag, 1997.

[61] Joan Daemen, Michael Peeters, Gilles Van Assche, and Vincent

Rijmen. Nessie Proposal: NOEKEON, 2001. Available at

https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions.html.

[62] Joan Daemen and Vincent Rijmen. Rijndael. In Proceedings from the

First Advanced Encryption Standard Candidate Conference, National In-

stitute of Standards and Technology (NIST), August 1998. Available at

http://csrc.nist.gov/encryption/aes/.

[63] Ed Dawson, Gary Carter, Helen Gustafson, Matt Henricksen, William Mil-

lan, and Leonie Simpson. Evaluation of the MUGI psuedo-random

number generator. Technical report, CRYPTREC, Information

Technology Promotion Agency (IPA), Tokyo, Japan, 2002. Avail-

able at www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1035 IPA-

MUGI report final.pdf.

[64] Ed Dawson, Andrew Clark, Jovan Golic, William Millan, Lyta Penna, and

Leonie Simpson. The LILI-128 Keystream Generator. In Doug Stinson and

Stafford Tavares, editors, Selected Areas in Cryptography - SAC’2000, vol-

ume 2012 of Lecture Notes in Computer Science, pages 248–261. Springer-

Verlag, 2002.

BIBLIOGRAPHY 253

[65] Carl D’Halluin, Gert Bijnens, Vincent Rijmen, and Bart Preneel. Attack

on six rounds of Crypton. In Lars Knudsen, editor, Proceedings of the

6th International Workshop on Fast Software Encryption, volume 1636 of

Lecture Notes in Computer Science, pages 46–59. Springer-Verlag, 1999.

[66] Markus Dichtl and Marcus Schafheutle. Linearity properties of SOBER-

t32 key loading. In Joan Daemen and Vincent Rijmen, editors, Proceedings

of the 9th International Workshop on Fast Software Encryption, volume

2365 of Lecture Notes in Computer Science, pages 225–230. Springer-Verlag,

2003.

[67] Patrik Ekdahl and Thomas Johansson. Snow - a new stream cipher, 2000.

Available at http://www.it.lth.se/cryptology/snow/.

[68] Patrik Ekdahl and Thomas Johansson. A new version of the stream ci-

pher SNOW. In Kaisa Nyberg and Howard Heys, editors, Selected Areas

in Cryptography - SAC’2002, volume 2592 of Lecture Notes in Computer

Science, pages 47–61. Springer-Verlag, 2003.

[69] Patrik Ekdahl and Thomas Johansson. Distinguishing attacks on SOBER-

t16 and t32. In Joan Daemen and Vincent Rijmen, editors, Proceedings

of the 9th International Workshop on Fast Software Encryption, volume

2365 of Lecture Notes in Computer Science, pages 210–224. Springer-Verlag,

2003.

[70] Electronic Frontier Foundation. DES Cracker, July 1998. Available at

http://www.eff.org/Privacy/Crypto misc/DESCracker.

[71] The European Commission Community Research Information Societies

Technology Programme. NESSIE-call for cryptographic primitives, 2000.

Available at www.cosic.esat.luleuven.ac.be/nessie.

[72] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schenier, Mike Stay,

David Wagner, and Doug Whiting. Improved cryptanalysis of Rijndael.

In Bruce Schneier, editor, Proceedings of the 7th International Workshop

on Fast Software Encryption, volume 1978 of Lecture Notes in Computer

Science, pages 213–230. Springer-Verlag, 2000.

254 BIBLIOGRAPHY

[73] Niels Ferguson, Doug Whiting, Bruce Schneier, John Kelsey, Stefan Lucks,

and Tadayoshi Kohno. Helix: fast encryption and authentication in a sin-

gle cryptographic primitive. In Joan Daemen and Vincent Rijmen, editors,

Proceedings of the 9th International Workshop on Fast Software Encryp-

tion, volume 2365 of Lecture Notes in Computer Science, pages 345–361.

Springer-Verlag, 2003.

[74] Scott Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the key

scheduling algorithm of RC4. In Mitsuru Matsui, editor, Proceedings of

the 8th International Workshop on Fast Software Encryption, volume 2355

of Lecture Notes in Computer Science, pages 1–24. Springer-Verlag, 2001.

[75] Scott Fluhrer and David McGrew. Statistical analysis of the alleged RC4

keystream generator. In Bruce Schneier, editor, Proceedings of the 7th In-

ternational Workshop on Fast Software Encryption, volume 1978 of Lecture

Notes in Computer Science, pages 19–30. Springer-Verlag, 2000.

[76] Joanne Fuller and William Millan. Linear redundancy in s-boxes. In Joan

Daemen and Vincent Rijmen, editors, Proceedings of the 9th International

Workshop on Fast Software Encryption, volume 2365 of Lecture Notes in

Computer Science, pages 74–86. Springer-Verlag, 2003.

[77] Joanne Fuller, William Millan, and Ed Dawson. Efficient implementation

for analysis of cryptographic boolean functions. In 13th Australian Work-

shop On Combinatorial Algorithms, Fraser Island, Australia, 2002.

[78] Dianelous Georgoudis, Damian Leroux, and Billy Simon Chaves. The

FROG encryption algorithm. In Proceedings from the First Ad-

vanced Encryption Standard Candidate Conference, National Institute

of Standards and Technology (NIST), August 1998. Available at

http://csrc.nist.gov/encryption/aes/.

[79] Richard Gerber. The Software Optimization Cookbook. Intel Press, 2002.

[80] Brian Gladman. AES second round implementation experience. In Proceed-

ings from the Second Advanced Encryption Standard Candidate Conference,

National Institute of Standards and Technology (NIST), March 1999. Avail-

able at http://csrc.nist.gov/encryption/aes/.

BIBLIOGRAPHY 255

[81] Jovan Golic. Cryptanalysis of Alleged A5 Stream Cipher. In Walter Fumy,

editor, Advances in Cryptology - Proceedings of EUROCRYPT 97, volume

1233 of Lecture Notes in Computer Science, pages 239–255. Springer-Verlag,

1997.

[82] Jovan Golic. Linear statistical weakness of alleged RC4 keystream genera-

tor. In Walter Fumy, editor, Advances in Cryptology - Proceedings of EU-

ROCRYPT 97, volume 1233 of Lecture Notes in Computer Science, pages

226–238. Springer-Verlag, 1997.

[83] Jovan Golic. Security evaluation of MUGI. Technical report, CRYPTREC,

Information Technology Promotion Agency (IPA), Japan, Tokyo, 2002.

[84] Jovan Golic and Luke O’Connor. Embedding and Probabilistic Correlation

Attacks on Clock-Controlled Shift Registers. In Alfredo de Santis, editor,

Advances in Cryptology - Proceedings of EUROCRYPT 94, volume 950 of

Lecture Notes in Computer Science, pages 230–243. Springer-Verlag, 1994.

[85] Louis Granboulan, Phong Q. Nguyen, Fabrice Noilhan, and Serge Vaude-

nay. DFCv2. In Doug Stinson and Stafford Tavares, editors, Selected Areas

in Cryptography - SAC’2000, volume 2012 of Lecture Notes in Computer

Science, pages 57–71. Springer-Verlag, 2002.

[86] Alex Grosul and David Wallach. A related key cryptanalysis of RC4. Tech-

nical report, TR-00-358, Department of Computer Science, Rice University,

2002.

[87] Helen Gustafson, Ed Dawson, Lauren Nielsen, and William Caelli. A com-

puter package for measuring the strength of ciphers. Journal of Computers

and Security, 13(8):687–697, 1997.

[88] Shai Halevi, Don Coppersmith, and Charanjit Jutla. Scream: a software-

efficient stream cipher. In Joan Daemen and Vincent Rijmen, editors,

Proceedings of the 9th International Workshop on Fast Software Encryp-

tion, volume 2365 of Lecture Notes in Computer Science, pages 195–209.

Springer-Verlag, 2003.

[89] Helena Handschuh and David Naccache. SHACAL, 2001. Available at

https://www.cosic.esat.kuleuven.ac.be/nessie/tweaks.html/shacal tweak.pdf.

256 BIBLIOGRAPHY

[90] Carlo Harpes, Gerhard Kramer, and James Massey. A generalization of

linear cryptanalysis and the applicability of Matsui’s Piling-up lemma. In

Louis Guillou and Jean-Jacques Quisquater, editors, Advances in Cryp-

tology - Proceedings of EUROCRYPT 95, volume 921 of Lecture Notes in

Computer Science, pages 24–38. Springer-Verlag, 1995.

[91] Carlo Harpes and James Massey. Partitioning cryptanalysis. In Eli Biham,

editor, Proceedings of the 4th International Workshop on Fast Software

Encryption, volume 1267 of Lecture Notes in Computer Science, pages 13–

27. Springer-Verlag, 1997.

[92] Johan H̊astad and Mats Näslund. BMGL: synchronous

keystream generator with provable security, 2001. Available at

https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions.html.

[93] Philip Hawkes and Greg Rose. Primitive specification and support-

ing documentation for Sober t-32, 2000. Submission to NESSIE at

https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/sober-

t32.zip.

[94] Philip Hawkes and Greg Rose. Primitive specification and

supporting documentation for the SOBER-t32 submission to

NESSIE, 2000. Available at http://www.cosic.esat.kuleuven.ac.be/

nessie/workshop/submissions/sobert-32.zip.

[95] Philip Hawkes and Greg Rose. Guess and determine attacks on SNOW. In

Kaisa Nyberg and Howard Heys, editors, Selected Areas in Cryptography -

SAC’2002, volume 2592 of Lecture Notes in Computer Science, pages 37–46.

Springer-Verlag, 2003.

[96] Philip Hawkes and Gregory Rose. Rewriting variables: the complex-

ity of fast algebraic attacks on stream ciphers, 2004. Available at

http://eprint.iacr.org/2004/081.pdf.

[97] Matt Henricksen. LibCipher software library for the Intel Pentium family,

2004. Available on request.

[98] Deukjo Hong, Jaechul Sung, Shiho Moriai, SangjinLee, and Jongin Lim.

Impossible differential cryptanalysis of Zodiac. In Mitsuru Matsui, editor,

BIBLIOGRAPHY 257

Proceedings of the 8th International Workshop on Fast Software Encryp-

tion, volume 2355 of Lecture Notes in Computer Science, pages 300–311.

Springer-Verlag, 2001.

[99] Russ Housely and Doug Whiting. Wep fix using rc4 fast packet keying,

2002. Available at http://www.rsasecurity/rsalabs/technotes.

[100] IEEE Standards Association. IEEE 802.11 Specification, 1999. Available

at http://standards.ieee.org/getieee802/802.11.html.

[101] Intel Corporation. IA-32 Intel Architecture Software Developers Manual

Volume 1: Basic Architecture. Intel Press, 2001.

[102] Intel Corporation. IA-32 Intel Architecture Software Developers Manual

Volume 2: Instruction Set Reference. Intel Press, 2001.

[103] Intel Corporation. IA-32 Intel Architecture Software Developers Manual

Volume 3: System Programming Guide. Intel Press, 2001.

[104] Intel Corporation. Intel Architecture Optimization Reference Manual. Intel

Press, 2001.

[105] Intel Corporation. Intel Pentium 4 and Intel Xeon Processor Optimization

Reference Manual. Intel Press, 2001.

[106] Internet Engineering Task Force. IP Security Protocol (IPsec), 2004. Avail-

able at http://www.ietf.org/html.charters/ipsec-charter.html.

[107] Thomas Jakobsen and Lars Knudsen. The interpolation attack on block

ciphers. In Eli Biham, editor, Proceedings of the 4th International Workshop

on Fast Software Encryption, volume 1267 of Lecture Notes in Computer

Science, pages 28–40. Springer-Verlag, 1997.

[108] Japanese Information Techology Promotion Agency. CRYPTREC:

Call for Cryptographic Techniques in 2001, June 2000. Available at

http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html#P2.

[109] Japanese Information Techology Promotion Agency.

CRYPTREC Report 2002, 2003. Available at

http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/ cryp-

trec20030829 report01e.html.

258 BIBLIOGRAPHY

[110] Burt Kaliski Jr and Matt Robshaw. Linear cryptanalysis using multiple ap-

proximations. In Bart Preneel, editor, Proceedings of the 2nd International

Workshop on Fast Software Encryption, volume 1008 of Lecture Notes in

Computer Science, pages 249–264. Springer-Verlag, 1995.

[111] Jorge Nakahara Jr. Cryptanalysis and Design of Block Ciphers. PhD thesis,

Katholieke Universiteit Leuven, June 2003.

[112] Jorge Nakahara Jr, Paulo Barreto, Bart Preneel, Joos Vandewalle, and

Hae Kim. SQUARE attacks against Reduced-Round PES and IDEA Block

Ciphers, 2001. IACR Cryptology ePrint Archive, Report 2001/068.

[113] Michael Jacobson Jr and Klaus Huber. The Magenta block cipher algo-

rithm. In Proceedings from the First Advanced Encryption Standard Can-

didate Conference, National Institute of Standards and Technology (NIST),

August 1998. Available at http://csrc.nist.gov/encryption/aes/.

[114] Pascal Junod. On the complexity of Matsui’s attack. In Serge Vaudenay and

A M Youssef, editors, Selected Areas in Cryptography - SAC’2001, volume

2259 of Lecture Notes in Computer Science, pages 199–211. Springer-Verlag,

2002.

[115] Pascal Junod and Serge Vaudenay. FOX: a new family of block ciphers. In

Selected Areas in Cryptography (SAC’04), pages 15–29, 2004. To appear.

[116] Charanjit Jutla. Encryption modes with almost free message integrity, 2000.

Available at http://eprint.iacr.org/2000/039.

[117] John Kam and George Davida. Structured design of substitution-

permutation encryption networks. IEEE Transactions on Computers,

28(10):747–753, October 1979.

[118] Takeshi Kawabata and Toshinobu Kaneko. A study on higher order differen-

tial attack on Camellia. In Proceedings of the 2nd Open NESSIE Workshop,

September 2001.

[119] Liam Keliher, Henk Meijer, and Stafford Tavares. High probability linear

hulls in Q. In Proceedings of the 2nd Open NESSIE Workshop, September

2001.

BIBLIOGRAPHY 259

[120] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang

attacks against reduced MARS and Serpent. In Bruce Schneier, editor,

Proceedings of the 7th International Workshop on Fast Software Encryption,

volume 1978 of Lecture Notes in Computer Science, pages 75–93. Springer-

Verlag, 2000.

[121] John Kelsey, Bruce Schneier, and David Wagner. Key-schedule cryptanaly-

sis of IDEA, G-DES, GOST, SAFER, and Triple-DES. In Neal Koblitz, ed-

itor, Advances in Cryptology - Proceedings of CRYPTO 96, volume 1109 of

Lecture Notes in Computer Science, pages 237–251. Springer-Verlag, 1996.

[122] John Kelsey, Bruce Schneier, and David Wagner. Related-key cryptanaly-

sis of 3-Way, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In

Yongfei Han, Tatsuaki Okamoto, and Sihan Qing, editors, Information

and Communications Security, First International Conference Proceedings,

pages 233–246. Springer-Verlag, 1997.

[123] John Kelsey, Bruce Schneier, and David Wagner. Key-schedule weakness

in SAFER+. In Proceedings from the Second Advanced Encryption Stan-

dard Candidate Conference, National Institute of Standards and Technology

(NIST), March 1999. Available at http://csrc.nist.gov/encryption/aes/.

[124] John Kelsey, Bruce Schneier, and David Wagner. Mod n Cryptanaly-

sis, with Applications against RC5P and M6. In Lars Knudsen, editor,

Proceedings of the 6th International Workshop on Fast Software Encryp-

tion, volume 1636 of Lecture Notes in Computer Science, pages 139–155.

Springer-Verlag, 1999.

[125] Jongsung Kim, Dukjae Moon, Wonil Lee, Seokhie Hong, Sangjin Lee, and

Seokwon Jung. Amplified boomerang attack against reduced-round SHA-

CAL. In Yuliang Zheng, editor, Advances in Cryptology - Proceedings of

Asiacrypt 2002, volume 2501 of Lecture Notes in Computer Science, pages

243–253. Springer-Verlag, 2002.

[126] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE Public Key Cryp-

tosystem by Relinearization. In Michael Wiener, editor, Advances in Cryp-

tology - Proceedings of CRYPTO 99, volume 1666 of Lecture Notes in Com-

puter Science, pages 19–30. Springer-Verlag, 1999.

260 BIBLIOGRAPHY

[127] Vlastimil Klima. Cryptanalysis of Hiji-Bij-Bij (HBB), January 2005. Avail-

able at http://eprint.iacr.org/2005/03/.

[128] Alexander Klimov and Adi Shamir. New Cryptographic Primitives Based

on Multiword T-Functions. In Bimal Roy and Willi Meier, editors, Pro-

ceedings of the 11th International Workshop on Fast Software Encryption,

volume 3017 of Lecture Notes in Computer Science, pages 1–15. Springer-

Verlag, 2004.

[129] Lars Knudsen. Cryptanalysis of LOKI. In Advances in Cryptology - Pro-

ceedings of AUSCRYPT ’92, volume 718 of Lecture Notes in Computer

Science, pages 196–208. Springer-Verlag, 1992.

[130] Lars Knudsen. New potentially weak keys for DES and LOKI. In Al-

fredo de Santis, editor, Advances in Cryptology - Proceedings of EURO-

CRYPT 94, volume 950 of Lecture Notes in Computer Science, pages 419–

424. Springer-Verlag, 1994.

[131] Lars Knudsen. Practically secure Feistel ciphers. In Proceedings of the

1st International Workshop on Fast Software Encryption, volume 809 of

Lecture Notes in Computer Science, pages 211–221. Springer-Verlag, 1994.

[132] Lars Knudsen. A key-schedule weakness in SAFER K-64. In Don Copper-

smith, editor, Advances in Cryptology - Proceedings of CRYPTO 95, volume

963 of Lecture Notes in Computer Science, pages 274–286. Springer-Verlag,

1995.

[133] Lars Knudsen. Truncated and higher order differentials. In Bart Preneel,

editor, Proceedings of the 2nd International Workshop on Fast Software

Encryption, volume 1008 of Lecture Notes in Computer Science, pages 196–

211. Springer-Verlag, 1995.

[134] Lars Knudsen. Deal: A 128-bit block cipher. Technical Report 151, De-

partment of Informatics,University of Bergen, Norway, Feb 1998. Available

at citeseer.ist.psu.edu/knudsen98deal.html.

[135] Lars Knudsen and Vincent Rijmen. On the Decorrelated Fast Cipher (DFC)

and its theory. In Lars Knudsen, editor, Proceedings of the 6th International

Workshop on Fast Software Encryption, volume 1636 of Lecture Notes in

Computer Science, pages 81–94. Springer-Verlag, 1999.

BIBLIOGRAPHY 261

[136] Lars Knudsen and Vincent Rijmen. Weaknesses in LOKI97. In Proceedings

from the Second Advanced Encryption Standard Candidate Conference, Na-

tional Institute of Standards and Technology (NIST), pages 168–174, March

1999. Available at http://csrc.nist.gov/encryption/aes/.

[137] Lars Knudsen and Matt Robshaw. Non-linear approximations in linear

cryptanalysis. In Ueli Maurer, editor, Advances in Cryptology - Proceedings

of EUROCRYPT 96, volume 1070 of Lecture Notes in Computer Science,

pages 224–236. Springer-Verlag, 1996.

[138] Lars Knudsen, Matt Robshaw, and David Wagner. Truncated differentials

and Skipjack. In Michael Wiener, editor, Advances in Cryptology - Proceed-

ings of CRYPTO 99, volume 1666 of Lecture Notes in Computer Science,

pages 165–180. Springer-Verlag, 1999.

[139] Lars Knudsen and David Wagner. Integral cryptanalysis. In Joan Daemen

and Vincent Rijmen, editors, Proceedings of the 9th International Workshop

on Fast Software Encryption, volume 2365 of Lecture Notes in Computer

Science, pages 112–127. Springer-Verlag, 2003.

[140] Nick Komninos, Bahram Honary, and Michael Darnell. An Efficient Stream

Cipher for Mobile and Wireless Devices. In Brian Honary, editor, Pro-

ceedings of Cryptography and Coding - 8th IMA International Conference,

Cirencester UK, volume 2260 of LNCS, pages 294–300. Springer-Verlag,

December 2001.

[141] Korea Information Security Agency. SEED algorithm specification, 2000.

Available at http://www.kisa.or.kr/seed/data/Document pdf/

SEED Specification english.pdf.

[142] Xue Lai. Communications and Cryptography: two sides of one tapestry,

chapter Higher order derivatives and differential cryptanalysis, pages 227–

233. Kluwer Academic Publishers, 1994.

[143] Xue Lai and James Massey. A proposal for a new block encryption stan-

dard. In Ivan Damgard, editor, Advances in Cryptology - Proceedings of

EUROCRYPT 90, volume 473 of Lecture Notes in Computer Science, pages

389–404. Springer-Verlag, 1991.

262 BIBLIOGRAPHY

[144] Xue Lai, James Massey, and Sean Murphy. Markov ciphers and differential

cryptanalysis. In Joan Feigenbaum, editor, Advances in Cryptology - Pro-

ceedings of CRYPTO 91, volume 576 of Lecture Notes in Computer Science,

pages 17–38. Springer-Verlag, 1991.

[145] LAN Crypto. NUSH specification, 2001. Available at

https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions.html.

[146] Susan Langford and Martin Hellman. Differential-linear cryptanalysis. In

Yvo Desmedt, editor, Advances in Cryptology - Proceedings of CRYPTO 94,

volume 839 of Lecture Notes in Computer Science, pages 17–24. Springer-

Verlag, 1994.

[147] Dong Hoon Lee, Jaeheon Kim, Jin Hong, Jae Woo Han, and Dukjae Moon.

Algebraic Attacks on Summation Generators. In Bimal Roy and Willi

Meier, editors, Proceedings of the 11th International Workshop on Fast Soft-

ware Encryption, volume 3017 of Lecture Notes in Computer Science, pages

34–48. Springer-Verlag, 2004.

[148] Hoonjae Lee and Sangjae Moon. Parallel stream cipher for secure high-

speed communications. Signal Proceesing, 82(2):137–143, February 2002.

[149] Marcus Leech. A Feistel cipher with hardened key scheduling. In Selected

Areas in Cryptography - SAC’96, pages 15–29, 1996.

[150] Chae Hoon Lim. A revised version of Crypton - Crypton V1.0. In Lars

Knudsen, editor, Proceedings of the 6th International Workshop on Fast

Software Encryption, volume 1636 of Lecture Notes in Computer Science,

pages 31–45. Springer-Verlag, 1999.

[151] Helgar Lipmaa. AES Ciphers: Speed. Available at

http://www.tcs.hut.fi/ helger/aes/round2.html, October 2001.

[152] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block

ciphers. In Moti Yung, editor, Advances in Cryptology - Proceedings of

CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages

31–46. Springer-Verlag, 2002.

[153] Stefan Lucks. The saturation attack - a bait for Twofish. In Mitsuru Matsui,

editor, Proceedings of the 8th International Workshop on Fast Software

BIBLIOGRAPHY 263

Encryption, volume 2355 of Lecture Notes in Computer Science, pages 1–

15. Springer-Verlag, 2001.

[154] Itsik Mantin. Analysis of the Stream Cipher RC4. Master’s thesis, Weiz-

mann Institute of Science, Israel, November 2001.

[155] Itsik Mantin and Adi Shamir. A practical attack on broadcast RC4. In Mit-

suru Matsui, editor, Proceedings of the 8th International Workshop on Fast

Software Encryption, volume 2355 of Lecture Notes in Computer Science,

pages 152–164. Springer-Verlag, 2001.

[156] James Massey, Gurgen Khachatrian, and Mel-

sik Kuregian. Safer++, 2000. Available at

https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions.html.

[157] James Massey and Charles William. Safer+. In Proceedings from the

First Advanced Encryption Standard Candidate Conference, National In-

stitute of Standards and Technology (NIST), August 1998. Available at

http://csrc.nist.gov/encryption/aes/.

[158] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helle-

seth, editor, Advances in Cryptology - Proceedings of EUROCRYPT 93,

volume 765 of Lecture Notes in Computer Science, pages 386–397. Springer-

Verlag, 1993.

[159] Mitsuru Matsui. The first experimental cryptanalysis of the Data Encryp-

tion Standard. In Yvo Desmedt, editor, Advances in Cryptology - Proceed-

ings of CRYPTO 94, volume 839 of Lecture Notes in Computer Science,

pages 1–11. Springer-Verlag, 1994.

[160] Mitsuru Matsui. New Block Encryption Algorithm MISTY. In Eli Biham,

editor, Proceedings of the 4th International Workshop on Fast Software

Encryption, volume 1267 of Lecture Notes in Computer Science, pages 54–

68. Springer-Verlag, 1997.

[161] Mitsuru Matsui and Toshio Tokia. Cryptanalysis of a reduced version of

the block cipher E2. In Lars Knudsen, editor, Proceedings of the 6th In-

ternational Workshop on Fast Software Encryption, volume 1636 of Lecture

Notes in Computer Science, pages 71–80. Springer-Verlag, 1999.

264 BIBLIOGRAPHY

[162] Mitsuru Matsui and A Yamagishi. A new method for known plaintext

attack of FEAL cipher. In Rainer Rueppel, editor, Advances in Cryptology -

Proceedings of EUROCRYPT 92, volume 658 of Lecture Notes in Computer

Science, pages 81–91. Springer-Verlag, 1992.

[163] Lauren May. Design, Analysis and Implementation of Symmetric Block

Ciphers. PhD thesis, Information Security Research Centre, Queensland

University of Technology, January 2002.

[164] Leslie McBride. Q: A Proposal for NESSIE v2.00, 2001. Available at

https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions.html.

[165] Willi Meier, Enes Pasalic, and Claude Carlet. Algebraic attacks and de-

composition of boolean functions. In Christian Cachin and Jan Camenisch,

editors, Advances in Cryptology - Proceedings of EUROCRYPT 2004, vol-

ume 3027 of Lecture Notes in Computer Science, pages 474–491. Springer-

Verlag, 2004.

[166] Mihodrag Mihaeljevic. Report on security evaluation of MUGI stream ci-

pher. Technical report, CRYPTREC, Information Technology Promotion

Agency (IPA), Tokyo, Japan, 2002.

[167] Miodrag Mihaeljevic. Report on security evaluation of RC4 stream cipher.

Technical report, CRYPTREC, Information Technology Promotion Agency

(IPA), Japan, Tokyo, 2002.

[168] William Millan, Andrew Clark, and Ed Dawson. Smart hill climbing finds

better boolean functions. In Selected Areas in Cryptography - SAC’1997,

pages 50–63. Springer-Verlag, 1997.

[169] William Millan, Joanne Fuller, and Ed Dawson. New concepts in evolu-

tionary search for boolean functions in cryptology. The 2003 Congress on

Evolutionary Computation - CEC ’03, 3:2157–2164, 2003.

[170] Ivan Miranov. (Not so) random shuffles of RC4. In Moti Yung, editor,

Advances in Cryptology - Proceedings of CRYPTO 2002, volume 2442 of

Lecture Notes in Computer Science, pages 304–319. Springer-Verlag, 2002.

BIBLIOGRAPHY 265

[171] Chris Mitchell. Remarks on the Security of the Alpha1

Stream Cipher. Technical Report RHUL-MA-2001-8, Royal Hol-

loway, University of London, December 2001. Available at

http://www.ma.rhul.ac.uk/techreports/2001/RHUL-MA-2001-8.pdf.

[172] Shoji Miyaguchi, Akira Shiraishi, and Akihiro Shimizu. Fast Data Encryp-

tion Algorithm FEAL-8. Review of Electrical Communications Laboratories,

36(4):433–437, 1988.

[173] Tzuong-Tsieng Moh. On the Courtois-Pieprzyk’s attack on Rijndael, 2002.

Available at http://www.usdsi.com/aes.html.

[174] Shiho Moriai, Takeshi Shimoyama, and Toshinobu Kaneko. Interpolation

attacks of the block cipher: SNAKE. In Lars Knudsen, editor, Proceedings

of the 6th International Workshop on Fast Software Encryption, volume

1636 of Lecture Notes in Computer Science, pages 275–290. Springer-Verlag,

1999.

[175] Frédéric Muller. Differential attacks against the Helix stream cipher. In

Bimal Roy and Willi Meier, editors, Proceedings of the 11th International

Workshop on Fast Software Encryption, volume 3017 of Lecture Notes in

Computer Science, pages 94–108. Springer-Verlag, 2004.

[176] Sean Murphy and Matthew Robshaw. Essential algebraic structure within

the AES. In Moti Yung, editor, Advances in Cryptology - Proceedings of

CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages

1–16. Springer-Verlag, 2002.

[177] National Bureau of Standards. Data Encryption Standard. Federal In-

formation Processing Standard (FIPS), Publication 46, National Bureau of

Standards, U.S. Department of Commerce, Washington D.C, January 1977.

[178] National Institute of Standards and Technology. Announcing the

Advanced Encryption Standard, November 2001. Available at

http://csrc.nist.gov/CryptoToolkit/aes/.

[179] National Institute of Standards and Technology (NIST) (Computer Se-

curity Division). Announcing request for candidate algorithm nomina-

tions for the Advanced Encryption Standard (AES), 1997. available at

www.nist.gov/aes.

266 BIBLIOGRAPHY

[180] James Nechvatal, Elaine Barker, Donna Dodson, Morris Dworkin, James

Foti, and Edward Robak. Status report on the first round of the devel-

opment of the Advanced Encryption Standard. In Proceedings from the

First Advanced Encryption Standard Candidate Conference, National In-

stitute of Standards and Technology (NIST), August 1999. Available at

http://csrc.nist.gov/encryption/aes/.

[181] NESSIE Committee. NESSIE Security Re-

port version 2, February 2003. Available at

https://www.cosic.esat.kuleuven.ac.be/nessie/deliverables/D20V2.pdf.

[182] NESSIE Committee. Portfolio of recommended cryp-

tographic primitives, February 2003. Available at

https://www.cosic.esat.kuleuven.ac.be/nessie/deliverables/decision-

final.pdf.

[183] Nippon Telegraph and Telephone Corporation. Specification

of E2 - a 128-bit block cipher, June 1998. Available at

http://info.isl.ntt.co.jp/e2/E2spec.pdf.

[184] Kaisa Nyberg. Differentially uniform mappings for cryptography. In

Tor Helleseth, editor, Advances in Cryptology - Proceedings of EURO-

CRYPT 93, volume 765 of Lecture Notes in Computer Science, pages 55–64.

Springer-Verlag, 1993.

[185] Kaisa Nyberg and Lars Knudsen. Provable security against differential

cryptanalysis. In Rainer Rueppel, editor, Advances in Cryptology - Pro-

ceedings of EUROCRYPT 92, volume 658 of Lecture Notes in Computer

Science, pages 556–574. Springer-Verlag, 1992.

[186] Kenji Ohkuma, Hirofumi Muratani, Fumihiko Sano, and Shinichi Kawa-

mura. Specification on a block cipher: Hierocrypt-3. In Doug Stinson

and Stafford Tavares, editors, Selected Areas in Cryptography - SAC’2000,

volume 2012 of Lecture Notes in Computer Science, pages 72–88. Springer-

Verlag, 2002.

[187] OpenSSL. Available at http://www.openssl.org.

[188] Souradyuti Paul and Bart Preneel. A New Weakness in the RC4 Keystream

Generator and an Approach to Improve the Security of the Cipher. In

BIBLIOGRAPHY 267

Bimal Roy and Willi Meier, editors, Proceedings of the 11th International

Workshop on Fast Software Encryption, volume 3017 of Lecture Notes in

Computer Science, pages 245–249. Springer-Verlag, 2004.

[189] Lyta Penna. Implementation issues in symmetric ciphers. Master’s thesis,

Information Security Research Centre, Queensland University of Technol-

ogy, 2002.

[190] Gilles Piret and Jean-Jacques Quisquater. Integral cryptanalysis on

reduced-round SAFER-++. Cryptology ePrint Archive, Report 2003/033,

2003. Available at http://eprint.iacr.org/2003/033.pdf.

[191] W Price and D Davies. Security for computer networks: an introduction to

data security in teleprocessing and electronic funds transfer. Wiley Series

In Computing, 1984.

[192] Jean-Jacques Quisquater and Chantal Couvreur. Fast decipherment for

RSA public-key cryptosystem. Electronic Letters, 18:905–907, 1982.

[193] Vincent Rijmen, Joan Daemen, Bart Preneel, Anton Bosselaers, and Erik

DeWin. The cipher SHARK. In Dieter Gollman, editor, Proceedings of the

3th International Workshop on Fast Software Encryption, volume 1039 of

Lecture Notes in Computer Science, pages 99–111. Springer-Verlag, 1996.

[194] Ron Rivest. A description of the RC2 encryption algorithm. File draft-

rivest-rc2desc-00.txt available from ftp://ftp.ietf.org/internet-drafts/.

[195] Ron Rivest. RSA Security Response to weaknesses in key scheduling algo-

rithm of RC4, 2001. Technical note available from RSA Security Inc. site.

http://www.rsasecurity.com/rsalabs/technotes/wep.html.

[196] Ronald Rivest. The RC5 encryption algorithm. In Bart Preneel, editor, Pro-

ceedings of the 2nd International Workshop on Fast Software Encryption,

volume 1008 of Lecture Notes in Computer Science, pages 86–96. Springer-

Verlag, 1995.

[197] Ronald Rivest, Matt Robshaw, Ray Sidney, and Yi Qin Lisa Yin. The

RC6 block cipher. In Proceedings from the First Advanced Encryption Stan-

dard Candidate Conference, National Institute of Standards and Technology

(NIST), August 1998. Available at http://csrc.nist.gov/encryption/aes/.

268 BIBLIOGRAPHY

[198] Phil Rogaway and Don Coppersmith. A software-optimized encryption

algorithm. In Bart Preneel, editor, Proceedings of the 2nd International

Workshop on Fast Software Encryption, volume 1008 of Lecture Notes in

Computer Science, pages 56–63. Springer-Verlag, 1995.

[199] Philip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. A block-ciper

mode of operation for efficient authenticated encryption. In Eighth ACM

Conference on Computer and Communications Security (CCS-8), pages

196–205, August 2001.

[200] Andrew Roos. Weak keys in RC4. Posting to sci.crypt usenet group on 22

September, 1995.

[201] Gregory Rose and Philip Hawkes. Turing: a fast stream cipher. In Joan

Daemen and Vincent Rijmen, editors, Proceedings of the 9th International

Workshop on Fast Software Encryption, volume 2365 of Lecture Notes in

Computer Science, pages 307–324. Springer-Verlag, 2003.

[202] Markku-Juhani O. Saarinen. Cryptanalysis of block ciphers based on SHA-

1 and MD5. In Joan Daemen and Vincent Rijmen, editors, Proceedings of

the 9th International Workshop on Fast Software Encryption, volume 2365

of Lecture Notes in Computer Science, pages 26–44. Springer-Verlag, 2003.

[203] Palash Sarkar. Hiji-bij-bij: a new stream cipher with a self-synchronous

mode of operation. Cryptology ePrint Archive, Report 2003/014, 2003.

Available at http://eprint.iarc.org/2003/014.

[204] Bruce Schneier. Description of a new variable-length key 64-bit block cipher

Blowfish. In Proceedings of the 1st International Workshop on Fast Software

Encryption, volume 809 of Lecture Notes in Computer Science, pages 191–

204. Springer-Verlag, 1994.

[205] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and

Niels Ferguson. The Twofish encryption algorithm: a 128-bit block cipher.

John Wiley & Sons, Inc., 1999.

[206] Bruce Schneier and Doug Whiting. Fast software encryption: Designing en-

cryption algorithms for optimal software speed on the Intel Pentium Proces-

sor. In Eli Biham, editor, Proceedings of the 4th International Workshop

BIBLIOGRAPHY 269

on Fast Software Encryption, volume 1267 of Lecture Notes in Computer

Science. Springer-Verlag, 1997.

[207] Rick Schroeppel. The Hasty Pudding Cipher, 1999. Available at

http://www.cs.arizona.edu/ rcs/hpc/.

[208] Jennifer Seberry, XianMo Zhang, and Yuilang Zheng. On constructions

and nonlinearity of correlation immune functions. In Tor Helleseth, editor,

Advances in Cryptology - Proceedings of EUROCRYPT 93, volume 765 of

Lecture Notes in Computer Science, pages 181–199. Springer-Verlag, 1993.

[209] Adi Shamir, Jacques Patarin, Nicholas Courtois, and Alexander Klimov.

Efficient algorithms for solving overdefined systems of multivariate polyno-

mial equations. In Bart Preneel, editor, Advances in Cryptology - Proceed-

ings of EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer

Science, pages 392–407. Springer-Verlag, 2000.

[210] Takeshi Shimoyama, Masahiko Takenaka, and Takeshi Koshiba. Multiple

linear cryptanalysis of a reduced round RC6. In Joan Daemen and Vincent

Rijmen, editors, Proceedings of the 9th International Workshop on Fast

Software Encryption, volume 2365 of Lecture Notes in Computer Science,

pages 76–88. Springer-Verlag, 2003.

[211] Takeshi Shimoyama, Hitoshi Yanami, Kazuhiro Yokoyama, Masahiko Tak-

enaka, Kouichi Itoh, Jun Yajima, Naoya Torii, and Hidema Tanaka. The

block cipher SC2000. In Mitsuru Matsui, editor, Proceedings of the 8th In-

ternational Workshop on Fast Software Encryption, volume 2355 of Lecture

Notes in Computer Science, pages 312–328. Springer-Verlag, 2001.

[212] Thomas Siegenthaler. Correlation Immunity of Nonlinear Combining Fnc-

tions for Cryptographic Applications. IEEE Transactions on Information

Theory, 30(5):776–780, September 1984.

[213] Thomas Siegenthaler. Decrypting a Class of Stream Ciphers Using Ci-

phertext Only. IEEE Transactions on Computers, C-34(1):81–85, January

1985.

[214] Leonie Simpson. Divide and Conquer Attacks on Register Based Stream

Ciphers. PhD thesis, Information Security Research Centre, Queensland

University of Technology, January 2000.

270 BIBLIOGRAPHY

[215] Softforum. Block cipher proposal of XENON to ISO/IEC/JTC1/SC27,

2001. Available at http://www.softforum.co.kr/files/

board/download/Xenon SWIST.pdf.

[216] Softforum. Block cipher proposal of ZODIAC to ISO/IEC/JTC1/SC27,

2001. Available at http://www.softforum.co.kr/files/

board/download/Zodiac SWIST.pdf.

[217] Adam Stubblefield, John Ioannidis, and Avi Rubin. Using the Fluhrer,

Mantin, and Shamir Attack to break WEP. Technical report, TD-4ZCPZZ

AT and T Labs Technical Report, 2001.

[218] Makoto Sugita, Kazukuni Kobara, and Hideki Imai. Security of reduced

version of the block cipher Camellia against Truncated and Impossible Dif-

ferential Cryptanalysis. In Colin Boyd, editor, Advances in Cryptology -

Proceedings of Asiacrypt 2001, volume 2248 of Lecture Notes in Computer

Science, pages 193–207. Springer-Verlag, 2001.

[219] Yukiyasu Tsunoo, Hiroyasu Kubo, Hiroshi Miyauchi, and Kazuo Nakamura.

A new 128-bit block cipher CIPHERUNICORN-A. Technical report, The

Institute of Electronics, Information and Communication Engineers, 2000.

ISEC2000-5.

[220] David Wagner. Weak keys in RC4. Posting to sci.crypt usenet group on

September 26, 1995.

[221] David Wagner. The boomerang attack. In Lars Knudsen, editor, Proceed-

ings of the 6th International Workshop on Fast Software Encryption, vol-

ume 1636 of Lecture Notes in Computer Science, pages 156–170. Springer-

Verlag, 1999.

[222] David Wagner, Niels Ferguson, and Bruce Schneier. Cryptanalysis of

FROG. In Proceedings from the Second Advanced Encryption Standard Can-

didate Conference, National Institute of Standards and Technology (NIST),

March 1999. Available at http://csrc.nist.gov/encryption/aes/.

[223] Dai Watanabe, Soichi Furuya, Hirotaka Yoshida, and Kazuo Takaragi.

MUGI psuedorandom number generator, self evaluation, 2001. Available

at http://www.sdl.hitachi.co.jp/crypto/mugi/index-e.html.

BIBLIOGRAPHY 271

[224] Dai Watanabe, Soichi Furuya, Hirotaka Yoshida, and Kazuo Takaragi. A

new keystream generator MUGI. In Joan Daemen and Vincent Rijmen,

editors, Proceedings of the 9th International Workshop on Fast Software

Encryption, volume 2365 of Lecture Notes in Computer Science, pages 179–

194. Springer-Verlag, 2003.

[225] Hongjun Wu. Cryptanalysis of Stream Cipher Alpha1. In Lynn Batten and

Jennifer Seberry, editors, Proceedings of Information Security and Privacy

- 7th Australasian Conference, ACISP’02, volume 2384 of Lecture Notes in

Computer Science, pages 169–175. Springer-Verlag, July 2002.

[226] Hongjun Wu. Related-cipher attacks. In Robert Deng, Sihan Qing, Feng

Bao, and Jianying Zhou, editors, Information and Communications Secu-

rity - 4th International Conference, volume 2513 of Lecture Notes in Com-

puter Science, pages 447–455. Springer-Verlag, 2002.

[227] Hongjun Wu. A New Stream Cipher HC-256, 2004. Available at

http://eprint.iacr.org/2004/092.pdf.

[228] Wenling Wu and Dengguo Feng. Linear cryptanalysis of the NUSH block

cipher. Science in China series, 45(11):59–67, February 2002.

[229] Hitoshi Yanami, Takeshi Shimoyama, and Orr Dunkelman. Differential

and linear cryptanalysis of a reduced-round SC2000. In Joan Daemen and

Vincent Rijmen, editors, Proceedings of the 9th International Workshop

on Fast Software Encryption, volume 2365 of Lecture Notes in Computer

Science, pages 34–48. Springer-Verlag, 2003.

[230] Yongjin Yeom, Sangwoo Park, and Iljun Kim. On the Security of CAMEL-

LIA against the Square Attack. In Joan Daemen and Vincent Rijmen,

editors, Proceedings of the 9th International Workshop on Fast Software

Encryption, volume 2365 of Lecture Notes in Computer Science, pages 89–

99. Springer-Verlag, 2003.

[231] Eric Young. Re: More LTC timings... Posting to sci.crypt usenet group on

18 June, 2003.

[232] Amr Youssef and Stafford Tavares. On Some Algebraic Structures in the

AES Round Function. Cryptology ePrint Archive, Report 2002/144, 2002.

Available at http://eprint.iacr.org/.

	01front.pdf
	02whole.pdf

