REACT: Rapid Enhanced-security Asymmetric Cryptosystems Transform

RSA Conference ' 2001 San Francisco, California, April 2001

Tatsuaki Okamoto NTT Yokosuka - Japan David Pointcheval ENS - CNRS Paris - France

David.Pointcheval@ens.fr http://www.di.ens.fr/users/pointche

Overview

- Introduction to Encryption
- Previous conversions
- REACT: the new conversion
 - Description
 - Security Result
- Conclusion

David Pointcheval ENS-CNRS

Security Notions

the goals

- One-Wayness
- Semantic Security (Indistinguishability)
- the means/information available
 - Chosen-Plaintext Attacks
 - Chosen-Ciphertext Attacks
 - ⇒ OW-CPA = weakest notion IND-CCA = strongest notion

Examples

RSA: n = pq, e, public, d = e⁻¹ mod φ(n), secret
 E(m) = m^e mod n
 D(c) = c^d mod n
 OW-CPA = RSA problem

• El Gamal: $\mathbf{G} = (\langle g \rangle, \times), y = g^x$, public, x: secret $\mathbf{E}(m) = (g^a, y^a m)$ $\mathbf{D}(c,d) = d/c^x$

OW-CPA = CDH problem IND-CPA = DDH problem

David Pointcheval ENS-CNRS

Rapid Enhanced-security Asymmetric Cryptosystems Transform RSA Conference '2001 - San Francisco - April 2001 - 5

Generic Conversions

 Any trapdoor one-way (injective) function leads to a OW-CPA cryptosystem

But OW-CPA not enough

How to reach IND-CCA ?

 \Rightarrow generic conversions from OW-CPA to IND-CCA

 $(\mathcal{E}, \mathcal{D})$ is assumed to be weakly secure and one designs a secure (**E**,**D**)

David Pointcheval ENS-CNRS

Rapid Enhanced-security Asymmetric Cryptosystems Transform RSA Conference '2001 - San Francisco - April 2001 - 6

Previous Conversions: OAEP

David Pointcheval **ENS-CNRS**

Rapid Enhanced-security Asymmetric Cryptosystems Transform RSA Conference '2001 - San Francisco - April 2001 - 7

Recent Generic Conversions

Fujisaki-Okamoto (PKC '99) from IND-CPA into IND-CCA

Fujisaki-Okamoto and Pointcheval from OW-CPA into IND-CCA

(Crypto '99) (PKC '00)

Efficiency:

efficient security reduction

- optimal encryption (just few more hashings)
- non-optimal decryption (1 re-encryption)

David Pointcheval ENS-CNRS

New Conversion: REACT

PK-Cryptosystem $(\mathcal{E}, \mathcal{D})$: $\mathcal{M} \times \mathcal{R} \to \mathcal{C}$ Block-Cipher $\mathbf{E}_k, \mathbf{D}_k$: $\{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$ Hash functions G, H

David Pointcheval ENS-CNRS

Rapid Enhanced-security Asymmetric Cryptosystems Transform RSA Conference '2001 - San Francisco - April 2001 - 9

New Conversion: REACT

Efficiency:

optimal encryption (just 2 more hashings)

• **optimal decryption** (just 2 more hashings)

Security: conversion

in the random oracle model

 of any OW-PCA cryptosystem into an IND-CCA cryptosystem

• under the (weak) security of $(\mathbf{E}_k, \mathbf{D}_k)$

David Pointcheval ENS-CNRS

Basic Security

 Plaintext Checking Attack (PCA): the adversary has access to an oracle which, on input a pair (*m*,*c*), answers whether *c* encrypts *m*, or not plain RSA: OW-PCA = RSA El Gamal: OW-PCA = GDH
 Weak security for (E_k, D_k) semantic security against passive attacks

> One-Time Pad: perfectly secure AES: very good security

David Pointcheval ENS-CNRS

Rapid Enhanced-security Asymmetric Cryptosystems Transform RSA Conference '2001 - San Francisco - April 2001 - 11

Applications

◆ EI Gamal: OW-PCA = GDH
 ⇒ REACT-EI Gamal: IND-CCA=GDH
 Rk: On Elliptic Curves = PSEC-3

RSA: OW-PCA = RSA
 REACT-RSA: IND-CCA=RSA
 alternative to RSA-OAEP

REACT-RSA vs. OAEP-RSA

 Very efficient security reduction (much better than that of RSA-OAEP(+), SAEP+)

⇒ guarantees security for actual size (1024 bits)
 ◆ The (overall) security of the hybrid usage of RSA and symmetric encryption (e.g. AES) is theoretically guaranteed

(No theoretical guarantee is given for the hybrid usage of OAEP-RSA)

David Pointcheval ENS-CNRS

Rapid Enhanced-security Asymmetric Cryptosystems Transform RSA Conference '2001 - San Francisco - April 2001 - 13

Hybridity

Already very efficient with One-Time Pad

Hybridity (use of AES, etc...)

- makes it much more practical
- security proof
- Enhanced hybridity:

to encrypt many messages

 $a = \mathcal{E}(r, s)$ and k = G(r)

 $b_i = \mathbf{E}_k(m_i)$ and $c_i = \mathbf{H}(m_i, r, a, b_i)$

Conclusion

REACT is a new conversion:
From any OW-PCA scheme, one makes an IND-CCA scheme ⇒ the best security level
The cost is just:
2 more hashings in encryption/decryption ⇒ almost optimal
Can integrate symmetric encryption ⇒ improved efficiency

David Pointcheval ENS-CNRS

Rapid Enhanced-security Asymmetric Cryptosystems Transform RSA Conference '2001 - San Francisco - April 2001 - 15