Information-Theoretic Cryptography

Ueli Maurer

ETH Zurich

BICI-INDAM 2005 International PhD School on Mathematical Aspects of Modern Cryptography, Sept. 4-9, 2005, Bertinoro.

Introduction

Information theory vs. cryptography
Common features:

- Main math. tools: probability theory, algebra
- Crucial applications
- Fascinating science
- Fundamental concept of reductions

Distinguishing features:

- Average-case vs. worst-case analysis (\forall adversaries)
- Computational hardness, complexity theory
- Verifyability of applications
- Viability of ad-hoc solutions
- Scientific communities

However,

- IT can also prove constructive (possibility) results for unconditional security.
- Many complexity-theoretic results are informationtheoretic in nature
- ... if one interprets IT in a general sense.

Often, Shannon entropy is not the relevant measure.

Assumptions in cryptography

- Every security proof is relative to assumptions!
- Randomness exists (generation of secret keys)
- Independence exist (\nexists telepathy)
- Computational intractability assumptions
- Adversary's computing power and/or memory
- Adversary's obtainable side information
- Correct behavior (trustworthiness) of entities
- Quantum theory is correct
- Tamper-resistance of devices
- Noise in communication systems
- Assumptions should be made explicit!
- Assumptions should be as weak as possible !

Definition of entropy

Entropy of a random variable X :

$$
H(X)=-\sum_{x \in \mathcal{X}: P_{X}(x) \neq 0} P_{X}(x) \log _{2} P_{X}(x)
$$

Alternative notation: $H(X)=E\left[-\log P_{X}(X)\right]$

Theorem: $\quad 0 \leq H(X) \leq \log _{2}|\mathcal{X}|$

Binary entropy function

$$
h(p)=-p \log p-(1-p) \log (1-p)
$$

3 random variables: $\quad H(X I Y Z)=H(X Y Z)-H(Y Z)$

$$
\begin{aligned}
\mathrm{I}(\mathrm{X} ; \mathrm{YIZ}) & =\mathrm{H}(\mathrm{XIZ})-\mathrm{H}(X I Y Z) \\
& =\mathrm{H}(X Z)+\mathrm{H}(\mathrm{YZ})-\mathrm{H}(Z)-\mathrm{H}(X Y Z)
\end{aligned}
$$

Chain rule: $\quad H(X Y Z)=H(X)+H(Y I X)+H(Z I X Y)$

Significance of Shannon entropy

Data Compression Theorem: Optimal data compression can compress the output of an information source arbitrarily close to its entropy. Error-free compression to below the entropy is impossible.

Example: An asymmetric binary source with $P\left(X_{i}=1\right)=0.11$ can be compressed to by a factor 2 because $h(0.11)=0.5$.

Channel Coding Theorem: Optimal coding for a noisy communication channel allows to transmit information reliably at any rate arbitrarily close to the channel capacity

$$
C=\max _{P_{\text {Input }}} I(\text { Input } ; \text { Output })
$$

Reliable transmission above capacity is impossible

Entropy: some examples

Conditional entropy and mutual information

$H(X I Y)=H(X Y)-H(Y)$
$I(X ; Y)=H(X)-H(X I Y)=H(X)+H(Y)-H(X Y)=I(Y ; X)$

Theorem: $\quad 0 \leq \mathrm{H}(\mathrm{XIY}) \leq \mathrm{H}(\mathrm{X}) \quad \Longleftrightarrow \quad \mathrm{I}(\mathrm{X} ; \mathrm{Y}) \geq 0$

Example: \mathbf{X}, \mathbf{Y} indep. random bits, $\mathbf{Z}=\mathbf{X} \oplus \mathbf{Y}$

Distance from uniformity

$\mathbf{d}(\mathbf{Z}):=\frac{1}{2} \sum_{z \in \mathcal{Z}}\left|P_{\mathbf{Z}}(z)-\frac{1}{|\mathcal{Z}|}\right| \quad$ (= sum of red quantities)
$\mathbf{d}(\mathbf{Z} \mid \mathbf{W}):=E_{\mathbf{W}}\left[\mathbf{d}\left(P_{\mathbf{Z} \mid \mathbf{W}}(\cdot \mid \mathbf{W})\right)\right]$
Lemma: One can define a uniform random variable Z ' that is independent of W and such that $Z=Z^{\prime}$ holds with probability 1 - d(Z|W).

Information-Theoretic Encryption

 and Key AgreementBICI-INDAM 2005 International PhD School on Mathematical Aspects of Modern Cryptography, Sept. 4-9, 2005, Bertinoro

One-time pad

Shannon's theorem

Theorem: $H(K) \geq H(M)$ for every perfect cipher.
Proof:

A discussion of Shannon's theorem

Significance of impossibility results:

- Assumptions should be general.
- No obvious modifications invalidating the impossibility result.
- Randomization should be allowed!
- Interaction (insecure) should be allowed!
- Noise should be taken into account

Symmetric cryptosystem

Perfect secrecy: $\quad \mathrm{I}(\mathrm{M} ; \mathrm{C})=0$

Symmetric cryptosystem

Perfect secrecy: $\quad 1(M ; C)=0$
Theorem (Shannon): Perfect secrecy $\Rightarrow H(K) \geq H(M)$
How to measure deviations from perfect? $I(M ; C)$?
How to define computational security?

Theorem: The OTP is a perfect cipher for every P_{M}. Proof:

Symmetric cryptosystem with randomization

Wire-tap channels (Wyner, Csiszár-Körner)

Alice

Secrecy capacity $\geq I(X ; Y)-I(X ; Z)$
It is 0 if Eve's channel better than Bob's

Secret key agreement by public discussion

Secret key agreement by public discussion

Theorem: $\mathrm{H}(\mathrm{S}) \leq \min [\mathrm{I}(\mathrm{X} ; \mathrm{Y}), \mathrm{I}(\mathrm{X} ; \mathrm{YIZ})$]
Corollary: The bound $H(K) \geq H(M)$ also holds in an interactive settings.
Corollary: A public-key cryptosystem cannot be information-theoretically secure.

Secret-key rate

Definition: The secret-key rate of $P_{X Y Z}$, denoted $S(X ; Y \| Z)$, is the maximum rate at which A and B can agree on a secret key S.
Theorem: $S(X ; Y \| Z) \geq \max [0, I(Y ; X)-I(Z ; X), I(X ; Y)-I(Z ; Y)]$
$\mathrm{S}(\mathrm{X} ; \mathrm{YIIZ}) \leq \min [\mathrm{I}(\mathrm{X} ; \mathrm{Y}), \mathrm{I}(\mathrm{X} ; \mathrm{YIZ})]$

Secret key agreement by public discussion
s

!
$c^{t} x$

S = S'
$\mathrm{I}\left(\mathrm{S} ; \mathrm{C}^{\dagger}\right)=0$

Independent repetitions

Example: independent BSC's

The three phases of secret key agreement

Privacy amplification

Goal: Generate uniform randomness
Deterministic: Only for some classes of P_{X}
Randomized, using a uniform catalyzer R: $H_{\text {min }}(X):=-\log _{2} p_{\text {max }}$ bits can be extracted with $d(Z R)$ exponentially small.
R can be public.

Comptational security?

A cryptosystem is indistinguishability secure if

- for all messages m_{0} and m_{1},
- for any efficient distinguisher,
the advantage in distinguishing the encryptions of m_{0} and m_{1} is negligible.
efficient = polynomial time
negligible $=$ vanishes faster than inverse to any polynomial

Quantum cryptography: example

first row: photons sent by Alice
second row: bases selected by Bob
third row: bits generated by Alice
fourth row: bits generated by Bob

Measuring deviation from perfectness

Question: Which is the right measure of deviation from perfect?
Proposal 1: I(M;C)
Proposal 2: Minimum of 1-P(E) such that $\mathrm{I}(\mathrm{M} ; \mathrm{Cl} \mathcal{E})=0$, maximized over message distributions $\mathbf{P}_{\mathbf{M}}$:

$$
\left.\max _{P_{M}} \min _{P_{M} C^{\prime}}: I\left(M^{\prime} ; C^{\prime}\right)=0 \quad \operatorname{dist}^{\operatorname{di}} \mathrm{P}_{M C}, P_{M^{\prime} C^{\prime}}\right)
$$

Proposal 3: Maximal advantage, for any pair (m_{0}, m_{1}) of messages, of distinguishing the encryptions of m_{0} and m_{1} :

$$
\max _{\mathrm{m}_{0}, \mathrm{~m}_{1}} \operatorname{dist}\left(\mathrm{P}_{\mathrm{CIM}}=\mathrm{m} 0, \mathrm{P}_{\mathrm{CIM}}=\mathrm{m} 1\right)
$$

Proposal 4: Simulatability definition.

Quantum Cryptography: A Glimpse

Quantum cryptography: some explanations

- Alice and Bob are connected by a conventional insecure but authenticated communication channel as well as an optical fiber allowing Alice to send photons to Bob. Eve has access to the fiber.
- The polarisation of a photon can encode information, but due to the laws of quantum physics, only two states can reliably be distinguished by any measurement. Hence one can transmit reliably only 1 bit of information by encoding the two bits in orthogonal polarisations.
- Two different bases for sending a bit are defined: the horizontal/vertical basis and the diagonal $\left(45^{\circ} / 135^{\circ}\right)$ basis.
- Alice sends a sequence of random bits, each in a random basis. Eve cannot measure exactly which of the 4 states was transmitted.
- Bob measures each received photon in random basis and tells Alice which bases he has used. Alice announces for which bits Bob used the right basis and hence knows Alice's bits. Using error correction and privacy amplification, Alice and Bob can extract a secret key.
- One can prove that Eve has only a choice between performing too strong measurements and therefore being detected by Alice and Bob with high probability, or obtaining essentially no information about the derived key.

