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Information theory vs. cryptography
Common features:

Main math. tools: probability theory, algebra
Crucial applications
Fascinating science
Fundamental concept of reductions

Distinguishing features:
Average-case vs. worst-case analysis
( adversaries)
Computational hardness, complexity theory
Verifyability of applications
Viability of ad-hoc solutions
Scientific communities

A classical prejudice

Shannon proved that information-theoretic secrecy
requires a (one-time) key at least as long as the
message to be encrypted.

This is completely impractical; hence we must re-
sort to computational security.

Computational security is ugly:
– model of computation (e.g. Turing machine)
– complicated definitions (e.g. polynomial time)
– no ultimate proofs

The main purpose of IT in cryptography is to prove
impossibility results.

However, ....

IT can also prove constructive (possibility) results
for unconditional security.

Many complexity-theoretic results are information-
theoretic in nature

... if one interprets IT in a general sense.
Often, Shannon entropy is not the relevant
measure.

Assumptions in cryptography
Every security proof is relative to assumptions!

– Randomness exists (generation of secret keys)
– Independence exist ( telepathy)
– Computational intractability assumptions
– Adversary’s computing power and/or memory
– Adversary’s obtainable side information
– Correct behavior (trustworthiness) of entities
– Quantum theory is correct
– Tamper-resistance of devices
– Noise in communication systems

Assumptions should be made explicit !
Assumptions should be as weak as possible !

Goal in cryptography:

Information Theory Basics



Definition of entropy

Entropy of a random variable :

Alternative notation:

Theorem:

Entropy: some examples
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Conditional entropy and mutual information
H(X|Y) = H(XY) - H(Y)

I(X;Y) = H(X) - H(X|Y) = H(X) + H(Y) - H(XY) = I(Y;X)

Theorem: 0 H(X|Y) H(X) I(X;Y) 0

H(XY)
H(Y)H(X)

H(Y|X)I(X;Y)H(X|Y)

3 random variables: H(X|YZ) = H(XYZ) - H(YZ)

I(X;Y|Z) = H(X|Z) - H(X|YZ)
= H(XZ) + H(YZ) - H(Z) - H(XYZ)

Chain rule: H(XYZ) = H(X) + H(Y|X) + H(Z|XY)

H(X|YZ)

I(Y;Z|X)
H(Z)

H(Y)H(X)

I(X;Z|Y)

I(X;Y|Z)

R(X;Y;Z)
H(Y|XZ)

H(Z|XY)

R(X;Y;Z)  can be negative!

Example: X,Y indep. random bits, Z = X Y
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H(Z|XY)
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Significance of Shannon entropy
Data Compression Theorem: Optimal data compression can com-
press the output of an information source arbitrarily close to its en-
tropy. Error-free compression to below the entropy is impossible.

Example: An asymmetric binary source with
can be compressed to by a factor because .

Channel Coding Theorem: Optimal coding for a noisy commu-
nication channel allows to transmit information reliably at any rate
arbitrarily close to the channel capacity

Reliable transmission above capacity is impossible.

Distance from uniformity
P  (z)Z

z

d Z Z (= sum of red quantities)

d Z W W d Z W W

Lemma: One can define a uniform random variable Z’ that is
independent of W and such that Z Z’ holds with probability

d Z W .



Information-Theoretic Encryption
and Key Agreement
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Symmetric cryptosystem
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Perfect secrecy: I(M;C) = 0

One-time pad
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Symmetric cryptosystem

secure channel

Alice Bob

plaintext
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adversary

encryption decryptionM MC

Perfect secrecy: I(M;C) = 0
Theorem (Shannon): Perfect secrecy H(K) H(M)
How to measure deviations from perfect? I(M;C)?
How to define computational security?

Shannon’s theorem

Theorem: H(K) H(M) for every perfect cipher.

Proof:

> 0

H(M) H(C)

c

H(K)

0
a

b

Decryptability: H(M|CK)=0

I(M;C) = 0 b = – a B

I(C;K) 0 c – b = a B

H(K) H(M) by inspection

1

C , C  , ...1ciphertext
1 2

key 21 key 21

2

2

addition modulo 2

M  , M  , ... M  , M  , ...
plaintext plaintext

K , K , ... K , K , ...

Theorem: The OTP is a perfect cipher for every PM.

Proof:

N

0 0

0

I(M;C) = 0

I(K;C|M)I(M;K) = 0  

H(K)

H(C)H(M)

= NH(K|MC)

H(M|CK) H(C|MK)

<= N

A discussion of Shannon’s theorem

Significance of impossibility results:

Assumptions should be general.
No obvious modifications invalidating
the impossibility result.

– Randomization should be allowed!
– Interaction (insecure) should be allowed!
– Noise should be taken into account!

Symmetric cryptosystem with randomization
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Wire-tap channels (Wyner, Csiszár-Körner)

PYZ|X
X

Z

Y

insecure communication

??
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Secrecy capacity I(X;Y) – I(X;Z)

It is 0 if Eve’s channel better than Bob’s

Secret key agreement by public discussion
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Secret key agreement by public discussion
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Secret key agreement by public discussion
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Theorem: H(S) min [ I(X;Y), I(X;Y|Z) ]
Corollary: The bound H(K) H(M) also holds in an

interactive settings.
Corollary: A public-key cryptosystem cannot be

information-theoretically secure.

Independent repetitions
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Example: independent BSC’s
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Secret-key rate
Definition: The secret-key rate of PXYZ, denoted S(X;Y||Z), is
the maximum rate at which A and B can agree on a secret key S.

Theorem: S(X;Y||Z) max [ 0, I(Y;X) – I(Z;X), I(X;Y) – I(Z;Y) ]
S(X;Y||Z) min [ I(X;Y), I(X;Y|Z) ]

0

1

0

1
eA

00
eE

0

1

0

1
eB

Binary

Source
Symmetric iU

iX

iY

Z

H(Z)

H(X) H(Y)
I(X;Y|Z)

Theorem: S(X;Y||Z) 0 unless

The three phases of secret key agreement

advantage
distillation

information
reconciliation

privacy
amplification

Alice’s  initial  string

Bob’s  information Eve’s  information



Privacy amplification
R

RZ

X

extractor

uniform

p
max

Goal: Generate uniform randomness
Deterministic: Only for some classes of PX
Randomized, using a uniform catalyzer R:

Hmin(X) := log2 pmax bits can be extracted
with d(ZR) exponentially small.

R can be public.

Measuring deviation from perfectness
Question: Which is the right measure of deviation from

perfect?

Proposal 1: I(M;C)

Proposal 2: Minimum of 1-P( ) such that I(M;C| )=0,
maximized over message distributions PM:

maxPM
minPM’C’: I(M’;C’)=0 dist(PMC , PM’C’)

Proposal 3: Maximal advantage, for any pair (m0,m1) of mes-
sages, of distinguishing the encryptions of m0 and m1:

maxm0 m1 dist(PC|M=m0, PC|M=m1 )

Proposal 4: Simulatability definition.

m 0

m 1

K

0

1
cryptosystem distinguisherCM 0/1

Comptational security?

A cryptosystem is indistinguishability secure if
for all messages m0 and m1,
for any efficient distinguisher,

the advantage in distinguishing the encryptions of m0 and m1
is negligible.

efficient = polynomial time
negligible = vanishes faster than inverse to any polynomial

Quantum Cryptography: A Glimpse
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Quantum cryptography: example

0 - 0 - 1 - - 0 0 - 0 0 1 0 - - 1 - 0

0 - 0 - 1 - - 0 0 - 0 0 1 0 - - 1 - 01

1
1 0

first row: photons sent by Alice
second row: bases selected by Bob
third row: bits generated by Alice
fourth row: bits generated by Bob

Quantum cryptography: some explanations

Alice and Bob are connected by a conventional insecure but authenticated
communication channel as well as an optical fiber allowing Alice to send pho-
tons to Bob. Eve has access to the fiber.
The polarisation of a photon can encode information, but due to the laws of
quantum physics, only two states can reliably be distinguished by any mea-
surement. Hence one can transmit reliably only 1 bit of information by encod-
ing the two bits in orthogonal polarisations.
Two different bases for sending a bit are defined: the horizontal/vertical basis
and the diagonal ( ) basis.
Alice sends a sequence of random bits, each in a random basis. Eve cannot
measure exactly which of the 4 states was transmitted.
Bob measures each received photon in random basis and tells Alice which
bases he has used. Alice announces for which bits Bob used the right basis
and hence knows Alice’s bits. Using error correction and privacy amplification,
Alice and Bob can extract a secret key.
One can prove that Eve has only a choice between performing too strong
measurements and therefore being detected by Alice and Bob with high prob-
ability, or obtaining essentially no information about the derived key.


