

Chapter 2 Basics of Cryptography

- Overview Cryptographic Algorithms
- □ Attacking Cryptography
- Properties of Encryption Algorithms
- Classification of Encryption Algorithms

Cryptographic Algorithms: Overview

- During this course two main applications of cryptographic algorithms are of principal interest:
 - Encryption of data: transforms plaintext data into ciphertext in order to conceal its' meaning
 - Signing of data: computes a check value or digital signature to a given plain- or ciphertext, that can be verified by some or all entities being able to access the signed data
- Some cryptographic algorithms can be used for both purposes, some are only secure and / or efficient for one of them.
- □ Principal categories of cryptographic algorithms:
 - Symmetric cryptography using 1 key for en-/decryption or signing/checking
 - Asymmetric cryptography using 2 different keys for en-/decryption or signing/checking
 - Cryptographic hash functions using 0 keys (the "key" is not a separate input but "appended" to or "mixed" with the data).

Attacking Cryptography (1): Cryptanalysis

- Cryptanalysis is the process of attempting to discover the plaintext and / or the key
- □ Types of cryptanalysis:
 - Ciphertext only: specific patterns of the plaintext may remain in the ciphertext (frequencies of letters, digraphs, etc.)
 - □ Known ciphertext / plaintext pairs
 - □ Chosen plaintext or chosen ciphertext
 - □ Newer developments: *differential cryptanalysis, linear cryptanalysis*
- □ Cryptanalysis of public key cryptography:
 - □ The fact that one key is publicly exposed may be exploited
 - Public key cryptanalysis is more aimed at breaking the cryptosystem itself and is closer to pure mathematical research than to classical cryptanalysis
 - □ Important directions:
 - Computation of discrete logarithms
 - Factorization of large integers

Attacking Cryptography (2): Brute Force Attack

- The brute force attack tries every possible key until it finds an intelligible plaintext:
 - □ Every cryptographic algorithm can in theory be attacked by brute force
 - □ On average, half of all possible keys will have to be tried

Average Time Required for Exhaustive Key Search

Key Size [bit]	Number of keys	Time required at 1 encryption / μs	Time required at 10^6 encryption / μ s	
32	$2^{32} = 4.3 * 10^9$	$2^{31} \mu s$ = 35.8 minutes	2.15 milliseconds	
56	2^{56} = 7.2 * 10 ¹⁶	$2^{55} \mu s$ = 1142 years	10.01 hours	
128	2 ¹²⁸ = 3.4 * 10 ³⁸	2 ¹²⁷ μs = 5.4 * 10 ²⁴ years	5.4 * 10 ¹⁸ years	

Attacking Cryptography (3): How large is large?

Reference Numbers Comparing Relative Magnitudes

Reference		Magnitude		
Secondo in a voor		2	* 107	
Seconds in a year		≈ 3	* 10 ⁷	
Seconds since creation of solar system		≈ 2	* 10 ¹⁷	
Clock cycles per year (1 GHz computer)		≈ 3.2	* 10 ¹⁶	
Binary strings of length 64	2 ⁶⁴	≈ 1.8	* 10 ¹⁹	
Binary strings of length 128	2 ¹²⁸	≈ 3.4	* 10 ³⁸	
Binary strings of length 256	2 ²⁵⁶	≈ 1.2	* 10 ⁷⁷	
Number of 75-digit prime numbers		≈ 5.2	* 10 ⁷²	
Electrons in the universe		≈ 8.37	* 10 ⁷⁷	

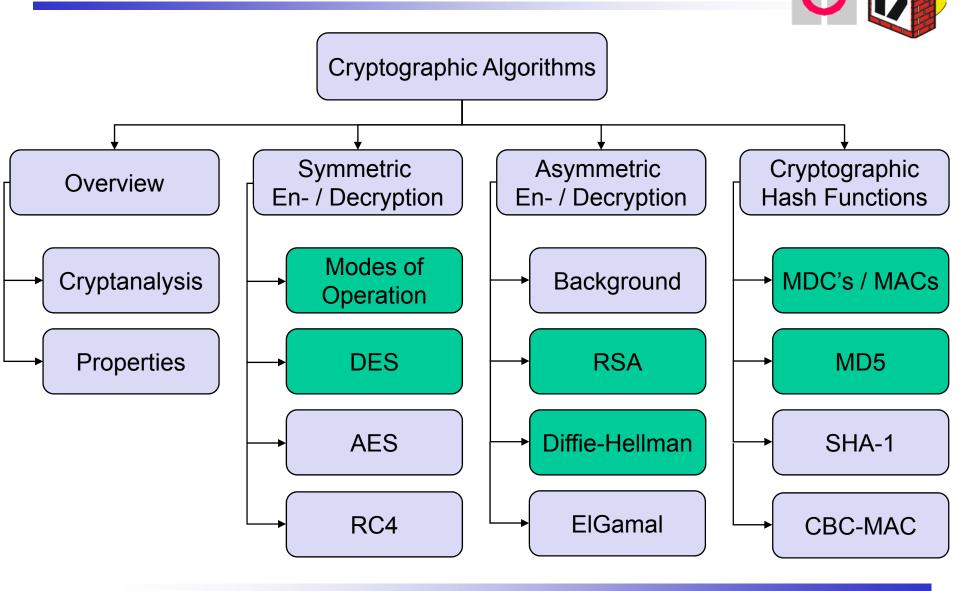
Important Properties of Encryption Algorithms

Consider, a sender is encrypting plaintext messages P1, P2, ... to ciphertext messages C1, C2, ...

Then the following properties of the encryption algorithm are of special interest:

- □ *Error propagation* characterizes the effects of bit-errors during transmission of ciphertext to reconstructed plaintext P_1 , P_2 , ...
 - Depending on the encryption algorithm there may be one or more erroneous bits in the reconstructed plaintext per erroneous ciphertext bit
- Synchronization characterizes the effects of lost ciphertext data units to the reconstructed plaintext
 - Some encryption algorithms can not recover from lost ciphertext and need therefore explicit re-synchronization in case of lost messages
 - Other algorithms do automatically re-synchronize after 0 to n (n depending on the algorithm) ciphertext bits

Classification of Encryption Algorithms: Three Dimensions


- □ The type of operations used for transforming plaintext to ciphertext:
 - Substitution, which maps each element in the plaintext (bit, letter, group of bits or letters) into another element
 - □ *Transposition*, which re-arranges elements in the plaintext
- □ The number of keys used:
 - □ *Symmetric ciphers*, which use the same key for en- / decryption
 - □ Asymmetric ciphers, which use different keys for en- / decryption
- □ The way in which the plaintext is processed:
 - □ Stream ciphers work on bit streams and encrypt one bit after another:
 - Many stream ciphers are based on the idea of linear feedback shift registers, and there have been detected vulnerabilities of a lot of algorithms of this class, as there exists a profound mathematical theory on this subject.
 - Most stream ciphers do not propagate errors but are sensible to loss of synchronization.
 - □ **Block ciphers** work on blocks of width *b* with *b* depending on the specific algorithm.

Key Management

- Key generation
 - □ Must use (pseudo) random number generators
 - Key generation for asymmetric encryption depends on the factorization of large integer numbers
- Key distribution
 - Simplest case: personal contact
 - Encrypted channel for key distribution -> Key hierarchies
- Key storage
 - Optimum case: in the brain of the user
 - □ Alternatively, in secured crypto modules
- □ Key recovery
 - □ Simples case: using a saved copy (implicates new security issues)
 - □ Alternatively, fragment the key into several sub-keys
- Key invalidation
 - □ Especially required for asymmetric mechanisms
- □ Key deletion
 - Disablement of old encrypted texts

Cryptographic Algorithms – Outline

Summary (what do I need to know)

- Categories of cryptographic algorithms
 - □ Symmetric encryption
 - □ Asymmetric encryption
 - □ Cryptographic hash functions
- Application of encryption techniques
 - □ Encryption
 - Signing
- Classification of encryption algorithms
 - □ Symmetric vs. asymmetric
 - □ Stream vs. block ciphers

