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Abstract. We introduce the notion of abuse-free distributed contract
signing, that is, distributed contract signing in which no party ever can
prove to a third party that he is capable of choosing whether to validate
or invalidate the contract. Assume Alice and Bob are signing a contract.
If the contract protocol they use is not abuse-free, then it is possible
for one party, say Alice, at some point to convince a third party, Val,
that Bob is committed to the contract, whereas she is not yet. Contract
protocols with this property are therefore not favorable to Bob, as there
is a risk that Alice does not really want to sign the contract with him,
but only use his willingness to sign to get leverage for another contract.
Most existing optimistic contract signing schemes are not abuse-free.
(The only optimistic contract signing scheme to date that does not have
this property is inefficient, and is only abuse-free against an off-line at-
tacker.) We give an efficient abuse-free optimistic contract-signing proto-
col based on ideas introduced for designated verifier proofs (i.e., proofs
for which only a designated verifier can be convinced). Our basic so-
lution is for two parties. We show that straightforward extensions to
n > 2 party contracts do not work, and then show how to construct a
three-party abuse-free optimistic contract-signing protocol.

An important technique we introduce is a type of signature we call a pri-
vate contract signature. Roughly, these are designated verifier signatures
that can be converted into universally-verifiable signatures by either the
signing party or a trusted third party appointed by the signing party,
whose identity and power to convert can be verified (without interac-
tion) by the party who is the designated verifier.

1 Introduction

Contract signing is an important part of any business transaction, in particular
in settings where participants do not trust each other to some extent already.
Thus, the World Wide Web is probably the best example of a setting where
contracts are needed. Still, even though a great amount of research has gone
into developing methods for contract signing over a network such as the WWW,
there is room for improvement. In this paper, we discuss some shortcomings of
the present state of the art in digital contract signing, and propose a solution that
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we prove has all the desired properties that we typically associate with fairness.
Finally, we show how to extend our scheme to three participants without losing
these properties.

Recently, considerable efforts have been devoted to develop protocols that
mimic the features of “paper contract signing,” especially fairness. A contract
signing protocol is fair if at the end of the protocol, either both parties have
valid signatures for a contract, or neither does. In some sense, this corresponds
to the “simultaneity” property of traditional paper contract signing. That is, a
paper contract is generally signed by both parties at the same place and at the
same time, and thus is fair.

Early work on electronic contract signing, or more generally, fair exchange
of secrets/signatures, focused on the gradual release of secrets to obtain simul-
taneity, and thus fairness [9,25, 30] (see [21] for more recent results). The idea is
that if each party alternately releases a small portion of the secret, then neither
party has a considerable advantage over the other. Unfortunately, such a solution
has several drawbacks. Apart from being expensive in terms of computation and
communication, it has the problem in real situations of uncertain termination:
if the protocol stops prematurely and one of the participants does not receive a
message, he will never be sure whether the other party is continuing with the
protocol, or has stopped—and perhaps even has engaged in another contract
signing protocol!

An alternative approach to achieving fairness instead of relying on the grad-
ual release of secrets has been to use a trusted third party (TTP). A TTP is
essentially a judge that can be called in to handle disputes between contract
signers. This was the case in the early work of [24], where the contract is only
valid if a “center of cancellation” does not object. The TTP can be on-line in
the sense of mediating after every exchange as in [16,22, 28], at the expense of
the TTP becoming a potential bottleneck, or off-line, meaning that it only gets
involved when something goes wrong (e.g., a participant attempts to cheat, or
simply crashes, or the communication delays between the participants are intol-
erably high, etc.). The latter approach has been called optimistic [2], and fair
contract signing protocols have been developed in this model [2,3]. Although
the TTP is (by definition) trusted, it is, in some protocols, possible for the TTP
to be accountable for his actions. That is, it can be determined if the TTP
misbehaved.

Most of these protocols have the conceptual drawback of allowing one of the
parties at some time to convince a third party he has a potentially signed contract.
That is, this participant can demonstrate that the other party is committed (to
some extent) to the agreement, without himself being committed. Ultimately, of
course, we want neither of the participants to have this ability until the contract
has been signed by both parties.

In this sense, it is possible to distinguish between two types of attacks, which
we call on-line vs. off-line. In an on-line attack, the cheating contract signer
and a third party may interact in an arbitrary fashion during the contract sign-
ing protocol, in order for the third party to be convinced of the other signer’s



willingness to sign. In an off-line attack, however, this is not allowed, and the
cheating contract signer may only send the third party one message. Clearly,
the former is a stronger form of attack. All previously proposed contract signing
protocols are vulnerable against the on-line attack, and all proposed optimistic
contract signing protocols — but one — are vulnerable against the off-line attack.
Our proposed scheme is secure against both types of attacks. A third — and even
stronger — attack allows the cheating signer to cooperate with the third party
from the “beginning of time”. The attack involves the sharing of the cheating
signer’s secret key by the cheating signer and the third party (i.e., the key is
stored in a way such that neither of them can reconstruct it on their own.) Such
an attack must be initiated before the certification of the corresponding public
key. As in [31], we have to assume that the certification process is done in an
“isolated” manner, and that the certified party be required to prove knowledge
of his secret key before he becomes certified, thereby preventing successful “iden-
tity sharing” of this type. We believe that this is the only defense against such
an “ultimate” attack, apart from mere social constraints that make very careful
planning and administering of attacks “from the beginning of time” less likely
to take place.

Our results. Our contributions are twofold:

— In this paper we introduce the notion of “abuse freeness” to the area of
electronic contract signing, and present an efficient abuse-free optimistic
contract signing protocol. We also show how to extend the scheme to three
parties without losing these properties.

— To build the protocols we use a new type of signature that we call private
contract signatures (PCS). Roughly, these are designated verifier signatures
that can be converted into universally-verifiable signatures by either the
signing party or a trusted third party appointed by the signing party, whose
identity and power to convert can be verified (without interaction) by the
party who is the designated verifier. We give a complete formalization of
these signatures, and present an efficient discrete log-based scheme which
uses new boolean combinations of proofs of membership and knowledge. We
prove the scheme to be as secure as the Decisional Diffie-Hellman problem.

Related work. Contract signing is part of the broader problem of fair exchange
[10, 16,28, 33,2]. More specifically, it can be considered fair exchange of digital
signatures [3]. The different existing approaches to contract signing were already
described above. The term “contract signing” was first introduced in [8]. The first
optimistic scheme in the sense defined above was based on the gradual increase
of privilege [7]: as the computation evolves, the probability of a contract being
valid gradually increases from 0 to 1. This solution has several shortcomings, as
it requires termination detection by the third party (i.e., synchronous system),
and one of the parties might be “privileged,” in the sense of only one of them
being able to finalize the contract; this happens with a non-negligible probability.

The most closely related work to ours is Asokan, Shoup, and Waidner [3].
They present an optimistic protocol for fair exchange of digital signatures. They



allow any of a variety of signature schemes, and prove security of their protocol.
It is not mentioned, but one of their protocols is off-line abuse-free. However,
their protocol is inefficient, due to the use of expensive cut-and-choose tech-
niques. More specifically, to obtain a failure probability of 27*, they require
2k + 4 exponentiations for both prover and verifier. In contrast, we require 32
exponentiatons for the prover and the verifier, regardless of the security parame-
ter.! Also, their scheme does not allow the trustee to be held accountable for his
actions, meaning that if the trustee were to misbehave, it would not be possible
for the participants to show to a judge that this must have happened. They
present another fair optimistic contract signing protocol that is more efficient,
but does not have the abuse-free property, nor the ability to allow any type of
signature scheme.

The abuse-free contract signing protocol we present is more efficient (in num-
ber of rounds, communication bits, and computation), than the only published
off-line abuse-free protocol so far, namely the one in [3], and provides for trustee
accountability. Our scheme is both off-line and on-line abuse-free. However, our
protocol restricts the participants to a certain type of signature.

The private contract signatures that we introduce exhibit some similarities
with designated-confirmer signatures and convertible undeniable signatures, two
notions first suggested by Chaum [12]. A designated-confirmer signature is an
undeniable signature [13,15] that can be proven valid by a so-called confirmer,
an entity appointed by the signer and given a secret key for verification by the
same. A convertible undeniable signature is an undeniable signature that can be
converted to a standard (i.e., self-authenticating) signature, This can be done
either by the signer or, in the setting of designated confirmer signatures, by a
trusted third party. Although Chaum’s scheme was broken by Michels et al. [34],
its conceptual ideas are still intact, and alternative solutions were suggested
in [19, 34].

One major difference between the concept of convertible undeniable signa-
tures and private contract signatures is that the latter allow an optimistic ap-
proach in that the receiver knows beforehand that the trusted third party can
convert the signature. In contrast, a convertible undeniable signature needs a
verification session, such as an interactive undeniable signature verification [13,
15]. Technically, they differ in that the signer of a convertble undeniable sig-
nature needs to give a secret key to the trusted third party, whereas a private
contract signature is performed relative to the public key of the trusted third
party, who does not need to obtain any secret key from the signer. One could
say that a private contract signature is a special case of a “designated-confirmer
convertible signature,” namely, one in which the receiver knows that the contents
correspond to a valid publicly-verifiable signature, but can’t convince anybody
else about this without the help of either the signer or the trusted third party.

! Batch computation methods (e.g., [32,5]) can be applied to both the schemes, and
although they can be applied to a larger extent to [3], their scheme remains noticeably
more expensive than ours for reasonable security parameters.



Our work is also closely related to work on designated-verifier proofs, which
were introduced by Jakobsson et al. [31]. A designated-verifier proof of a state-
ment O is a proof with the property that it will convince nobody but the so-called
“designated verifier” (who is selected by the prover) of the correctness of ©.
Furthermore, the designated verifier will accept a valid such proof and reject an
invalid such proof with an overwhelming probability?. We call a non-interactive
designated-verifier proof a designated verifier signature.

A private contract signature is a designated-verifier signature with the prop-
erty that it may be converted to a standard, self-authenticating signature, draw-
ing upon the ideas of designated converter proofs and convertible undeniable
signatures. This conversion can be performed by two participants only: the par-
ticipant who generated the signature, and a trusted third party, who is appointed
by the participant who generated the signature, and whose identity can be deter-
mined from the transcript constituting the private contract signature. However,
as already mentioned, the initial receiver of the signature need not interact with
anybody in order to determine whether the transcript he has received can always
be converted into a standard signature.

Finally, we show that natural extensions of an abuse-free protocol to three-
party contract signing do not seem to allow abuse-freeness. However, we present
a three-party fair abuse-free optimistic contract-signing protocol obtained by
careful design of a (much more intricate) protocol.® Independently of our work,
multi-party contract signing protocols were given in [1,4] While not abuse-free,
the protocol in [4] is simpler than ours, resulting in a more elegant and efficient
general solution.

2 Model and Definitions

Our basic model is similar to that of [3]. We have set of participants S =
{P1, P, -, P,}, and a trusted third party 7. Participants may be correct or
faulty (Byzantine). Formally, the participants and the trusted third party are
modelled by probabilistic interactive Turing machines. We assume all partici-
pants have public/private keys which will be specified later. T" acts like a server,
responding (atomically) to requests from the participants, with responses de-
fined later. We assume that communication between any participants and 7' is
over a private channel. We will first concentrate on the case of two participants,
A and B.

The network model we consider is the same as in [3]. Namely, an asynchronous
communication model with no global clocks, where messages can be delayed
arbitrarily [27], but with messages sent between correct participants and the
trusted third party guaranteed to be delivered eventually. In general, we assume

2 Depending on the proof structure, this probability might be a constant fraction, in
which case the standard method of repeating the proof can be applied.

3 In fact, this has been simplified and extended to a general n-party contract signing
[29].



an adversary may schedule messages, and possibly insert its own messages into
the network.

A and B wish to “sign” a contract m.? By signing a contract, we mean
providing public, non-repudiable evidence that they have agreed to the contract.
The type of evidence is either universally agreed upon, or is part of the contract
m itself. For instance, valid evidence may include either valid signatures by A
and B on m, or valid signatures by A and B on the concatenation of m and the
public key of T', signed together by T'.

Obviously, in the asynchronous model of [27], an adversary may prevent a
contract from being signed simply by delaying all messages between players. Thus
in order to force contract signing protocols to be non-trivial, we specify a com-
pleteness condition using a slightly restricted adversary. An optimistic contract
signing protocol is complete if the (slightly restricted) adversary cannot prevent
a set of correct participants from obtaining a valid signature on a contract. This
adversary has signing oracles that can be queried on any message except m, can
interact with 7', and can arbitrariliy schedule messages from the participants to
T. However, it cannot delay messages between the correct participants enough
to cause any timeouts.

An optimistic contract signing protocol is fair if
(1) it is impossible for a corrupted participant (say A*) to obtain a valid con-

tract without allowing the remaining participant (say B), to also obtain a
valid contract;

(2) once a correct participant obtains a cancellation message from the TTP T,
it is impossible for any other participant to obtain a valid contract; and

(3) every correct participant is guaranteed to complete the protocol.
Effectively, condition (2) provides a persistency condition, stating that correct
participants cannot have their outcomes overturned by other participants.

Finally, an optimistic contract signing protocol is abuse-free if it is impossible
for a single player (say A*) at any point in the protocol to be able to prove to an
outside party that he has the power to terminate (abort) or successfully complete
the contract.

We say an optimistic contract signing protocol is secure if it is fair, complete,
and abuse-free.

3 Cryptographic Tools and Techniques

For a prime ¢, we will work in a group G, of order ¢ with generator g. For a
specific example, we could use a group form by integer modular arithmetic as
follows. Let p be a prime of the form lg + 1 for some value [ co-prime to ¢, and
let Z} be the group, with g a generator of order ¢ in Z7. Then G, would be the
subgroup generated by g¢.

4 In general, A and B might need to sign two different pieces of text, m and m'.
Extension to this case is trivial.



We assume the hardness of the Diffie-Hellman decision problem (DDH). In
this problem, it is the goal of the p-time adversary to distinguish the following
two distributions with a non-negligible advantage over a random guess:

1. (g91,92,91,92) with g1,92,y1,y2 €r Gy, and
2. (91,92,97,95) with g1,92 €r G4 and r € Z,,.

ElGamal encryption [23] is a public-key encryption scheme, in which it is
assumed that the recipient Bob is associated with a public key y and Bob has a
private key z such that ¢* = y. To generate an ElGamal encryption of a value
m € G, for Bob, a sender Alice generates r €r Z,, and sends (y"m, ¢g"). Bob
decrypts an incoming message (a, b) by computing a/b®.

The security of ElGamal encryption has been shown to equal the security of
the Diffie-Hellman decision problem.

3.1 Non-interactive proofs of knowledge

Our protocols will require certain non-interactive proofs. In this paper, these
proofs will basically be the non-interactive versions of X-protocols [20, 26] (i.e.,
Schnorr-like protocols [36]). However, we use a general notion of X-protocols
[17] which encompass both proofs of knowledge and membership. We refer the
reader to [17] for the full technical definitions.

We also use proofs of conjunctions and disjunctions (i.e., ANDs and ORs)
of certain statements which have known non-interactive proofs [18]. To sim-
plify notation, we will often state these as conjunctions and disjunctions of the
specific proofs (instead of the statements), which will indicate proofs of conjunc-
tions and disjunctions of the statements built on those specific proofs. (More
formally, a boolean function b() over some non-interactive proofs will denote the
non-interactive proof corresponding to the X-protocol that is obtained from the
boolean function b() applied to the X-protocols corresponding to the individual
proofs.)

Finally, we use designated verifier proofs/signatures ([31], see also [12]), which
are built using conjunctions and disjunctions.

Proof of ciphertext contents Let (a,b) be an ElGamal ciphertext. We want
a protocol for proving ciphertext contents, i.e., a protocol for proving that a
ciphertext (a,b) corresponds to a plaintext . We want to consider such proofs
that can be disjunctively composed (which excludes some of the simplest ap-
proaches), and for this we will use a X-protocol.

Specifically, we want to prove that (a,b) = (y"m,¢") for some value r and
a specified public key y and plaintext m. This can be done by the party who
performed the encryption (and who therefore knows the value ) and also by the
party who knows the secret key corresponding to y (since this party can decrypt
the ciphertext.) In the first case, this is the same as proving that log, (a/m) =
log, b, in the second case it is proving that log,(a/m) = log, y. We will call the
corresponding non-interactive versions of the X-protocols “m = CCg(a,b,y)”



(meaning “ciphertext contents — by encryptor”) and “m = CCp(a,b,y)” (mean-
ing “ciphertext contents — by decryptor”.)

The details of the proof of ciphertext contents by encryptor or decryptor are
straightforward and omitted.

DL-based signatures: We can use a variety of signature schemes which consist to
proving knowledge of a discrete log (a private key corresponding to a public key)
made relative to a message m One such scheme is the Schnorr signature scheme
[36]. We will denote such a scheme DL-SIG, and will denote a non-interactive
proof by a party with public key y relative to a message m by DL-SIG,(m).

We omit the details of the interactive and non-interactive proofs for the
Schnorr scheme.

Designated verifier proofs/signatures A designated verifier proof is a proof
that is convincing to the designated verifier, but not to any other party. A proof
(such as a witness hiding proof, zero-knowledge proof, or Schnorr proof) of an
assertion @ can be transformed into a a proof for a designated verifier Bob by
modifying what is being proved to “@ or ‘I know Bob’s private key’ ”. If Bob
shows this proof to any other party, they would not be convinced of the veracity
of @, since Bob could have constructed the proof himself even if @ were not true,
simply using knowledge of his private key.

An example of a designated verifier signature was given in the previous sec-
tion: “DL-SIG, (m)VDL-SIG, (m).” Say Alice knows the private key x associated
with y and Bob knows the private key z' associated with y’. If Alice gives this
proof to Bob, Bob is convinced of Alice’s knowledge of x and signature on m,
but if he shows this to any other party, they would not necessarily be convinced
that Alice signed m.

4 Private Contract Signatures

An important technique we introduce is a type of signature we call a private
contract signature. Roughly, these are designated verifier signatures that can be
converted into universally-verifiable signatures by either the signing party or a
trusted third party appointed by the signing party, whose identity can be verified
by the party who is the designated verifier. More formally:

Definition 1. A private contract signature (PCS) scheme X' is a tuple of prob-

abilistic polynomial-time algorithms {PCS-Sign, S-Convert, TP-Convert, PCS-Ver,

S-Ver, TP-Ver} defined as follows, and having the security properties defined be-

low.

(1) PCS-Sign executed by party A on m for B with respect to third party T,
denoted PCS-Sign 4(m, B, T), outputs a private contract signature, denoted
PCSa(m,B,T). A private contract signature can be verified using PCS-Ver,
i.e.,

true if S = PCS4(m,B,T);

false otherwise.

PCS-Ver(m, A,B,T.,S) = {



(2) S-Convert executed by A on a private contract signature S = PCS(m, B, T)
generated by A, denoted S-Converta(S), produces a universally-verifiable
signature by A on m, S-Sig,(m).

(3) TP-Convert executed by T on a private contract signature S = PCS4(m,B,T),
denoted TP-Converty(S), produces a universally-verifiable signature by A
on m, TP-Sig 4 (m).

(4) S-Sigy(m) can be verified using S-Ver, and TP-Sig,(m) can be verified
using TP-Ver, i.e.,

true if S = S-Sigy(m);
false otherwise;

S-Ver(m, A, T,S) = {

and
true if S = TP-Sig,(m);

TP-Ver(m, A,T,S) = {false otherwise.

The security properties of a PCS scheme are:
(1) Unforgeability of PCS4(m,B,T): For any m, it is infeasible for anyone
but A or B to produce T and S such that PCS-Ver(m, A, B, T, S) = true.

(2) Designated verifier property of PCS4(m, B,T): For any B, there is
a polynomial-time algorithm FakeSign such that for any m, A, and T,
FakeSigng(m, A, T) outputs S, where PCS-Ver(m, A, B, T, S) = true.

(3) Unforgeability of S-Sig,(m) and TP-Sig,(m): For any m, A, B,T, as-

suming

P =PCSs(m,B,T) is known and was produced by PCS-Sign 4(m, B,T), it

18 infeasible

(3.1)  for anyone but A or T to produce S such that S-Ver(m,A,T,S) =
true and TP-Ver(m, A,T,S) = true;

(3.2)  for anyone but A to produce S such that S-Ver(m, A, T,S) = true
and TP-Ver(m, A, T, S) = false; and

(3.3)  for anyone but T to produce S such that TP-Ver(m, A,T,S) = true
and S-Ver(m, A, T, S) = false.

Definition 2. A PCS scheme X is third party-accountable if for any PCS 4(m,
B,T), the distributions of S-Sig,(m) and TP-Sig,(m), produced by S-Convert
and TP-Convert, respectively, are disjoint.

That is, it is impossible to have S-Ver(m, A, T,S) = TP-Ver(m, A,T,S) = true
for any S, and thus it is possible for a verifier to distinguish whether the conver-
sion was performed by the signatory or by the third pary. This property might
be useful if the signatories are concerned about the third party’s trustworthiness.
A somewhat complementary property is the following.

Definition 3. A PCS scheme X is third party-invisible if for any PCS4(m,
B,T), the distributions of S-Sig,(m) and TP-Sig,(m), produced by S-Convert
and TP-Convert, respectively, are identical.



In other words, for any S, S-Ver(m, A,T,S) = TP-Ver(m, A, T, S), meaning no
one can determine if a conversion was performed by the original signer or the
trustee. This property might be useful in some scenarios where signatories may
not want possible “bad publicity” associated with a contract needing to be con-
verted by the third party.

Note that the scheme given in [3] that uses verifiable encryption is actually a
PCS scheme, with the TP-invisibility property. That scheme is inefficient, requir-
ing cut-and-choose techniques, but it allows for a variety of types of signatures.
We now present an efficient PCS scheme in which the signatures are of a specific
form.

4.1 An efficient discrete log-based PCS scheme

Say A has public key y4 and private key x4, where y4 = ¢g*4. Similarly, B
has public key /private key pair (yg,zg), and T has public key/private key pair
(yr, zr). The intuition is as follows. In order for A to generate a PCS on m for
B, she sends B a proof of the statement

“X is a T-encryption of “1” AND I can sign m as A
OR
X is a T-encryption of “2” AND I can sign m as B”

where X is some value, and T-encryption denotes a message encrypted with 7s
public key. A can do this because she can perform a T-encryption of “1” to
generate X, and she can sign m herself. Upon receiving this proof, B can verify
its correctness, but he is not able to transfer it to anybody else, since he could
have generated a similar proof himself.

A TP-accountable conversion of the above PCS by A can be done by A giving
a proof that X is a T-encryption of “1” (cf. Section 3.1). The TP-accountable
conversion of the PCS by T can be done similarly, i.e., by T' giving a proof that
X is a T-encryption of “1.” The accountability will arise from the fact that the
proofs given by A and 1" are of a different form. For a TP-invisible conversion
of the PCS, both A and T" output the disjunction of the two proofs above. We
now define the scheme formally by describing the algorithms.

— PCS-Sign 4(m, B,T) works as follows. A generates an ElGamal encryption
(a,b) of 1 for T and outputs PCS4(m, B,T) = {(a,b), P) where P is the
following proof:

([1 = CCx(a, b,yr)IADL-SIG,, (m)) V ([2 = CCr(a; b, yr)|ADL-SIG,,, (m)))

= S-Converty(S), where S = PCSa(m, B,T), works as follows. For a trustee-
invisible signature, A outputs S-Sig,(m) = (S, P) where P is the following
proof:
[1 =CCg(a,b,yr)] V [1 =CCpla,b,yr)].
For a non-trustee-invisible signature, A outputs S-Sig4(m) = (S, P) where
P is the following proof:

1= CCE(a,b,yT).



— TP-Converty(S), where S = PCS4(m, B,T'), works as follows. For a trustee-
invisible signature, T' outputs TP-Sig 4 (m) = (S, P) where P is the following
proof:

[]‘ = CCE(G, b; yT)] v [1 = CCD(a; bayT)]

For a non-trustee-invisible signature, T outputs TP-Sig 4 (m) = (S, P) where
P is the following proof:

1= CCD(G, b7 yT)

Theorem 1. Assuming the security of DDH, the above signature scheme is a
PCS scheme (in the random oracle model).

Proof Sketch: First we show unforgeability of PCS4(m, B,T) = {(a,b), P). Say
a polynomial-time party F' could forge with non-negligible probability. Then we
could use F' to find x 4 or zp in polynomial-time with non-negligible probability,
as follows. Assuming that the challenge length is superpolynomial in &, the Fork-
ing Lemma from Pointcheval and Stern [35] shows that in polynomial time we
can find two transcripts (a, ¢, z) and (a, ¢, 2") for the X-protocol S corresponding
to P. By the definition of S, we can extract x4 or zp, which contradicts DLA,
and hence contradicts DDH.

The designated verifier property follows from the fact that by DDH, it is
infeasible to distinguish an ElGamal encryption of 2 from an ElGamal encryp-
tion of 1, and the fact that B has a polynomial time algorithm to generate
PCS(m,B,T). For the latter, first B generates an ElGamal encryption (a,b)
of 2 using public key yr. Then it can construct the proof P since it knows the
secret value used in the encryption and it knows zp, and thus can play the
part of the prover in the X-protocol corresponding to the proof P needed for
PCS4(m,B,T).

Now we show unforgeability of S-Sig 4 (m) = (S, P), where S = PCSs(m, B, T)
= {(a,b), Ps). (The proof of unforgeability of TP-Sig ,(m) is similar.) First, say
a polynomial-time party F' could construct P with non-negligible probability
such that (a,b) is not of the form (y3*,¢9%) (i-e., (a,b) is not the encryption of
“1”). Then by the Forking lemma, in polynomial time we can find two tran-
scripts (a, ¢, z) and (a,c’, 2') for the X-protocol S’ corresponding to P. But this
is impossible, since the input is not in the language.

Thus, no polynomial-time party F' could construct P unless (a,b) is of the
form (y2*,¢g“). Now say a polynomial-time party F could forge S-Sig,(m) =
(S, P) with non-negligible probability. There are two cases.

1. F has a non-negligible probability of forging S-Sig,(m) = (S, P) for an
S generated by A. In this case, we can break DDH. Given DDH instance
(g,h,r1,72), set yr = h, b = r1 and a = 79, and produce PCS4(m, B, T)
(simulating the random oracle h also, in order to be able to construct the PCS
proof). If the DDH instance is a true Diffie-Hellman quadruple, F' constructs
a valid P with non-negligible probability. Otherwise F' cannot.

If F constructs a valid P, we guess that the DDH instance is a true Diffie-
Hellman quadruple, and otherwise, with probability 1/2 we guess that it



is a true Diffie-Hellman quadruple. Thus we guess with a non-negligible
advantage.

2. F has a non-negligible probability of forging S-Sig,(m) = (S, P) for an S
not generated. Then F' has a non-negligible probability of forging a PCS,
which is a contradiction to our argument above.

Remark. We note that it may be possible to obtain a similar result using tech-
niques involving encryption of signatures, and proofs that the resulting cipher-
texts contain valid signatures. Efficient protocols for proving that the contents
of a ciphertext is a valid signature were presented in [19] for ElGamal signatures,
and [11] for RSA signatures. Combining this with the methods in [31] may result
in alternative implementations.

5 Abuse-free Contract Signing

In this section, we show how to use the PCS scheme to design an abuse-free
contract signing protocol. First we give a high level description. The main pro-
tocol has an alternating structure, with a previously agreed-upon initiator, say,
party A. If no problems occur, A sends a private contract signature (PCS) of the
message to be signed to B, and B responds with his PCS. Then A converts her
PCS into a universally-verifiable signature, and then B does the same. If prob-
lems occur, A or B may run protocols to abort or resolve the contract signing,
depending on what step has been attained in the protocol. The basic, failure-free
protocol is shown in Figure 1.

This is very similar to the protocol of [3], except that the primitives un-
derlying our protocol are different, and provide different functionality. We now
describe the protocol(s) in more detail. We use [a]x, for X € {A4,B,T}, to
denote the string a concatenated with a signature of a under X’s public key.

Signatory A Signatory B

PCSa(m,B,T)
PCSp(m, A, T)
S-Sig 4 (m)
S-Sigp(m)

If =0k, quit
If -0k, abort

If —ok, resolve

If -0k, resolve

Fig. 1. The basic abuse-free contract signing protocol for two parties

Main Protocol



1. A runs PCS-Sign,((m,1), B,T) and sends the result, PCS4((m,1), B,T),
to B.

2. If B receives a valid PCS4((m,1),B,T), it runs PCS-Signg((m,2), A,T)
and sends the result PCSg((m,2), A,T), to A. Otherwise B simply quits.

3. If A receives a valid respouse PCSg((m,2),A,T), it runs
S-Convert4 (PCS4((m, 1), B,T)) and sends the result, S-Sig 4 ((m, 1)), to B.
Otherwise A runs the Abort protocol.

4. If B receives a valid response S-Sig 4 ((m, 1)), it runs
S-Convertg(PCSg((m,2), A,T)) and sends the result, S-Sigg((m, 2)), to A.
Otherwise B runs B-Resolve.

5. If A does not receive a valid response S-Sigg((m,2)), she runs resolve

Protocol Abort: To abort, A sends [m, A, B, abort]4 to T
1. If the signature is correct, and neither A nor B have resolved, T' sends
[[m, A, B, abort] 4] back to A, and stores this.

2. If either A or B has resolved, it sends the corresponding stored value (i.e.,
S-Sig4((m, 1)) or S-Sigg((m,2)), resp.—see below).

Protocol B-Resolve: For B to resolve, it runs S-Convertg(PCSg((m,2), A,T))
to produce S-Sigg((m, 2)), and sends the message

(PCSA((m> 1)1 B, T)a S_SigB((ma 2)))

to T'. T checks to make sure the second half corresponds to the first half (i.e., m
is the same, etc.), and checks that the second half is valid. If so, then it decides
what to do as follows.

1. If A has aborted, it sends the stored copy of [[m, A, B, abort] 4]y to B.

2. If A has resolved, it sends the stored copy of S-Sig,((m,1)) to B.
3. Otherwise, it sends TP-Converty(PCS4((m,1), B,T)) to B and stores this.

Protocol A-Resolve: For A to resolve, it runs S-Convert 4 (PCS 4((m, 1), B,T)) to
produce S-Sig 4((m, 1)), and sends the message

(S-Sig4((m, 1)), PCSp((m,2),A,T))

to T. T checks to make sure the first half corresponds to the second half (i.e.,
m is the same, etc.), and checks that the first half is valid. If so, then it decides
what to do as follows.

1. If A has already aborted, it sends the stored copy of [[m, A, B, T]a]r.

2. If B has resolved, it sends the stored copy of S-Sigg((m, 2)).

3. If B has not resolved, it sends TP-Converty(PCSg((m,2), A4, ,T)) to A and
stores this.
Recall that the S-Convert and TP-Convert procedures can result in either
TP-invisibility or TP-accountability.



Disputes: Disputes concerning contracts are handled as follows:

1. If one party shows [[m, A, B, abort]4]; and the other shows
(S-Sigh (m), S-Sig’4 (m)), then the contract is valid, since A must have called
Abort after sending S—Sigﬁ (m), and thus after ratifying the contract.

2. If one party shows [[m, A, B, abort] 4] and the other shows a contract with
TP-Sig,(m) or TP-Sigg(m), then if the TP-accountable conversions were
used, 7" must have cheated.

If we assume that TP-invisibility is used and the third party is trusted, only the

first case above may occur.

Theorem 2. Assuming the security of DDH, the protocol above is a secure op-
timistic contract signing protocol, with TTP invisibility.

Proof. Recall that we say that an optimistic contract signing protocol is secure
if it is complete, fair and abuse-free.

Complete: Completeness follows directly from the PCS definition.

Fairness for A: Say A is honest and does not obtain a valid contract. First
consider the case in which A calls Abort after sending PCS4(m, B,T).
Since she does not obtain a valid contract, she must receive
[[m, A, B, abort] s]7. Then by the security of PCS, B is not able to construct
S-Sig/ (m) or S-Sig’ (m). The only other case is when A sends S-Sig4(m)
to B. But then A either receives S-Sigh(m) or calls A-Resolve to receive
S-Sigk(m), and thus this case is impossible.

Fairness for B: Say B is honest and does not obtain a valid contract. This
implies A never sent S-Sig’ (m). Then at some point B must have called B-
Resolve and obtained [[m, A, B, abort] 4]r. Then A only received PCSg(m,
A, T), and by the security of PCS, could not have a valid contract.

If T is not honest, then it is easy to see that this can be detected in
the TP-accountable version of the protocol, but not necessarily in the TP-
invisible version.

Abuse-freeness for A: We must show that B does not obtain publicly ver-
ifiable information about (honest) A signing the contract until B is also
bound by the contract. This follows by the designated verifier property of
PCS4(m, B,T), and the fact that once B receives S-Sig’s (m), B must have
sent PCSg(m, A, T), and B is not able to abort. Thus either A will receive
S-Sigh(m) from B, or A will perform A-Resolve to obtain S-Sigk(m). Fi-
ther way, A receives a valid contract.

Abuse-freeness for B: We must show that A does not obtain publicly ver-
ifiable information about (honest) B signing the contract until A is also
bound by the contract. This follows by the designated verifier property of
PCSg(m,A,T), and the fact that once A receives S-Sigh(m), A must have
sent S—Sigﬁ(m, B,T), and thus B already has a valid contract.



Remark: We have not distinguished between off-line and on-line attacks in
the above proof sketch. In fact, we only need to consider on-line attacks,
as the off-line attack is a special case of the on-line attack. When we refer
to the designated verifier property above, we mean the property that unless
the secret key of the receiver of a proof is not known by the same, it is under
no circumstances possible for this receiver to convince a third party of the
validity of the proof, whether they interact or not. Therefore, it follows that
the validity of the proof/signature cannot be verified by said third party,
but only by the party designated by the prover/signer.
TP Invisibility: Straightforward from the definition.

Similarly, we can show

Theorem 3. Assuming the security of DDH, the protocol variation above is a
secure optimistic contract signing protocol with TTP accountability.

6 Three-party Contracts

In this section we consider contract signing by n > 2 parties. Natural extensions
to three-party contract signing do not seem to allow abuse-freeness. One problem
faced in extensions to three parties is that the two party protocol is asymmetric:
A has the power to abort, but B does not. With a straightforward extension
to three parties, it is unclear whether to let the “middle” party abort or not,
and how to maintain fairness and abuse-freenes in either case. (We leave a more
complete discussion to the full version of the paper.)

Signatory A Signatory B

PCSa(m,B,T)
PCSp(m,B,T)
PCS4((m, “Strong”), B, T)
S-Sig (m)
S-Sig 4 (m)

Fig. 2. Alternative abuse-free contract signing protocol for two parties

We now present a contract-signing protocol for three parties that is both
abuse-free and fair. The approach we take is to let aborts be overturned, but
in a way that avoids any violation of fairness and abuse freeness. The protocol
is based on the alternative protocol for two parties shown in Figure 2. In the
protocol, the roles of A and B are interchanged during the signature phase: B



sends his converted signature first, and A does it after receiving B’s signature.
However, B only sends his signature after receiving a new message: a “strong”
promise that she won’t abort the protocol. One consequence of this is that now
T might have to overturn a stored abort outcome, as requested by a cheating A,
to that of a valid signed contract. In the full paper we show:

Theorem 4. Assuming the security of DDH, the protocol of Figure 2 is a secure
optimistic contract signing protocol for two parties (in the random oracle model).

PCSa(m,B,T)

PCSa(m,C,T)

PCSp(m,C,T)
PCSc(m, B, T)
PCSg((m, “Strong”),C, T)
PCS¢((m, “Strong”), B, T')
PCSc(m, A, T))

PCSp(m,A,T)
PCS4((m, “Strong”), B, T)
PCSa(m, “Strong”),C,T)
PCSg((m, “Superstrong”), C, T
S-Sigy(m)

S-Sig(m)
S-Sig s (m) S-Sig (m)
S-Sig 4 ()

S-Sig 4 (m)

Fig. 3. Secure contract signing protocol for three parties

Based on the alternate protocol for two parties, a secure contract signing
protocol for three parties is shown in Figure 3. As in the two-party protocol, the
protocol also uses “strong” promises, but now with more levels of strength. In
the three-party case, B sends also a “Superstrong” promise not to (support an)
abort. Intuitively, and as a general rule, a “Strong” promise presented by a party
in a call to resolve will not be used by the trustee to overturn an existing abort;
on the other hand, a “Superstrong” promise will provide overturning power. All



the cases are outlined in the description of the protocol, which will be presented
in the full version of this paper.

Theorem 5. Assuming the security of DDH, the protocol of Figure 3 is a se-
cure optimistic contract signing protocol for three parties (in the random oracle
model).
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