
Hashing
Lecture #5 of Algorithms, Data structures and Complexity

Joost-Pieter Katoen, Ed Brinksma

Formal Methods and Tools Group

E-mail: katoen@cs.utwente.nl

September 24, 2002

c� JPK

#5: Hashing ADC (214020)

Overview
� Introduction

� Direct addressing

� Hashing

– Collision resolution using chaining
– Complexity analysis of chaining

� Open addressing

– Probing strategies
– Complexity analysis of open addressing

� Hash functions

c� JPK 1

#5: Hashing ADC (214020)

Introduction

� A dictionary ADT stores information that can be retrieved at any time

– the set of items stored is dynamic
– items have a key and information associated with that key
– example: symbol table for a compiler where keys are strings (i.e., identifiers)

� A dictionary � supports the following operations:

– search(�) looks up the information stored under key � in �

– insert(�) stores information object � into �
– delete(�) deletes information object � from � ; requires � to be in �

� Which data structure is appropriate to implement a dictionary?

– a heap: insertion and deletion are efficient, but how about search?
– ordered array/list: insertion is linear in worst case
– red-black tree: all operations are logarithmic in worst case

under reasonable assumptions a hash table takes � ��� � on average for all operations

c� JPK 2

#5: Hashing ADC (214020)

Overview
� Introduction

� Direct addressing

� Hashing

– Collision resolution using chaining
– Complexity analysis of chaining

� Open addressing

– Probing strategies
– Complexity analysis of open addressing

� Hash functions

c� JPK 3

#5: Hashing ADC (214020)

Direct addressing

� Allocate an array that has a position for each possible key

� Each array element contains a pointer to the stored information

– for simplicity we omit the information associated to keys in this lecture

� the techniques and analysis results remain valid

� For universe � � ��� ��� ��	 	 	 ��
 � � of keys we have:

– a direct-address table� ���� � � ��� � � with� � � � corresponding to key �

– search(�): return� � � �

– insert(�): boils down to� � � � � � � � ��� �

– delete(�): simply means� � � � � � � � � � nil

� Runtime for each of the operations is � �� � in worst case

c� JPK 4

#5: Hashing ADC (214020)

Direct addressing

�
�

5

4

3

2

1

0

6

7

8

9

0

1

2

3

4

5

6

7

89

universe of keys

actual keys

key direct address table

c� JPK 5

#5: Hashing ADC (214020)

Check for duplicates in linear time

assume all elements are positive integers of at most �

bool checkDuplicates � int ��� � � ��� ��

int ��� � � � Count � // direct-address table for� ��� �

for � � � � � � � � � � � � � Count � � � � � � // initialize Count

for � � � � � � � � � � � � ��

if � Count �� ��� � �	� � � return true � // duplicate found

else Count �� ��� � � � � �
 // count occurrence of� ��� �

return false � // no duplicate found

c� JPK 6

#5: Hashing ADC (214020)

Counting sort

assume all elements are positive integers of at most �

void countSort � int ��� � � ��� ��

int ��� � � � Count � int � � � ��� � � �

for � � � � � � � � � � � � � Count ��� � � � �

for � � � � � � � � � � � � � Count �� � � � � � � �

for � � � � � � � � � � � � ��

for � � � Count � � � � � � � � � � �� � � � � � � � � �

� � Count ��� � � � �

c� JPK 7

#5: Hashing ADC (214020)

Counting sort: example

start

after 2
iterations

after 5
iterations

after 1
iteration

after 3
iterations

after 4
iterations

0

input array �Count�

02 0 1 2 1 1 0 0 1 107 1 4 6 5 1 5
� �

�

02 0 1 2 1 1 0 0 1 11 1 4 6 5 1 52

� �

1 5 1 54

�

02 0 1 2 1 1 0 0 1 15

�

55

�

�

02 0 1 2 1 1 0 0 1 11 1 4 6 5 1 5
�

2

�

�

02 0 1 2 1 1 0 0 1 11 1 4 6 5 1 52

��

1 4 6 5 1 54

�

�

02 0 1 2 1 1 0 0 1 13

�

c� JPK 8

#5: Hashing ADC (214020)

Counting sort

� Note that we now sort with worst-case complexity � �
 �

– compare this to the lower-bound of � � ��� � � � � � that we obtained earlier
– but this algorithm is incomparable to quicksort, heapsort and the like

� it is not based on element-wise comparisons, but counts occurrences

� Why does this trick work: exploit direct addressing

� Insertion, deletion and searching takes � �� � in worst case

� Main complication: excessive space consumption (size of array = � � �)

– e.g., if keys are strings of 20 symbols, we need about �	�

 array entries

can we avoid this huge memory consumption while remaining efficient?

yes! by using hashing

c� JPK 9

#5: Hashing ADC (214020)

Overview
� Introduction

� Direct addressing

� Hashing

– Collision resolution using chaining
– Complexity analysis of chaining

� Open addressing

– Probing strategies
– Complexity analysis of open addressing

� Hash functions

c� JPK 10

#5: Hashing ADC (214020)

Hashing

� In practice only a small fraction of keys is used, i.e., � � ��� � � � �

� with direct addressing most of the direct address table� is wasted

� The aim of hashing is:

– map an extremely large key space onto a reasonable small range (of integers)
– such that it is unlikely that two keys are mapped onto the same integer

� A hash function maps a key onto an index in the hash table � :

� � � � � � � � � �� � � ��� � �
 where� is the table-size and 	 � 	� �

� Hash collisions, i.e.,
 ��� � �
 ��� � for� �� � , raise the issues:

– how to obtain a hash function that is cheap to evaluate and minimizes collisions?
– how to treat hash collisions when they occur?

c� JPK 11

#5: Hashing ADC (214020)

Hashing

�
�

0

universe of keys

actual keys

� �

� �

� �
� �

� � �

� �

hash function
hash table

� � � � �

� � � � �
� � � � � �

� � � � �

� � � � �

hash collision

c� JPK 12

#5: Hashing ADC (214020)

Hash collisions: the birthday paradox
No matter how good our hash function is, we better be prepared for collisions

� This is due to the birthday paradox:

– the probability that your neighbor has the same birthday is � � � � � �� � � �

– if you ask 23 people, this probability raises to � �� � � � �� �� �

– but, if there are 23 people in a room, two of them have the same birthday

with probability: � �
�

�� 	
�� 	

� ��

�� 	

� �� �
�� 	

� � � � � �
 �
�� 	 �

� �� 	

� Applying this to hashing yields:

– the probability of no collisions after � insertions into an� -element table:

�
� � � � �
� � � � � � � � � � �

� �
�� �

��

� � �

�

– for� � �� 	 and � � 	 � this probability goes to 0

c� JPK 13

#5: Hashing ADC (214020)

Hash collisions: the birthday paradox

0.2

0.4

0.6

0.8

1.0

20 40 60 10080

Number of insertions �

P
ro

ba
bi

lit
y

of
no

co
lli

si
on

c� JPK 14

#5: Hashing ADC (214020)

Collision resolution by chaining

concept: put all keys that hash to the same integer in a linked list [Luhn 1953]

� � � �

�
�

� �

� �

� �

�

0

� �

� �

� �
� �

�

� � �

� �

� �

�
�

� �

c� JPK 15

#5: Hashing ADC (214020)

Collision resolution by chaining

� Dictionary operations when using chaining:

– search(�): search for an element with key � in the list� � � � � � �

– insert(�): put element � at the front of list� � � � � � � � � � � �

– delete(� : delete element � from list� � � � � � � � � � � �

� Worst-case complexity of these operations:

– assuming computing � � � � is rather efficient, say � ��� �

– searching: proportional to the length of the list� � � � � � �

– insertion: in constant time (note: no check whether element � is already present)
– deletion: proportional to the length of the list� � � � � � �

� In worst case all keys are hashed onto the same slot

– searching and deletion have same complexity as for lists! � � � �
The average case complexity of hashing with chaining is efficient, though

c� JPK 16

#5: Hashing ADC (214020)

Average case analysis of chaining (I)

� Assumptions:

– we have � possible keys and� hash-table entries � � � �

– uniform hashing: each key is equally likely hashed to any integer
– the hash value � � � � can be computed in constant time

� The filling degree of hash table � is � �
 ��� � � �
�

– note that the average length of list� � � � is also �

� What is the expected # elts examined in � �
 �� � � to search key� ?

– distinguish between unsuccessful and successful search (like in lecture #1)

� Technical point:

– extend definition of � , � and � for functions with two parameters (like �)
– e.g., 	
 � �� � if � � � � �
 ���
 such that

� � � �
 �� � �
 � � � 	 � � ��� � � � � � � � � �
c� JPK 17

#5: Hashing ADC (214020)

Average case analysis of chaining (II)

� An unsuccessful search takes � �� � � � time on average

– expected time to search for key � = expected time to search list� � � � � � �

– this list has expected length �
– the computation of � � � � takes a single time unit

� together this yields� � � time units on average

� A successful search also takes � �� � � � time on average

– let � � be the � -th inserted key and � � � � � be the expected time to search � � :

� � � � � � � � average # of keys inserted in� � � � � � � � after � � was inserted

– using the uniform hashing assumption this reduces to: � � � � � � � �

�
� � � ��

�
�

– take the average over all � insertions into the hash-table
�

�
�

�� �
� � � � �

c� JPK 18

#5: Hashing ADC (214020)

Average case analysis of chaining (III)
The expected number of elements examined in a successful search is

�
�

�
�� �

�
�

� �

�
� � � ��

�
� �

�� (* calculus *)
�

�
�

�� �
� �

�
� �

�
�� �

�
� � � ��

�

� (* calculus *)

� �
�

� �
�

�� �
� � � � �

� (* calculus *)

� �
�

� � �
� �� � � � � � �

� �� (* calculus *)

� �
� � �

� � � � �
�

�
� �

� � and thus in � ��� � � �
c� JPK 19

#5: Hashing ADC (214020)

Complexity of dictionary operations using chaining

� Assume the number� of entries is (at least) proportional to

� Then filling degree � �
 ��� � � �
� �

� � � �� � � �� �

� Then all dictionary operations take � �� � time on average

� This includes searching, so we can sort in � �
 � on average!

c� JPK 20

#5: Hashing ADC (214020)

Overview
� Introduction

� Direct addressing

� Hashing

– Collision resolution using chaining
– Complexity analysis of chaining

� Open addressing

– Probing strategies
– Complexity analysis of open addressing

� Hash functions

c� JPK 21

#5: Hashing ADC (214020)

Collision resolution by open addressing

� Unlike chaining all elements are stored in the hash table itself

� at most � keys can be stored, i.e., � � � � � � � �
� � � [Amdahl 1954]

� Since no memory is used for pointers, more data can be stored

� this helps to reduce the number of hash collisions

� Insertion of a key� :

– probe the entries of the hash table until an empty slot is found
– sequence of slots probed depends on key � to be inserted
– the hash function depends on the key � and the probe number:

� � � � � � � � �� � � � � �
 � � � � � � �� � � � � �

– hash function � should eventually consider every entry in the hash table

c� JPK 22

#5: Hashing ADC (214020)

Insertion using open addressing

void hashInsert � int� � key � ��

int � � � � � � // � is probe number

repeat

� � � � � � � � � // compute � � � � -st probe

if� � � � � � nil� // free entry found

� � � � � � � return �
 // store key � and stop

else � � � � � �

until � � � � � � length � � // check entire table

return hash table overflow � // no free entry left

c� JPK 23

#5: Hashing ADC (214020)

Searching using open addressing

int hashSearch � int� � key � � �

int � � � � � � // � is probe number

repeat

� � � � � � � � � // compute � � � � � -st probe

if� � � � � � � return � � // key � found

else � � � � � �

until � � � � � � length 	 	� � � � � � nil � �
// check entire table or find an empty slot

return nil � // key � has not been found

c� JPK 24

#5: Hashing ADC (214020)

Deletion using open addressing

� Deleting key� from slot � by � � � � � nil is inappropriate

� if at insertion of � slot � was occupied we cannot retrieve � anymore

� Solution: mark � � � � as special value DELETED (or “obsolete”)

� hashInsert needs to be adapted to treat such slots as empty

� hashSearch remains unchanged as DELETED slots are ignored

� Search times now no longer depend on filling degree � only

� If keys are to be deleted, chaining is more commonly used

c� JPK 25

#5: Hashing ADC (214020)

How to select the next probe?

� How to generate the probing sequence for a given key� :
�

 �� �� � �
 ��� � � � �	 	 	 �
 �� � � � � � �

– which is a permutation of

�
� �� � � � � �

�

for each key �

� this guarantees that all slots are eventually considered

� Ideally we have uniform hashing

– i.e. each of the� � permutations is equally likely as probing sequence
– only used for analysis, in practice too expensive and approximated

� Different policies exist to select the next probe

– we consider linear probing, quadratic probing and double hashing
– quality is indicated by the number of distinct probing sequences generated

c� JPK 26

#5: Hashing ADC (214020)

Linear probing

� Uses the hash function
 �� � � � � �
 �� � � � � mod� (for � � �)

– where � � is an auxiliary hash function

� Subsequent probed slots are offset by a linear dependence on �

� Initial probe determines the entire probe sequence

� � distinct probe sequences can be generated

� Suffers from clustering, i.e., long sequences of occupied slots

– an empty slot preceded by � full slots gets filled next with probability � ��
�� long sequences of occupied slots tend to get longer

c� JPK 27

#5: Hashing ADC (214020)

Linear probing: example

31 9

10

8

7

6

5

4

3

2

1

022

10

28

15

4

31 9

10

8

7

6

5

4

3

2

1

022

10

28

15

4

17

31 9

10

8

7

6

5

4

3

2

1

022

10

28

15

4

31 9

10

8

7

6

5

4

3

2

1

022

10

28

15

4

17

31 9

10

8

7

6

5

4

3

2

1

022

10

28

15

4

17

ins(17) ins(17)

1st probe 2nd probe

ins(59)

1st probe

ins(59)

2nd probe

ins(59)

3rd probe

 ��� � � � mod� �
 �� � � � � �
 �� � � � � mod� �
c� JPK 28

#5: Hashing ADC (214020)

Quadratic probing

� Uses the hash function
 �� � � � � �
 ��� � � � ��� � � � � � �

� � mod� (for

� � �)

– where � � is an auxiliary hash function and non-zero constants � � �

� Subsequent probed slots are offset by a quadratic dependence on �

� Initial probe determines the entire probe sequence

� � distinct probe sequences can be generated (like for linear probing)
–� � � � � � provided the values of� and constants � and � are appropriately

chosen

� Suffers from secondary clustering

– � � � � � � � � � � �

� � � implies � � � � � � � � � � �

� � � for all �

– but avoids the clustering appearing with linear probing

c� JPK 29

#5: Hashing ADC (214020)

Quadratic probing: example

31 9

10

8

7

6

5

4

3

2

1

022

10

28

4

15

31 9

10

8

7

6

5

4

3

2

1

022

10

28

4

15

31 9

10

8

7

6

5

4

3

2

1

022

10

28

4

15

31 9

10

8

7

6

5

4

3

2

1

022

10

28

4

15

31 9

10

8

7

6

5

4

3

2

1

022

10

28

4

15

17
ins(17) ins(17) ins(17)ins(17)

4th probe2nd probe1st probe 3rd probe

 �� � � � � �
 �� � � � � � ��� � mod� �
 �� � � � mod� �

c� JPK 30

#5: Hashing ADC (214020)

Double hashing

� Uses the hash function
 �� � � �
 � �� � � �
�
 � ��� � � mod� (for � � �)

– where � � and � � are auxiliary hash functions

� Subsequent probed slots are offset by the amount
 � �� �

� the initial probe does not determine the probe sequence

� this yields a better distribution of keys in the hash table

� approximates the uniform hashing strategy

� If
 � �� � and� are relatively prime, the entire hash table is searched

– e.g., choose� � � � and � � such that it produces an odd number

� Each possible pair
 � ��� � and
 � �� � yields a distinct probe sequence

� double hashing generates� � distinct permutations

c� JPK 31

#5: Hashing ADC (214020)

Double hashing: example

31 9

10

8

7

6

5

4

3

2

1

022

10

28

4

15

31 9

10

8

7

6

5

4

3

2

1

022

10

28

4

15

31 9

10

8

7

6

5

4

3

2

1

022

10

28

4

15

31 9

10

8

7

6

5

4

3

2

1

022

10

28

4

15

31 9

10

8

7

6

5

4

3

2

1

022

10

28

4

15

17

ins(17) ins(17)

1st probe 2nd probe

ins(17)

4th probe

ins(59)

1st probe

 � �� � � � � � mod� �

� ��� � � � mod� �
 �� � � � � �
 � �� � � �
�
 � �� � � mod� �

ins(17)

3rd probe

c� JPK 32

#5: Hashing ADC (214020)

Practical efficiency of double hashing

� Hash table with � �� � � � entries (final filling 99.95%)

� Mean number of collisions per insertion into hash table:

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100

�

usage of hashtable (in %)

c� JPK 33

#5: Hashing ADC (214020)

Efficiency of open addressing

Under the assumption of uniform hashing we have:

� An unsuccessful search takes �

�

�
��� � �

time on average

– if hash table is half full, 2 probes are necessary on average
– if hash table is 90% full, 10 probes are necessary on average

� A successful search takes �

�
�

�
� �� �

�� � �

time on average

– if hash table is half full, about 1.39 probes are necessary on average
– if hash table is 90% full, about 2.56 probes are necessary on average

� Recall that for chaining this was � �� � � � for both cases

c� JPK 34

#5: Hashing ADC (214020)

Analyzing unsuccessful search (I)

�� � # probes � �

� (* � � is the event that there is an � -th probe and it is to an occupied slot *)
�� � � � � � � �� � � � � �� �

� (* probability theory *)

�� � � �
� �� � � � 	 � �
� �� � � � 	 � � � � �
� � � �� � � � 	 � � �� � � � � �� �

� (* there are � elements and� slots *)

�
� � ��� �

� � �
� � � � � ��� � � �

� � � � �

� (* bound to above *)

�
�

� �
�� �

� (* definition of � *)

� �� �

c� JPK 35

#5: Hashing ADC (214020)

Analyzing unsuccessful search (II)

the expected number of probes

� (* property of� *)

�
�� �

�� � # probes � �

� (* use previous derivation on �� � # probes � �
 *)

�
�� �

� �� �

� (* rewrite slightly *)

�
� �

� �

� (* geometric series *)

�
� � �

c� JPK 36

#5: Hashing ADC (214020)

Analyzing successful search (I)

average number of probes in a successful search
� (* definition of average *)

�
� �

� � �
��

average number of probes for � � � � � -st inserted key

� (* average number of probes for � � � � � -st inserted key is at most �
� � �

*)
�

� �
� � �

� �

�

� � �

� (* calculus *)

�
� �

� � �
��

�
� � �

c� JPK 37

#5: Hashing ADC (214020)

Analyzing successful search (II)

�
� �

� � �
��

�
� � �

� (* calculus *)

�
�

� �
�

�

� � � � � ��
�

�
�

�

� (* approximate summation by integral (cf. Example 1.7) *)

�
�

�

�
� � �

�
�

� �

� (* integral calculus *)

�
� ��

�
�

� � � �� (* definition of � *)

�
� ��

�
�

� � � �

c� JPK 38

#5: Hashing ADC (214020)

Overview
� Introduction

� Direct addressing

� Hashing

– Collision resolution using chaining
– Complexity analysis of chaining

� Open addressing

– Probing strategies
– Complexity analysis of open addressing

� Hash functions

c� JPK 39

#5: Hashing ADC (214020)

Hash functions

� A hash function maps a key onto an integer (i.e., an index)

– the hash function � � � � should be cheap to evaluate
– it should be surjective on the range �� � � � � �

– it should tend to use all indexes with uniform frequency
– it should tend to put similar keys in different parts of the hash table

� Three major techniques to obtain a “good” hash function:

– the division method
– the multiplication method
– universal hashing

c� JPK 40

#5: Hashing ADC (214020)

Division method

� Uses the hash scheme
 �� � � � mod� (for � � �)

� Using this method, the value of� should be chosen with care

– if� � ��� , then � mod� amounts to select the � least significant bits of �

� Practical good choice:� is prime and not too close to power of 2

– example: consider 2,000 character strings
– allow on average about 3 probes for an unsuccessful search
– choose� � � � � � � � � � � � �

c� JPK 41

#5: Hashing ADC (214020)

Multiplication method

� Uses the hash scheme
 �� � � �� � �� � � mod� � � (for � � �)

– with constant � � � � (Knuth suggests � �� 	 � � � � � � �� � �)
– note that �� mod� is the fractional part of ��

� the value of� is not critical here

� Usual scheme take� � ��� and � � �
�	� where� �
 � ��� and then:

– first compute � � (= � � � � �)
– divide by � � , use only the fractional part
– multiply by � � and use only the integer part

X

key �

� bits
��� � �

� � � �

extract� bits

c� JPK 42

#5: Hashing ADC (214020)

Universal hashing

� Greatest problem with hashing:

– there is always an adversarial sequence of keys all mapped onto the same slot

� Choose randomly a hash function from a given small set �

– that is independent of the keys which are going to be used

� For� � � the fraction of functions in � such that� and� collide is ��� ��

– probability that � � � � collide is � ��� �� �� �
�
� �

�

� Example: define the elements of the class of hash functions by:

 � �
	 �� � � � ��� � � � � mod � � mod�
– where � is a prime number such that � � � and � � largest key
– integers � (� � � � �) and � (� � � � �) are chosen at execution time

c� JPK 43

