Hashing

Lecture #5 of Algorithms, Data structures and Complexity

Joost-Pieter Katoen, Ed Brinksma

Formal Methods and Tools Group

E-mail: katoen@cs.utwente.nl

September 24, 2002

Overview

 \Rightarrow Introduction

- Direct addressing
- Hashing
 - Collision resolution using chaining
 - Complexity analysis of chaining
- Open addressing
 - Probing strategies
 - Complexity analysis of open addressing
- Hash functions

Introduction

- A *dictionary* ADT stores information that can be retrieved at any time
 - the set of items stored is dynamic
 - items have a key and information associated with that key
 - example: symbol table for a compiler where keys are strings (i.e., identifiers)
- A dictionary *d* supports the following operations:
 - search(k) looks up the information stored under key k in d
 - *insert*(e) stores information object e into d
 - delete(e) deletes information object e from d; requires e to be in d
- Which data structure is appropriate to implement a dictionary?
 - a heap: insertion and deletion are efficient, but how about search?
 - ordered array/list: insertion is linear in worst case
 - red-black tree: all operations are logarithmic in worst case

under reasonable assumptions a hash table takes O(1) on average for all operations

Overview

- Introduction
- \Rightarrow Direct addressing
 - Hashing
 - Collision resolution using chaining
 - Complexity analysis of chaining
 - Open addressing
 - Probing strategies
 - Complexity analysis of open addressing
 - Hash functions

Direct addressing

- Allocate an array that has a position for each possible key
- Each array element contains a pointer to the stored information
 - for simplicity we omit the information associated to keys in this lecture
 - \Rightarrow the techniques and analysis results remain valid
- For universe $U = \{0, 1, \dots, n-1\}$ of keys we have:
 - a direct-address table $T[0 \dots n-1]$ with T[k] corresponding to key k
 - search(k): return T[k]
 - *insert*(e): boils down to T[key[e]] = e
 - delete(e): simply means T[key[e]] = nil
- Runtime for each of the operations is $\Theta(1)$ in worst case

Direct addressing

Check for duplicates in linear time

assume all elements are positive integers of at most k

Counting sort

assume all elements are positive integers of at most k

```
void countSort(int [1..n] E) {

int [1..k] Count, int i, j, l = 0;

for (i = 1; i \leq k; i++) Count[i] = 0;

for (i = 1; i \leq n; i++) Count[E[i]]++;

for (i = 1; i \leq n; i++) {

for (j = Count[i] + l; j > l; j--) E[j] = i;

l = Count[i] + l; }
```

Counting sort: example

Counting sort

- Note that we now sort with worst-case complexity $\Theta(n)$
 - compare this to the lower-bound of $\Theta(n \cdot \log n)$ that we obtained earlier
 - but this algorithm is incomparable to quicksort, heapsort and the like
 - \Rightarrow it is not based on element-wise comparisons, but counts occurrences
- Why does this trick work: exploit direct addressing
- Insertion, deletion and searching takes $\Theta(1)$ in worst case
- Main complication: excessive space consumption (size of array = |U|)
 - e.g., if keys are strings of 20 symbols, we need about 2^{100} array entries

can we avoid this huge memory consumption while remaining efficient?

yes! by using hashing

Overview

- Introduction
- Direct addressing
- \Rightarrow Hashing
 - Collision resolution using chaining
 - Complexity analysis of chaining
 - Open addressing
 - Probing strategies
 - Complexity analysis of open addressing
 - Hash functions

Hashing

- In practice only a small fraction of keys is used, i.e., $|K| \ll |U|$
 - \Rightarrow with direct addressing most of the direct address table T is wasted
- The aim of hashing is:
 - map an extremely large key space onto a reasonable small range (of integers)
 - such that it is unlikely that two keys are mapped onto the same integer
- A hash function maps a key onto an index in the hash table T:

 $h: U \longrightarrow \{0, 1, \dots, m-1\}$ where *m* is the table-size and |U| = n

- Hash collisions, i.e., h(k) = h(k') for $k \neq k'$, raise the issues:
 - how to obtain a hash function that is cheap to evaluate and minimizes collisions?
 - how to treat hash collisions when they occur?

universe of keys hash function hash table 0 U $h(k_1)$ $h(k_2)=h(k_3)$ k_1 K $h(k_5)$ k_2 k_3 k_4 k_5 (hash collision $h(k_4)$ actual keys m-1

Hashing

Hash collisions: the birthday paradox

No matter how good our hash function is, we better be prepared for collisions

- This is due to the birthday paradox:
 - the probability that your neighbor has the same birthday is $\frac{1}{365} \approx 0.027$
 - if you ask 23 people, this probability raises to $\frac{23}{365} \approx 0.063$
 - but, if there are 23 people in a room, two of them have the same birthday

with probability:
$$1 - \left(\frac{365}{365} \cdot \frac{364}{365} \cdot \frac{363}{365} \cdot \dots \cdot \frac{343}{365}\right) \approx 0.5$$

- Applying this to hashing yields:
 - the probability of no collisions after k insertions into an m-element table:

$$\frac{m}{m} \cdot \frac{m-1}{m} \cdot \dots \cdot \frac{m-k+1}{m} = \prod_{i=0}^{k-1} \frac{m-i}{m}$$

- for m = 365 and $k \ge 50$ this probability goes to 0

Hash collisions: the birthday paradox

Collision resolution by chaining

concept: put all keys that hash to the same integer in a linked list [Luhn 1953]

Collision resolution by chaining

- Dictionary operations when using chaining:
 - search(k): search for an element with key k in the list T[h(k)]
 - *insert*(*e*): put element *e* at the front of list T[h(key[e])]
 - delete(e: delete element e from list T[h(key[e])]
- Worst-case complexity of these operations:
 - assuming computing h(k) is rather efficient, say $\Theta(1)$
 - searching: proportional to the length of the list T[h(k)]
 - insertion: in constant time (note: no check whether element e is already present)
 - deletion: proportional to the length of the list T[h(k)]
- In worst case all keys are hashed onto the same slot
 - searching and deletion have same complexity as for lists! $\Theta(n)$

The average case complexity of hashing with chaining is efficient, though

Average case analysis of chaining (I)

- Assumptions:
 - we have n possible keys and m hash-table entries $n \gg m$
 - uniform hashing: each key is equally likely hashed to any integer
 - the hash value h(k) can be computed in constant time
- The filling degree of hash table T is $\alpha(n,m) = \frac{n}{m}$
 - note that the average length of list T[j] is also α
- What is the expected # elts examined in T[h(k)] to search key k?
 - distinguish between unsuccessful and successful search (like in lecture #1)
- Technical point:
 - extend definition of O, Θ and Ω for functions with two parameters (like α)
 - e.g., $g \in O(f)$ if $\exists c > 0, n_0, m_0$ such that

$$orall n \geqslant n_0, m \geqslant m_0: 0 \leqslant g(n,m) \leqslant c \cdot f(n,m)$$

Average case analysis of chaining (II)

- An unsuccessful search takes $\Theta(1+\alpha)$ time on average
 - expected time to search for key k = expected time to search list T[h(k)]
 - this list has expected length α
 - the computation of h(k) takes a single time unit
 - \Rightarrow together this yields $1+\alpha$ time units on average
- A successful search also takes $\Theta(1+\alpha)$ time on average
 - let k_i be the *i*-th inserted key and $A(k_i)$ be the expected time to search k_i :

 $A(k_i) = 1 + \text{ average # of keys inserted in } T[h(k_i)] \text{ after } k_i \text{ was inserted}$

- using the uniform hashing assumption this reduces to: $A(k_i) = 1 + \sum_{j=i+1}^{n} \frac{1}{m}$
- take the average over all n insertions into the hash-table $\frac{1}{n}\sum_{i=1}^{n}A(k_i)$

Average case analysis of chaining (III)

The expected number of elements examined in a successful search is

$$\begin{aligned} \frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} \frac{1}{m} \right) \\ &= (* \text{ calculus } *) \\ \frac{1}{n} \sum_{i=1}^{n} 1 + \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=i+1}^{n} 1 \\ &= (* \text{ calculus } *) \\ 1 + \frac{1}{nm} \sum_{i=1}^{n} (n-i) \\ &= (* \text{ calculus } *) \\ 1 + \frac{1}{nm} \left(n^2 - \frac{n(n+1)}{2} \right) \\ &= (* \text{ calculus } *) \\ 1 + \frac{n-1}{2m} = 1 + \frac{\alpha}{2} - \frac{\alpha}{2n} \text{ and thus in } \Theta(1+\alpha) \end{aligned}$$

Complexity of dictionary operations using chaining

- Assume the number m of entries is (at least) proportional to n
- Then filling degree $\alpha(n,m) = \frac{n}{m} \in \frac{O(m)}{m} = O(1)$
- Then all dictionary operations take O(1) time on average
- This includes searching, so we can sort in O(n) on average!

Overview

- Introduction
- Direct addressing
- Hashing
 - Collision resolution using chaining
 - Complexity analysis of chaining
- \Rightarrow Open addressing
 - Probing strategies
 - Complexity analysis of open addressing
 - Hash functions

Collision resolution by open addressing

• Unlike chaining all elements are stored in the hash table itself

 \Rightarrow at most *n* keys can be stored, i.e., $\alpha(n,m) = \frac{n}{m} \leq 1$ [Amdahl 1954]

- Since no memory is used for pointers, more data can be stored
 - \Rightarrow this helps to reduce the number of hash collisions
- Insertion of a key k:
 - probe the entries of the hash table until an empty slot is found
 - sequence of slots probed depends on key k to be inserted
 - the hash function depends on the key k and the probe number:

$$h: U \times \{0, 1, \dots m-1\} \longrightarrow \{0, 1, \dots m-1\}$$

- hash function h should eventually consider every entry in the hash table

Insertion using open addressing

```
void hashInsert(int T, key k) {
                                 // i is probe number
   int i = 0, j;
   repeat
     j = h(k, i); // compute (i+1-st probe
     if T[j] == nil \{
                                   // free entry found
       T[j] = k; return ; } // store key k and stop
     else i = i + 1;
   until (i = T.length); // check entire table
   return hash table overflow; // no free entry left
}
```

Searching using open addressing

```
int hashSearch(int T, key k) {
   int i = 0, j;
                             // i is probe number
   repeat
      j = h(k, i); // compute (i + 1)-st probe
      if T[j] == k return j; // key k found
      else i = i+1;
   until (i = T.length || T[j] = nil);
           // check entire table or find an empty slot
   return nil; // key k has not been found
}
```

Deletion using open addressing

- Deleting key k from slot i by T[i] = nil is inappropriate
 - \Rightarrow if at insertion of k slot i was occupied we cannot retrieve k anymore
- Solution: mark T[i] as special value DELETED (or "obsolete")
 - \Rightarrow hashInsert needs to be adapted to treat such slots as empty
 - ⇒ hashSearch remains unchanged as DELETED slots are ignored
- Search times now no longer depend on filling degree α only
- \Rightarrow If keys are to be deleted, chaining is more commonly used

How to select the next probe?

• How to generate the probing sequence for a given key k:

 $\langle h(k,0), h(k,1), \ldots, h(k,m-1) \rangle$

- which is a permutation of $\langle 0, \dots m\!-\!1\rangle$ for each key k
- \Rightarrow this guarantees that all slots are eventually considered
- Ideally we have uniform hashing
 - i.e. each of the m! permutations is equally likely as probing sequence
 - only used for analysis, in practice too expensive and approximated
- Different policies exist to select the next probe
 - we consider linear probing, quadratic probing and double hashing
 - quality is indicated by the number of distinct probing sequences generated

Linear probing

- Uses the hash function $h(k,i) = (h'(k) + i) \mod m$ (for i < m)
 - where h' is an auxiliary hash function
- Subsequent probed slots are offset by a linear dependence on i
- Initial probe determines the entire probe sequence
 - $\Rightarrow m$ distinct probe sequences can be generated
- Suffers from clustering, i.e., long sequences of occupied slots
 - an empty slot preceded by i full slots gets filled next with probability $\frac{i+1}{m}$
 - \Rightarrow long sequences of occupied slots tend to get longer

Quadratic probing

- Uses the hash function $h(k,i) = (h'(k) + c_1 \cdot i + c_2 \cdot i^2) \mod m$ (for i < m)
 - where h' is an auxiliary hash function and non-zero constants c_1, c_2
- Subsequent probed slots are offset by a quadratic dependence on i
- Initial probe determines the entire probe sequence
 - \Rightarrow m distinct probe sequences can be generated (like for linear probing)
 - provided the values of m and constants c_1 and c_2 are appropriately chosen
- Suffers from *secondary* clustering
 - h(k,0) = h(k',0) implies h(k,i) = h(k',i) for all i
 - but avoids the clustering appearing with linear probing

Double hashing

- Uses the hash function $h(k) = (h_1(k) + i \cdot h_2(k)) \mod m$ (for i < m)
 - where h_1 and h_2 are auxiliary hash functions
- Subsequent probed slots are offset by the amount $h_2(k)$
 - \Rightarrow the initial probe does not determine the probe sequence
 - \Rightarrow this yields a better distribution of keys in the hash table
 - \Rightarrow approximates the uniform hashing strategy
- If $h_2(k)$ and m are relatively prime, the entire hash table is searched
 - e.g., choose $m = 2^k$ and h_2 such that it produces an odd number
- Each possible pair $h_1(k)$ and $h_2(k)$ yields a distinct probe sequence
 - \Rightarrow double hashing generates m^2 distinct permutations

Practical efficiency of double hashing

- Hash table with 538051 entries (final filling 99.95%)
- *Mean* number of collisions per insertion into hash table:

Efficiency of open addressing

Under the assumption of uniform hashing we have:

- An unsuccessful search takes $O\left(\frac{1}{1-\alpha}\right)$ time on average
 - if hash table is half full, 2 probes are necessary on average
 - if hash table is 90% full, 10 probes are necessary on average
- A successful search takes $O\left(\frac{1}{\alpha} \cdot \ln \frac{1}{1-\alpha}\right)$ time on average
 - if hash table is half full, about 1.39 probes are necessary on average
 - if hash table is 90% full, about 2.56 probes are necessary on average
- Recall that for chaining this was $\Theta(1+\alpha)$ for both cases

Analyzing unsuccessful search (I)

 $\Pr\{\text{\# probes } \ge i\}$ $= (* A_i \text{ is the event that there is an } i\text{-th probe and it is to an occupied slot }*)$ $\Pr\{A_1 \cap A_2 \cap \ldots \cap A_{i-1}\}$ = (* probability theory *) $\Pr\{A_1\} \cdot \Pr\{A_2 \mid A_1\} \cdot \Pr\{A_3 \mid A_1 \cap A_2\} \dots \Pr\{A_i \mid A_1 \cap \ldots \cap A_{i-1}\}$ = (* there are n elements and m slots *) = (* there are n elements and m slots *) $\stackrel{n}{=} \frac{n-1}{m-1} \cdot \ldots \cdot \frac{n-i+2}{m-i+2}$ $\leqslant (* \text{ bound to above } *)$ $= (* \text{ definition of } \alpha \ *)$ α^{i-1}

Analyzing unsuccessful search (II)

the expected number of probes = (* property of E *) $\sum_{i=1}^{\infty} \Pr\{ \text{\# probes } \geq i \}$ \leqslant (* use previous derivation on $\Pr\{\# \text{ probes } \geqslant i\}$ *) $\sum_{i=1}^\infty lpha^{i-1}$ = (* rewrite slightly *) $\sum_{i=0}^{\infty} lpha^i$ = (* geometric series *) $\frac{1}{1-\alpha}$

Analyzing successful search (I)

average number of probes in a successful search

= (* definition of average *)

 $\frac{1}{n} \cdot \sum_{i=0}^{n-1}$ average number of probes for (i+1)-st inserted key

 \leq (* average number of probes for (i+1)-st inserted key is at most $\frac{m}{m-i}$ *)

$$\frac{1}{n} \cdot \sum_{i=0}^{n-1} \frac{m}{m-i}$$
$$= (* \text{ calculus } *)$$
$$\frac{m}{n} \cdot \sum_{i=0}^{n-1} \frac{1}{m-i}$$

*)

Analyzing successful search (II)

$$\frac{m}{n} \cdot \sum_{i=0}^{n-1} \frac{1}{m-i}$$

$$= (* \text{ calculus } *)$$

$$\frac{1}{\alpha} \cdot \left(\sum_{k=m-n+1}^{m} \frac{1}{k}\right)$$

$$\leq (* \text{ approximate summation by integral (cf. Example 1.7)}$$

$$\frac{1}{\alpha} \cdot \int_{m-n}^{m} \frac{1}{x} dx$$

$$= (* \text{ integral calculus } *)$$

$$\frac{1}{\alpha} \ln \left(\frac{m}{m-n}\right)$$

$$= (* \text{ definition of } \alpha \ *)$$

$$\frac{1}{\alpha} \ln \left(\frac{1}{1-\alpha}\right)$$

Overview

- Introduction
- Direct addressing
- Hashing
 - Collision resolution using chaining
 - Complexity analysis of chaining
- Open addressing
 - Probing strategies
 - Complexity analysis of open addressing
- \Rightarrow Hash functions

Hash functions

- A hash function maps a key onto an integer (i.e., an index)
 - the hash function h(k) should be cheap to evaluate
 - it should be surjective on the range $0 \dots m-1$
 - it should tend to use all indexes with uniform frequency
 - it should tend to put similar keys in different parts of the hash table
- Three major techniques to obtain a "good" hash function:
 - the division method
 - the multiplication method
 - universal hashing

Division method

- Uses the hash scheme $h(k) = k \mod m$ (for i < m)
- Using this method, the value of m should be chosen with care
 - if $m = 2^p$, then $k \mod m$ amounts to select the p least significant bits of k
- Practical good choice: m is prime and not too close to power of 2
 - example: consider 2,000 character strings
 - allow on average about 3 probes for an unsuccessful search
 - choose $m = 2000/3 \longrightarrow 701$

Multiplication method

- Uses the hash scheme $h(k) = \lfloor m \cdot (k \cdot c \mod 1) \rfloor$ (for i < m)
 - with constant 0 < c < 1 (Knuth suggests $c \approx (\sqrt{5} 1)/2 \approx 0.62$)
 - note that $k \cdot c \mod 1$ is the fractional part of $k \cdot c$
 - \Rightarrow the value of m is not critical here
- Usual scheme take $m = 2^p$ and $c = \frac{s}{2^w}$ where $0 < s < 2^w$ and then:
 - first compute $k \cdot s$ (= $k \cdot c \cdot 2^w$)
 - divide by 2^w , use only the fractional part
 - multiply by 2^p and use only the integer part

Universal hashing

- Greatest problem with hashing:
 - there is always an adversarial sequence of keys all mapped onto the same slot
- Choose randomly a hash function from a given small set H
 - that is independent of the keys which are going to be used
- For k, k' the fraction of functions in H such that k and k' collide is $\frac{|H|}{m}$
 - probability that k, k' collide is $\frac{1}{|H|} \cdot \frac{|H|}{m} = \frac{1}{m}$
- Example: define the elements of the class of hash functions by:

 $h_{a,b}(k) = ((a \cdot k + b) \mod p) \mod m$

- where p is a prime number such that p > m and p > largest key
- integers a ($1 \leq a < p$) and b ($0 \leq b < p$) are chosen at execution time