Hashing

Lecture \#5 of Algorithms, Data structures and Complexity

Joost-Pieter Katoen, Ed Brinksma

Formal Methods and Tools Group
E-mail: katoen@cs.utwente.nl
September 24, 2002

Overview

\Rightarrow Introduction

- Direct addressing
- Hashing
- Collision resolution using chaining
- Complexity analysis of chaining
- Open addressing
- Probing strategies
- Complexity analysis of open addressing
- Hash functions

Introduction

- A dictionary ADT stores information that can be retrieved at any time
- the set of items stored is dynamic
- items have a key and information associated with that key
- example: symbol table for a compiler where keys are strings (i.e., identifiers)
- A dictionary d supports the following operations:
- $\operatorname{search}(k)$ looks up the information stored under key k in d
- insert(e) stores information object e into d
- delete(e) deletes information object e from d; requires e to be in d
- Which data structure is appropriate to implement a dictionary?
- a heap: insertion and deletion are efficient, but how about search?
- ordered array/list: insertion is linear in worst case
- red-black tree: all operations are logarithmic in worst case under reasonable assumptions a hash table takes O (1) on average for all operations

Overview

- Introduction
\Rightarrow Direct addressing
- Hashing
- Collision resolution using chaining
- Complexity analysis of chaining
- Open addressing
- Probing strategies
- Complexity analysis of open addressing
- Hash functions

Direct addressing

- Allocate an array that has a position for each possible key
- Each array element contains a pointer to the stored information
- for simplicity we omit the information associated to keys in this lecture
\Rightarrow the techniques and analysis results remain valid
- For universe $U=\{0,1, \ldots, n-1\}$ of keys we have:
- a direct-address table $T[0 \ldots n-1]$ with $T[k]$ corresponding to key k
- $\operatorname{search}(k)$: return $T[k]$
- insert(e): boils down to $T[k e y[e]]=e$
- delete(e): simply means $T[k e y[e]]=$ nil
- Runtime for each of the operations is $\Theta(1)$ in worst case

Direct addressing

Check for duplicates in linear time

assume all elements are positive integers of at most k

```
bool checkDuplicates(int [1..n] E) {
    int [1..k] Count; // direct-address table for E[i]
    for (i=1;i\leqslantk;i++) Count[i]=0; // initialize Count
    for (i=1;i\leqslantn;i++) {
        if (Count[E[i]]>0) return true; // duplicate found
        else Count[E[i]]++;} // count occurrence of E[i]
    return false; // no duplicate found
}
```


Counting sort

assume all elements are positive integers of at most k

```
void countSort(int [1..n] E) {
    int [1..k] Count, int i,j,l=0;
    for (i=1;i\leqslantk;i++) Count[i]=0;
    for (i=1;i\leqslantn;i++) Count[E[i]]++;
    for (i=1;i\leqslantn;i++) {
        for (j = Count[i] +l;j>l;j--) E[j]=i;
        l=Count[i]+l; }
}
```


Counting sort: example

Counting sort

- Note that we now sort with worst-case complexity $\Theta(n)$
- compare this to the lower-bound of $\Theta(n \cdot \log n)$ that we obtained earlier
- but this algorithm is incomparable to quicksort, heapsort and the like
\Rightarrow it is not based on element-wise comparisons, but counts occurrences
- Why does this trick work: exploit direct addressing
- Insertion, deletion and searching takes $\Theta(1)$ in worst case
- Main complication: excessive space consumption (size of array = $|U|$)
- e.g., if keys are strings of 20 symbols, we need about 2^{100} array entries
can we avoid this huge memory consumption while remaining efficient?
yes! by using hashing

Overview

- Introduction
- Direct addressing
\Rightarrow Hashing
- Collision resolution using chaining
- Complexity analysis of chaining
- Open addressing
- Probing strategies
- Complexity analysis of open addressing
- Hash functions

Hashing

- In practice only a small fraction of keys is used, i.e., $|K| \ll|U|$
\Rightarrow with direct addressing most of the direct address table T is wasted
- The aim of hashing is:
- map an extremely large key space onto a reasonable small range (of integers)
- such that it is unlikely that two keys are mapped onto the same integer
- A hash function maps a key onto an index in the hash table T :

$$
h: U \longrightarrow\{0,1, \ldots, m-1\} \text { where } m \text { is the table-size and }|U|=n
$$

- Hash collisions, i.e., $h(k)=h\left(k^{\prime}\right)$ for $k \neq k^{\prime}$, raise the issues:
- how to obtain a hash function that is cheap to evaluate and minimizes collisions?
- how to treat hash collisions when they occur?

Hashing

universe of keys

Hash collisions: the birthday paradox

No matter how good our hash function is, we better be prepared for collisions

- This is due to the birthday paradox:
- the probability that your neighbor has the same birthday is $\frac{1}{365} \approx 0.027$
- if you ask 23 people, this probability raises to $\frac{23}{365} \approx 0.063$
- but, if there are 23 people in a room, two of them have the same birthday

$$
\text { with probability: } \quad 1-\left(\frac{365}{365} \cdot \frac{364}{365} \cdot \frac{363}{365} \cdot \ldots \cdot \frac{343}{365}\right) \approx 0.5
$$

- Applying this to hashing yields:
- the probability of no collisions after k insertions into an m-element table:

$$
\frac{m}{m} \cdot \frac{m-1}{m} \cdot \ldots \cdot \frac{m-k+1}{m}=\prod_{i=0}^{k-1} \frac{m-i}{m}
$$

- for $m=365$ and $k \geqslant 50$ this probability goes to 0

Hash collisions: the birthday paradox

Collision resolution by chaining

concept: put all keys that hash to the same integer in a linked list
[Luhn 1953]

Collision resolution by chaining

- Dictionary operations when using chaining:
- $\operatorname{search}(k)$: search for an element with key k in the list $T[h(k)]$
- insert(e): put element e at the front of list $T[h(k e y[e])]$
- delete(e: delete element e from list $T[h(k e y[e])]$
- Worst-case complexity of these operations:
- assuming computing $h(k)$ is rather efficient, say $\Theta(1)$
- searching: proportional to the length of the list $T[h(k)]$
- insertion: in constant time (note: no check whether element e is already present)
- deletion: proportional to the length of the list $T[h(k)]$
- In worst case all keys are hashed onto the same slot
- searching and deletion have same complexity as for lists! $\Theta(n)$

The average case complexity of hashing with chaining is efficient, though

Average case analysis of chaining (I)

- Assumptions:
- we have n possible keys and m hash-table entries $n \gg m$
- uniform hashing: each key is equally likely hashed to any integer
- the hash value $h(k)$ can be computed in constant time
- The filling degree of hash table T is $\alpha(n, m)=\frac{n}{m}$
- note that the average length of list $T[j]$ is also α
- What is the expected \# elts examined in $T[h(k)]$ to search key k ?
- distinguish between unsuccessful and successful search (like in lecture \#1)
- Technical point:
- extend definition of O, Θ and Ω for functions with two parameters (like α)
- e.g., $g \in O(f)$ if $\exists c>0, n_{0}, m_{0}$ such that

$$
\forall n \geqslant n_{0}, m \geqslant m_{0}: 0 \leqslant g(n, m) \leqslant c \cdot f(n, m)
$$

Average case analysis of chaining (II)

- An unsuccessful search takes $\Theta(1+\alpha)$ time on average
- expected time to search for key $k=$ expected time to search list $T[h(k)]$
- this list has expected length α
- the computation of $h(k)$ takes a single time unit
\Rightarrow together this yields $1+\alpha$ time units on average
- A successful search also takes $\Theta(1+\alpha)$ time on average
- let k_{i} be the i-th inserted key and $A\left(k_{i}\right)$ be the expected time to search k_{i} :

$$
A\left(k_{i}\right)=1+\text { average \# of keys inserted in } T\left[h\left(k_{i}\right)\right] \text { after } k_{i} \text { was inserted }
$$

- using the uniform hashing assumption this reduces to: $A\left(k_{i}\right)=1+\sum_{j=i+1}^{n} \frac{1}{m}$
- take the average over all n insertions into the hash-table $\frac{1}{n} \sum_{i=1}^{n} A\left(k_{i}\right)$

Average case analysis of chaining (III)

The expected number of elements examined in a successful search is

$$
\begin{gathered}
\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} \frac{1}{m}\right) \\
=\left(^{*} \text { calculus }^{*}\right) \\
\frac{1}{n} \sum_{i=1}^{n} 1+\frac{1}{n m} \sum_{i=1}^{n} \sum_{j=i+1}^{n} 1 \\
=\left(^{*} \text { calculus }^{*}\right) \\
1+\frac{1}{n m} \sum_{i=1}^{n}(n-i) \\
=\left(^{*} \text { calculus }{ }^{*}\right) \\
1+\frac{1}{n m}\left(n^{2}-\frac{n(n+1)}{2}\right) \\
=\left({ }^{*} \text { calculus }{ }^{*}\right) \\
1+\frac{n-1}{2 m}=1+\frac{\alpha}{2}-\frac{\alpha}{2 n} \text { and thus in } \Theta(1+\alpha)
\end{gathered}
$$

Complexity of dictionary operations using chaining

- Assume the number m of entries is (at least) proportional to n
- Then filling degree $\alpha(n, m)=\frac{n}{m} \in \frac{O(m)}{m}=O(1)$
- Then all dictionary operations take $O(1)$ time on average
- This includes searching, so we can sort in $O(n)$ on average!

Overview

- Introduction
- Direct addressing
- Hashing
- Collision resolution using chaining
- Complexity analysis of chaining
\Rightarrow Open addressing
- Probing strategies
- Complexity analysis of open addressing
- Hash functions

Collision resolution by open addressing

- Unlike chaining all elements are stored in the hash table itself
\Rightarrow at most n keys can be stored, i.e., $\alpha(n, m)=\frac{n}{m} \leqslant 1$
[Amdahl 1954]
- Since no memory is used for pointers, more data can be stored
\Rightarrow this helps to reduce the number of hash collisions
- Insertion of a key k :
- probe the entries of the hash table until an empty slot is found
- sequence of slots probed depends on key k to be inserted
- the hash function depends on the key k and the probe number:

$$
h: U \times\{0,1, \ldots m-1\} \longrightarrow\{0,1, \ldots m-1\}
$$

- hash function h should eventually consider every entry in the hash table

Insertion using open addressing

```
void hashInsert(int T, key k) {
    int i=0,j; // i is probe number
    repeat
        j=h(k,i); // compute (i+1-st probe
        if T[j]== nil { // free entry found
        T[j]=k; return ; } // store key k and stop
        else i=i+1;
    until (i==T.length); // check entire table
    return hash table overflow; // no free entry left
}
```


Searching using open addressing

```
int hashSearch(int T, key k) {
    int i=0,j; // i is probe number
    repeat
        j=h(k,i); // compute (i+1)-st probe
        if T[j]== k return j; // key k found
        else i=i+1;
    until (i== T.length | T[j] == nil);
            // check entire table or find an empty slot
    return nil; // key k has not been found
}
```


Deletion using open addressing

- Deleting key k from slot i by $T[i]=$ nil is inappropriate
\Rightarrow if at insertion of k slot i was occupied we cannot retrieve k anymore
- Solution: mark $T[i]$ as special value DeLETED (or "obsolete")
\Rightarrow hashInsert needs to be adapted to treat such slots as empty
\Rightarrow hashSearch remains unchanged as DeLETED slots are ignored
- Search times now no longer depend on filling degree α only
\Rightarrow If keys are to be deleted, chaining is more commonly used

How to select the next probe?

- How to generate the probing sequence for a given key k :

$$
\langle h(k, 0), h(k, 1), \ldots, h(k, m-1)\rangle
$$

- which is a permutation of $\langle 0, \ldots m-1\rangle$ for each key k
\Rightarrow this guarantees that all slots are eventually considered
- Ideally we have uniform hashing
- i.e. each of the m ! permutations is equally likely as probing sequence
- only used for analysis, in practice too expensive and approximated
- Different policies exist to select the next probe
- we consider linear probing, quadratic probing and double hashing
- quality is indicated by the number of distinct probing sequences generated

Linear probing

- Uses the hash function $h(k, i)=\left(h^{\prime}(k)+i\right) \bmod m$ (for $\left.i<m\right)$
- where h^{\prime} is an auxiliary hash function
- Subsequent probed slots are offset by a linear dependence on i
- Initial probe determines the entire probe sequence
$\Rightarrow m$ distinct probe sequences can be generated
- Suffers from clustering, i.e., long sequences of occupied slots
- an empty slot preceded by i full slots gets filled next with probability $\frac{i+1}{m}$
\Rightarrow long sequences of occupied slots tend to get longer

Linear probing: example

Quadratic probing

- Uses the hash function $h(k, i)=\left(h^{\prime}(k)+c_{1} \cdot i+c_{2} \cdot i^{2}\right) \bmod m$ (for $i<m$)
- where h^{\prime} is an auxiliary hash function and non-zero constants c_{1}, c_{2}
- Subsequent probed slots are offset by a quadratic dependence on i
- Initial probe determines the entire probe sequence
$\Rightarrow m$ distinct probe sequences can be generated (like for linear probing)
- $\ldots \ldots$. provided the values of m and constants c_{1} and c_{2} are appropriately chosen
- Suffers from secondary clustering
- $h(k, 0)=h\left(k^{\prime}, 0\right)$ implies $h(k, i)=h\left(k^{\prime}, i\right)$ for all i
- but avoids the clustering appearing with linear probing

Quadratic probing: example

22	0		22	0		22	0		22	0		22	0
	1			1			1			1			1
	2			2			2			2			2
	3			3			3			3		17	3
4		$\xrightarrow{\text { ins(17) }}$	4		$\xrightarrow{\text { ins(17) }}$	4	4	$\xrightarrow{\text { ins(17) }}$	4		ins(17)	4	4
		1st probe			2nd probe		5	3rd probe		5	4th probe		5
28	6		28	6		28	6		28	6		28	6
	7			7			7			7			7
15	8		15	8		15	8		15	8		15	8
31	9		31	9		31	9		31	9		31	9
10	10		10			10			10	10		10	10

$h^{\prime}(k)=k \bmod 11$

$$
h(k, i)=\left(h^{\prime}(k)+i+3 i^{2}\right) \bmod 11
$$

Double hashing

- Uses the hash function $h(k)=\left(h_{1}(k)+i \cdot h_{2}(k)\right) \bmod m$ (for $\left.i<m\right)$
- where h_{1} and h_{2} are auxiliary hash functions
- Subsequent probed slots are offset by the amount $h_{2}(k)$
\Rightarrow the initial probe does not determine the probe sequence
\Rightarrow this yields a better distribution of keys in the hash table
\Rightarrow approximates the uniform hashing strategy
- If $h_{2}(k)$ and m are relatively prime, the entire hash table is searched
- e.g., choose $m=2^{k}$ and h_{2} such that it produces an odd number
- Each possible pair $h_{1}(k)$ and $h_{2}(k)$ yields a distinct probe sequence
\Rightarrow double hashing generates m^{2} distinct permutations

Double hashing: example

22	0		22	0		22	0		22	0		22	0	
	1			1			1			1			1	
	2			2			2			2			2	
15	3		15	3		15	3		15	3		15	3	
4		$\xrightarrow[\text { 1st probe }]{i n s(17)}$	4	4	$\xrightarrow[\text { 2nd probe }]{\text { ins }(17)}$	4	5	$\xrightarrow[\text { 3rd probe }]{\text { ins(17) }}$	4	5	$\xrightarrow[\text { 4th probe }]{i n s(17)}$	4	5	$\xrightarrow[\text { 1st probe }]{i n s(59)}$
28	6		28	6		28	6		28	6		28	6	
	7			7			7			7			7	
	8			8			8			8		17	8	
31	9		31	9		31	9		31	9		31	9	
10	10		10			10		0	10			10		

$$
h_{1}(k)=k \bmod 11
$$

$$
h_{2}(k)=1+k \bmod 10
$$

$$
h(k, i)=\left(h_{1}(k)+i \cdot h_{2}(k)\right) \bmod 11
$$

Practical efficiency of double hashing

- Hash table with 538051 entries (final filling 99.95\%)
- Mean number of collisions per insertion into hash table:

Efficiency of open addressing

Under the assumption of uniform hashing we have:

- An unsuccessful search takes $O\left(\frac{1}{1-\alpha}\right)$ time on average
- if hash table is half full, 2 probes are necessary on average
- if hash table is 90% full, 10 probes are necessary on average
- A successful search takes $O\left(\frac{1}{\alpha} \cdot \ln \frac{1}{1-\alpha}\right)$ time on average
- if hash table is half full, about 1.39 probes are necessary on average
- if hash table is 90% full, about 2.56 probes are necessary on average
- Recall that for chaining this was $\Theta(1+\alpha)$ for both cases

Analyzing unsuccessful search (I)

$$
\operatorname{Pr}\{\# \text { probes } \geqslant i\}
$$

$=\left({ }^{*} A_{i}\right.$ is the event that there is an i-th probe and it is to an occupied slot *)

$$
\begin{aligned}
& \operatorname{Pr}\left\{A_{1} \cap A_{2} \cap \ldots \cap A_{i-1}\right\} \\
& =\left({ }^{*} \text { probability theory }{ }^{*}\right)
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{Pr}\left\{A_{1}\right\} \cdot \operatorname{Pr}\left\{A_{2} \mid A_{1}\right\} \cdot \operatorname{Pr}\left\{A_{3} \mid A_{1} \cap A_{2}\right\} \ldots \operatorname{Pr}\left\{A_{i} \mid A_{1} \cap \ldots \cap A_{i-1}\right\} \\
=\quad \text { (* there are } n \text { elements and } m \text { slots *) }_{*} \frac{n}{m} \cdot \frac{n-1}{m-1} \cdot \ldots \cdot \frac{n-i+2}{m-i+2} \\
\left.\leqslant \quad \text { (* bound to above }^{*}\right) \\
\left(\frac{n}{m}\right)^{i-1} \\
=\quad\left({ }^{*} \text { definition of } \alpha^{*}\right) \\
\alpha^{i-1}
\end{gathered}
$$

Analyzing unsuccessful search (II)

the expected number of probes

$$
\begin{aligned}
= & \left.{ }^{*} \text { property of } E{ }^{*}\right) \\
& \sum_{i=1}^{\infty} \operatorname{Pr}\{\# \text { probes } \geqslant i\}
\end{aligned}
$$

$\leqslant \quad$ (* use previous derivation on $\operatorname{Pr}\{\#$ probes $\geqslant i\}{ }^{*}$)

$$
\begin{gathered}
\sum_{i=1}^{\infty} \alpha^{i-1} \\
=\left(^{*} \text { rewrite slightly }{ }^{*}\right) \\
=\sum_{i=0}^{\infty} \alpha^{i} \\
\frac{1}{1-\alpha}
\end{gathered}
$$

Analyzing successful search (I)

average number of probes in a successful search
$=\left({ }^{*}\right.$ definition of average $\left.{ }^{*}\right)$
$\frac{1}{n} \cdot \sum_{i=0}^{n-1}$ average number of probes for $(i+1)$-st inserted key
$\leqslant \quad$ (* average number of probes for $(i+1)$-st inserted key is at most $\left.\frac{m}{m-i}{ }^{*}\right)$

$$
\begin{aligned}
& \frac{1}{n} \cdot \sum_{i=0}^{n-1} \frac{m}{m-i} \\
= & \left({ }^{*} \text { calculus }{ }^{*}\right) \\
& \frac{m}{n} \cdot \sum_{i=0}^{n-1} \frac{1}{m-i}
\end{aligned}
$$

Analyzing successful search (II)

$$
\begin{gathered}
\quad \frac{m}{n} \cdot \sum_{i=0}^{n-1} \frac{1}{m-i} \\
=\quad\left({ }^{*} \text { calculus }{ }^{*}\right) \\
\frac{1}{\alpha} \cdot\left(\sum_{k=m-n+1}^{m} \frac{1}{k}\right) \\
\leqslant \quad\left({ }^{*} \text { approximate summation by integral (cf. Example 1.7) }{ }^{*}\right) \\
\frac{1}{\alpha} \cdot \int_{m-n}^{m} \frac{1}{x} d x \\
=\left({ }^{*} \text { integral calculus }{ }^{*}\right) \\
\frac{1}{\alpha} \ln \left(\frac{m}{m-n}\right) \\
= \\
\left({ }^{*} \text { definition of } \alpha{ }^{*}\right) \\
\frac{1}{\alpha} \ln \left(\frac{1}{1-\alpha}\right)
\end{gathered}
$$

Overview

- Introduction
- Direct addressing
- Hashing
- Collision resolution using chaining
- Complexity analysis of chaining
- Open addressing
- Probing strategies
- Complexity analysis of open addressing
\Rightarrow Hash functions

Hash functions

- A hash function maps a key onto an integer (i.e., an index)
- the hash function $h(k)$ should be cheap to evaluate
- it should be surjective on the range $0 \ldots m-1$
- it should tend to use all indexes with uniform frequency
- it should tend to put similar keys in different parts of the hash table
- Three major techniques to obtain a "good" hash function:
- the division method
- the multiplication method
- universal hashing

Division method

- Uses the hash scheme $h(k)=k \bmod m($ for $i<m)$
- Using this method, the value of m should be chosen with care
- if $m=2^{p}$, then k mod m amounts to select the p least significant bits of k
- Practical good choice: m is prime and not too close to power of 2
- example: consider 2,000 character strings
- allow on average about 3 probes for an unsuccessful search
- choose $m=2000 / 3 \longrightarrow 701$

Multiplication method

- Uses the hash scheme $h(k)=\lfloor m \cdot(k \cdot c$ mod 1$)\rfloor($ for $i<m)$
- with constant $0<c<1$ (Knuth suggests $c \approx(\sqrt{5}-1) / 2 \approx 0.62)$
- note that $k \cdot c$ mod 1 is the fractional part of $k \cdot c$
\Rightarrow the value of m is not critical here
- Usual scheme take $m=2^{p}$ and $c=\frac{s}{2^{w}}$ where $0<s<2^{w}$ and then:
- first compute $k \cdot s\left(=k \cdot c \cdot 2^{w}\right)$
- divide by 2^{w}, use only the fractional part
- multiply by 2^{p} and use only the integer part

Universal hashing

- Greatest problem with hashing:
- there is always an adversarial sequence of keys all mapped onto the same slot
- Choose randomly a hash function from a given small set H
- that is independent of the keys which are going to be used
- For k, k^{\prime} the fraction of functions in H such that k and k^{\prime} collide is $\frac{|H|}{m}$
- probability that k, k^{\prime} collide is $\frac{1}{|H|} \cdot \frac{|H|}{m}=\frac{1}{m}$
- Example: define the elements of the class of hash functions by:

$$
h_{a, b}(k)=((a \cdot k+b) \bmod p) \bmod m
$$

- where p is a prime number such that $p>m$ and $p>$ largest key
- integers $a(1 \leqslant a<p)$ and $b(0 \leqslant b<p)$ are chosen at execution time

