Hashing

Lecture #5 of Algorithms, Data structures and Complexity

Joost-Pieter Katoen, Ed Brinksma
Formal Methods and Tools Group

E-mail: kat oen@s. ut went e. nl

September 24, 2002

© JPK



#5: Hashing

ADC (214020)

Overview

Introduction

Direct addressing

Hashing

— Collision resolution using chaining
— Complexity analysis of chaining

Open addressing

— Probing strategies
— Complexity analysis of open addressing

Hash functions

© JPK



#5: Hashing ADC (214020)

Introduction

e A dictionary ADT stores information that can be retrieved at any time

— the set of items stored is dynamic
— items have a key and information associated with that key
— example: symbol table for a compiler where keys are strings (i.e., identifiers)

e A dictionary d supports the following operations:

— search(k) looks up the information stored under key & in d
— insert(e) stores information object e into d

— delete(e) deletes information object e from d; requires e to be in d
e Which data structure is appropriate to implement a dictionary?

— a heap: insertion and deletion are efficient, but how about search?
— ordered array/list: insertion is linear in worst case
— red-black tree: all operations are logarithmic in worst case

under reasonable assumptions a hash table takes O(1) on average for all operations
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Direct addressing

e Allocate an array that has a position for each possible key

e Each array element contains a pointer to the stored information

— for simplicity we omit the information associated to keys in this lecture
= the technigues and analysis results remain valid

e Foruniverse U = {0,1,...,n—1} of keys we have:

— adirect-address table T'[0 . . . n—1] with T'[k] corresponding to key &
— search(k): return T'[k]

— insert(e): boils down to T'[key[e]] = e

— delete(e): simply means T'[keyle]] = nil

e Runtime for each of the operations is ©(1) in worst case
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Direct addressing
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/
N 4
N

© 0o NOoO 0o WO DN P O

actual keys

© JPK 5



#5: Hashing ADC (214020)

Check for duplicates in linear time

assume all elements are positive integers of at most k

bool checkDuplicates(int [1..n] E) {
int [1..k] Count; /I direct-address table for E[7]
for (i = 1;¢ < k;i++) Count[i] = 0; /I initialize Count
for (i = 1;¢ < n;i++) {
if (Count[E[i]] > 0) return true; /I duplicate found

else Count[E[:]]++; } /I count occurrence of E[i]

return false; // no duplicate found
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Counting sort

assume all elements are positive integers of at most k

void countSort(int [1..n] E) {
int [1..k] Count,int<, 5,1 = 0;
for (i = 1;¢ < k;i++) Count[i] = 0;
for (i = 1;¢ < n;i4++) Count[E[i]]++;
for (i = 157 < n;i++) {
for (j = Count[i] + 1;j > l;5——) E[j] = ¢;
[ = Count[i] +1; }
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Counting sort

e Note that we now sort with worst-case complexity ©(n)

— compare this to the lower-bound of ©(n- log n) that we obtained earlier
— but this algorithm is incomparable to quicksort, heapsort and the like
= itis not based on element-wise comparisons, but counts occurrences

e Why does this trick work: exploit direct addressing

e Insertion, deletion and searching takes ©(1) in worst case

e Main complication: excessive space consumption (size of array = |U )

— e.g., if keys are strings of 20 symbols, we need about 2°° array entries
can we avoid this huge memory consumption while remaining efficient?

by using hashing
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Hashing

e In practice only a small fraction of keys is used, i.e., |K| << |U|
= with direct addressing most of the direct address table 1" is wasted

e The aim of hashing is:

— map an extremely large key space onto a reasonable small range (of integers)
— such that it is unlikely that two keys are mapped onto the same integer

e A hash function maps a key onto an index in the hash table T
h:U — {0,1,...,m—1} where m is the table-size and |U| = n

e Hash collisions, i.e., h(k) = h(k') for k # k', raise the issues:

— how to obtain a hash function that is cheap to evaluate and minimizes collisions?
— how to treat hash collisions when they occur?
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Hashing

universe of keys
. hash function
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Hash collisions: the birthday paradox
No matter how good our hash function is, we better be prepared for collisions

e This is due to the birthday paradox:

— the probability that your neighbor has the same birthday is 365 ~ 0.027
— if you ask 23 people, this probability raises to 23 ~~ 0.063

— but, if there are 23 people in a room, two of them have the same birthday

365 364 363 343
with probability: 1 — < : : : ) ~ 0.5

365 365 365 365
e Applying this to hashing yields:
— the probability of no collisions after k insertions into an m-element table:
m—1 m— k—l—l —

™m

3|3

— form = 365 and k > 50 this probability goes to 0
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Hash collisions: the birthday paradox
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Collision resolution by chaining

concept: put all keys that hash to the same integer in a linked list [Luhn 1953]

[ =Lk |/]
k2 |/
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Collision resolution by chaining

e Dictionary operations when using chaining:

— search(k): search for an element with key k in the list T'[h (k)]
— insert(e): put element e at the front of list T'[h(key[e])]
— delete(e: delete element e from list T'[h(key|e])]

e \Worst-case complexity of these operations:

— assuming computing h(k) is rather efficient, say ©(1)

— searching: proportional to the length of the list T'[h (k)]

— insertion: in constant time (note: no check whether element e is already present)
— deletion: proportional to the length of the list T'[h(k)]

e In worst case all keys are hashed onto the same s|ot

— searching and deletion have same complexity as for lists! ©(n)

The average case complexity of hashing with chaining is efficient, though

© JPK 16
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Average case analysis of chaining (I)

e Assumptions:

— we have n possible keys and m hash-table entries n > m
— uniform hashing: each key is equally likely hashed to any integer
— the hash value h(k) can be computed in constant time

e The filling degree of hash table T'is a(n,m) = >
— note that the average length of list T'[5] is also «

e What is the expected # elts examined in T'|h(k)] to search key k7?
— distinguish between unsuccessful and successful search (like in lecture #1)

e Technical point:
— extend definition of O, © and €2 for functions with two parameters (like «)
— e.g.,9 € O(f) if de¢ > 0, ng, mg such that

Vn > ng,m>=mgp:0< g(n,m)<c- f(n,m)
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Average case analysis of chaining (ll)
e An unsuccessful search takes ©(1+«) time on average

— expected time to search for key k£ = expected time to search list T'[h(k)]
— this list has expected length «

— the computation of h(k) takes a single time unit
= together this yields 14+« time units on average

e A successful search also takes ©(1+«) time on average

— let k; be the i-th inserted key and A(k;) be the expected time to search k;:

A(k;) = 1 + average # of keys inserted in T'[h(k;)] after k; was inserted

“L 1
— using the uniform hashing assumption this reduces to: A(k;) = 1 + Z —
j=i+1

: : : 1 —
— take the average over all n insertions into the hash-table — E A(k;)
n
1=1
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Average case analysis of chaining (lll)
The expected number of elements examined in a successful search is

1 — 1

DTS I

™= jmit1 M
(* calculus *)

= (* calculus *)

L (g2 - D)

nm 2
= (* calculus *)
n—1 Q Q _
1+ ——=14 — — —andthusin O(1+«)
2m 2 2n
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Complexity of dictionary operations using chaining

e Assume the number m of entries is (at least) proportional to n

e Then filling degree a(n,m) = 2 e 2™ — (1)
e Then all dictionary operations take O(1) time on average

e This includes searching, so we can sortin O(n) on average!
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Collision resolution by open addressing

e Unlike chaining all elements are stored in the hash table itself

= at most n keys can be stored, i.e., a(n,m) = 2 < 1 [Amdahl 1954]
e Since no memory is used for pointers, more data can be stored

= this helps to reduce the number of hash collisions
e Insertion of a key k:

— probe the entries of the hash table until an empty slot is found
— sequence of slots probed depends on key k to be inserted
— the hash function depends on the key k£ and the probe number:

h:Ux{0,1,... m—1} — {0,1,...m—1}

— hash function h should eventually consider every entry in the hash table

© JPK 22
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Insertion using open addressing

void hashinsert(int T, key k) {

int: =0, j; Il 1 is probe number
repeat
j = h(k,1); /I compute (i+1-st probe
if T'[j] == nil { Il free entry found
T[j] = k;return; } // store key k and stop
else 1 = i1+1;
until (i == T'.length); /I check entire table
return hash table overflow; /I no free entry left

© JPK
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Searching using open addressing

int hashSearch(int T, key k) {

int: =0, j; Il © i1s probe number
repeat
j = h(k,1); /I compute (¢ + 1)-st probe
if T'[j] == k return j; I key k found

else i = i+1;
until (¢ == T'.length || T'[j] == nil);
/I check entire table or find an empty slot

return nil; Il key k has not been found

© JPK
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Deletion using open addressing

e Deleting key k from slot ¢ by T'[¢] = nil is inappropriate
= if at insertion of k£ slot ¢ was occupied we cannot retrieve k£ anymore
e Solution: mark T'[i] as special value DELETED (or “obsolete”)

=> hashiInsert needs to be adapted to treat such slots as empty
= hashSearch remains unchanged as DELETED slots are ignored

e Search times now no longer depend on filling degree o only

= If keys are to be deleted, chaining is more commonly used
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How to select the next probe?

e How to generate the probing sequence for a given key k:
(h(k,0),h(k,1),...,h(k,m—1))
— which is a permutation of (0, ... m—1) for each key k

= this guarantees that all slots are eventually considered

¢ Ideally we have uniform hashing

— i.e. each of the m! permutations is equally likely as probing sequence
— only used for analysis, in practice too expensive and approximated

e Different policies exist to select the next probe

— we consider linear probing, quadratic probing and double hashing
— quality is indicated by the number of distinct probing sequences generated

© JPK 26
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Linear probing

e Uses the hash function h(k,i) = (h'(k) +7) mod m (for i < m)

— where k' is an auxiliary hash function

e Subsequent probed slots are offset by a linear dependence on ¢

e Initial probe determines the entire probe sequence
= m distinct probe sequences can be generated
e Suffers from clustering, i.e., long sequences of occupied slots

— an empty slot preceded by : full slots gets filled next with probability £t
= long sequences of occupied slots tend to get longer

© JPK 27
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Linear probing: example

0 22| 0
1 1
2 2
3 3
4 ins(17) 44 ins(17)
5 1stprobe |[15|5 2nd probe
6 28| 6
7 7
8 8
9 31| 9
10 10 | 10

h'(k) = k mod 11
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6

© o

22

4

15
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17

31

10

w N B O

4 1ns(59)

[

5 3rd probe
6

© o0

h(k,i) = (h'(k) + %) mod 11
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Quadratic probing

e Uses the hash function h(k,i) = (h'(k) + c1i + co-i?) mod m (for
1< m)

— where h'is an auxiliary hash function and non-zero constants c1, c3

e Subsequent probed slots are offset by a quadratic dependence on ¢

¢ Initial probe determines the entire probe sequence

= m distinct probe sequences can be generated (like for linear probing)
— . provided the values of m and constants c; and co are appropriately
chosen

e Suffers from secondary clustering

— h(k,0) = h(k',0) implies h(k,i) = h(k', 1) for all 5
— but avoids the clustering appearing with linear probing
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Quadratic probing: example
22| 0 22| 0 22| 0 22| 0 22| 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 173
4 |g ST Fa . ins(A7) a0 ins(17) 4|4 ins(17) |4 |4
5 1st probe 5 2nd probe 5 3rd probe 5 4th probe 5
28| 6 28| 6 28| 6 28| 6 28| 6
7 7 7 7 7
15 | 8 15| 8 15| 8 15 | 8 15 | 8
319 319 319 319 319
10 | 10 10 | 10 10 | 10 10 | 10 10 | 10

h'(k) = kmod 11

h(k,i) = (W' (k) + 4+ 3i*) mod 11

© JPK
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Double hashing

e Uses the hash function h(k) = (hq(k) + i-ho(k)) mod m (for i < m)
— where h; and h are auxiliary hash functions
e Subsequent probed slots are offset by the amount hs (k)

= the initial probe does not determine the probe sequence
= this yields a better distribution of keys in the hash table
= approximates the uniform hashing strategy

o If ho(k) and m are relatively prime, the entire hash table is searched
— e.g., choose m = 2% and h, such that it produces an odd number
e Each possible pair hy(k) and ho(k) yields a distinct probe sequence

= double hashing generates m? distinct permutations
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Double hashing: example

22| 0 22| 0 22| 0 22| 0 22| 0
1 1 1 1 1
2 2 2 2 2
15| 3 15 3 15| 3 15| 3 15| 3
4|4 ins(17) 4 4 ns(7) 4| 4 ns(17) 4 |4 ins(17) 4 |4 ins(59)
5 1st probe 5 2nd probe 5 3rd probe 5 4th probe 5 1st probe
28| 6 28| 6 28| 6 28| 6 28| 6
7 7 7 I 7
8 8 8 8 17| 8
31 9 31| 9 31| 9 31| 9 31| 9
10 | 10 10 | 10 10 | 10 10 | 10 10 | 10
fu(k) =k mod 11 h(k,i) = (h1(k) + i-ha(k)) mod 11

ho(k) =1+ k mod 10
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Practical efficiency of double hashing

e Hash table with 538 051 entries (final filling 99.95%)

e Mean number of collisions per insertion into hash table:

6 I I I I I I I I I

O 10 20 30 40 50 60 70 80 90 100
usage of hashtable (in %)
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Efficiency of open addressing

Under the assumption of uniform hashing we have:

e An unsuccessful search takes O < ) time on average

— if hash table is half full, 2 probes are necessary on average
— if hash table is 90% full, 10 probes are necessary on average

e A successful search takes O (1 In T) time on average

— if hash table is half full, about 1.39 probes are necessary on average
— if hash table is 90% full, about 2.56 probes are necessary on average

e Recall that for chaining this was ©(1+«) for both cases
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Analyzing unsuccessful search (I)

Pr{# probes > i}
= (* A, isthe eventthat there is an i-th probe and it is to an occupied slot *)
Pr{A; N Ay N...N A;_1}
= (* probability theory *)
Pr{A;} - Pr{As | A1} Pr{As | AiN A3} ...Pr{A; | AinNn...NA,_1}

= (* there are n elements and m slots *)
n n—1 n—i1+2

m m—1 o m—1+2
< (* bound to above *)

()

= (* definition of @ *)
ai—l
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Analyzing unsuccessful search (ll)

the expected number of probes
= (* property of £ *)

> Pr{#probes > i}
1=1
< (* use previous derivation on Pr{# probes > i} *)

00

1—1
>«
1=1

= (* rewrite slightly *)

00

1
>«
1=0

= (* geometric series *)
1

1l — «

© JPK
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Analyzing successful search (1)

average number of probes in a successful search
= (* definition of average *)

n—1
1 :
— - > average number of probes for (i-+1)-st inserted key
n
1=0
< (* average number of probes for (¢+1)-st inserted key is at most - *)
1 n—1
w2 m
= (* calculus *)
m 2=t 1
n ‘gm— )
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Analyzing successful search (ll)

—1
N
n i:Om—z

= (* calculus *)

1 m 1
(2

< (* approximate summation by integral (cf. Example 1.7) *)

1 /m 1
— - —dx
a Jm_nx

= (* integral calculus *)

o ()
— In
Qa m—n

= (* definition of a *)
e (72)
Q l—«
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Hash functions

e A hash function maps a key onto an integer (i.e., an index)

— the hash function h(k) should be cheap to evaluate

— it should be surjective on the range 0...m—1

— it should tend to use all indexes with uniform frequency

— it should tend to put similar keys in different parts of the hash table

e Three major technigues to obtain a “good” hash function:

— the division method
— the multiplication method
— universal hashing
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Division method

e Uses the hash scheme h(k) = k£ mod m (for i < m)

e Using this method, the value of m should be chosen with care
— if m = 2P, then kK mod m amounts to select the p least significant bits of k
e Practical good choice: m is prime and not too close to power of 2

— example: consider 2,000 character strings
— allow on average about 3 probes for an unsuccessful search
— choose m = 2000/3 — 701
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Multiplication method

e Uses the hash scheme h(k) = |m - (k-c mod 1) | (for i < m)

— with constant 0 < ¢ < 1 (Knuth suggests ¢ =~ (v/5 — 1)/2 =~ 0.62)
— note that k-c mod 1 is the fractional part of k-c
= the value of m is not critical here

e Usual scheme take m = 2P and ¢ = 2%, where 0 < s < 2% and then:

— firstcompute k - s (= k- c-2%)
— divide by 2, use only the fractional part

— multiply by 2?7 and use only the integer part
w bits

-

| key k |

Y

c-2¥

y extract p bits
h(k)
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Universal hashing

e Greatest problem with hashing:

— there is always an adversarial sequence of keys all mapped onto the same slot
e Choose randomly a hash function from a given small set H

— that is independent of the keys which are going to be used

e For k, k' the fraction of functions in H such that k and £’ collide is |mﬂ

— probability that k&, &’ collide is ﬁ.% =1

e Example: define the elements of the class of hash functions by:
ha (k) = ((a-k + b) mod p) mod m

— where p is a prime number such that p > m and p > largest key
— integersa (1 < a < p)and b (0 < b < p) are chosen at execution time
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