
Keying Hash Functions for
Message Authentication

Hyrum Mills, Chris Soghoian, Jon
Stone, Malene Wang

Basic Notions and Definitions:
 MACs:

 What do they do?
 Allow one party to verify the integrity and

authenticity of information transmitted over
an insecure channel by another party, or of
information stored in a medium that may be
subject to modification

 Usually require a secret key shared by both
parties

Basic Notions and Definitions:
 MACs:

 What do they do?
 X -> Y: (m, a)
 where X and Y are the two parties, m is the

message
 a is called the authentication tag
 a = MACk(m), which is the MAC function of

message m using key k
 Y takes m and computes a' = MACk(m)
 If a = a', then Y knows the message was not

altered en route from X to Y

 What does it mean to break one?
 An adversary A sees a sequence of messages

(mi, ai) (where i=1,2,...,q) between X and Y
 A breaks the MAC if she can find a message

m which does not equal any of m1,...,mq, and
also a valid corresponding a = MACk(m)

Basic Notions and Definitions:
 MACs:

 Known Message Attacks (passive attack)
 X and Y transmit the sequence of (mi, ai) pairs

in a way uninfluenced by A, and A simply
eavesdrops and picks up the pairs

 Chosen message attacks (active attack)
 A can choose the sequence of (mi, ai) pairs.
 We consider the chosen messages as "queries"

sent by A and answered by X or Y or
whomever knows the secret key k

Basic Notions and Definitions:
 MACs:

 Known/chosen message attacks
 MACs that are secure against chosen

messages are stronger than those that are
secure against only known messages

 Focus on chosen message attacks

Basic Notions and Definitions:
 MACS:

 A MAC is a (epsilon, t, q, L)-secure MAC
if against adversary A if A:
 is not given the key k
 is limited to spend total time t (measured in

number of operations) on the attacks which
includes both the time taken for the answers
to A's queries to be computed, and the size of
the code of A's algorithm

Basic Notions and Definitions:
 MACS:

 A MAC is a (epsilon, t, q, L)-secure MAC
if an adversary A that:
 can make at most q queries on messages m1,

..., mq of her choice
 each message is at most of length L

... can break the MAC with at most
probability epsilon

Basic Notions and Definitions:
 MACS:

Basic Notions and Definitions:
 Cryptographic hash functions

 What are they and what are they good
for?
 Cryptographic hash functions map strings of

different lengths to short, fixed-sized outputs

 Important Properties
 Collision-resistant

 Given a hash function F, it is infeasible for an
adversary A to find two strings x and x' such
that F(x) = F(x')

 The function must be publicly computable
and doesn't require a secret key

Basic Notions and Definitions:
 Cryptographic hash functions

 Important Properties
 Randomness-like

 Mixing, independence of input/output,
unpredictability of the output when parts of the
input are known, etc

 Makes it more difficult to find collisions
 Helps randomize the output

Basic Notions and Definitions:
 Cryptographic hash functions

Basic Notions and Definitions:
 Iterated hash functions

 Examples: MD5 & SHA1

 Compression function f
 Accepts 2 inputs: chaining variable and b-bit

data block

Operation:
0) Pad the message to an exact multiple

of b bits somehow
1) Fix the IV

Basic Notions and Definitions:
 Iterated hash functions

• l-bit value used as the first chaining variable

2) Iteration:
 Let the input string is x = x1, ..., xn, where

the xi's are blocks of length b, and n is the
number of blocks

 |x| is the message length

Basic Notions and Definitions:
 Iterated hash functions

 The iterated function F(x) = hn+1,where:
h0 = IV
hi = f(hi-1, xi) for i = 1, ..., n+1
xn+1 = |x|

Basic Notions and Definitions:
 Iterated hash functions

Example:
Iteration 1: h1 = f(IV, x1)
Iteration 2: h2 = f(h1, x_2)
Iteration 3: h3 = f(h2, x_3)

....

Iteration n+1: hn+1 = f(hn, |x|)
Return F(x) = hn+1

Basic Notions and Definitions:
 Iterated hash functions

 Keyed Hash Functions
 As mentioned earlier, cryptographic hash

functions are key-less by default.
 The most common approach: Fk(x) = F(k || x)
 In this paper we use the key k as the IV, instead

of using a known and fixed value as the IV

Basic Notions and Definitions:
 Keyed Hash Functions

 Keyed Hash Functions
 Using the keyed IV approach, the definition of

keyed hash functions:
 Let fk be the compression function, where
 fk(x) = f(k, x), |k| = l, and |x| = b
 We associate to any iterated hash construction a

family of keyed functions {Fk}
 In particular, the original iterated hash function is a

member of this family, FIV

Basic Notions and Definitions:
 Keyed Hash Functions

 Keyed Hash
Functions:

 Fk(x) = kn+1, where:
k0 = k
ki = fk_i-1 (xi)
xn+1 = |x|

 Iterated Functions:
 F(x) = hn+1, where:

h0 = IV
hi = f(hi-1, xi)
xn+1 = |x|

- Bad notation for keyed hash functions in the paper
- Notice that keyed hash functions are the same as the
original iterated function but with an IV of k

Basic Notions and Definitions:
 Keyed Hash Functions

 A family of keyed hash functions {Fk} is (epsilon, t, q, L)
- weakly collision-resistant if adversary A:
 is not given the key k
 is limited to spend total time t (in comp. operations)
 can see the values of Fk computed on at most q messages

m1, ..., mq, which are chosen by A
 each message is at most of length L
 can find messages m and m' such that

Fk(m) = Fk(m') (in other words, find a collision) with at most
probability epsilon

Basic Notions and Definitions:
 Keyed Hash Functions

 This requirement is weaker than the
traditional requirement of collision-resistance
from key-less hash.

Basic Notions and Definitions:
 Keyed Hash Functions

 Key-less hash functions have a known and fixed IV
 Adversary can work on finding collisions in key-

less hash functions without interacting with a user
or knowing the key, which means that
parallelization of brute force attacks are possible

 In contrast, attacks on keyed hash functions require
the adversary to interact with the legal user by
querying her with chosen messages, which means
that parallelization is not possible

Basic Notions and Definitions:
 Keyed Hash Functions

MACing with Cryptographic Hash
Functions

 Advantages:
 The popular hash functions are fast in

software
 These software implementations are widely

and freely available
 Hash functions are not subject to the export

restriction rules of many countries

 Caveat:
 Hash functions were not designed for

message authentication
 One difficulty, in particular, is that they are

key-less
 Special care must be taken when using hash

functions for MACs, as you are using them in
a way they were not designed for

MACing with Cryptographic Hash
Functions

 Definition of NMAC
 Let k = (k1, k2), where k1 and k2 are keys to

the hash function F (i.e. random strings of
length l each)

 NMACk(x) = Fk_1(Fk_2(x))
 The outer function is iterated only once, and is

essentially just the compression function fk_1

Nested Construction NMAC

Nested Construction NMAC
 Performance

 Cost of internal function: just the same as
hashing the data with the basic key-less hash
function

 Additional cost is only one iteration of the
external compression function

Nested Construction NMAC
 Security analysis
 Theorem 4.1:

 If the keyed compression function f is an
 (epsilonf, q, t, b)-secure MAC on messages of

length b bits, and the keyed iterated hash F is
(epsilonF, q, t, L)-weakly collision-resistant,
then the NMAC function is an (epsilonf +
epsilonF, q, t, L)-secure MAC

Nested Construction NMAC
 Security analysis
 Theorem 4.1:

 In other words, given the above resource
constraints, an adversary attacking NMACk
has a probability of success Ps, where

 Ps ≤ 2 * epsilonf
 Ps ≤ 2 * epsilonF

Nested Construction NMAC

 Remarks 4.2:
 The proof is constructive. Namely, given an adversary

that breaks NMAC with some significant probability,
an adversary can come up with an algorithm using the
same resources that breaks the underlying hash
function with at least half of that probability

 The degradation of security, when going from the
underlying hash function to NMAC, is minimal

 Also, this proof considers a generic adversary, and
takes into account all possible attackers

Nested Construction NMAC

 Remarks 4.3:
 The definitions and analysis are stated in terms of

chosen message attacks, which are the strongest
 However, can refine everything to quantify separately

the number of chosen and known messages in an
attack

 The analysis preserves the number of chosen and
known messages when translating an attack on
NMAC to an attack on the underlying hash

Nested Construction NMAC

 Remarks 4.7:
 The security of the function is given by each

individual key length (l), and not the
combined length (2l)

HMAC: A Fixed IV Variant
Disadvantage of NMAC:

 The underlying hash must be modified to key the IV (not too
difficult in software)

 Definition HMAC:

 HMACk(x) = F(k XOR opad || F(k XOR ipad || x))

 where k is k padded to a multiple of b bits
 opad and ipad are two fixed b-bit constants.
 opad is formed by repeating the byte 0x36 as often

as needed, ipad by repeating the byte 0x5c

HMAC: A Fixed IV Variant
 Security analysis
 HMAC is a special case of NMAC

 Recall that NMACk = Fk_1(Fk_2(x))
 Define NMAC's two keys such that
 k1 = f(IV, k XOR opad)
 k2 = f(IV, k XOR ipad)

HMAC: A Fixed IV Variant
 Since the security of NMAC depends on the

randomness of its keys, this requires that k1 and
k2, derived from k using the function f, are
indistinguishable from truly random keys.

 This requires an additional assumption as to
how pseudorandom the function f is (MD5,
SHA-1, etc. are already pretty pseudorandom)

HMAC: A Fixed IV Variant

 Security of HMAC vs. NMAC.
 The additional assumption: Not too stringent,

since we require a relatively weak form of
pseudo-randomness

 Theoretically, attacks that work on HMAC and
not on NMAC are possible, but would imply
major weaknesses in the underlying hash
function

HMAC: A Fixed IV Variant

 In practice, k1 and k2 in NMAC are
probably pseudo-randomly generated
anyway

 The functions involving ipad and opad
provide a "built-in" pseudorandom
generator in HMAC

HMAC: A Fixed IV Variant

 Values of ipad and opad were chosen to:
 Simplify function specification
 Maximize Hamming distance between the pads to

provide computational independence between the two
derived keys
 A Hamming distance is the number of bits that differ between

two n-bit binary strings
 Implications of one key versus two:
 Using one L-bit long key instead of two doesn't

weaken the function with respect to exhaustive
key searches. See divide and conquer (later)

HMAC: A Fixed IV Variant

 Advantages of HMAC
 Black box usage of underlying hash function
 Requires only one l-bit long key, as opposed to two

keys as in NMAC
 Implementation considerations

 Slower performance than NMAC
 Counter it by caching the keys (no more black box)
 Implications of various key lengths
 Crypto 101: key management is important

Advantages of NMAC/HMAC

 Generic attacks - proof and analysis
considers generic attacks

 Exact analysis - no asymptotics involved

Advantages of NMAC/HMAC
 Tight relationship between security of

NMAC/HMAC and the assumed strengths of the
underlying hash function

 Insecurity of NMAC/HMAC => insecurity of
underlying hash (more details to come when we
go over the proof)

 Besides, NMAC/HMAC require significantly
weaker properties, so it could be secure even if
the underlying hash function were not

Advantages of NMAC/HMAC
 Efficient - minimal performance

degradation caused by using a hash
scheme

 If black box usage of hash functions is
desired, use HMAC. Otherwise, modifying
the hash function to cater to NMAC is also
simple to do (in software, at least).

Attacks

 Birthday attacks
 Extension attacks
 Divide and conquer attacks

Birthday Attacks
Paradox
 23 people in a group, there is slightly more than a 50% chance that at least

two of them will have the same birthday. 60 or more people, the probability
is greater than 99%.

 Not really a paradox

Attack
 Uses the mathematics underlying the paradox in order to minimize both the

time and space required to run the attack.
 Math:

 If a given function returns any of n unique outputs with equal probability,
and n is a large enough value, then after running 1.2√n different values
through the function we can expect to have found a pair of arguments x1
and x2 where x1 ≠ x2 but f(x1) = f(x2) – known as a collision.

 If the function range is unevenly distributed, a collision may occur even
faster.

Extension Attacks

 Concept: crypto hash function prepends key to
message and then hashes as usual

 Caveat: message must not be padded
 Crypto hash is really just last chaining variable
 Therefore

 New text appended to message
 Original, legitimate hash set as chaining variable
 New text and chaining variable passed into algorithm
 Result: valid hash without knowing key

Send the check Hash
Hashing Algorithm

to Hyrum Mills

Cha
ini

ng
 V

ar.

Hashing Algorithm
Hash

Extension Attack Example

Divide and Conquer Attack

 Strength of NMAC is measured by the
length of k1 or k2 (l), not the combined
length (2l).

 Keys are independent and independently
used
 Attacker may choose to ‘parallelize’ the attack,

or try to break keys separately

Resolution of Attacks in
NMAC/HMAC

 Birthday attacks on NMAC/HMAC only work
by attacking the underlying crypto hash
function

 As an example attacker must query for 250,000 years to get
even the 1.2√n messages for MD5.

 Extension Attack:
 Does not utilize the ‘prepend’ construction

 Divide and Conquer
 This is why authors assert that the strength of NMAC

is specified in terms of one key (l) instead of the
combined k1 and k2 (which would yield 2l)

Conclusions
 If NMAC/HMAC is insecure then the

underlying hash is also insecure
 Efficient - minimal performance

degradation caused by using a hash
scheme

 If black box usage of hash functions is
desired, use HMAC. Otherwise, modifying
the hash function to cater to NMAC is also
simple to do (in software, at least).

Questions?

