
1

Hashing

hash functions
collision resolution
applications

References:

 Algorithms in Java, Chapter 14
 http://www.cs.princeton.edu/introalgsds/42hash

Summary of symbol-table implementations

Can we do better?
2

implementation
guarantee average case ordered

iteration?search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.39 lg N 1.39 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.39 lg N 1.39 lg N 1.39 lg N yes

red-black tree 3 lg N 3 lg N 3 lg N lg N lg N lg N yes

3

Optimize Judiciously

Reference: Effective Java by Joshua Bloch.

More computing sins are committed in the name of efficiency

(without necessarily achieving it) than for any other single reason -

including blind stupidity. - William A. Wulf

We should forget about small efficiencies, say about 97% of the time:

premature optimization is the root of all evil. - Donald E. Knuth

We follow two rules in the matter of optimization:

 Rule 1: Don't do it.

 Rule 2 (for experts only). Don't do it yet - that is, not until

 you have a perfectly clear and unoptimized solution.

 - M. A. Jackson

4

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing table index from key.

Issues.

1. Computing the hash function

2. Collision resolution: Algorithm and data structure

to handle two keys that hash to the same index.

3. Equality test: Method for checking whether two keys are equal.

Classic space-time tradeoff.

• No space limitation: trivial hash function with key as address.

• No time limitation: trivial collision resolution with sequential search.

• Limitations on both time and space: hashing (the real world).

0

1

2

3 “it”

4

5

hash(“it”) = 3

hash(“times”) = 3

??

5

hash functions
collision resolution
applications

6

Computing the hash function

Idealistic goal: scramble the keys uniformly.

• Efficiently computable.

• Each table position equally likely for each key.

Practical challenge: need different approach for each type of key

Ex: Social Security numbers.

• Bad: first three digits.

• Better: last three digits.

Ex: date of birth.

• Bad: birth year.

• Better: birthday.

Ex: phone numbers.

• Bad: first three digits.

• Better: last three digits.

573 = California, 574 = Alaska

assigned in chronological order within a
given geographic region

thoroughly researched problem,
still problematic in practical applications

7

Hash Codes and Hash Functions

Java convention: all classes implement hashCode()

hashcode() returns a 32-bit int (between -2147483648 and 2147483647)

Hash function. An int between 0 and M-1 (for use as an array index)

First try:

Bug. Don't use (code % M) as array index

1-in-a billion bug. Don't use (Math.abs(code) % M) as array index.

OK. Safe to use ((code & 0x7fffffff) % M) as array index.

String s = "call";
int code = s.hashCode();
int hash = code % M;

7121 8191

hex literal 31-bit mask

3045982

8

Java’s hashCode() convention

Theoretical advantages

• Ensures hashing can be used for every type of object

• Allows expert implementations suited to each type

Requirements:

• If x.equals(y) then x and y must have the same hash code.

• Repeated calls to x.hashCode() must return the same value.

Practical realities

• True randomness is hard to achieve

• Cost is an important consideration

Available implementations

• default (inherited from Object): Memory address of x (! ! !)

• customized Java implementations: String, URL, Integer, Date.

• User-defined types: users are on their own

x.hashCode()

x

y.hashCode()

y

that’s you!

9

A typical type

Assumption when using hashing in Java:

 Key type has reasonable implementation of hashCode() and equals()

Ex. Phone numbers: (609) 867-5309.

Fundamental problem:

 Need a theorem for each data type to ensure reliability.

sufficiently
random?

exchange extension

public final class PhoneNumber
{
 private final int area, exch, ext;
 public PhoneNumber(int area, int exch, int ext)
 {
 this.area = area;
 this.exch = exch;
 this.ext = ext;
 }
 public boolean equals(Object y) { // as before }
 public int hashCode()
 { return 10007 * (area + 1009 * exch) + ext; }
}

10

A decent hash code design

Java 1.5 string library [see also Program 14.2 in Algs in Java].

• Equivalent to h = 31L-1 s0 + … + 312 sL-3 + 31 sL-2 + sL-1.

• Horner's method to hash string of length L: L multiplies/adds

Ex.

Provably random? Well, no.

String s = "call";
int code = s.hashCode();

3045982 = 99 313 + 97 312 + 108 311 + 108 310

 = 108 + 31 (108 + 31 (99 + 31 (97)))

ith character of s

Unicodechar

… …

'a' 97

'b' 98

'c' 99

… …

public int hashCode()
{
 int hash = 0;
 for (int i = 0; i < length(); i++)
 hash = s[i] + (31 * hash);
 return hash;
}

11

A poor hash code design

Java 1.1 string library.

• For long strings: only examines 8-9 evenly spaced characters.

• Saves time in performing arithmetic…

but great potential for bad collision patterns.

Basic rule: need to use the whole key.

http://www.cs.princeton.edu/introcs/13loop/Hello.java

http://www.cs.princeton.edu/introcs/13loop/Hello.class

http://www.cs.princeton.edu/introcs/13loop/Hello.html

http://www.cs.princeton.edu/introcs/13loop/index.html

http://www.cs.princeton.edu/introcs/12type/index.html

public int hashCode()
{
 int hash = 0;
 int skip = Math.max(1, length() / 8);
 for (int i = 0; i < length(); i += skip)
 hash = (37 * hash) + s[i];
 return hash;
}

Digression: using a hash function for data mining

Use content to characterize documents.

Applications

• Search documents on the web for documents similar to a given one.

• Determine whether a new document belongs in one set or another

Approach

• Fix order k and dimension d

• Compute hashCode() % d for all

k-grams in the document

• Result: d-dimensional vector

profile of each document

• To compare documents:

Consider angle θ separating vectors

cos θ close to 0: not similar

cos θ close to 1: similar

12

cos θ = a b /

｜a｜｜b｜

a
b

θ

Digression: using a hash function for data mining

13

tale.txt genome.txt

i
10-grams with

hashcode() i
freq

10-grams with

hashcode() i
freq

0 0 0

1 0 0

2 0 0

435
best of ti

foolishnes
2

TTTCGGTTTG

TGTCTGCTGC
2

8999 it was the 8 0

...

12122 0 CTTTCGGTTT 3

...

34543 t was the b 5 ATGCGGTCGA 4

...

65535

65536

% more tale.txt

it was the best of times

it was the worst of times

it was the age of wisdom

it was the age of

foolishness

...

% more genome.txt

CTTTCGGTTTGGAACC

GAAGCCGCGCGTCT

TGTCTGCTGCAGC

ATCGTTC

...

k = 10
d = 65536

cos θ small: not similar

profiles

Digression: using a hash function to profile a document for data mining

14

public class Document
{
 private String name;
 private double[] profile;
 public Document(String name, int k, int d)
 {
 this.name = name;
 String doc = (new In(name)).readAll();
 int N = doc.length();
 profile = new double[d];
 for (int i = 0; i < N-k; i++)
 {
 int h = doc.substring(i, i+k).hashCode();
 profile[Math.abs(h % d)] += 1;
 }
 }
 public double simTo(Document other)
 {
 // compute dot product and divide by magnitudes
 }
}

Digression: using a hash function to compare documents

15

public class CompareAll
{
 public static void main(String args[])
 {
 int k = Integer.parseInt(args[0]);
 int d = Integer.parseInt(args[1]);
 int N = StdIn.readInt();
 Document[] a = new Document[N];
 for (int i = 0; i < N; i++)
 a[i] = new Document(StdIn.readString(), k, d);
 System.out.print(" ");
 for (int j = 0; j < N; j++)
 System.out.printf(" %.4s", a[j].name());
 System.out.println();
 for (int i = 0; i < N; i++)
 {
 System.out.printf("%.4s ", a[i].name());
 for (int j = 0; j < N; j++)
 System.out.printf("%8.2f", a[i].simTo(a[j]));
 System.out.println();
 }
 }
}

Digression: using a hash function to compare documents

16

% java CompareAll 5 1000 < docs.txt
 Cons TomS Huck Prej Pict DJIA Amaz ACTG
Cons 1.00 0.89 0.87 0.88 0.35 0.70 0.63 0.58
TomS 0.89 1.00 0.98 0.96 0.34 0.75 0.66 0.62
Huck 0.87 0.98 1.00 0.94 0.32 0.74 0.65 0.61
Prej 0.88 0.96 0.94 1.00 0.34 0.76 0.67 0.63
Pict 0.35 0.34 0.32 0.34 1.00 0.29 0.48 0.24
DJIA 0.70 0.75 0.74 0.76 0.29 1.00 0.62 0.58
Amaz 0.63 0.66 0.65 0.67 0.48 0.62 1.00 0.45
ACTG 0.58 0.62 0.61 0.63 0.24 0.58 0.45 1.00

Cons US Constitution

TomS “Tom Sawyer”

Huck “Huckleberry Finn”

Prej “Pride and Prejudice”

Pict a photograph

DJIA financial data

Amaz Amazon.com website .html source

ACTG genome

17

hash functions
collision resolution
applications

18

Helpful results from probability theory

Bins and balls. Throw balls uniformly at random into M bins.

Birthday problem.

 Expect two balls in the same bin after M / 2 tosses.

Coupon collector.

 Expect every bin has 1 ball after (M ln M) tosses.

Load balancing.

 After M tosses, expect most loaded bin has (log M / log log M) balls.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

19

Collisions

Collision. Two distinct keys hashing to same index.

Conclusion. Birthday problem can't avoid collisions unless you have

a ridiculous amount of memory.

Challenge. Deal with collisions efficiently.

Approach 1:

accept multiple collisions

Approach 2:

minimize collisions

20

Collision resolution: two approaches

1. Separate chaining. [H. P. Luhn, IBM 1953]

Put keys that collide in a list associated with index.

2. Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]

When a new key collides, find next empty slot, and put it there.

st[0]

st[1]

st[2]

st[8190]

untravelledst[3] considerating

null

separate chaining (M = 8191, N = 15000)

easy extension of linked list ST implementation

null

null

linear probing (M = 30001, N = 15000)

easy extension of array ST implementation

seriouslyjocularly

listen

suburban

browsing

jocularly

listen

suburban

browsing

st[0]

st[1]

st[2]

st[30001]

st[3]

21

Collision resolution approach 1: separate chaining

Use an array of M < N linked lists.

• Hash: map key to integer i between 0 and M-1.

• Insert: put at front of ith chain (if not already there).

• Search: only need to search ith chain.

3untravelled

3suburban

5017ishmael

0seriously

.. . .

3480

7121

hash

me

call

key

good choice: M N/10

st[0]

st[1]

st[2]

st[8190]

untravelledst[3] considerating

null

seriouslyjocularly

listen

suburban

browsing

Separate chaining ST implementation (skeleton)

22

public class ListHashST<Key, Value>

{

 private int M = 8191;

 private Node[] st = new Node[M];

 private class Node

 {

 Object key;

 Object val;

 Node next;

 Node(Key key, Value val, Node next)

 {

 this.key = key;

 this.val = val;

 this.next = next;

 }

 }

 private int hash(Key key)

 { return (key.hashcode() & 0x7ffffffff) % M; }

 public void put(Key key, Value val)

 // see next slide

 public Val get(Key key)
 // see next slide
}

compare with
linked lists

no generics in
arrays in Java

could use
doubling

Separate chaining ST implementation (put and get)

23

public void put(Key key, Value val)

{

 int i = hash(key);

 for (Node x = st[i]; x != null; x = x.next)

 if (key.equals(x.key))

 { x.val = val; return; }

 st[i] = new Node(key, value, first);

}

public Value get(Key key)

{

 int i = hash(key);

 for (Node x = st[i]; x != null; x = x.next)

 if (key.equals(x.key))

 return (Value) x.val;

 return null;

}

Identical to linked-list code, except hash to pick a list.

24

Analysis of separate chaining

Separate chaining performance.

• Cost is proportional to length of list.

• Average length = N / M.

• Worst case: all keys hash to same list.

Theorem. Let = N / M > 1 be average length of list. For any t > 1,

probability that list length > t is exponentially small in t.

Parameters.

• M too large too many empty chains.

• M too small chains too long.

• Typical choice: = N / M 10 constant-time ops.

depends on hash map being random map

25

Collision resolution approach 2: open addressing

Use an array of size M >> N.

• Hash: map key to integer i between 0 and M-1.

Linear probing:

• Insert: put in slot i if free; if not try i+1, i+2, etc.

• Search: search slot i; if occupied but no match, try i+1, i+2, etc.

good choice: M 2N

-

0

-

1

-

2

S

3

H

4

-

5

-

6

A

7

C

8

E

9

R

10

-

11

N

12

insert I

hash(I) = 11
-

0

-

1

-

2

S

3

H

4

-

5

-

6

A

7

C

8

E

9

R

10

I

11

-

12

insert N

hash(N) = 8
-

0

-

1

-

2

S

3

H

4

-

5

-

6

A

7

C

8

E

9

R

10

I

11

N

12

Linear probing ST implementation

26

public class ArrayHashST<Key, Value>

{

 private int M = 30001;

 private Value[] vals = (Value[]) new Object[maxN];

 private Key[] keys = (Key[]) new Object[maxN];

 privat int hash(Key key) // as before

 public void put(Key key, Value val)

 {

 int i;

 for (i = hash(key); keys[i] != null; i = (i+1) % M)

 if (key.equals(keys[i]))

 break;

 vals[i] = val;

 keys[i] = key;

 }

 public Value get(Key key)
 {

 for (int i = hash(key); keys[i] != null; i = (i+1) % M)

 if (key.equals(keys[i]))

 return vals]i];

 return null;

 }

}

standard ugly casts

standard
array doubling
code omitted
(double when

half full)

compare with
elementary

unordered array
implementation

27

Clustering

Cluster. A contiguous block of items.

Observation. New keys likely to hash into middle of big clusters.

Knuth's parking problem. Cars arrive at one-way street with M parking

spaces. Each desires a random space i: if space i is taken, try i+1, i+2, …

What is mean displacement of a car?

Empty. With M/2 cars, mean displacement is about 3/2.

Full. Mean displacement for the last car is about M / 2

- - - S H A C E - - - X M I - - - P - - R L - -

cluster

()

28

Analysis of linear probing

Linear probing performance.

• Insert and search cost depend on length of cluster.

• Average length of cluster = = N / M.

• Worst case: all keys hash to same cluster.

Theorem. [Knuth 1962] Let = N / M < 1 be the load factor.

Parameters.

• Load factor too small too many empty array entries.

• Load factor too large clusters coalesce.

• Typical choice: M 2N constant-time ops.

but keys more likely to
hash to big clusters

1

(1 α)2

1
—
2 1 + = (1 + α + 2α2 + 3α3 + 4α4 + . . .) /

2

() 1

(1 α)

1
—
2

1 + = 1 + (α + α2 + α3 + α4 + . . .) /2

Average probes for insert/search miss

Average probes for search hit

Hashing: variations on the theme

Many improved versions have been studied:

Ex: Two-probe hashing

• hash to two positions, put key in shorter of the two lists

• reduces average length of the longest list to log log N

Ex: Double hashing

• use linear probing, but skip a variable amount, not just 1 each time

• effectively eliminates clustering

• can allow table to become nearly full

29

30

Double hashing

Idea Avoid clustering by using second hash to compute skip for search.

Hash. Map key to integer i between 0 and M-1.

Second hash. Map key to nonzero skip value k.

Ex: k = 1 + (v mod 97).

Effect. Skip values give different search paths for keys that collide.

Best practices. Make k and M relatively prime.

hashCode()

31

Theorem. [Guibas-Szemerédi] Let = N / M < 1 be average length of list.

Parameters. Typical choice: α 1.2 constant-time ops.

Disadvantage. Delete cumbersome to implement.

Double Hashing Performance

1

(1 α)

1
—
α ln = 1 + α/2 + α2 /3 + α3 /4 + α4 /5

+ . . .

Average probes for insert/search miss

Average probes for search hit

 1

(1 α)
= 1 + α + α2 + α3 + α4 + . . .

32

Hashing Tradeoffs

Separate chaining vs. linear probing/double hashing.

• Space for links vs. empty table slots.

• Small table + linked allocation vs. big coherent array.

Linear probing vs. double hashing.

load factor

50% 66% 75% 90%

linear
probing

get 1.5 2.0 3.0 5.5

put 2.5 5.0 8.5 55.5

double
hashing

get 1.4 1.6 1.8 2.6

put 1.5 2.0 3.0 5.5

number of probes

Summary of symbol-table implementations

33

implementation
guarantee average case ordered

iteration?
operations

on keys
search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no equals()

ordered array lg N N N lg N N/2 N/2 yes compareTo()

unordered list N N N N/2 N N/2 no equals()

ordered list N N N N/2 N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

randomized BST 7 lg N 7 lg N 7 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N lg N lg N lg N yes compareTo()

hashing 1* 1* 1* 1* 1* 1* no
equals()
hashCode()

* assumes random hash code

Hashing versus balanced trees

Hashing

• simpler to code

• no effective alternative for unordered keys

• faster for simple keys (a few arithmetic ops versus lg N compares)

• (Java) better system support for strings [cached hashcode]

• does your hash function produce random values for your key type??

Balanced trees

• stronger performance guarantee

• can support many more operations for ordered keys

• easier to implement compareTo() correctly than equals() and hashCode()

Java system includes both

• red-black trees: java.util.TreeMap, java.util.TreeSet

• hashing: java.util.HashMap, java.util.IdentityHashMap

34

Typical “full” ST API

Hashing is not suitable for implementing such an API (no order)

BSTs are easy to extend to support such an API (basic tree ops)

Ex: Can use LLRB trees implement priority queues for distinct keys
35

public class *ST<Key extends Comparable<Key>, Value>

*ST() create a symbol table

void put(Key key, Value val) put key-value pair into the table

Value get(Key key)
return value paired with key
(null if key is not in table)

boolean contains(Key key) is there a value paired with key?

Key min() smallest key

Key max() largest key

Key next(Key key) next largest key (null if key is max)

Key prev(Key key) next smallest key (null if key is min)

void remove(Key key) remove key-value pair from table

Iterator<Key> iterator() iterator through keys in table

36

hash functions
collision resolution
applications

37

Set ADT

Set. Collection of distinct keys.

Normal mathematical assumption: collection is unordered

Typical (eventual) client expectation: ordered iteration

Q. How to implement?

A0. Hashing (our ST code [value removed] or java.util.HashSet)

A1. Red-black BST (our ST code [value removed] or java.util.TreeSet)

public class *SET<Key extends Comparable<Key>, Value>

SET() create a set

void add(Key key) put key into the set

boolean contains(Key key) is there a value paired with key?

void remove(Key key) remove key from the set

Iterator<Key> iterator() iterator through all keys in the set

unordered iterator
O(1) search

ordered iterator
O(log N) search

38

SET client example 1: dedup filter

Remove duplicates from strings in standard input

• Read a key.

• If key is not in set, insert and print it.

Simplified version of FrequencyCount (no iterator needed)

public class DeDup
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();
 while (!StdIn.isEmpty())
 {
 String key = StdIn.readString();
 if (!set.contains(key))
 {
 set.add(key);
 StdOut.println(key);
 }
 }
 }
}

% more tale.txt

it was the best of times

it was the worst of times

it was the age of wisdom

it was the age of

foolishness

...

% java Dedup < tale.txt

it

was

the

best

of

times

worst

age

wisdom

foolishness

...

No iterator needed.
Output is in same order

as input with
dups removed.

Print words from standard input that are found in a list

• Read in a list of words from one file.

• Print out all words from standard input that are in the list.

39

SET client example 2A: lookup filter

public class LookupFilter
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();

 In in = new In(args[0]);
 while (!in.isEmpty())
 set.add(in.readString());

 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (set.contains(word))
 StdOut.println(word);
 }
 }
}

process list

create SET

print words that
are not in list

Print words from standard input that are not found in a list

• Read in a list of words from one file.

• Print out all words from standard input that are not in the list.

40

SET client example 2B: exception filter

public class LookupFilter
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();

 In in = new In(args[0]);
 while (!in.isEmpty())
 set.add(in.readString());

 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (!set.contains(word))
 StdOut.println(word);
 }
 }
}

process list

create SET

print words that
are not in list

41

SET filter applications

application purpose key type in list not in list

dedup eliminate duplicates dedup duplicates unique keys

spell checker find misspelled words word exception dictionary misspelled words

browser mark visited pages URL lookup visited pages

chess detect draw board lookup positions

spam filter eliminate spam IP addr exception spam good mail

trusty filter allow trusted mail URL lookup good mail

credit cards check for stolen cards number exception stolen cards good cards

Searching challenge:

Problem: Index for a PC or the web

Assumptions: 1 billion++ words to index

Which searching method to use?

1) hashing implementation of SET

2) hashing implementation of ST

3) red-black-tree implementation of ST

4) red-black-tree implementation of SET

5) doesn’t matter much

42

Index for search in a PC

43

ST<String, SET<File>> st = new ST<String, SET<File>>();
for (File f: filesystem)
{
 In in = new In(f);
 String[] words = in.readAll().split("\\s+");
 for (int i = 0; i < words.length; i++)
 {
 String s = words[i];
 if (!st.contains(s))
 st.put(s, new SET<File>());
 SET<File> files = st.get(s);
 files.add(f);
 }
}

SET<File> files = st.get(s);
for (File f: files) ...

build index

process
lookup

request

Searching challenge:

Problem: Index for a book

Assumptions: book has 100,000+ words

Which searching method to use?

1) hashing implementation of SET

2) hashing implementation of ST

3) red-black-tree implementation of ST

4) red-black-tree implementation of SET

5) doesn’t matter much

44

Index for a book

45

public class Index
{
 public static void main(String[] args)
 {
 String[] words = StdIn.readAll().split("\\s+");
 ST<String, SET<Integer>> st;
 st = new ST<String, SET<Integer>>();

 for (int i = 0; i < words.length; i++)
 {
 String s = words[i];
 if (!st.contains(s))
 st.put(s, new SET<Integer>());
 SET<Integer> pages = st.get(s);
 pages.add(page(i));
 }

 for (String s : st)
 StdOut.println(s + ": " + st.get(s));

 }
}

process all
words

read book and
create ST

print index!

Requires ordered iterators (not hashing)

46

Hashing in the wild: Java implementations

Java has built-in libraries for hash tables.

• java.util.HashMap = separate chaining implementation.

• java.util.IdentityHashMap = linear probing implementation.

Null value policy.

• Java HashMap allows null values.

• Our implementation forbids null values.

import java.util.HashMap;
public class HashMapDemo
{
 public static void main(String[] args)
 {
 HashMap<String, String> st = new HashMap <String, String>();
 st.put("www.cs.princeton.edu", "128.112.136.11");
 st.put("www.princeton.edu", "128.112.128.15");
 StdOut.println(st.get("www.cs.princeton.edu"));
 }
}

47

 Using HashMap

Implementation of our API with java.util.HashMap.

import java.util.HashMap;
import java.util.Iterator;

public class ST<Key, Value> implements Iterable<Key>
{
 private HashMap<Key, Value> st = new HashMap<Key, Value>();

 public void put(Key key, Value val)
 {
 if (val == null) st.remove(key);
 else st.put(key, val);
 }
 public Value get(Key key) { return st.get(key); }
 public Value remove(Key key) { return st.remove(key); }
 public boolean contains(Key key) { return st.contains(key); }
 public int size() contains(Key key) { return st.size(); }
 public Iterator<Key> iterator() { return st.keySet().iterator(); }
}

48

Hashing in the wild: algorithmic complexity attacks

Is the random hash map assumption important in practice?

• Obvious situations: aircraft control, nuclear reactor, pacemaker.

• Surprising situations: denial-of-service attacks.

Real-world exploits. [Crosby-Wallach 2003]

• Bro server: send carefully chosen packets to DOS the server,

using less bandwidth than a dial-up modem

• Perl 5.8.0: insert carefully chosen strings into associative array.

• Linux 2.4.20 kernel: save files with carefully chosen names.

Reference: http://www.cs.rice.edu/~scrosby/hash

malicious adversary learns your ad hoc hash function

(e.g., by reading Java API) and causes a big pile-up in

single address that grinds performance to a halt

Goal. Find strings with the same hash code.

Solution. The base-31 hash code is part of Java's string API.

49

Algorithmic complexity attack on the Java Library

2N strings of length 2N
that hash to same value!

Key hashCode()

AaAaAaAa -540425984

AaAaAaBB -540425984

AaAaBBAa -540425984

AaAaBBBB -540425984

AaBBAaAa -540425984

AaBBAaBB -540425984

AaBBBBAa -540425984

AaBBBBBB -540425984

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

BBAaAaAa

BBAaAaBB

BBAaBBAa

BBAaBBBB

BBBBAaAa

BBBBAaBB

BBBBBBAa

BBBBBBBB

Key hashCode()

Aa 2112

BB 2112

Does your hash function

produce random values

for your key type??

50

One-Way Hash Functions

One-way hash function. Hard to find a key that will hash to a desired

value, or to find two keys that hash to same value.

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160.

Applications. Digital fingerprint, message digest, storing passwords.

Too expensive for use in ST implementations (use balanced trees)

insecure

String password = args[0];
MessageDigest sha1 = MessageDigest.getInstance("SHA1");
byte[] bytes = sha1.digest(password);

// prints bytes as hex string

