
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 24, 1473-1484 (2008)

1473

Analysis of All-or-Nothing Hash Functions*

PIN LIN1,3, WENLING WU1, CHUANKUN WU1 AND TIAN QIU2,3

1The State Key Laboratory of Information Security
Institute of Software

Chinese Academy of Sciences
2National Key Laboratory of Integrated Information System Technology

3Graduate School of Chinese Academy of Sciences
Beijing 100190, P.R. China

E-mail: ping_linux@163.com
E-mail: {wwl; ckwu}@is.iscas.ac.cn; qiutian@ios.cn

The most popular method to construct hash functions is to iterate a compression

function on the input message. This method is called Merkle-Damgård method. Most
hash functions used in practice such as MD4, MD5, SHA-0, SHA-1 are based on this
method. However this method is not always the best. For example, this method can not
resist multi-collision attack. Recently some modifications of this method are proposed.
These modified methods are based on Merkle-Damgård method and some improvements
are made. A hash function based on All-or-Nothing property is one of these improve-
ments. All-or-nothing property is an encryption mode for block ciphers. It has the prop-
erty that one must decrypt all cipher blocks to determine any plain-text block. All-or-
nothing hash function is a kind of hash function constructed with the all-or-nothing
property. The authors of it claim that it is more secure than those common hash functions.
In this paper, we will show that this is not true and there are still some flaws on this im-
proved method.

Keywords: hash functions, compression functions, random oracle, all-or-nothing, block
cipher

1. INTRODUCTION

1.1 Preliminaries on Hash Functions

Cryptographic hash functions are very important primitives in cryptography. They

are widely used in many applications such as message authentication codes (MAC), ma-
nipulation detection code (MDC) and digital signature schemes. A cryptographic hash
function processes an arbitrary-length input and has a fixed-length output. The most
common method to construct hash functions is to iterate a compression function on the
input message. This method was proposed by Merkle [2] and Damgård [1] independently.
It is called Merkle-Damgård method (briefly MD method). The method is described as
follows:

h0 = IV

Received January 8, 2007; revised October 8, 2007; accepted November 12, 2007.
Communicated by Wen-Guey Tzeng.
* This work was supported by National Natural Science Foundation of China (grant No. 90604036), Major

State Basic Research Development Program of China (973 Program, grant No. 2004CB318004) and Na-
tional High-Tech Research and Development Program of China (863 Program, grant No. 2007AA01Z470).

PIN LIN, WENLING WU, CHUANKUN WU AND TIAN QIU

1474

hi = f(hi-1, mi), 1 ≤ i ≤ l (1)
H(M) = hl

where H denotes the hash function, f denotes the compression function, M = (m1, …, ml)
denotes the whole input message which is divided into l blocks, mi denotes the message
block processed by the compression function at the ith step. hi is called a chain value
which is the intermediate value before the final output. Before being hashed, the mes-
sages need to be padded using an unambiguous padding rule and divided into some
fixed-length blocks. Usually the length in binary of the message is padded, and the length
of padded message is the multiple of the length of one block. The padding rule men-
tioned above is called MD-Strengthening. Lai et al. prove that if a hash function based on
MD method has no MD-Strengthening padding rule, it is not secure [17]. A secure hash
function must satisfy three conditions listed as follows [13].

1. Collision resistant: it should be computationally infeasible to find a pair m ≠ m′ of

inputs to the hash function H such that H(m) = H(m′).
2. 2nd pre-image resistant: for a given m, it should be computationally infeasible to find

m ≠ m′ such that H(m) = H(m′).
3. Pre-image resistant: it should be computationally infeasible, for a given value y, to

find m such that H(m) = y.

Here H denotes the hash function and m, m′ denote the two different messages to be

processed. Merkle and Damgård have proved that if the compression function is collision
resistant, the hash function constructed with it is also collision resistant. Subsequently,
Black et al. prove that if the compression function is pre-image resistant and 2nd pre-
image resistant, the hash function constructed with it is pre-image resistant and 2nd pre-
image resistant [15]. Assuming the output length of a hash function is n bits, then the
security of an ideal hash function can be scaled by the following conditions:

1. Given an output of a hash function, the complexity to find a pre-image should be

O(2n).
2. Given a message and its hash value, the complexity to find a second pre-image should

be O(2n).
3. The complexity to find a collision pair should be O(2n/2).

The three conditions respectively mean the hash function is collision resistant, second
pre-image resistant and pre-image resistant. For second pre-image attack, the time com-
plexity is known as O(2n) before the recent results of Kelsey and Schneier [14]. Kelsey et
al. have shown that the complexity of second pre-image attack on the hash function
based on MD method is only O(2n/2). These attacks mentioned above are called generic
attacks on hash functions because these attacks don’t depend on any particular hash func-
tion. The complexity of these generic attacks is the upper bound, so if there are no attacks
on a hash function better than the generic attacks, the hash function is called an ideal
hash function.

ANALYZE A HASH FUNCTION

1475

1.2 Attacks on Hash Functions Based on MD Method

Most hash functions used in practice are based on MD method such as MD5 [18],

SHA-0 [19], SHA-1 [20] etc. These hash functions are called dedicated-designed hash
functions because the compression functions of these hash functions are specially de-
signed. These hash functions are very fast but the compression functions need to be care-
fully designed and the security cannot be proved. Recently the weakness of some dedi-
cated-designed hash functions such as SHA-0 have been found. Wang et al. [5-8] have
shown that finding collisions on these hash functions can be much faster than the generic
attacks i.e. these hash functions are not collision resistant. For example, the output length
of SHA-0 is 160 bit, if SHA-0 is ideal, the complexity to find a collision for it should be
O(280), but Wang et al. improve the complexity to O(239). Another kind of hash function
is the block-cipher-based hash functions whose compression functions are constructed
with block ciphers. The security of block-cipher-based hash functions can be proved in
the ideal model. Preneel et al. consider all 64 block-cipher-based hash functions which
are called PGV scheme [21], and give the security analysis of these hash functions. How-
ever, the focus of [21] is on attacks not on strict proofs. In 2002, Black et al. proved the
security of these schemes in the black-box model and divided these schemes into three
groups [15]. Most block-cipher-based hash functions is the variety of PGV schemes, for
example, those schemes in [13]. For the MD method itself, Joux has shown that there is
an attack on this method named multi-collision attack which can find more than two col-
lisions much faster than expected [4]. Assuming the output length of hash functions is n
bit, if the MD method is ideal, the complexity to find t collisions for hash functions based
on it should be

(1)

(2),
t n

tO
−

 however, Joux shows that the complexity to find 2t collisions is
only 2(2).

n
O t It means that there is some flaw in the MD method. Multi-collision attack

is described in detail in the next section. All the attack mentioned above are based on
message manipulation. To avoid these attacks, some modifications of MD method are
proposed. One way is to increase the output size of compression functions, another is to
preprocess the input messages before hashing it. The former has been independently pro-
posed by Lucks [9], Hirose [10] and Nandi [11]. The latter also has some results [16].
Although multi-collision attack was proposed after [3], the schemes in [3] have similar
properties to those in [16] i.e. they firstly convert the original messages into pseudo mes-
sages and then process these pseudo messages to get the final output. After all, the
schemes in [3] are not proposed to resist multi-collision attack, so one scheme in [3] ex-
ists some flaw under multi-collision attack and needs to be modified.

1.3 Result of This Paper

In this paper, we first review the results proposed by Shin et al. in [3], where the
authors propose three schemes and give the security analysis of these schemes, then we
show that the security analysis of these schemes is not correct and give the correct secu-
rity bound. We also show that one of the three schemes is not multi-collision attack re-
sistant which contradict the claim in [3] that all schemes can resist the attacks using mes-
sage manipulation technique, and we give a modification of this scheme.

PIN LIN, WENLING WU, CHUANKUN WU AND TIAN QIU

1476

2. ANALYSIS OF THE ALL-OR-NOTHING SCHEMES

2.1 Description of the Schemes

In the design of hash functions, Shin et al. propose three schemes which use the all-
or-nothing property to preprocess the input message and then use the traditional hash
functions based on MD method to get the final hash value.

In 1997, a new encryption mode for block ciphers called all-or-nothing encryption
[12] was proposed by Rivest. This encryption mode has the property that if one wants to
determine any one block Of the plain text, the entire cipher text must be received and
decrypted. In [3], all-or-nothing mode is described as follows:

1. Let the input message block be m1, m2, …, ms.
2. Choose at random a key K for a block cipher used to transform the message.
3. Compute the output sequence 1 2, , , sm m m ′′ ′ ′… for s′ = s + 1 as follows:

(1) m′i = mi ⊕ E(K, i), for i = 1, 2, 3, …, s.
(2) Let 1 ,s sm K h h′′ = ⊕ ⊕ ⊕…

where 0(,), 1, 2, , ,i ih E K m i i s′= ⊕ = …
where K0 is a fixed, publicly-known encryption key.

Here E denotes a block cipher. m′i = mi ⊕ E(K, i) is called the package transform

which converts the original messages into pseudo messages. The key K of the block ci-
pher for the package transform is publicly known, and does not need to be the same as
the block cipher at step (2) which encrypts the output sequence. It is easy to see that the
package transform is invertible. The plain text can be recovered as follows:

1. 1 .s sK m h h′′= ⊕ ⊕ ⊕…
2. (,), 1, 2, , .i im m E K i i s′= ⊕ = …

If any block of the output sequence is unknown, the randomly chosen key K cannot

be computed, and so it is infeasible to compute any message block. This property is used
in [3] to construct three schemes, where hash functions or some one way functions are
used substitute the block cipher to transform the message into pseudo messages.

The following notations are used in [3]:

− n: the length of an output of a hash function.
− k: the block size of a hash function.
− m: an input message.
− m′: a pseudo-message resulting from the all-or-nothing transform.
− K: a randomly chosen k-bit key.
− Kp: a fixed and publicly-known k-bit key.
− h(): an arbitrary hash function.
− hx(y): hash an input y with an initial value x.
− Hi: the chain value for the ith step.
− IV: initial value of a hash function.
− ⊕: bitwise XOR.

ANALYZE A HASH FUNCTION

1477

− ||: concatenation.
− :Z transform n-bit Z to k-bit.

Using all-or-nothing property and notations mentioned above, three schemes are

constructed in [3] as follows.
The first scheme:

(1) Partition the input message m into t k-bit blocks, m1, m2, …, mt.
(2) Generate a random k-bit key K.
(3) Compute the input value as follows: H0 = IV, m′t+1 = K.

For i = 1 to t {
m′i = mi ⊕ f(K, Hi-1, i)
m′t+1 = m′t+1 ⊕ g(Kp, m′i, i)
Hi = hHi-1(m′i)

}
Ht+1 = hHt (m′t+1)

(4) Output (m′ || Ht+1).

Here f and g are two different block ciphers as all-or-nothing scheme described above.
The second scheme:

(1) Partition the input message m into t n-bit block, m1, m2, …, mt.
(2) Generate a k-bit random key K.
(3) Compute the input value as follows:

10 , (), 1, 2, , .
ii i mm IV m m h K i i t
−′

′ ′= = ⊕ ⊕ = …

(4) Compute the last pseudo-message block m′t+1:

11 { (1 ()}.
tt m p m pm K h K h K t′ ′+′ = ⊕ ⊕ ⊕ ⊕ ⊕…

(5) Output (m′||hIV(m′t+1)).

The Third scheme:

(1) Partition the input message m into t n-bit block, m1, m2, …, mt.
(2) Generate a k-bit random key K.
(3) Compute

0 1, (||), 1, 2, , .
ii i m im IV m m h K m i i t′ −′ ′= = ⊕ ⊕ = …

(4) Compute the last pseudo-message block, m′t+1 as follows:

1 1(|| || || ()), { }.
pK t IV p tMD h m m h K m K MD+′ ′ ′= =…

(5) Output (m′ || hMD(m′t+1)).

PIN LIN, WENLING WU, CHUANKUN WU AND TIAN QIU

1478

It is claimed in [3] that their schemes prevent the attacks using message modifica-
tion technique. It is also claimed that the pre-image and second pre-image security bound
of the schemes is O(2n/2+lt), where n denotes the output length, l denotes the length of
each message block and t denotes the number of input message blocks. We show that the
above claims are not correct. In the following of this paper, we construct some attacks on
these schemes and give the new security bound of these schemes.

2.2 Security Analysis of All-or-Nothing Schemes as Hash Functions

Our attacks on these schemes are based on the multi-collision attack proposed by
Joux [4]. Assuming there is an algorithm to find a collision for the compression function
of the target hash functions, that Is, given as input a chain value H, the algorithm can
output two different message blocks m and m′ such that f(H, m) = f(H, m′). To illustrate
the idea, we use an example in [4] to show how four collisions can be obtained using this
algorithm. We first call the algorithm on initial value-IV to obtain two different randomly
selected blocks, m0 and m′0 that yield a collision, i.e. f(IV, m0) = f(IV, m′0) = H1, where H1
denotes the chain value, and then use the algorithm on H1 to find two other random
blocks m1 and m′1 such that f(H1, m1) = f(H1, m′1). Then we have 4 collisions on the hash
function as follows.

f(f(IV, m0), m1) = f(f(IV, m0), m′1) = f(f(IV, m′0), m1) = f(f(IV, m′0), m′1).

This algorithm can use the generic birthday attack and should be effective for any
input value. It should be noted that the algorithm is effective even if the compression
function is ideal i.e. random oracle. In this paper we use the multi-collision attack to con-
struct attacks on the schemes in [3] and give the correct complexity for the pre-image
attack on them.

Now we construct a pre-image attack on the first scheme. The attack can be de-
scribed as follows:

1. Given the random key K, for each step

Hi = fHi-1(m′i) (i = 1, 2, …, t)

use the algorithm mentioned above to find a collision such as

fHi-1(m′i) = fHi-1(m″i)

where m′i and m″i are different pseudo messages, then for different pseudo message
blocks, we have the same Hi. It is easy to see that after t steps, the algorithm is called
for t times and there are 2t pseudo messages which have the same Ht.

2. Use these pseudo message blocks found in step 1 to find the plain messages. Compute

mi = m′i ⊕ f(K, Hi-1, i)

to get the plain message and Compute

m′t+1 = m′t+1 ⊕ g(Kp, m′i, i)

ANALYZE A HASH FUNCTION

1479

to get the last pseudo message block. Then we will have 2t messages that have the
same Ht value and different 2t pseudo messages

3. If t is equal to the output length of the hash function n, then hash the 2n pseudo mes-
sages to find a pre-image in these plain messages.

Theorem 1 The complexity of pre-image attack for the first scheme is O(2n).

Proof: In step 1 of this attack, the complexity to find one collision for one step of the
hash function is O(2n/2), then after t steps, the complexity to find one collision for all
steps is O(t2n/2). Then there are 2t pseudo messages that have the same output Ht (see Fig.
1). If t is equal to the output length n of the hash function, then there are 2n pseudo mes-
sages. Using these pseudo messages, we can get the corresponding plain messages, even
if the hash function is an ideal hash function, because there are 2n pseudo messages i.e. 2n
last block, then the probability to find the pre-image of Ht+1 = hHt(m′t+1) is overwhelming,
where m′t+1 is the last block of one pseudo message. In the attack, the hash function is
used t2n/2 + 2n times, and because 2n 2n/2, the complexity to find its pre-image is O(2n).

Fig. 1. Find multi-collisions.

The pre-image attack for the second scheme is similar to the first scheme and can be

described as follows:

1. Given the random key K, for each hash function ()
im ph K i′ ⊕ (i = 1, 2, …, t), instead

of fixing chain value as in the fist scheme, we fix the input message Kp ⊕ i and use the
algorithm to find a free-start collision such as

() ()
i im p m ph K i h K i′ ′′⊕ = ⊕

where m′i and m″i are different pseudo messages. Then for different pseudo message
blocks, we have the same value of 1 2

.
tm m mh h h′ ′ ′⊕ ⊕ ⊕… It is easy to see that after us-

ing the algorithm for t times, there are 2t pseudo messages which have the same value.
2. use these pseudo message blocks found in step 1 to find the plain messages. Compute

()
ii i mm m h K i′′= ⊕ ⊕

to get the plain messages, and we will get 2t messages that have the same hm′1 ⊕ hm′2 ⊕
… ⊕ hm′t value.

3. If t is equal to the output length of the hash function n, then there are 2n pseudo mes-
sages to find a pre-image in these plain messages.

Theorem 2 The complexity of pre-image attack for the second scheme is O(2n).

Proof: In step 1 of this attack, the complexity to find one free-start collision for one hash
function is O(2n/2), which is the same as the collision attack. After t steps, the complexity

PIN LIN, WENLING WU, CHUANKUN WU AND TIAN QIU

1480

to find one free-start collision for each hash function is O(t2n/2). Hence there are 2t
pseudo messages that have the same 1 2 tm m mh h h′ ′ ′⊕ ⊕ ⊕… value. If t is equal to the output
length n of the hash function, then there are 2n pseudo messages. Using these pseudo
messages, we can get the corresponding plain messages. Assuming the hash function is
an ideal hash function, because there are 2n pseudo messages that have the same last
block, the probability to find the pre-image of hIV(m′) is overwhelming, where m′ is the
pseudo message . In the attack, the hash function is used for t2n/2 + 2n times, so the com-
plexity to find its pre-image is O(2n).

The attack for the third scheme can be described as follows:

1. Given the random key K, for the hash function

1(|| || || ()) (1, 2, ,)
pK t IV ph m m h K i t′ ′ =… …

use the algorithm to find a collision in each step such as

() ()
p pK i K ih m h m′ ′′=

where mi' and mi'' are different pseudo messages. Then for different pseudo message
blocks, we have the same MD. It is easy to see that after using the algorithm for t
times, there are 2t pseudo messages which have the same MD.

2. Use these pseudo message blocks found in step 1 to get the plain messages by com-
puting

1 1(||).
ii i m im m h K m i
−′ −′= ⊕ ⊕

Then we will have 2t messages that have the same MD value.
3. If t is equal to the output length of the hash function n, then there are 2n messages to

find the pre-image.

Theorem 3 The complexity of pre-image attack for the third scheme is O(2n).

Proof: In step 1 of this attack, the complexity to find one collision for one step of the
hash function is O(2n/2), then after t steps, the complexity to find one collision for all
steps is O(t2n/2). Then there are 2t pseudo messages that have the same output MD (see
Fig. 1). If t is equal to the output length n of the hash function, then there are 2n pseudo
messages. Using these pseudo messages, we can get the corresponding plain messages,
even if the hash function is an ideal hash function, because there are 2n pseudo messages
that have the same MD, then the probability to find the pre-image of ({ })MDh K MD⊕ is
overwhelming. In the attack, the compression function is used for t2n/2 + 2n times, so the
complexity to find its pre-image is O(2n).

It is easy to see that the complexity to find collisions for these schemes is O(2n/2) if

the compression function is ideal. It should be noted that for any hash function, O(2n) is
an upper bound for pre-image attack and O(2n/2) is an upper bound for collision attack,
and the bound is reached when the hash function is an ideal random oracle. Our attacks

ANALYZE A HASH FUNCTION

1481

need the number of message blocks t ≥ n, otherwise the attacks cannot be implemented.
From the analysis above, it is shown that the complexity analysis in [3] is not cor-

rect. These schemes prevent the particular message manipulation attack and may improve
the complexity to find collisions and pre-images on the implemented hash functions but
cannot improve the complexity over the bound for the ideal hash functions. The com-
plexity to find collision and pre-image depends on the output length of the hash functions
but not on the number of message blocks or the message block length. It is well known
that the ideal hash functions cannot be implemented in practice. Therefore the complex-
ity for any hash functions in practice is lower than the bound for the ideal hash functions.

2.3 Security of All-or-Nothing Schemes under Multi-Collision Attack

The purpose to construct the schemes in [3] is to prevent the attacks based on mes-

sage modification, because most of the known attacks on hash functions use message
manipulation. Multi-collision attack is also a kind of attack using message manipulation.
Although the result in [4] is later than the one in [3] and the purpose of the schemes in [3]
is not multi-collision resistant, the attacks in [4] cannot be applied to two schemes in [3].
For the first scheme and the second scheme in [3], multi-collision attack cannot be di-
rectly applied to them. However, the third scheme is not multi-collision attack resistant.
Similar to the pre-image attack above, we construct an attack to find multi-collisions for
this scheme. It is described as follows:

1. Given the random key K, for hash function

1(|| || || ()), 1, 2, ,
pK t IV ph m m h K i t′ ′ =… …

use the algorithm to find a collision such that

1 1() ()
p pK Kh m h m′ ′′=

where m′i and m″i are different pseudo messages. Then for different pseudo message
blocks, we have the same value of MD. It is easy to see that after using the algorithm
for t times, there are 2t pseudo messages which have the same MD.

2. use these pseudo message blocks found in step 1 to find the plain messages. Then we
will have 2t messages that have the same MD value.

3. Using these messages, we can obtain 2t collisions on this scheme because the hash
value is

1 1(), { }.MD t th m m K MD+ +′ ′ = ⊕

Theorem 4 The complexity to find 2t collisions for the third schemes is O(t2n/2).

Proof: In step 1 of this attack, the complexity to find one collision for one step of the
hash function is O(2n/2), then after t steps, the complexity to find one collision for all
steps is O(t2n/2). There are 2t pseudo messages that have the same output MD (see Fig. 1).
Using these pseudo messages, we can get the corresponding plain messages, even if the
hash function is an ideal hash function, because there are 2t pseudo messages that have

PIN LIN, WENLING WU, CHUANKUN WU AND TIAN QIU

1482

the same MD, then the probability to find 2t collisions of ({ })MDh K MD⊕ is over-
whelming. Therefore the complexity to find 2t collisions is O(t2n).

To prevent this attack, we substitute hMD(m′t+1) with hMD(m′). Then like the other two

schemes, multi-collision attack also cannot be directly applied to this scheme. The au-
thors of [3] claimed that the three schemes could resist message manipulation attack, but
the third one cannot resist the multi-collision attack which is a kind of message manipu-
lation attack. Actually, the schemes in [3] are not constructed to resist multi-collision
attack, but we find the first and the second scheme can resist the attack. This idea is simi-
lar to the one in [16].

3. CONCLUSION

In this paper, we review the three schemes in [3]. It has been claimed that the pre-
image and second pre-image security bound of the schemes is O(2n/2+lt), where n denotes
the output length, l denotes the length of each message block and t denotes the number of
input message blocks. We have shown that the security bound of these schemes cannot
exceed the ideal security bound and give the correct complexity bound. Although it has
been claimed that these schemes prevent the attacks using message modification tech-
nique, we find one of the schemes cannot resist the multi-collision attack. Actually, the
schemes in [3] provide a good idea to generate the MAC and encrypting the message
simultaneously. However, the efficiency of these schemes is very low, because the hash
functions have to process the messages twice. Therefore, constructing efficient schemes
will be the further research.

REFERENCES

1. I. B. Damgård, “A design principle for hash functions,” in Proceedings of the 9th
Annual International Cryptology Conference on Advances in Cryptology, LNCS 435,
1989, pp. 416-427.

2. R. Merkle, “One way hash functions and DES,” in Proceedings of Advance in Cryp-
tology, LNCS 435, 1989, pp. 428-446.

3. S. U. Shin, K. H. Rhee, and J. W. Yoon, “Hash functions and the MAC using all-or-
nothing property,” in Proceedings of the 2nd International Workshop on Practice
and Theory in Public Key Cryptography, LNCS 1560, 1999, pp. 263-275.

4. A. Joux, “Multicollisions in iterated hash functions,” Application to Cascaded Con-
structions, Advances in Cryptology − CRYPTO, LNCS 3152, 2000, pp. 306-316.

5. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu, “Cryptanalysis of the hash functions
MD4 and RIPEMD,” in Proceedings of Advances in Cryptology − EUROCRYPT,
LNCS 3494, 2005, pp. 1-18.

6. X. Wang, H. Yu, and Y. Yin, “Efficient collision search attacks on SHA-0,” in Pro-
ceedings of Advances in Cryptology − Crypto, LNCS 3621, 2005, pp. 1-16.

7. X. Wang, Y. Yin, and H. Yu, “Finding collisions in the full SHA-1,” in Proceedings
of Advances in Cryptology − CRYPTO, LNCS 3621, 2005, pp. 17-36.

8. X. Wang and H. Yu, “How to break MD5 and other hash functions,” in Proceedings

ANALYZE A HASH FUNCTION

1483

of Advances in Cryptology – EUROCRYPT, LNCS 3494, 2005, pp. 19-35.
9. S. Lucks, “A failure-friendly design principle for hash functions,” in Proceedings of

Advances in Cryptology − ASIACRYPT, LNCS 3788, 2005, pp. 474-494.
10. S. Hirose, “Provably secure double-block-length hash functions in a black-box

model,” in Proceedings of the 7th International Conference on Information Security
and Cryptology, LNCS 3506, 2005, pp. 330-342.

11. M. Nandi, W. Lee, K. Sakurai, and S. Lee, “Security analysis of a 2/3-rate double
length compression function in black-box model,” in Proceedings of the 12th Inter-
national Workshop on Fast Software Encryption, LNCS 3557, 2005, pp. 243-254.

12. R. Rivest, “All-or-nothing encryption and the package transform,” in Proceedings of
the 4th International Workshop on Fast Software Encryption, LNCS 1267, 1997, pp.
210-218.

13. L. Knudsen and F. Muller, “Some attacks against a double length hash proposal,” in
Proceedings of Advances in Cryptology − ASIACRYPT, LNCS 3788, 2005, pp. 462-
473.

14. J. Kelsey and B. Schneier, “Second preimages on n-bit hash functions for much less
than 2n work,” in Proceedings of Advances in Cryptology − EUROCRYPT, LNCS
3494, 2005, pp. 474-490.

15. J. Black, P. Rogaway, and T. Shrimpton, “Black-box analysis of the block-cipher
based hash function constructions from PGV,” in Proceedings of Advances in Cryp-
tology − CRYPTO, LNCS 2442, 2002, pp. 320-335.

16. N. Kauer, T. Suarez, and Y. Zheng, “Enhancing the MD-strengthening and design-
ing scalable families of one-way hash algorithms,” http://eprint.iacr.org/2005/397.

17. X. Lai and J. Massey, “Hash functions based on block ciphers,” in Proceedings of
Advances in Cryptology − EUROCRYPT, LNCS 658, 1993, pp. 55-70.

18. R. L. Rivest, “The MD5 message-digest algorithm,” RFC1321, Internet Activity
Board, Internet Privacy Task Force, 1992.

19. FIPS 180-1, Secure Hash Standard, Federal Information Processing Standard, Pub-
lication 180-1, NIST, 1995.

20. FIPS 180-2, Secure Hash Standard, Federal Information Processing Standard, Pub-
lication180-2, NIST, 2003.

21. B. Preneel, R. Govaerts, and J. Vandewalle, “Hash functions based on block ciphers:
a synthetic approach,” in Proceedings of the 13th Annual International Cryptology
Conference on Advances in Cryptology, LNCS 773, 1994, pp. 368-378.

Pin Lin is now a Ph.D. working at the State Key Laboratory
of Information Security, Graduate University of Chinese Acad-
emy of Sciences. His current research interest is the design and
analysis of hash functions.

PIN LIN, WENLING WU, CHUANKUN WU AND TIAN QIU

1484

Wenling Wu is now a professor at the State Key Laboratory
of Information Security, Institute of Software, Chinese Academy
of Sciences. She received her B.S. degree and M.S. degree in
Maths from Northwest University in 1987 and 1990, respectively.
She received her Ph.D. degree in Cryptography from Xidian Uni-
versity in 1997. From 1998 to 1999 she was a postdoctoral fellow
in the Institute of Software, Chinese Academy of Science. Her
current research interests include theory of cryptography, mode
of operation, block cipher, stream cipher and hash function.

Chuankun Wu was teaching at Xidian University since
January 1988. He was promoted by Xidian University as a Lec-
turer in 1990, an Associate professor in 1992, and a full professor
in 1995. In September 1995, he became a postdoctoral fellow in
Australia, then from 1997 a research fellow, and from 2000 a
Lecturer in the Department of Computer Science, Australian Na-
tional University. Since 2003, He has joined the Institute of Soft-
ware, Chinese Academy of Sciences. He has got many awards
while he was in China, including China Government Special
Subsidy awarded in 1993. He founded and served as a program

co-chair for 2001, 2002 and 2003 International Workshop on Cryptology and Network
Security (CANS) which has become one of the influential international conferences since
2005, and has served as a program committee member for many international confer-
ences. He is an associate editor of IEEE Communications Letters, a member of Interna-
tional Association of Cryptologic Research, and a senior member of IEEE since 2000.

Tian Qiu was born in 1979. He is a Ph.D. candidate work-
ing at the Institute of Software, the Chinese Academy of Sciences.
His current research interests include semantic web service dis-
covery.

