
Invariant Generation Techniques in Cryptographic Protocol Analysis

Catherine Meadows
Code 5543

Naval Research Laboratory
Washington, DC 20375

meadows@itd.nrl.navy.mil

Abstract

The growing interest in the application of formal meth-
ods of cryptographic protocol analysis has led to the de-
velopment of a number of different techniques for generat-
ing and describing invariants that are defined in terms of
what messages an intruder can and cannot learn. These in-
variants, which can be used to prove authentication as well
as secrecy results, appear to be central to many different
tools and techniques. However, since they are usually de-
veloped independently for different systems, it is often not
easy to see what they have in common with each other, or to
tell whether or not they can be used in systems other than
the ones for which they were developed. In this paper we
attempt to remedy this situation by giving an overview of
several of these techniques, discussing their relationships
to each other, and developing a simple taxonomy. We also
discuss some of the implications for future research.

1 Introduction

Recently, a considerable body of work has grown up
around the problem of applying formal methods to cryp-
tographic protocols. Much of this work has concentrated
on the problem of developing inductive techniques for rea-
soning about the unbounded sets of messages that can arise
when dealing with an environment in which an arbitrary
number of protocol executions can take place, and an in-
truder can apply an arbitrary number of operations to data.
Normally, this is done by constructing an invariant such
that actions by protocol participants leave the invariant un-
changed. Examples include the languages used with the
NRL Protocol Analyzer [10], the rank functions used by
Schneider in his CSP based analysis [15], the ideals asso-
ciated with strand spaces [18], Paulson’sanalyz andsynth
functions[14], and Cohen’s secrecy invariant [4].

Not surprisingly, all of these techniques appear to have
much in common. The feature that seems most widely

shared is that many are characterized in terms of sets of
messages that have properties that are left unchanged by
operations by the intruder or by legitimate participants in
the protocols.

These properties fall into two broad classes. One set has
to do with characterizing terms that either can not be learned
by the intruder, or can only be learned under special con-
ditions. These include strand space ideals [18], the NRL
Protocol Analyzer languages [10], and Schneider’s terms of
rank zero or less in [15].

The other has to do with the characterization of terms
that the intruder can learn. These include the terms of rank
one as constructed by Heather and Schneider in their Rank-
analyzer model [7], the terms satisfying the unary predicate
ok in Cohen’s TAPS program, and to some extent the Paul-
son’s analyz and synth functions. We have found that the
first type falls naturally into an algebraic structure similar
to that of the ideal used in ring theory (indeed, the term
“ideal” used in the strand space model is inspired by the
similarity to ring-theoretic ideals) while the second can of-
ten be described in terms of a subalgebra of the original
crypto-algebra.

In this paper we will examine the types of invariants used
by seven systems: the NRL Protocol Analyzer, the strand
space model, an early and a late version of Schneider’s rank
model, Paulson’s inductive model, a combination of Paul-
son’s inductive model and the strand space model used by
Millen and Ruess to prove a general theorem about secrecy,
and Cohen’s TAPS. We show how the invariants fit into the
different classes, what important features they have in com-
mon, and in what important features they differ.

The remainder of the paper is organized as follows. In
Section 2 we give a general discussion of models and tech-
niques used in the application of formal methods to crypto-
graphic protocol analysis. In Section 3 we discuss invariants
defined in terms of messages not learnable by the intruder.
In Section 4 we give a survey of invariants defined in terms
of messages that can be learned by the intruder. In Section
5 we conclude the paper and discuss some implications of
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our findings and directions for future research.

2 Models and Techniques: A General Discus-
sion

2.1 Protocol Models

From the point of view of our analysis, all the systems
we are examining use essentially the same model. A proto-
col consists of a number ofhonestprincipals who attempt
to send and receive messages to and from each other. Each
protocol defines a finite set ofroles, each of which con-
sists of finite set of sequential rules governing the sending
of messages and the processing of received message for the
principal adopting that role. However, any message may
be intercepted by theintruderand possibly redirected or al-
tered. The intruder keeps aknowledge setof all messages
that it has learned. Any message that is sent by an honest
principal is added to the intruder’s knowledge set. Likewise,
the intruder can add to its knowledge set by performing op-
erations on messages that are already in its knowledge set.
These include at least concatenation, deconcatenation, de-
cryption, and encryption (both public and shared key). This
list may be extended, but this basic set is constant to all
models. Operations may also be subject to typing restric-
tions; for example if a termX is encrypted with a termY ,
we may be required to assume thatY is of type key.

There is one basic difference between some of the mod-
els that has an effect on the way invariants are defined. This
has to do with the way decryption is represented. Some,
such as the strand space model, represent the cryptoalge-
bra in terms of a free algebra. The effect of decryption
is described by protocol rules stating that a principal who
receives an encrypted message and has the corresponding
decryption key can produce the decrypted message. Other
models, for example, that used by the NRL Protocol Ana-
lyzer, represent encryption in terms of algebraic identities,
that is, encryption and decryption are represented as sepa-
rate operations, e.g.eK anddK , and the fact that decryption
cancels out encryption is represented as an algebraic iden-
tity, i. e. dK(eK(X)) = X .

Specification in terms of an algebra with identities is
more expressive than specifications in terms of free alge-
bras, since it allows us to specify the application of the de-
cryption operator to a message that was never encrypted.
But this situation does not arise for most protocols (unless
we look at them from a lower level of abstraction than that
usually used by this form of analysis), so that the free al-
gebra representation is often preferred as being simpler. As
we will see, the choice of representation will have some ef-
fect on the way invariants are defined, but will not have a
serious effect on their general structure.

We define some terms we will be using below.

Definition 1 A protocol executiondescribes a sequence of
sending and receiving messages by principals, at least some
of which should be honest.

We will say that a protocol execution isbackward com-
pleteif every message received by a principal corresponds
to a message sent by a principal. We will say that a proto-
col execution isforward completeif every message sent by
an honest principal corresponds to a message received by a
principal.

A correctness specificationdescribes the set of accept-
able backward complete protocol executions. A protocol is
flawedif there exists a backward complete protocol execu-
tion not satisfying the correctness specification.

We will also need the notion of a state and a state transi-
tion. This is not defined for all models (the strand space
model has no clear notion of state), but it is widespread
enough so that we will find it necessary to use.

Definition 2 A stateconsists of the value of the intruder’s
knowledge set plus the values of the local state variables of
honest principals at a given point in time. Astate transition
describes the move from one state to another by the sending
or receipt of a message or a change in the values of local
state variables.

Thedepthof a protocol execution is the number of state
transitions involved in that execution.

2.2 Analysis Techniques

There are basically three approaches that have been used
to apply formal methods to cryptographic protocol analysis.
The first is the use of high-level epistemic logics developed
specifically for protocol analysis, such as BAN logic [1].
This does not usually involve the generation of invariants,
and so we do not consider it further here. A second is the
use of theorem-proving techniques, which generally involve
proving that invariants are preserved under state transition.
A third is to use state exploration techniques, usually us-
ing a model checker. It is also possible to combine theorem
proving and state exploration. For example, the NRL Proto-
col Analyzer automatically generates and proves invariants
to limit the search space, and then performs an exhaustive
search of the remaining finite search space. Likewise, the
Athena model checker [16], which is based on the strand
space model, makes use of hand-proved strand space theo-
rems to limit the size of its search space.

Both state exploration and invariant generation can make
use of forward or backward search. In the case of invariant
generation and verification, one can attempt to prove that,
whenever the invariant holds in a state, then it holds after
any state transition (as do Paulson and Cohen). Or one can
show that, whenever an invariant does not hold in a state,
then it most have not have held in any state immediately



preceding it (as does the NRL Protocol Analyzer). In ei-
ther case, one uses the result together with a proof that the
invariant always holds initially to prove that the invariant
holds for any state.

State exploration techniques make use of forward search
by producing a set of backwards complete executions as fol-
lows. The initial state is trivially backward complete. One
attempts to construct forward complete executions by tak-
ing all sent messages that are not currently matched with
received messages and matching them with rules includ-
ing received messages. (Note that, if a rule contains more
than one received message, all received messages must
be matched in order to maintain backward completeness).
Once the match is made, any sent message included in the
rule is added to the execution, in the appropriate temporal
order. This process continues until the execution is forward
complete, or until some other stopping criterion is reached.

Backwards search is done in the following manner. Here
the final state is usually assumed to be an insecure one; that
is, it describes results that could only occur as the result
of the protocol execution that failed to satisfy the correct-
ness specification (indeed, the specification of the insecure
final states can serve as a definition of the correctness spec-
ification in terms of its negation). The specification of the
insecure state can contain information about such things as
secrets learned by the intruder, inconsistent information (e.g
two parties holding different values for what is intended
to be a shared cryptographic key), or even specific illegal
sets of events. Once the final state is specified, the ana-
lyst searches for rules whose output matches some part of
the state. If these rules contain unmatched received mes-
sages, the analyst then searches for other rules containing
sent messages matching the received messages. Any re-
ceived messages contained by these rules are added to the
execution in the appropriate temporal order. This process
continues until either a backward complete execution is pro-
duced, in which case an attack has been found, or it is im-
possible to extend the execution further, in which case it has
been shown that no attack is possible.

When backwards search is used, we will often produce
desired received terms that cannot be produced by any back-
ward complete execution, that is, terms that can never be
learned by the intruder. We need some way of character-
izing these terms. Often, this can be done by producing a
set of terms such that the property of their not being sent
remains invariant under protocol execution.

In the case of forward search, we may find ourselves in
a different situation; that is, we may find ourselves gener-
ating terms that are learnable by the intruder, but are irrel-
evant, e.g. the result of an arbitrarily long sequence of en-
cryptions or concatenations that will never be accepted as a
legitimate message by an honest principal. In this case, we
want to characterize the set of terms thatcanbe learned by

the intruder in a useful way without wasting time with these
useless terms. We will explore these issues in more detail
in the next sections.

3 Ideals and Sets of Terms Not Known by the
Intruder

3.1 Defining Invariants

3.1.1 Strand Space Ideals

The strand space model uses a free crypto-algebra. This
means that each term has a unique representation, which
makes it straightforward to define invariants in a simple nat-
ural way as follows.

When we are attempting to determine that a set of terms
T is not known by the intruder, we can use it to define an
invariant in the following way. Clearly, if (X;T ) or (T;X)
is known by the intruder, whereT 2 T, then the intruder
can learnT . Likewise, if the intruder knows a keyK and
also knowseK(X), then the intruder can learnX . Thus,
if T is to remain unknown, so must the result of concate-
natingT with X , and the result of encryptingT with any
key known by intruder. This suggests that we define a set
IK(T) as the smallest set containingT closed under en-
cryption by keys from the setK and under concatenation
with arbitrary terms, and attempt to show that the property
of the intersection ofIK(T) and the intruder’s knowledge
set being empty is invariant under protocol execution.

The notationIK(T ) is no accident; the set we have de-
scribed above is of course exactly describes the strand space
ideal described in [18]. However, there are models that use
invariants that behave very similarly. We will describe them
in the next two sections.

3.1.2 NRL Protocol Analyzer Languages

One such is thelanguagesused by the NRL Protocol Ana-
lyzer. Speaking generally, the languages used by the NRL
Protocol Analyzer are simply sets of irreducible terms de-
scribed using a BNF grammar. But as a matter of fact,
languages are always produced by the NRL Protocol An-
alyzer. using an automatic procedure that tends to produce
languages of a form very similar to ideals. It starts with a
generator (seedwordin the NRL Protocol Analyzer nomen-
clature), which is actually a set of generators, since it usu-
ally contains variable subterms. The NRL Protocol Ana-
lyzer then searches backwards from the state in which the
intruder knows the seedword, producing all protocol exe-
cutions of a predefined depth that could produce that seed-
word. (The requirement for a predefined depth is there in
order to prevent executions of unbounded depth.)

For each such execution, the NRL Protocol Analyzer
checks to see if it contains a state transition that requires



the intruder to already know the seedword, that is, that re-
quires a principal to receive the seedword as a message. If
not, it attempts to add a language rule that would imply that
at least one of the terms required as input messages by the
execution belong to the language. After this is done, it takes
each language rule and uses it to formulate a goal. It then
searches backwards from that goal, again producing all ex-
ecutions of a given depth that lead up to that goal. It then
checks each execution to see if each execution requires the
intruder to know a word in the language. If not, it adds
new language rules, and proceeds as before. This process is
iterated until a fixed point is reached, that is, every execu-
tion produced requires that the intruder know a word in the
language, and thus no new language rules need to be pro-
duced. (Note that it is not guaranteed that a fixed point will
be reached). At the end, a setL has been produced such
that, if the intruder learns a term inL, then it must have
already known a term inL.

The NRL Protocol Analyzer includes state transition
rules that say that, if the intruder knows (X;Y ), then it can
learnX andY , and, if the intruder knowseK(Y ) andK,
then it can learnY . Thus, whenever the language generator
attempts to produce the set of executions that will lead to the
intruder learning a termW , it will almost always produce an
execution requiring the intruder to know (X;W ) for some
X , another requiring the intruder to know (W;X) for some
X , and another requiring the intruder to knoweK(W ) for
some keyK. This leads the language generator to include
rules saying that, if theT is in the language, then (T;X)
and (X;T ) is in the language for anyX , andeK(T ) is in
the language for anyK. It will also generate similar rules
for other operations. Executions that involve the use of pro-
tocol rules describing honest principals receiving messages
may also generate language rules, but these rules are often
subsumed by the language rules generated as the result of
intruder actions; they are usually not included in the lan-
guage as it is finally defined. Thus the language generator
generates invariants that are in many ways similar to ide-
als: they have a set of generators, and they are closed un-
der concatenation, encryption, and any other operation that
is defined by the protocol. In some ways these languages
are more general than strand space ideals (more operations
may be included) and in some way more restrictive. For ex-
ample, in the strand space model it is possible to specify a
particular set of keys that will be used for encryption. This
cannot be done in the NRL Protocol Analyzer.

There are also some other differences between ideals and
languages. The NRL Protocol Analyzer, unlike the strand
space model, does not use a free algebra. Instead, it mod-
els operations such as encryption and decryption in terms of
algebraic identities; e.g., encryption and decryption cancel
each other out. This has the potential of causing problems
when defining languages, e.g. shoulddK(eK(X)) be con-

sidered a member of the language generated byeK(X) or
not? The problems are avoided by restricting the algebraic
identities to those that form a Noetherian (that is, terminat-
ing), confluent set of rewrite rules. These properties are
fairly easy to check for, and also have the advantage that
it is easy to find a unique canonical representative of each
equivalence class. The language is then taken to be the in-
tersection of the set generated by the BNF grammar and the
set of canonical representatives.

3.1.3 Schneider’s Rank Functions

A rank function is an integer function defined on messages.
One uses rank functions both to characterize the messages
that can be sent in a protocol execution (the messages of
positive rank), and the messages that can’t be sent, (the mes-
sages of rank 0 or less). One then attempts to show that cer-
tain messages can never be sent or learned by the intruder
because they are of rank 0 or less. This is done by showing
that the property of rank 0 messages not being known by
the intruder remains invariant under state transition.

Consider for example the strategy used by Schneider
in his analysis of the Needham-Schroeder and Needham-
Schroeder-Lowe public key protocols [15], which use en-
cryption by public and secret keys (represented by two dif-
ferent operations), and concatenation. Schneider’s strategy,
for each of his rank functions, is to first start out by assign-
ing rank to atomic terms. Those that may be learnable by
an intruder are assigned rank one; those that should not be
learnable are assigned rank zero. The result of encrypting
with a public key is defined for the most part to be rank-
preserving, as is the result of encrypting with a private key.
The exception will generally involve encryption by a partic-
ipating principal, which may be rank-increasing, since the
intruder may learn the result of encrypting a message (so
that should be of positive rank), while the message itself
should not be learned by the intruder. The rank of the result
of concatenation is assumed to be the minimum rank of the
two terms concatenated. Some messages that are known to
be generated by the protocol are also assigned rank one.

There are also a few exceptions to the general strategy.
Many of these arise from the fact that Schneider’s earlier
model, like the NRL Protocol Analyzer, models encryption
and decryption in terms of algebraic identities. However,
unlike the NRL Protocol Analyzer, no a priori restriction on
the types of identities is made. Thus rank functions must
be defined so that all members of an equivalent class have
the same rank. In particular, ifpj denotes encryption with a
public key belonging toj andsj denotes encryption with a
corresponding private keysj , thensj(pj(m)) should have
the same rank asm.

Given the exceptions resulting from the necessity of re-
maining consistent with algebraic identities, we see the



messages of rank zero or less, at least in the Needham-
Schroeder-Lowe analysis have a structure very similar to
that of ideals. They are preserved under encryption by most
keys, and they are preserved under concatenation with any
other term. The similarity of their structure to that of ideals
and languages is of course not surprising, since like them
they are used to characterize terms that can never be mem-
bers of the intruder’s knowledge set.

The messages of positive rank, which characterizes the
messages that can be sent during a protocol execution, also
have a structure of their own. They tend to be closed un-
der encryption by most public and private keys, and under
concatenation with other messages of positive rank. More
recent work of Heather and Schneider [7] has tended to con-
centrate more on the structure of the messages of positive
rank than on those of rank zero or less. We will say more
about this in Section 4.

3.2 Using Invariants

3.2.1 Secrecy Results

Once we have defined our invariants, we need to figure out
how to use them. Basically, they are used to prove two sorts
of things. The first, and simplest, is to prove that the in-
truder can never learn a particular message or set of mes-
sages. This type of result is usually used to prove general
secrecy theorems, e.g. that the intruder can never add the
master keys used by honest principals to its knowledge set.
The second is to prove that the intruder can only learn a par-
ticular message if it was sent under certain circumstances,
e.g. by a particular principal at a particular point in its exe-
cution of the protocol.

The techniques for using the invariants to prove secrecy
employed by the three systems do not vary much. However,
the NRL Protocol Analyzer does offer a somewhat different
approach by allowing the state of the intruder’s knowledge
set to be used in the definition of a language. A user can de-
fine a seedword and specify that a subterm of that seedword
not belong to the intruder’s knowledge set. The property
that the language generated by the NRl Protocol Analyzer
does not contain any elements of the intruder’s knowledge
set is then proved to be invariant under all transitions that
preserve the property that the subterm is not in the intruder’s
knowledge set.

This definition of seedwords in terms of intruder knowl-
edge comes from the way in which the NRL Protocol Ana-
lyzer uses backwards search. For example, if it is trying to
find out how the intruder could learn a messageM , it will
be told thatM can be found if the intruder knowseK(M)
andK. Since we are not interested in the case in which
the intruder already knowsM , we need to be able to char-
acterize the cases in which the intruder knowseK(M) but
not necessarilyM . Thus the property to be proved invariant

becomes the property that the intruder does not know any
member of the language, and the intruder does not know
M , whereeK(M) is the seedword generating the language.

As for authentication, each of the three systems uses a
somewhat different approach. However, as we shall see be-
low, they are closely related.

3.2.2 Strand Space Ideals and Authentication

In the strand space model, an ideal is said to have anentry
point if at some point in an execution a member of that ideal
is sent as a message by one of the principals (including,
possibly, the intruder). Thus, if we are able to prove that
under no circumstances does an ideal have an entry point,
we can show that under no circumstances can the intruder
add any member of the ideal to its knowledge set.

In order to address the problem of authentication, the
strand space model allows us to include the notion of how a
term was originated. An entry point is aregular entry point
if it was originated by an honest principal, and apenetra-
tor entry pointif it was produced by the penetrator. Thus
one can prove an authentication result guaranteeing that a
messageM could only have been sent by a principalA ex-
ecuting stepN of the protocol in the following way:

1. Construct an ideal containingM . Usually, this will be
IK(M) for someK.

2. Show that the ideal has only regular entry points.

3. Identify which regular nodes (that is, which principals
at which points of the protocol) could have sent mes-
sageM .

3.2.3 NRL Protocol Analyzer Languages and Authen-
tication

The NRL Protocol Analyzer does not allow us to identify
explicitly the origins of the terms in languages. However,
it provides some tools that indirectly give the user the same
capability.

First of all, the generation algorithm allows for the no-
tion of anexception. Seedwords are typically defined using
variable arguments, and thus it is likely that for certain sub-
stitutions to the variables, the seedword may be learnable
by the intruder. In that case, an exception rule is generated
that excludes those substitutions from the language. For ex-
ample, suppose that we start with a seedwordsA(M) where
sA indicates signing byA’s private key, whereA andM are
variables, and that the NRL Protocol Analyzer finds out that
the termsA((X;A)) can be sent by any principalA. Then
the definition of the seedword is modified to read allsA(M)
exceptwheresA(M) = sA((X;A)).

Information about which principal generated the mes-
sage and under what circumstances is not saved by the NRL



Protocol Analyzer. Instead, it is possible to reconstitute this
information under backwards search. Suppose, for exam-
ple, in a backwards search the NRL Protocol Analyzer finds
a state in which a principal receives a message of the form
sA(M), whereA andM are variables. According to the
definition of the language, this message cannot be sent un-
less it is of the formsA((X;A)). Thus the NRL Proto-
col Analyzer makes the appropriate substitution to the vari-
ables, replacingM by (X;A). One can then continue the
search to find the exact circumstances under which the term
was generated.

3.2.4 Rank Functions and Authentication

Schneider’s approach to authentication is to define it in
terms of a condition that a given actionAmust be preceded
by another actionB, whereA andB usually denote the
sending of particular messages by particular honest princi-
pals. This is done by constructing a specificationS of the
protocol that is identical to the original specification in all
respects except thatB is blocked from occurring, and then
showing thatA cannot occur inS either.

What is usually discovered is thatA cannot occur unless
some messageM is received by the principal executingA.
Thus it is enough to show thatM can’t be sent inS, that
is, that the intruder can never learnM . This, of course, is
a secrecy theorem, and can be proved using rank functions
in the same way that Schneider proves his secrecy results.
Thus this technique has the advantage that no new methods
have to be introduced to handle authentication.

4 Subalgebras and Sets of Terms Known by
the Intruder

4.1 Definitions and Motivation

In this section we will examine crypto protocol anal-
ysis systems that use subalgebras or similar constructs to
characterize the sets of terms that can be learned by an in-
truder. Such a subalgebra is typically defined by a setS

that is closed under any operation op(x1; :::; xn) for all op-
erations op that are defined by the system, and all termsxi
belonging toS. Clearly, the set of all terms known by the
intruder defines a subalgebra under this definition: in par-
ticular, if the intruder knows a set of terms, it should be able
to discover the results of performing any operation on those
terms. What we will often be interested in here is the abil-
ity to find a set of generators of a subalgebraS of terms
known by the intruder; this will allow us to characterize the
subalgebra in a useful way.

We define a subalgebra more formally as follows.

Definition 3 LetS be a set, and letO = f op1,...,opn g be
a set of function symbols that may or may not obey some

algebraic identities. LetO0 be a subset ofO. We say that a
subsetG of S is a subalgebraof S with respect ofO0 if for
eachopi 2 O0, if x1; :::; xki 2 G, whereki is the arity of
opi, thenopi(x1; :::; xki) 2 G. We say thatG is generated
by a setS0 if G is the smallest subalgebra containingS0; in
this case we say thatG = G(S0; O).

In this section we will consider four different systems
that use some versions of subalgebras. The first we will look
at is Rankanalyzer [7], Heather’s and Schneider’s automa-
tion of analysis by rank functions, which uses the generators
of subalgebras to determine which terms can be learned by
intruder. The next we will look at is Paulson’s inductive
method [14], which uses subalgebras in a limited way. We
will then look at Millen and Ruess’ use of a combination
of strand space ideals and of concepts from Paulson’s in-
ductive message to prove a general secrecy theorem [12].
Finally, we consider Cohen’s TAPS [4], which takes a sim-
ilar approach to the inductive method, but, unlike the in-
ductive method, in which each invariant is defined individ-
ually, offers a general set of invariants which can be de-
fined and reasoned about mostly automatically. TAPS in-
variants bear some resemblance to subalgebras, but unlike
the other invariants discussed in this paper, which are static,
the makeup of TAPS invariants evolve with each state tran-
sition.

4.2 Rankanalyzer

Rankanalyzer uses the same general framework as
Schneider’s original system (with the minor difference that
is uses a free algebra for its crypto-algebra). That is, one
constructs a specification of a cryptographic protocol for
each result to be proved. For secrecy results, this is the spec-
ification of the original protocol. For authentication results,
this is the specification with a key event blocked. One then
attempts to construct a rank function and to show that the
message of interest is of rank less than one and so can never
by generated by the specification. However, the strategy
for constructing rank functions is much different. Rankan-
alyzer constructs a rank function that is one on the setX

of all messages that could be generated from the initially
known set of messages by the protocol rules. ThisX is
clearly a subalgebra under any operation performable by the
intruder (in Rankanalyzer’s case, these are encryption and
concatenation), since whenever a key and a term are pro-
duced as the result of applying sequences of protocol rules,
the intruder can learn the encryption of the term with the
key by the application of a protocol rule, and whenever two
terms are produced by a sequence of protocol rules, then the
intruder can learn the concatenation of the two terms by the
application of a protocol rule.

Although it is easy to defineX , in order to make it useful
it is necessary to have an effective procedure for determin-



ing whether or not a term is a member ofX . This is done
by finding a set of generators ofX in two steps as follows.

First, letD be the set of all messages that could ever ap-
pear in a protocol run, that is, all messages that could be
sent or accepted inR by legitimate principals. Heather and
Schneider restrict themselves to protocols in which legiti-
mate principals will not generate messages with arbitrarily
large numbers of concatenations and encryptions, so this
removes one level of complexity. They then letM0 be the
set of all subterms of all messages appearing inD, together
with all k�1 such thatk appears inM0. The terms that
Heather and Schneider are trying to prove unlearnable al-
ways reside inM0, so all that is necessary is a way of de-
termining whether or not a term is inX \M0. This is pro-
vided by giving an algorithm for computingX \M0 and
another for determining a finite representation; details are
given in [7]. We note that, although Heather and Schneider
don’t use this fact (they don’t need to, since the terms they
are trying to prove unreachable always reside inM0), that
X \ M0 is a set of generators ofX over encryption and
concatenation.

4.2.1 Paulson’s Inductive Method

Paulson uses the Isabelle theorem prover and induction on
protocol execution to prove security properties of crypto-
graphic protocols. This is done by stating each lemma and
theorem in terms of an invariant that is preserved by the ex-
ecution of each and every protocol rule. This results in a
large number of proof obligations, but in practice most are
trivial, so this approach has been effective in proving results
about some specifications of considerable complexity.

Paulson does not attempt to define any general automat-
able procedure for proving properties of his protocol speci-
fications, so subalgebras and ideals do not play as prominent
a role here as in the other systems we have described. How-
ever, there is one place in which they do make an appear-
ance. Unlike the other models we have described here, Paul-
son’s does not model intruder operations as messages sent
in the protocol from the intruder to itself. Instead, Paulson
describes the execution of the protocol in terms of messages
sent and/or received by legitimate participants. He then
defines, for any set of messagesX two setsanalyz(X)
andsynth(X), whereanalz(X) = G(X [K; O1) where
O1 consists of deconcatenation and decryption andK is
the set of keys known by the intruder, andsynth(X) =
G(X [ Y; O2), whereY is the set of agent names and
guessable nonces, andO2 consists of concatenation, en-
cryption, and other relevant cryptographic functions such
as hashing.

Although Paulson does not describe any general proce-
dure for using these constructs, he does prove a number of
results about the relationships betweenanalyz, synth and a

related constructparts(X) that is to be defined to be the set
of all subterms of the terms inX (over 110 results, accord-
ing to [14]), and he uses them extensively to prove results
about the obtainability of messages by the intruder.

4.2.2 Co-Ideals and Protocol-Independent Secrecy

Millen and Ruess [12] use both the concept of an ideal
from strand spaces and Paulson’s notions ofanalyz, synth,
parts, to develop a theorem that describe when a secret can
not be disclosed by a protocol. They first define the con-
cept of a co-ideal, which is simply the set complement of
an ideal. They point out that co-ideals are closed underan-
alyz and synth, thus making them subalgebras under our
definition. Of particular interest to them is the co-ideal of
I(S) = Ik[S], wherek is the set of keys whose inverses are
not inS.

Millen and Ruess then use co-ideals to prove results
about the security of keys. In particular, they show that, un-
der certain conditions, that, ifS is a set of secrets together
with the set of all encryption keys whose inverses are known
by principals who arenot intended to know the secrets inS,
and whenever all previous messages sent by an honest prin-
cipal are contained in the co-ideal ofI(S), so is any next
message sent by an honest principal, then it is the case that
none of the secrets are ever compromised by the protocol.

The proof makes extensive use of the closure properties
of co-ideals. Note that, although their result is a protocol-
independent theorem, not a search strategy, the statement
and proof of the result makes use of forward search tech-
niques, that is, the forward extension of traces. This adds
support to our hypothesis that the use of subalgebras tends
to work most naturally with the use of forward search tech-
niques.

4.2.3 TAPS

Cohen’s TAPS takes an approach similar to Paulson, but,
like Millen and Ruess uses standard invariants that can be
applied to any of a class of protocols. Moreover, he goes
them one further by providing automated support for prov-
ing that these invariants hold.

Cohen defines several unary predicates involving in-
truder knowledge. The first,pub(X), holds if the message
X has been sent during the execution of a protocol. The sec-
ond,prime(X), describes certain types of basic messages
that it is permissible for the intruder to know, e.g. names of
principals, encrypted messages, and subterms of encrypted
messages to which the intruder has the key. For simple
protocols,prime can be specified automatically; however
TAPS also offers the user the option of specifyingprime
manually for more complex protocols. Finally, the third
predicateok(X) describes all messages that it is permissi-



ble for the intruder to know, and is defined be the strongest
predicate satisfying the following:

1. prime(X) => ok(X)

2. ok(X) ^ ok(Y ) => ok((X;Y ))

3. pub(X) ^ pub(Y ) => ok(eX(Y ))

Note that the definition of ok differs from the other types
of invariants we have discussed in that its makeup is state-
dependent, since its definition depends onpub(X), which
is also state-dependent.

Cohen then uses these predicates to prove that
pub(X) => ok(X) is invariant under state transition. This
is done by breaking the invariant down into a set of proof
obligations based on the actions that could be taken on a
messageX . Some of these depend upon the particular rules
of the protocol; others are based on intruder actions and are
the same from protocol to protocol.

Note that the set of terms satisfyingok(X) is already a
subalgebra under concatenation. Note also that the set of
terms satisfyingpub(X) is almosta subalgebra over con-
catenation and encryption generated by the set of terms sat-
isfying prime(Y ), and could be made into one by substi-
tutingok for pub in the last definition. However, this would
destroy the state-dependence of the definition ofok.

As it turns out, the subalgebra properties ofok are
mainly the result of a compromise for efficiency. A more
natural choice would be to include the second part of the
definition ofok under the definition of prime, but, for pro-
tocols that string a long sequence of elements together in
a message, this would require a possibly unmanageably
large number of primality cases [3]. However, the use of
a subalgebra-like construct at this point shows a possible
way in which subalgebras could be traded off with state-
dependent invariants.

5 Conclusion

We have given an overview of seven different techniques
for generating invariants for cryptographic protocol analy-
sis. We have found considerable areas of commonality be-
tween them, especially for techniques for proving results
about intruder unlearnability of messages. This suggests
some further areas of investigation.

First of all, it would be useful to investigate to what ex-
tent it would be possible to mix and match the various tech-
niques? For example, would any of the techniques Thayer,
Guttman, and Herzog have developed for reasoning about
ideals be helpful in analyzing Schneider-style specifications
in which authentication is proved by blocking the authenti-
cating message from occurring? Likewise, it would be help-
ful to know how any of these techniques would be helpful

in augmenting Paulson’s inductive method, and if so, what
would be the best way of integrating them. We note that
Millen and Ruess have showed one way in which these tech-
niques could be integrated; we suspect that there are also
many others.

Secondly, it would be useful to look beyond the use of
tools and techniques for analysis and see if any of these
techniques would be helpful in proving decidability results.
We note that both Heather and Schneider’s and Cohen’s
techniques give decision procedures that imply correctness
of the protocol when the procedure succeeds; however,
when they fail it is not yet known under what circumstances
that means that the protocol is insecure. Since security has
been shown to be undecidable for even simple protocols in
the Dolev-Yao model used by these systems ([6, 8, 5, 2]) it is
of course not possible for these techniques to provide a de-
cision procedure for security for the general case. However,
there have been classes of protocols, e.g. those discussed
by Lowe [9] and Stoller [17], as well as several classes dis-
cussed by Durgin et al. in [5] for which it is possible to
develop decision procedures for security. A closer exami-
nation of the techniques surveyed in this paper might show
how they could help in simplifying proofs and extending
results.

Finally, all of the techniques applied were, at least ini-
tially, developed for a somewhat limited model, which as-
sumes that a protocol is designed to exchange information
between a bounded number of principals (e.g. a key be-
tween an initiator, a responder, and possibly, a key server),
employing a fixed set of operations usually restricted to
concatenation and public and shared-key encryption, and
a fixed set of data types usually restricted to nonce, keys,
and names. However, there are increasing number of pro-
tocols emerging that go beyond these bounds, in particular
group protocols and protocols that make use of other types
of cryptographic techniques, e.g. Diffie-Hellman key gen-
eration. Several of the systems discussed in this paper have
been applied to these types of problems with some suc-
cess, e.g. the NRL Protocol Analyzer to the Internet Key
Exchange Protocol, which used Diffie-Hellman [11], and
Paulson’s inductive method to the Recursive Authentication
Protocol [13], a simple group key distribution protocol. As
would be expected, these are two of the systems that offer
only partial automated support, and hence allow more flex-
ibility to the user. However, this work does indicate that the
general approach is extensible, and it would be interesting
to see if, once the analysis of these different types of proto-
cols have been explored more thoroughly, whether or not it
would be possible to extend the more automated systems to
handle them.
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