
March 2001

OPEN-SOURCE SECURITY

OPEN SOURCE UNDER THE HOOD

Vendors are increasingly including open-source components in their commercial products.
What impact does this trend have on product security?

BY PETE LOSHIN

The days are long gone when all you needed to start your own software company were a
compiler and a computer. Creating commercial off-the-shelf (COTS) products from scratch in
today's market is a daunting task for any but the biggest software companies. Smaller
vendors have to compete with the likes of Microsoft, Sun and Cisco, with only a fraction of
the resources.

Almost no one can afford to build their own new products from scratch anymore, and the
problem is magnified for vendors of network appliances: They've got to deliver a functional,
competitively priced server, including software and hardware, while still turning a profit.
Vendors of other products, from operating systems to software suites to end-user
workstations, are feeling the pinch as well.

Considering this environment, it's not surprising to find vendors increasingly turning to
open-source code when creating new products. Yet buyers may not always be aware that
inside their shiny new firewall lurks an open-source OS, such as Linux or FreeBSD. Network
security appliances designed to do firewalling, intrusion detection and other security functions
often rely extensively on open-source OSes and utilities. But many other products include
open-source components as well. Apple's new Macintosh OS X, for instance, is based on Free
BSD 3.2 and the Mach 3.0 project from Carnegie Mellon University. Apache, BIND, Sendmail
and Perl are all widely used in both commercial and non-commercial products.

Among the obvious reasons developers turn to open source are cost and security. Clearly,
vendors can keep their costs down when they don't have to build their own components or
buy licenses for commercial components. Why build a Web server when you can use the best
one around-Apache-for nothing? Why build your own OS when you can use FreeBSD? Why
not include open-source security utilities with a commercial security product?

While some people automatically assume that open-source OSes are more secure than
proprietary OSes, it entirely depends on how the code is used and supported. When done
right, open-source components add real value to commercial products-and are likely to be at
least as secure as closed-source components.

So what exactly is open-source code, and what impact does it have on product security? How
can it affect your systems and networks? How can you tell if the product you're using
incorporates open source? And how can you become an intelligent consumer of products that
use open source?

Open Source, Everywhere
According to the Open Source Initiative (OSI) (www.opensource.org), nine attributes define
what can be considered open-source code (see box below). Among these stipulations, the
most important one is that the original source code itself must be available to users, but
open-source licenses can vary in terms of how much they restrict use of the code.

"Vendor-friendly" open-source licenses-such as those used by BSD-based projects1 and the
Apache Software Foundation-make it easy to adapt an open-source program into a profitable
commercial product. The BSD and Apache licenses allow anyone to modify and distribute
programs as closed-source products, as long as appropriate copyright notices are included.
Some, like the Apache license, forbid use of the open-source project's name in any
commercial version without written permission from the project.

Information Security Magazine

http://www.infosecuritymag.com/articles/march01/features1_open_source_sec.shtml (1 of 7) [3/7/2001 10:45:17 AM]

http://www.infosecuritymag.com/index.shtml
http://www.trusecure.com/
http://www.infosecuritymag.com/archives.shtml
http://www.omeda.com/is/
http://www.infosecuritymag.com/jobs.shtml
http://www.infosecuritymag.com/
http://www.infosecuritymag.com/privacy.shtml
http://www.infosecuritymag.com/editorial.shtml
http://www.infosecuritymag.com/editorial_calendar.shtml
mailto:abriney@infosecuritymag.com
http://www.infosecuritymag.com/staff_bios.shtml
http://www.infosecuritymag.com/vendor_links.shtml
http://www.infosecuritymag.com/happenings.shtml
http://www.infosecuritymag.com/about_contact_us.shtml
http://www.infosecuritymag.com/directions.shtml
http://www.infosecuritymag.com/list_rental_info.shtml
https://is.omeda.com/ispaid/paid.htm
http://www.infosecuritymag.com/reprint_info.shtml
http://www.infosecuritymag.com/current_daily.shtml
http://www.infosecuritymag.com/back_missing.shtml
http://www.infosecuritymag.com/digest_intro.shtml
http://www.infosecuritymag.com/current_digest.shtml
http://www.infosecuritymag.com/digest_archives.shtml
http://securitywire.emailch.com/questionnaire.cfm
http://www.infosecuritymag.com/rate_card.shtml
http://www.infosecuritymag.com/testimonials.shtml
http://www.infosecuritymag.com/internet_opps.shtml
http://www.infosecuritymag.com/about_contact_us.shtml#reps
http://www.bpai.com/library/statement_files/i228a0j0.pdf
http://www.infosecuritymag.com/comparison.shtml
http://www.infosecuritymag.com/editorial_calendar.shtml
http://www.opensource.org/


On the other hand, the GNU Public License (GPL) is much stricter. The GPL permits the sale of
copies of GPLed software, placing no limits on the prices charged. However, if only binaries
are provided, the vendor must make the source code available free. More to the point: The
GPL requires anyone who modifies and distributes GPLed code to make the modified source
code available as well. You are welcome to modify the code, but your modifications must also
be entirely free and available to anyone who uses them.

The nice thing about open-source software is that so much of it is released under relatively
open licenses. Even where there are limits on how you use and distribute the code,
developers have remarkable freedom in using programs they would otherwise have to
develop on their own or license from other vendors-both of which involve more time, expense
and development effort.

The problem with open source in commercial products is that it's "largely invisible," says Jon
Lasser, lead coordinator for the Bastille Hardening System (http://
bastille-linux.sourceforge.net), a script that tightens up the security of systems running stock
Red Hat and Mandrake Linux. Lasser points out that "Solaris-and just about any commercial
Unix I can name-has included Sendmail for more than a decade," adding that most
Unix-based nameservers also run the open-source BIND code.

1 Berkeley Software Distribution (BSD) is the "freed" version of AT&T's original Unix operating system.

Where to Look, and What You'll Find
Open-source components can show up almost anywhere, though they're most prevalent in
network appliances-devices designed to provide plug 'n' play network services. Network
appliances must communicate over a network as well as provide networking services: file and
printer services, e-mail, Web and Web caching, file transfer, terminal services and so on.

Network security appliances generally offer firewalling and/or virtual private networking, and
perhaps other services such as single sign-on (SSO) or content filtering. Any or all of these
functions are easily provided with almost any open-source BSD-based OS or Linux. For
example, Cobalt Networks (www.cobalt.com) uses Red Hat Linux as its base OS. WireX
Communications (www.wirex.com) adapts and hardens Red Hat Linux and then packages it
into a software network appliance that can be licensed for resale (see Table 1 for other
examples).

But appliances aren't the only products in which you'll find open-source components. Others
adapt the open-source code to create their own proprietary products. C2Net Software
(www.c2net.com), for instance, created its commercial Stronghold Secure Web Server with
Apache and OpenSSL. Other examples include Send-mail or the SAINT vulnerability scanner,
which you can either use free under open-source licenses or buy in enhanced commercial
form from Sendmail Inc. (www.sendmail.com) and WWWDSI (www.wwdsi.com), respectively.

There are also programs that support open protocols, which may or may not be open
software. For example, SSH is a protocol for secure shell sessions over a network; it's also a
proprietary product from SSH Communication Security (www.ssh.com). Several other SSH
implementations are also available, both proprietary and open source.

Then there are the "formerly open-source" products such as the Tripwire intrusion detection
system (IDS), originally developed as free software but later re-engineered from scratch as a
closed-source program licensed by Tripwire Inc. (www.tripwire.com). Though the original
Unix-only free version remains free, the proprietary product is also available for NT, with
more features and better support.

In the Unix world, quite a few key programs (particularly networking software) are open
source. BIND is almost universally used for Domain Name System (DNS). Then there's the
Perl scripting language, frequently used for network and server administration on Unix,
Windows and other platforms. Vendors may offer programs that require open-source system
tools. For example, Okiok Data (www.okiok.com) offers S-Filer, a tool that uses Perl for
secure file transfers.

Other vendors, especially those providing customized programming, use open source in their
work products. For example, ArsDigita Corp. (www.arsdigita.com) builds and distributes the
ArsDigita Community System (ACS), an open-source application development platform and
suite of enterprise applications. Many other vendors support open-source projects, often
hiring programmers to work exclusively on those projects.

Risks and Rewards of Open Source in COTS Products
The common assumption among developers and engineers is that the "many eyes" approach

Information Security Magazine

http://www.infosecuritymag.com/articles/march01/features1_open_source_sec.shtml (2 of 7) [3/7/2001 10:45:17 AM]

http:// bastille-linux.sourceforge.net/
http:// bastille-linux.sourceforge.net/
http://www.cobalt.com/
http://www.wirex.com/
http://www.c2net.com/
http://www.sendmail.com/
http://www.wwdsi.com/
http://www.ssh.com/
http://www.tripwire.com/
http://www.okiok.com/
http://www.arsdigita.com/


to open-source code projects makes it inherently more reliable, robust and secure than
closed-source code. However, recent revelations of glaring holes and vulnerabilities in
sometimes quite old and widely used open-source code have led some to question the validity
of this assumption. Steve Lipner, manager of the Microsoft Security Response Center, points
to the recent discovery of vulnerabilities in MIT's Kerberos network authentication software,
"where buffer overruns went undiscovered for nearly a decade" in the widely distributed and
implemented open-source code. (Microsoft released a closed-source-and slightly
non-standard, and thus non-interoperable-version of Kerberos with its Windows 2000 suite.)

While few open-source advocates still claim absolute security superiority over closed source,
most experts seem to agree that open source has the potential to be at least as secure, if not
more secure, than closed source. For one thing, open-source code by itself should have no
real adverse effect on system security. "The negative ramification that people cite is that
-anyone can look at the code to find holes,'" says Bastille's Jon Lasser. But that works both
ways, since open-source vulnerabilities are (in theory anyway) vetted by a much larger
community of developers and engineers.

"I'm not convinced that there are any significant real advantages to going with closed source
unless there is something about the security mechanism itself that intrinsically can't stand up
to examination" says Paul Robichaux, a senior solutions architect for EntireNet and author of
several books on Microsoft products.

Robichaux stops short of unqualified endorsement of the open-source security model,
cautioning that having "more eyeballs looking at [open-source code] is no guarantee of
quality." Moreover, for some systems, such as national security programs, close public
scrutiny is unwarranted. "If you look at the authentication system…the [U.S.] National
Command Authority uses when they want to tell somebody to launch a nuclear missile, you
probably would not gain any security from having many more eyeballs looking at that."

Microsoft's Lipner acknowledges that "no software is free from flaw," while suggesting that
"the difference between products lies in how actively vendors seek out the flaws and then fix
them." According to Lipner, Microsoft "pays top dollar to ensure that its software is
scrutinized by the best minds in the industry rather than taking the open-source approach of
relying on hobbyists and--someone else' to scan code in their spare time."

Microsoft's official position on the relative security of closed- and open-source software,
according to Lipner, is that "the difference lies in how we-do' security. The most fundamental
question to ask when examining the security of any software is whether or not the design and
development process results in a sound and secure design and a solid implementation."
Microsoft isn't opposed to open reviews of cryptographic protocols and algorithms; Lipner
says that they "can definitely improve security. These are generally simple enough that
academic or external review can find issues and add value."

However, Lipner points out that securing large software systems calls for "a substantial and
often costly level of resources applied by a full-time team"--which, he says, will only work if
the costs can eventually be recovered by product revenue.

According to Bastille's Lasser, "Anyone using open source can fix the code, or pay someone
else to fix it. And anyone can examine it." One result of this all-hands-on-deck model is the
potential for discovering backdoors. For instance, Lasser points to the Borland InterBase,
initially a proprietary product that, after seven years, was released as open-source code. The
proprietary version contained a backdoor that wasn't discovered until six months after the
code was opened.

Kurt Seifried, senior analyst for SecurityPortal.com and project head for the Linux Security
Knowledge Base, explains that attackers don't need access to the source code to find and
exploit problems. For instance, Microsoft issued more than 100 security advisories in 2000,
and new bugs related to IIS or IE are publicized on Bugtraq and NTBugtraq all the time.

That's not to say that open-source code has no downside, particularly when implemented in
commercial products. It all depends on who is doing the implementation and how support is
being provided. Lasser suggests that in order to keep customers' code current, vendors
should offer opt-in e-mail lists for up-to-date news about the product, be up-front about any
security problems and provide patches online that have been cryptographically signed. While
vendors such as Red Hat, SuSE and Mandrake offer these services, "few vendors do all of
this," he says.

Seifried, singling out OpenBSD, says some open-source projects are particularly well suited to
secure deployment in commercial products. "They sat down and spent a large number of
man-years auditing it heavily and now have a pretty solid and secure codebase to work
from." Many commercial vendors use OpenBSD--as well as FreeBSD and NetBSD--for
firewalls.

Information Security Magazine

http://www.infosecuritymag.com/articles/march01/features1_open_source_sec.shtml (3 of 7) [3/7/2001 10:45:17 AM]



However, inappropriately using a secure and open program is dangerous. "It's almost always
a question of how the products are used, rather than what they are," Lasser notes. "One of
the defining characteristics of the security problem is that these evaluations are fluid,
depending largely on new exploits and classes of exploits that are discovered." Just because
OpenBSD is noteably secure doesn't mean it's not still vulnerable to common exploits of
programs like FTP, DHCP and Send-mail. If someone used OpenBSD as part of a "secure FTP
solution," but used an insecure FTP implementation, "they're toast," says Lasser.

Buying Open Source Under the Covers, Intelligently
Vendors incorporate open-source code in their products differently, so simply scrutinizing
brochures or Web sites isn't enough. Some vendors make open source an important part of
their marketing strategy, pointing to it as a source of strength. Examples include C2Net and
Linux-based firewall vendor Cybernet Systems Corp. (www.cybernet.com).

Network security appliance vendors sometimes include lists of software installed on their
hardware. Read the fine print in datasheets for Sun's Cobalt RaQ, Qube and other network
appliances (www.sun.com), and you'll see that those products use the Linux 2.2 kernel.
Axent's (now Symantec's) Raptor firewall appliance (www.symantec.com) is also based on
the Cobalt RaQ. Other vendors are less forthcoming, releasing appliances based on
"proprietary" OSes that are, in fact, open-source based. For example, the FireBox network
appliance from NetWolves (www.netwolves.com) is based on FreeBSD-but the company's
Web site refers to it as a "Unix-based FoxOS" operating system.

The greatest benefit of buying products that incorporate open source can also be part of the
greatest drawback--that is, the fact that vulnerabilities and exploits for leading open-source
products are widely published. This means fixes are usually made available quickly, but it also
means that if you take too long to update your systems, they will be vulnerable to
script-kiddiez and other attackers.

Bastille's Lasser suggests that vendors should provide proactive support, notifying customers
of vulnerabilities and fixes. However, in his opinion, knowing where a particular piece of a
system originated, whether open source or not, is not always very useful. "Sure, you could
ask whose TCP/IP stack they used, but you won't know which version, and the optimal
solution varies by week, application and phase of the moon," Lasser opines. But he also
acknowledges that "there's nothing especially specific to open source about any of this."

In the final analysis, it's up to consumers to keep track of what open-source code is running
on their systems--if only to keep them up to date. SecurityPortal's Seifried suggests asking
vendors for a list of their product's security patches. "If they don't have any patches, I
wouldn't buy it. Nothing is perfect.

"Open source is like any technology," he adds. "The implementation can be good or bad.
Vendors that use open source and issue timely updates, proactively audit code and so on are
good; vendors that don't should be avoided if possible."

Could You Do It Yourself?
Vendors use open-source code to build their products, so why can't anyone else? Well,
nothing's stopping them, but the question is whether they can afford to (see box, below). A
vendor can afford to put significant resources into putting together a package from open
sources as long as they anticipate revenues. Seifried says it's a matter of convenience. "I can
easily download the Linux kernel source and all the source code for software I need. Turning
that into a working e-mail server, on the other hand, is a completely different matter."

According to Lasser, there are three other good reasons not to "roll your own." First,
commercial versions of open-source programs usually incorporate proprietary extensions that
add significant value. For example, C2Net's Stronghold Web server adds strong encryption
and other features to Apache. Also, with proprietary products you get the benefit of quality
assurance. And finally, you get support. "You're not paying for the software so much as you
are to have someone to complain to when things break," Lasser says.

Buying commercial products based on open-source components may give users the best of
both worlds. Microsoft's Lipner suggests that "proprietary systems are better reviewed, better
tested and have a more robust process for dealing with security vulnerabilities when they are
found"-though he was thinking more of entirely proprietary systems like those available from
Microsoft. Everyone seems to agree that a proprietary product provides greater ease of use,
better support, more convenience and more features, whether or not the proprietary product
incorporates open-source code.

Information Security Magazine

http://www.infosecuritymag.com/articles/march01/features1_open_source_sec.shtml (4 of 7) [3/7/2001 10:45:17 AM]

http://www.cybernet.com/
http://www.sun.com/
http://www.symantec.com/
http://www.netwolves.com/


THE NINE ATTRIBUTES OF OPEN SOURCE

1. Free Redistribution
The license may not restrict any party from selling or giving away the software as a
component of an aggregate software distribution containing programs from several
different sources. The license may not require a royalty or other fee for such sale.

2. Source Code
The program must include source code, and must allow distribution in source code as well
as compiled form. Where some form of a product is not distributed with source code, there
must be a well-publicized means of obtaining the source code for no more than a
reasonable reproduction cost-preferably, downloading via the Internet without charge. The
source code must be the preferred form in which a programmer would modify the program.
Deliberately obfuscated source code is not allowed. Intermediate forms such as the output
of a preprocessor or translator are not allowed.

3. Derived Works
The license must allow modifications and derived works, and must allow them to be
distributed under the same terms as the license of the original software.

4. Integrity of the Author's Source Code
The license may restrict source code from being distributed in modified form only if the
license allows the distribution of "patch files" with the source code for the purpose of
modifying the program at build time. The license must explicitly permit distribution of
software built from modified source code. The license may require derived works to carry a
different name or version number from the original software.

5. No Discrimination Against Persons or Groups
The license must not discriminate against any person or group of persons.

6. No Discrimination Against Fields of Endeavor
The license must not restrict anyone from making use of the program in a specific field of
endeavor. For example, it may not restrict the program from being used in a business, or
from being used for genetic research.

7. Distribution of License
The rights attached to the program must apply to all to whom the program is redistributed,
without the need for execution of an additional license by those parties.

8. License Must Not Be Specific to a Product
The rights attached to the program must not depend on the program's being part of a
particular software distribution. If the program is extracted from that distribution and used
or distributed within the terms of the program's license, all parties to whom the program is
redistributed should have the same rights as those that are granted in conjunction with the
original software distribution.

9. License Must Not Contaminate Other Software
The license must not place restrictions on other software that is distributed along with the
licensed software. For example, the license must not insist that all other programs
distributed on the same medium must be open-source software.

Source: Open Source Initiative, www.opensource.org

OPEN SOURCE INSIDE

Download pdf

 

BACKDOORS: OPEN OR CLOSED?

Backdoors are the security manager's nightmare. About the worst thing that could happen
from a security standpoint would be the deployment of a system that includes an unknown
backdoor.

The fear of backdoors "has probably been the biggest drag on the adoption of open source in
the commercial world," says security expert and author Paul Robichaux. He recommends
taking great care in reviewing any code brought in-house. "If you're using open-source code
and you're not already reviewing it very carefully, you're being stupid and you deserve what
you get," he says.

Information Security Magazine

http://www.infosecuritymag.com/articles/march01/features1_open_source_sec.shtml (5 of 7) [3/7/2001 10:45:17 AM]

http://www.opensource.org/
http://www.infosecuritymag.com/articles/march01/images/open_source_inside.pdf


In the open-source world, it's likely that any externally injected malware (such as a Trojan)
will be caught before it can be incorporated into production systems. But Robichaux warns
that when you are buying compiled products (such as security appliances)--whether open
source or not--"you never know what's going to be in those."

Rumors of backdoors inserted into commercial products have persisted for years. According
to Robichaux, it's plausible (though never confirmed) that government agencies such as the
National Security Agency (NSA) could "go to Microsoft or Sun or Oracle or whoever and wave
their magic national security wand." As a result, "The product you're using will have a hole in
it, but you won't necessarily find out."

Those using open-source code-whether it's the native code itself or a COTS product based on
it-face a Catch-22 when it comes to backdoors. On the one hand, attackers are more likely to
try to insert a backdoor into open-source code because, unlike closed source, it's out in the
public domain for everyone to play with. On the other hand, they will be less likely to succeed
because there are so many other people, with different goals, looking at the same code,
which increases the possibility that it will be noticed.

BUILDING YOUR OWN FIREWALL
Time is money, and it's well worth spending a few thousand dollars to save a few weeks of a
security manager's time.

When the Internet was still a research network, it was built on BSD/Unix systems. BSD
derivatives, like all Unix flavors, are designed from the ground up to run on networked
devices. So it shouldn't surprise anyone that so many firewalls and Internet servers are based
on BSD-related distributions. Linux, with its relatively easy-to-use firewalling and Network
Address Translation (NAT) functions, is also a popular platform for security applications.

If you have Linux, BSD or Unix expertise--or at least plenty of time--BSD- and Linux-based
firewalls can be cheap and effective security solutions. But doing it yourself can be an
invitation to disaster unless you're sure you've done everything right.

Once you decide to build your own firewall, you must install the operating system as securely
as possible, and then create firewall rules to keep out all unauthorized traffic. That means
building security policies first--a prerequisite for any firewall.

First, you must choose the most appropriate OS. Some prefer Linux for ease of use and
widespread support; others find one of the BSD flavors (OpenBSD, NetBSD, FreeBSD, etc.)
stronger (though perhaps less user friendly). If you choose Linux, you now have the option of
using the 2.2 kernel, which provides firewall support with packet filtering by the ipchains
program; or the 2.4 kernel, which uses the iptables program to create stateful inspection
firewalls.

The next step is to get a trustworthy distribution: that means downloading from a trusted
Web site or buying it on CD-ROM-and checking the distribution's digital signature. You'll want
to review the source code before compiling it, and you should compile the kernel with only
the drivers that are absolutely necessary.

Once installed, you'll need to turn off all extraneous services and harden the operating
system in other ways (see Resources). You can do it by hand, or use a Linux-hardener (for
example, the Bastille hardening scripts). Then, you've got to develop your firewall rules: what
kind of packets should be filtered-both inbound and outbound-what applications are
permitted, and so on.

Building and configuring the box, of course, is only the first step. Once the firewall is in
operation, you must constantly monitor logs for suspicious activities, watch out for security
alerts and install security patches as soon as they are available.

Some of these tasks (setting firewall rules and staying on top of security alerts, for example)
are necessary with any firewall. But if you roll your own, you don't have the option of
outsourcing any of them to a commercial firewall vendor.

RESOURCES

Download pdf

Information Security Magazine

http://www.infosecuritymag.com/articles/march01/features1_open_source_sec.shtml (6 of 7) [3/7/2001 10:45:17 AM]

http://www.infosecuritymag.com/articles/march01/images/open_source_resources.pdf


Columnist PETE LOSHIN (pete@loshin.com) is a senior editor-at-large for
Information Security. He produces the Internet-Standard.com Web site and
has authored more than 20 books on Internet protocols and security.

HOME

Information Security Magazine

http://www.infosecuritymag.com/articles/march01/features1_open_source_sec.shtml (7 of 7) [3/7/2001 10:45:17 AM]

mailto:pete@loshin.com
http://www.infosecuritymag.com/

	infosecuritymag.com
	Information Security Magazine


