
Secure Electronic Voting

with Flexible Ballot Structure

by

Riza Aditya

Bachelor of Information Technology (QUT) – 2000
Bachelor of Information Technology (Honours) (QUT) – 2001

Thesis submitted in accordance with the regulations for

Degree of Doctor of Philosophy

Information Security Institute
Faculty of Information Technology

Queensland University of Technology

November 2005

Keywords

Secure Electronic Voting, Cryptographic Voting Protocols, Secret-ballot Voting

Scheme, Receipt-free Voting, Australian Federal Election, Preferential Systems,

Batch Theorems, Batch Zero-knowledge Proofs and Verifications, Efficient Voting

Protocols, Homomorphic Encryption, Mix-network, Hybrid Scheme.

i

ii

Abstract

Voting is a fundamental decision making instrument in any consensus-based so-

ciety. It is employed in various applications from student body elections, reality

television shows, shareholder meetings, to national elections. With the motiva-

tion of better efficiency, scalability, speed, and lower cost, voting is currently

shifting from paper-based to the use of electronic medium. This is while aiming

to achieve better security, such that voting result reflects true opinions of the

voters.

Our research focuses on the study of cryptographic voting protocols accommo-

dating a flexible ballot structure as a foundation for building a secure electronic

voting system with acceptable voting results. In particular, we search for a solu-

tion suitable for the preferential voting system employed in the Australian Federal

Election.

The outcomes of the research include: improvements and applications of batch

proof and verification theorems and techniques, a proposed alternative homo-

morphic encryption based voting scheme, a proposed Extended Binary Mixing

Gate (EBMG) mix-network scheme, a new threshold randomisation technique to

achieve receipt-freeness property in voting, and the application of cryptographic

voting protocol for preferential voting.

The threats and corresponding requirements for a secure secret-ballot voting

scheme are first discussed. There are significant security concerns about the

conduct of electronic voting, and it is essential that the voting results reflect the

true opinions of the voters - especially in political elections.

We examine and extend batch processing proofs and verifications theorems

and proposed applications of the theorems useful for voting. Many instances of

similar operations can be processed in a single instance using a batch technique

based on one of the batch theorems. As the proofs and verifications provide for-

mal assurances that the voting process is secure, batch processing offers great

iii

efficiency improvements while retaining the security required in a real-world im-

plementation of the protocol.

The two main approaches in cryptographic voting protocols, homomorphic

encryption based voting and mix-network based voting, are both studied in this

research. An alternative homomorphic voting scheme using multiplicative homo-

morphism property, and a number of novel mix-network schemes are proposed. It

is shown that compared to the mix-network approach, homomorphic encryption

schemes are not scalable for straight-forward adaptation of preferential systems.

One important requirement of secret-ballot voting is receipt-freeness. A ran-

domisation technique to achieve receipt-freeness in voting is examined and applied

in an efficient and practical voting scheme employing an optimistic mix-network.

A more general technique using threshold randomisation is also proposed.

Combination of the primitives, both the homomorphic encryption and mix-

network approach, yields a hybrid approach producing a secure and efficient

secret-ballot voting scheme accommodating a flexible ballot structure. The result-

ing solution offers a promising foundation for secure and practical secret-ballot

electronic voting accommodating any type of counting system.

iv

Contents

Keywords i

Abstract iii

Declaration xv

Previously Published Material xvii

Acknowledgements xix

1 Introduction 1

1.1 Aims and Objectives . 2

1.2 Main Contributions . 3

1.3 Thesis Outline . 4

2 Voting, Electronic Voting, and Security 7

2.1 A Typical Voting Procedure . 7

2.2 Counting Systems . 9

2.3 The Australian Federal Elections 10

2.3.1 Preferential Systems . 11

2.3.2 Elections for The House of Representatives 11

2.3.3 Senate Elections . 12

2.4 Electronic Voting . 13

2.5 An Analysis of eVACS . 16

2.5.1 System Overview . 17

2.5.2 The Voting Process . 18

2.5.3 Observations . 19

2.6 Security Threats . 21

2.7 Security Requirements . 22

v

2.8 Cryptographic Voting Protocols 24

2.9 Summary . 27

3 New Batch Theorems and Their Applications in Zero-Knowledge

Protocols 29

3.1 Background . 30

3.2 Batch Theorems . 32

3.2.1 Equality of Logarithms with Common Bases 33

A Strict Theorem . 33

A Loose Theorem . 35

3.2.2 Equality of Logarithms with Common Exponents 37

A Strict Theorem . 37

A Loose Theorem . 38

3.2.3 Computations of N th Root 40

3.3 Applications in Zero-Knowledge Proof - Verification Protocols . . 42

3.3.1 Re-Encryptions . 43

ElGamal Cryptosystem . 43

Paillier Cryptosystem . 45

3.3.2 (Centralised) Decryptions and Threshold Decryptions . . . 46

ElGamal Cryptosystem (Centralised and Threshold) 47

Paillier Cryptosystem (Threshold) 52

3.4 Analysis . 54

3.4.1 Security . 54

Soundness . 55

Error probability . 56

3.4.2 Efficiency . 56

3.5 Summary . 58

4 Homomorphic Encryption based Voting 59

4.1 Background . 60

4.1.1 Homomorphic Encryption 60

4.1.2 A Modified ElGamal Cryptosystem 61

4.1.3 The Scheme by Baudron et al. 63

4.2 Multiplicative Homomorphic Voting 64

4.2.1 The Scheme . 67

4.2.2 Analysis . 71

vi

Security . 71

Efficiency . 73

4.3 A Preferential Voting Case Study 76

4.4 Summary . 79

5 Mix-Network based Voting 81

5.1 Background . 82

5.1.1 Re-Encryption Chain Mix-Networks 84

5.1.2 Verification of Correct Mixing Operations 85

5.1.3 The Mix-Network Scheme by Abe 88

5.1.4 The Optimistic Mix-Network Scheme by Golle et al. 90

5.2 A New Mix-Network using Extended Binary Mixing Gates 92

5.2.1 A New Batch Re-Encryption Technique 94

5.2.2 The Extended Binary Mixing Gate 95

ElGamal Cryptosystem . 96

Paillier Cryptosystem . 97

5.2.3 The Mix-Network Protocol 98

The Core . 98

Ciphertexts Distances . 100

Two Rounds of Mixing . 102

5.2.4 Analysis . 103

Security . 103

Efficiency . 104

5.3 A Proposed Optimistic Mix-Network 106

5.4 Applications of Batching in A Mix-Network 108

5.4.1 Batching in A Re-Encryption Chain Mix-Network 109

Shuffling using ElGamal Re-Encryption 109

Shuffling using Paillier Re-Encryption 110

5.4.2 Threshold Decryptions . 110

5.4.3 Improvements Analysis . 111

5.5 A Preferential Voting Case Study 111

5.6 Summary . 114

6 Receipt-Free Voting 117

6.1 Background . 118

6.1.1 Receipt-Freeness . 118

vii

6.1.2 The Scheme of Lee et al. 119

6.1.3 A Designated Verifier Re-Encryption Proof 120

6.2 Two New Cryptographic Primitives 121

6.2.1 A Threshold Re-Encryption Technique 121

6.2.2 A Batch DVRP Verification Technique 122

6.3 Model 1 - with A Single Administrator 124

6.3.1 The Protocol . 124

6.3.2 Trust and Security Issues 126

6.4 Model 2 - with Multiple Administrators 127

6.5 Analysis . 128

6.5.1 Security . 128

6.5.2 Efficiency . 130

6.6 Summary . 132

7 Voting using A Hybrid Approach 135

7.1 Background . 135

7.2 The Hybrid Scheme . 138

7.3 Analysis . 143

7.4 A Preferential Voting Case Study 144

7.5 Summary . 148

8 Summary and Research Directions 149

8.1 Summary of Research . 149

8.2 Possible Research Directions . 152

A Shamir’s Secret-Sharing Scheme 155

B ElGamal and Paillier Cryptosystems 157

B.1 ElGamal Cryptosystem . 157

B.1.1 Basic Cryptosystem . 157

B.1.2 Threshold Version . 158

B.2 Paillier Cryptosystem . 159

B.2.1 Basic Cryptosystem . 160

B.2.2 Threshold Version . 161

C Zero-Knowledge Proof and Verification Protocols 163

C.1 Knowledge of A Discrete Logarithm 164

viii

C.2 Knowledge of a Root . 165

C.3 Equality of Discrete Logarithms 165

C.4 Proof Construction . 166

C.4.1 AND Logic . 166

C.4.2 OR Logic . 167

Bibliography 167

ix

x

List of Figures

2.1 Registration, voting, and tally phase in a typical voting scenario. . 8

2.2 A high-level system diagram of eVACS. 17

3.1 Techniques for batch verifying exponentiations with common bases

by Bellare et al.. 31

3.2 A batch ZK proof-verification technique for equality of discrete

logarithms. 34

3.3 A batch ZK proof-verification technique for verifying valid ElGa-

mal ciphertext re-encryptions. 44

3.4 A batch ZK proof-verification technique for verifying valid Paillier

ciphertext re-encryptions. 46

3.5 A batch ZK proof-verification technique for verifying valid cen-

tralised decryptions of ElGamal ciphertexts. 49

3.6 A threshold decryption scenario of m participants {Pj}, n cipher-

texts {ci}, nm partial decryptions {zi,j}, recovering n secret mes-

sages {si}. 50

3.7 A batch ZK proof-verification technique for verifying valid thresh-

old decryptions of ElGamal ciphertexts. 51

3.8 A technique to produce small exponents non-interactively. 52

3.9 A batch ZK proof-verification technique for verifying valid thresh-

old decryptions of Paillier ciphertexts. 53

4.1 A pictorial representation of the accumulation of homomorphic

votes, where all voters selects the same vote of C1, namely ki = 1. 63

4.2 A non-interactive ZK proof of correct ballot construction. 70

4.3 A pictorial representation of the homomorphic preferential vote

Ck, where k = 1 . 77

5.1 An illustration of a mix-network with n inputs. 82

xi

5.2 A basic structure for re-encryption mix-networks introduced by

Ogata et al. 85

5.3 An example mix-network by Abe with n inputs. 88

5.4 A shuffling operation inside a mixing gate. 89

5.5 Two possible inputs to outputs permutations in an EBMG. 95

5.6 A core EBMGs construction in the proposed mix-network. 99

5.7 An example of a public fixed n-to-n permutation. 102

6.1 An overview of Model 1. 125

7.1 Combining both the homomorphic-encryption and mix-network

approaches in a vector-ballot framework. 137

7.2 A high-level diagram of vector-ballots processing using our primi-

tives. 139

8.1 Secure electronic voting with a flexible ballot structure. 151

C.1 An interactive ZK proof-verification protocol for verifying knowl-

edge of a discrete logarithm. 164

C.2 An interactive ZK proof-verification protocol for verifying knowl-

edge of a root. 165

C.3 An interactive ZK proof-verification protocol for verifying equality

of discrete logarithms. 166

C.4 An interactive ZK proof-verification protocol for verifying n equal-

ity of discrete logarithms. 167

C.5 An interactive ZK proof-verification protocol for verifying 1-out-

of-n equality of discrete logarithms. 168

xii

List of Tables

1.1 Some of the many areas in secure secret-ballot electronic voting. . 4

2.1 A counting example in a preferential voting system. 12

2.2 Framework categorisation of cryptographic voting protocols. . . . 25

3.1 Applicability of batch to different types of decryption. 47

3.2 Efficiency improvement for applications using the batch theorems. 57

4.1 A computational cost comparison of the two types of homomorphic

voting. 74

4.2 An efficiency comparison of MV, AHV, and MHV. 75

4.3 The computational complexity for the adapted voting system using

homomorphic encryption. 79

5.1 Computational cost at each gate for MiP-2. 90

5.2 A comparison of privacy level in terms of diffusion achieved, where

κ indicates the number of honest mix servers in a (t, m) threshold

cryptosystem. 104

5.3 A computational cost comparison for mixing the ciphertexts, in

full-length exponentiations. 105

5.4 Efficiency improvement in a mix-network using batching techniques.111

5.5 A complexity analysis for the adapted voting system using a robust

mix-network. 113

6.1 A computational cost comparison of our first model against a vot-

ing scheme based on the mix-network of Golle et al., where n de-

notes the number of voters. 131

6.2 A communicational cost comparison of our first model against a

voting scheme based on the mix-network of Golle et al., where n

denotes the number of voters. 132

xiii

7.1 The vector-ballot framework inherits two essential properties from

homomorphic encryption and mix-network based approaches. . . . 136

7.2 A computational cost comparison for each voter in terms of the

number of modular exponentiations required. 143

7.3 A computational cost comparison for each tally authority in terms

of the number of modular exponentiations required. 144

7.4 A computational cost comparison for each voter in an Australian

Senate election scenario. 146

7.5 A computational cost comparison for each tally authority in an

Australian Senate election scenario. 147

8.1 Summary of main contributions. 150

xiv

Declaration

The work contained in this thesis has not been previously submitted for a degree

or diploma at any other higher education institution. To the best of my knowledge

and belief, the thesis contains no material previously published or written by

another person except where due reference is made.

Signed:. Date:. .

xv

xvi

Previously Published Material

The following papers have been published or presented, and contain material

based on the content of this thesis.

[1] Riza Aditya, Colin Boyd, Ed Dawson, and Kapali Viswanathan. Secure e-

voting for preferential elections. In Electronic Government: Second Interna-

tional Conference, EGOV 2003, volume 2739 of Lecture Notes in Computer

Science, pages 246–249. Springer-Verlag, 2003.

[2] Riza Aditya, Kun Peng, Colin Boyd, Ed Dawson, and Byoungcheon Lee.

Batch verification for equality of discrete logarithms and threshold decryp-

tions. In Applied Cryptography and Network Security: Second International

Conference, ACNS 2004, volume 3089 of Lecture Notes in Computer Science,

pages 494–508. Springer-Verlag, 2004.

[3] Kun Peng, Riza Aditya, Colin Boyd, Ed Dawson, and Byoungcheon Lee.

A secure and efficient mix-network using extended binary mixing gate. In

Cryptographic Algorithms and their Uses – 2004: International Workshop,

pages 57–71. QUT Publications, 2004.

[4] Riza Aditya, Byoungcheon Lee, Colin Boyd, and Ed Dawson. An efficient

mixnet-based voting scheme providing receipt-freeness. In Trust and Privacy

in Digital Business: First International Conference, TrustBus 2004, volume

3184 of Lecture Notes in Computer Science, pages 152–161. Springer-Verlag,

2004.

[5] Riza Aditya, Byoungcheon Lee, Colin Boyd, and Ed Dawson. Implementation

issues in secure e-voting schemes. In The Fifth Asia-Pacific Industrial Engi-

neering and Management Systems Conference, APIEMS 2004, pages 36.6.1–

36.6.14. QUT Publications, 2004.

xvii

[6] Kun Peng, Riza Aditya, Colin Boyd, Ed Dawson, and Byoungcheon Lee.

Multiplicative homomorphic e-voting. In Progress in Cryptology – IN-

DOCRYPT 2004: 5th International Conference on Cryptology in India, vol-

ume 3348, pages 61–72. Springer-Verlag, 2004.

[7] Riza Aditya, Byoungcheon Lee, Colin Boyd, and Ed Dawson. Two models

of efficient mixnet-based receipt-free voting using (threshold) re-encryption.

Computer Systems Science and Engineering, page to appear, 2005.

xviii

Acknowledgements

The Ph.D. journey has certainly been an interesting and a valuable experience

in life for me. I would like to thank my supervisors, the co-authors, and the

reviewers (anonymous or otherwise). Also, to others that have provided input in

some way to this research or my life during an enjoyable time at the Information

Security Research Centre (ISRC). I owe this thesis to all of them, as if it was not

for them, this research and myself would not have come to where we are now.

Firstly, I would like to express my heartfelt gratitude to Colin Boyd, Ed

Dawson, and Byoungcheon Lee, for their supervision, guidance, advice, encour-

agement, understanding, and patience. Especially to Colin Boyd for accepting me

as one of his apprentice “protocol wizards”, and always making the time for my

supervision. To Ed Dawson for starting me on this research, and helping me on

my scholarship. To Byoungcheon Lee, for being a mentor, and always reviewing

our papers.

To Kun Peng, who always came up with ideas, answered my questions, and

allowed me to be co-author in several of our papers. To Kapali Viswanathan,

who was involved in the early stage of this research. To Greg Maitland, for his

thorough review and valuable advice on this thesis.

Secondly, to Christine Orme, Mark Looi, Ernest Foo, Andrew Clark, Gary

Gaskell, Sam Lor, Linda Burnett, Suzie Hlaing, Ricco Lee, Matt Bradford, Minna

Yao, Kevin Chen, Nathan Carey, Sherman Chow, Raymond Choo, Jason Smith,

Loo Tang Seet, Mehdi Kianiharchegani, Rupinder Gill, Jason Reid, Juanma Gon-

zales, Yvonne Hitchcock, Praveen Guaravaram, Jaimee Brown, Roland Chua

(especially for completing the eVACS honours project), Gerald Pang, Elizabeth

Hansford, Sultan Al-Hinai, Selwyn Russell, Lauren May, Les Smith, Mike Milford,

Kenneth Wong, Charles Woo, Robert Dawson, Mark Branagan, Steven Panich-

precha, Jared Ring, and other people who were/are in (and my other friends

outside) the centre (now institute) for their help, friendship, and interesting dis-

xix

cussions.

Also, to the research centre, faculty, university, and the Australian government

for their financial support in this research. These include: a Faculty scholarship; a

QUT Postgraduate Research Award scholarship; an ISRC top-up scholarship; an

ARC Discovery 2002, Grant No: DP0211390 (e-voting); an ARC Discovery 2003,

Grant No: DP0345458 (e-auction); and an ARC Linkage International Fellowship

2003, Grant No: LX0346868 (international visiting academic).

Finally, to my parents and partner, for being with me, supporting me, keeping

me going, and chasing me everyday to complete my study. And to God, for

everything.

Riza Aditya

Brisbane, 8 August 2005

xx

Chapter 1

Introduction

Voting is fundamental to any consensus-based society. It is a basic mechanism to

reveal the opinion of a group on a matter that is under consideration. Based on the

promise of greater efficiency, better scalability, faster speed, lower cost, and more

convenience, voting is currently shifting from manual paper-based processing to

automated electronic-based processing. The term “electronic voting” typically

refers to the use of some electronic means in voting.

To date, the wide range of application of voting include its use in reality

television shows, student body elections, jury duty, shareholder meetings, and

the passing of legislation in parliament. Perhaps the most important, influential,

publicised, and widespread use of voting is its use in national elections.

Either for political, financial, or personal gain, there are considerable motives

to cheat in voting. Especially in national elections, the threats of cheating or

tampering are very seriously considered. In such a case, voting results affect the

life of a great number of people. Non-acceptance of a voting result can cause

confusion, violence, or even civil war. Hence, it is essential that a voting result

reflects true opinions of the voters.

There are two equally important parts in ensuring the acceptance of a voting

result. One is to apply an appropriate counting method to interpret the votes

cast and produce a voting result that reflects the true opinions of the voters.

The other is to ensure security in voting to prevent cheating or tampering of the

voting result.

The study of different counting methods and their usage appropriateness in

1

2 Chapter 1. Introduction

different voting scenarios are in the area of political or social science. Hence, they

are beyond the scope of this thesis.

This thesis details cryptographic advancements in the area of electronic voting

security. As well as the efficiency or practicality of such schemes, the research

presented in this thesis also considers the ability of different cryptographic voting

protocols in accommodating available various counting methods, or the ability to

accommodate a flexible ballot structure. In particular, we search for a solution

suitable for the preferential voting system employed in the Australian Federal

Elections.

1.1 Aims and Objectives

The research is aimed at two major goals. The first is to study security-critical

cryptographic primitives supporting available voting protocols in the literature.

The second is to develop efficient and secure electronic voting schemes supporting

a flexible ballot structure.

To achieve the two major goals, the research was organised into the following

four objectives:

1. to increase the fundamental knowledge in designing practical and

secure electronic voting schemes;

The study contributed to improving the fundamental knowledge for the

design of secure electronic voting in particular, and cryptographic protocols

in general. This is a fundamental objective, providing the basics for further

advancements in the research.

2. to identify critical functions related to secure and efficient imple-

mentation and deployment of such schemes;

Investigation into the efficiency and performance of cryptographic primi-

tives and protocols employed in electronic voting schemes is conducted in

the research. This objective is crucial as a reference for designing practical

schemes to be developed and deployed in a real-world scenario.

3. to achieve a practical and flexible design framework for electronic

voting schemes suitable for the various counting methods, espe-

cially for the Australian Federal Elections;

The research adds to the number of currently available electronic voting

1.2. Main Contributions 3

schemes by proposing a number of new or improved efficient schemes. They

are particularly suited for the national elections in Australia, which use

preferential voting systems.

4. to design specific electronic voting schemes with proven security

features.

Specific schemes addressing specific requirements are designed with proven

security. The designs offer solid and secure schemes for particular situations.

Again, they are specifically focused at the Australian elections. However,

such focus need not necessarily limit the possibility of applying, improving,

or extending our schemes to various other schemes and voting applications.

1.2 Main Contributions

The research is conducted to produce outcomes satisfying the aims and objectives

described in the previous section. Below lists main contributions of the research

presented in this thesis. Table 1.1 illustrates some of the many areas in secure

secret-ballot electronic voting. Areas investigated in the research are highlighted

in bold.

Observations are made to an electronic counting and voting system (eVACS)

trialled in the 2001 and 2004 Australian Federal Election at the Australian Capital

Territory. The conclusion is that cryptographic voting protocol is required as a

foundation in designing a secure secret-ballot voting system.

Using a batch technique, many instances of similar operations can be pro-

cessed in a single instance. Extensions and applications of novel batch theorems

to batch proofs and verifications of such operations are provided. The applications

offer a significant performance gain when applied in any cryptographic protocols

requiring the processing of many instances of similar cryptographic operations.

The applications of the theorems and their corresponding batch techniques allow

such protocols to be more practical and suitable for a real-world scenario. This

is particularly suited for cryptographic voting protocols when naturally there are

many similar operations required in a voting process. Such operations include:

ballot constructions, voter identity verifications, and the combining of individual

votes to produce a voting result.

Homomorphic encryptions are researched as one of the two existing basic

approaches used to construct a cryptographic voting protocol. An alternative

4 Chapter 1. Introduction

Table 1.1: Some of the many areas in secure secret-ballot electronic voting.

Design Development Deployment

Cryptographic protocol
homomorphic encryption certification legislation
mix-network standards policy, procedures
hybrid testing training

voting systems education
Cryptographic primitives background checks

zero-knowledge protocol physical security
batch theorems and techniques backup
public-key infrastructure redundancy
blind signature network security
secret-sharing
cryptosystems

scheme is proposed during this research. Research is also performed on mix-

networks as the other basic approach used in constructing a cryptographic voting

protocol. An improvement on an existing scheme is made, and a new mix-network

scheme is produced. The new primitives developed from each of the two ap-

proaches are then combined using an existing framework to form a hybrid scheme.

A preferential voting system case study is given in each of the approaches.

A randomisation technique to achieve receipt-freeness in secret-ballot voting is

applied to an optimistic mix-network. This is to offer a practical scheme providing

a receipt-freeness property. A proposal is made for a new technique allowing

threshold randomisation. The new technique is more general and is applicable to

either the homomorphic encryption or mix-network approach.

Our research results offer a promising foundation for a secure and practical

secret-ballot electronic voting accommodating any type of counting systems or

ballot structures.

1.3 Thesis Outline

The main contents of this thesis contain material from our previously published

papers. All of the publications are results of joint work with different authors.

The previously published materials and their corresponding author names are

listed at the beginning of this thesis.

1.3. Thesis Outline 5

This research concentrated on the study of cryptographic voting protocols in

the context of secure electronic voting. The protocols are required to accommo-

date a flexible ballot structure, especially in the context of preferential systems

used in Australia. A number of cryptographic primitives used in constructing

voting protocols are examined and improved. These include the application of

batch proof and verification, a threshold re-encryption technique, and techniques

for verifying correct shuffling in a mix-network. Several voting protocols are

surveyed, and the new primitives are combined in an existing framework to ac-

commodate a flexible ballot structure.

The next chapter, Chapter 2, provides background on: types of available

counting systems focusing on the Australian preferential systems, a review of an

electronic voting system, the importance of security in producing an acceptable

voting result, and an overview of cryptographic voting protocols. This chapter

contains material that has been previously published in [ALBD04b].

In Chapter 3, existing batch theorems and techniques are extended to batch

zero-knowledge proofs and verifications of two common operations in crypto-

graphic voting protocols. They are: to verify valid encryptions or valid re-

encryptions, and to verify valid decryptions or valid threshold decryptions. Novel

applications of the theorems are provided as batch techniques using both ElGamal

and Paillier as the underlying cryptosystems. Applications of these techniques

offer great performance increase in schemes employing many instances of the

operations. Specifically, the techniques are developed with applications to cryp-

tographic voting protocols in mind. This chapter is an extension to the previously

published paper [APB+04].

A more detailed study into the homomorphic encryption approach used in

voting schemes is provided in Chapter 4. As most homomorphic encryption vot-

ing schemes in the literature use an additive homomorphism property, an alter-

native scheme exploiting a multiplicative homomorphism property is proposed.

Afterward, a case study on homomorphic encryption voting schemes and their

suitability for a preferential voting system is presented. While the homomorphic

encryption approach allows for efficient tallying, it is shown that this approach

is not practical to accommodate a straight-forward adaptation of a preferential

system. Material previously published in [PAB+04a, ABDV03] is included in this

chapter.

Chapter 5 details the other approach in cryptographic voting protocol: the

6 Chapter 1. Introduction

mix-network approach. This approach mimics the use of ballot boxes in tradi-

tional paper-based voting. An improvement of an existing shuffling scheme is

proposed by using our batch theorems from Chapter 3. Combining group shuf-

fling of ciphertexts and batch verification of valid shuffles, an Extended Binary

Mixing Gate (EBMG) mix-network is proposed. A case study on mix-network

voting schemes and their suitability for a preferential voting system is also pre-

sented. As tallying using this approach is not elegant compared to the homo-

morphic encryption approach, the mix-network approach is suitable for any type

of counting system. Material from this chapter has been previously published

in [PAB+04b, ALBD04a, ABDV03].

Chapter 6 discusses the requirement of receipt-freeness in secret-ballot voting.

An existing randomisation technique is applied to an optimistic mix-network to

achieve an efficient and receipt-free voting scheme. A threshold-randomisation

technique that can be used in both approaches is proposed. This chapter contains

material previously published in [ALBD04a, ALBD05].

Primitives from previous chapters are combined in Chapter 7. The multiplica-

tive homomorphic voting and EBMG mix-network are employed in an existing

hybrid framework (named vector-ballot). This allows the application of preferen-

tial voting by using a number of set preferences, as well as allowing the choosing

of other non-set preferences simultaneously. A case study for the Australian Sen-

ate elections is presented using this hybrid approach. The resulting scheme offers

a promising foundation for secure and practical secret-ballot electronic voting

accommodating a flexible ballot structure.

Chapter 8 provides a thesis summary, along with possible future research di-

rections. Main contributions of the research are again highlighted in the summary.

A number of possible extensions or improvements continuing from the research

presented in this thesis are listed. A brief final remark is provided at the end.

There are three appendices in this thesis. Appendix A recalls a well-known

secret-sharing technique. Appendix B details the cryptosystems of ElGamal and

Paillier, and their corresponding threshold versions. Appendix C presents the

concept of zero-knowledge proof and verification, including its properties, a num-

ber of related standard protocols, and a brief description on how to construct a

combination of proofs in one protocol run.

Chapter 2

Voting, Electronic Voting,

and Security

Design, development, and deployment of secure electronic voting systems require

expertise in areas from politics and technology, to security and cryptography.

While there are a large number of issues in each of these areas, this thesis specifi-

cally concerns the study of electronic voting security using cryptographic means.

In this chapter, a typical voting procedure is described. Categorisation of the

different types of counting systems is provided. The Australian Federal Election

using preferential systems is explained. Electronic voting is discussed, and an

electronic voting and counting system (eVACS) trialled in the Australian Capital

Territory (ACT) is analysed. Security threats in electronic voting are further dis-

cussed, and security requirements for electronic voting are listed. An introduction

to cryptographic voting protocol and the different approaches is presented.

This chapter provides background information for the thesis. Material from

this chapter has been previously published in [ALBD04b].

2.1 A Typical Voting Procedure

The process of voting follows a standard procedure. Illustrated in Figure 2.1, a

voting scenario typically consists of four phases as outlined below.

1. Set-up phase.

During this phase, voting parameters are initialised. The parameters in-

7

8 Chapter 2. Voting, Electronic Voting, and Security

monitor

tellervoter

authority
registration

ballot box

bulletin board
news /

ballotvote

Figure 2.1: Registration, voting, and tally phase in a typical voting scenario.

clude eligibility criteria for candidates, voters, and authority; voting proce-

dures; ballot validity rules; and counting rules. Eligible candidates register

themselves to the authority, and the registration and tally authorities are

selected. Afterwards, the voting parameters, the candidates, and the au-

thorities are made public, such that they can be known and verified.

2. Registration phase.

Voters are required to register to the registration authorities during this

phase. Their eligibility is determined by the criteria set in the previous

phase, and ineligible voters are not allowed to register and participate in

voting. The list of authorised voters is published for public verification

afterwards.

3. Voting phase.

In this period, registered voters are allowed to cast their votes as follows:

(a) Voter authentication: each voter is authenticated according to the list

of registered voters from the registration phase, and those not found

in the list are not allowed to participate in this stage.

(b) Voter registration: each of the authenticated voters receives an empty

ballot, and registers a vote in the ballot inside a physically private and

secure location to avoid coercion/intimidation.

2.2. Counting Systems 9

(c) Ballot casting: the ballot is anonymised, such that the “voter-vote”

relationship is kept secret; in paper-based voting, this is achieved by us-

ing a sealed ballot-box where ballots are anonymised inside the ballot-

box.

4. Tally phase.

In this last phase, all ballots from the voting phase are processed to reveal

the voting result as below.

(a) Ballot collection: the ballots are collected; in paper-based voting, bal-

lots are obtained after the sealed ballot-boxes are opened by tally au-

thorities.

(b) Ballot verification: each of the ballots is verified to be valid or invalid

according to the rules set during the set-up phase, where invalid ballots

are not included for counting.

(c) Vote counting: valid ballots are counted as per the counting rules; the

results from each polling location are aggregated, and the voting result

is produced and made public.

2.2 Counting Systems

The choice of a counting system employed in a particular voting scenario con-

tributes to the perceived fairness of the voting result. This is an important

foundation for the acceptance of election results, or accepting a voting result in

any of the voting scenarios.

Also known as “electoral systems”, there are various counting systems em-

ployed for elections in different countries. Each of these systems offer its own

advantages and disadvantages. Some systems might be considered to produce a

fairer result than others.

In the “Handbook of Electoral System Design” [RR97], these systems are

categorised as below.

• Plurality-majority systems

In plurality-based systems, a candidate with the highest number of votes

wins (no threshold of votes). On the other hand, a candidate can only

win with a majority of votes (above a certain threshold) in majority-based

10 Chapter 2. Voting, Electronic Voting, and Security

systems. Countries employing this system include Australia, the United

Kingdom, Canada, and India.

• Proportional representation systems

Voting results under this category are proportional to the number of votes

received. For example, if a major party wins 40% of the total votes in an

election, the party will be allocated approximately 40% of the seats. Pro-

portionally, a minor party with 10% of the total votes will also gain 10%

of the parliamentary seats. This counting system reduces the disparity be-

tween the total number of votes and the total number of parliamentary seats

available. Countries employing this system include South Africa, Finland,

and Ireland.

• Semi-proportional systems

This type of system translates votes cast into seats won in a way that falls

somewhere between the proportionality of proportional representation sys-

tems, and the majority-based systems of plurality-majority systems. Each

voter may have more than one vote allowed for the candidates, e.g. as many

votes as there are seats available. Countries employing this system include

Japan, Jordan, and Vanuatu.

The choice of using a particular counting system in a particular scenario de-

pends on the culture, policy or other considerations. Further discussions for which

counting system is more appropriate for a particular scenario belongs to social

study or political science. They are outside the scope of this research.

Accommodating a flexible ballot structure, this research mainly concerns the

use of preferential systems in the Australian Federal Election scenario. The pref-

erential system is a majority-based systems of plurality-majority systems. The

next section offers more descriptions on preferential systems, specifically those

used for the Australian Federal Elections.

2.3 The Australian Federal Elections

The Australian parliament is composed of two houses. One is the lower house

or the House of Representatives, and the other is the upper house or the Senate.

While further discussions on both houses are outside the scope of this thesis, we

provide descriptions of preferential voting systems and their associated counting

2.3. The Australian Federal Elections 11

mechanisms employed in elections for both houses. This is to illustrate a voting

scenario requiring a flexible ballot structure and set the parameters used for

cryptographic voting protocols case study in Chapter 4, Chapter 5, and Chapter 7.

Totalling more than 50 registered political parties in Australia, there are three

major (have many seats in parliament), five medium (have seat in parliament),

and eight minor parties.

2.3.1 Preferential Systems

In preferential voting, a voter is required to provide a preference (or to rank)

each participating candidate. Majority is defined to be more than half of the

total number of votes. A voter communicates a list containing the candidate

names in a ballot according to his/her own preference. The sequence of choices

in the ballot is very important in the counting of votes to produce a voting result.

This election system uses a single round of voting, and potentially multiple

rounds of counting. If no candidate receives a majority of votes, the candidate

with the lowest first preference vote is eliminated. Votes for the eliminated can-

didate are redistributed to the remaining candidate according to the second pref-

erence. Repeatedly, more candidates are eliminated until one candidate reaches

a majority.

The preferential system is employed in the Australian Federal Elections since

it is regarded as a fairer system compared to the other systems. Valid preferential

vote rules differ for each state, e.g. valid by specifying at least the first preference,

valid by specifying 90% of of the preferences, or only valid by specifying a complete

list (from the first preference to the last preference) of preferences. A voting result

produced in the preferential system reflects the will of the majority of voters.

2.3.2 Elections for The House of Representatives

Elections for the House of Representatives are designed such that only the can-

didate with a majority of votes in an electoral division is elected to represent the

division in the House of Representatives. Using preferential voting system, the

House of Representatives truly represents (a majority of) the voters.

A counting example is presented using Table 2.1. Let there be 22000 voters

in this voting scenario. The counting of first preference votes indicates that

candidate A receives the most votes (indicated in the second column). However,

12 Chapter 2. Voting, Electronic Voting, and Security

Table 2.1: A counting example in a preferential voting system.

First preference votes Distribution of votes Total
for candidate B

Candidate A 10000 500 10500
Candidate B 4000 - -
Candidate C 8000 3500 11500

Total 22000 4000 22000

since the number of votes received by candidate A is below the majority threshold,

or below 22000
2

+ 1 = 11001 votes, another round of counting is performed. Since

candidate B receives the least number of votes for the first preference, votes for

candidate B are redistributed to candidate A and candidate C according to the

second preference (shown in the third column) in the second round of counting.

The second preference distribution for the 4000 voters choosing candidate B as

their first preference is 500 votes for candidate A, and 3500 for candidate C. After

the votes are redistributed for the second round of counting, candidate C wins

by receiving 11500 votes (shown in the fourth column, as additions of the second

column and the third column), over the majority threshold of 11001 votes.

A voting result for the election is produced by using an alternative vote count-

ing method as explained in the previous paragraph. Voters are commonly pro-

vided with a “how-to-vote” card indicating how to arrange the ordering of can-

didates preference according to a specific party.

Using a green ballot paper, there is a maximum of 22 candidates, and 100000

voters recorded in a district. The average number of candidates per district is

twelve. A voter cast a vote by either following the “how-to-card” of a particular

party, or by specifying his/her own preference.

2.3.3 Senate Elections

Senate elections in Australia also employ preferential voting systems. Using this

system, the Senate also represents the voters (in majority) as in the election for

the House of Representatives.

However, the counting method used in Senate elections is single-transferable-

vote counting with proportional representation. Several candidates with a number

of votes equal to or exceeding a required proportion of votes quota are elected

2.4. Electronic Voting 13

using this particular counting method. The number of elected candidates are pre-

determined. The quota is calculated as the total number of votes divided by one

more than the number of candidates to be elected, plus one (this is known as the

Hare-Clark quota). Candidates receiving votes more than the quota (a proportion

of the votes) have the additional votes distributed according to the preferences

in those votes. Aside from the calculation of quota, the rest of the vote counting

rules follows the counting of votes using alternative vote counting. That is, the

candidate with the least number of votes is eliminated and their voters distributed

to the other candidates according to the preference in the votes. After checking

the quota and distributing surplus votes (if any), this process is repeated until

all available positions are filled.

In the case of Australian Senate elections, the pre-determined number of

elected candidates is originally determined by the Australian Constitution. As

provided by the parliament, currently there are twelve Senators from each of

the six states, and two from each of the Northern Territory and the Australian

Capital Territory.

Voting on a white ballot paper, there is a maximum of about 70 candidates

and about 1000000 to 4000000 voters in a particular state/territory. The average

number of candidates per state/territory is about 60. A voter casts a vote by

either choosing a party’s preference (pre-set preferences), or over-the-line voting;

or by providing a rank for each of the candidates him/herself, or below-the-line

voting.

A well-known statistic for Senate elections is that over 95% of the voters cast

their votes using over-the-line voting (refer to the article “How Senate Voting

Works”, available online from http://www.abc.net.au/elections/federal/

2004/guide/senatevotingsystem.htm, last accessed 5 August 2005). The case

study using our hybrid scheme in Chapter 7 exploits this statistic.

2.4 Electronic Voting

Compared to its traditional paper-based counterpart, electronic voting is con-

sidered to have many greater potential benefits. These benefits include: better

accuracy by eliminating the negative factor of human error, better coverage for

remote locations, increased speed for tally computation, lower operational cost

through automated means, and the convenience of voting from any location (e.g.

14 Chapter 2. Voting, Electronic Voting, and Security

using mobile devices).

Whether or not electronic voting is a necessary replacement for the traditional

paper-based method, it is irrefutable that the conduct of voting has been shifting

to the use of electronic medium. To date, electronic databases are used to record

voter information, computers are used to count the votes and produce voting

results, mobile devices are used for voting in interactive television shows, and

electronic voting machines have been used in some national elections.

Generally, the term “electronic voting” refers to the definition, collection, and

dissemination of people’s opinions with the help of some machinery that is more

or less computer supported. Despite the transition from traditional paper-based

systems to electronic medium, the purpose and requirements for voting remain.

Voting is a decision making mechanism in a consensus-based society, and security

is indeed an essential part of voting.

Based on the locality, electronic voting can be categorised into two types.

• Polling-site electronic voting

In the polling-site electronic voting scenario, the casting of votes can only

be conducted inside a voting booth at a polling site. This is similar to the

current paper-based voting systems. Typically, voting booths at the site

contain electronic voting terminals. Voters are authenticated and autho-

rised at the site before allowed access to the voting booths. Votes are cast

using the terminal inside the voting booths. At the end of the voting period,

the votes are to be communicated to a central server for tallying. Examples

of this category include eVACS1 (an Electronic Voting and Counting Sys-

tem) used in Australia, Diebold systems2 used in the United States (US),

and EVM3 (Electronic Voting Machines) used in India.

• Remote electronic voting

In this scenario, voters cast their vote from the convenience of their own lo-

cation through a communication network. This includes the use of a private

(closed) network, mobile network, or even the Internet. For authentication,

the credential of a voter is arranged prior to the voting period through

the use of a password or some type of authentication token, or even only

1http://www.softimp.com.au/index.php?id=evacs, last accessed on 30 June 2005.
2http://www.diebold.com/dieboldes, last accessed on 30 June 2005.
3http://www.bel-india.com/Website/StaticAsp/prod niche4.htm, last accessed on 30

June 2005.

2.4. Electronic Voting 15

through the voter’s telephone number or an IP (Internet Protocol) address.

Examples of this category include telephone polling, voting using mobile

text-messages, and Internet voting. Note that the security level of voting in

this category is considered to be low. In a remote electronic voting scenario,

ensuring the security of voting terminals - or the public network where votes

are communicated - is very cumbersome for a large number of voters.

Security is one of the main topics in this thesis, and is also essential for the

election of a central government. Thus, we only consider a polling-site electronic

voting scenario. It is inefficient and impractical to ensure the physical security

of individual voting terminals and communication networks in the scenario of

remote electronic voting, or voting from home. In the case of Internet voting,

the underlying infrastructure of the communication network is administered by

various different entities with their own interests. Because of this, electronic vot-

ing over the Internet is inherently insecure. This point is also noted by Jefferson

et al. in a report [JRSW04] analysing the security of an experimental Internet-

based voting system to be used by US citizens to vote from overseas. However,

we believe that the results of our research can be extended for a remote electronic

voting scenario.

More discussions on security threats and requirements in voting, particularly

in electronic voting, are provided in Section 2.6 and Section 2.7 of this chapter.

Where security is not of paramount importance, other voting scenarios may

choose to employ a less restrictive environment. Such scenarios include voting in

an interactive television program, or polling of a favourite celebrity on a website

over the Internet.

Electronic voting has been used in national elections in a number of countries

including the United States, India, Brazil, and Venezuela. Trials were conducted

in the United Kingdom, Australia, and some European countries. Considerable

coverage on electronic voting in the popular media highlights security issues in

electronic voting. Note that some of the security problems in electronic voting

can also be found in traditional paper-based voting, and cheating has always been

a threat in voting.

In national elections, security threats in voting are considered to be serious as

voting results affect the entire nation. Chapter 2 of the book by Harris [Har03]

offers a compilation of examples on electronic voting anomalies in the United

States. It contains many newspaper articles reporting that electronic voting ma-

16 Chapter 2. Voting, Electronic Voting, and Security

chines were not operating properly. Examples include voting machines that re-

ported more votes cast than the number of voters, counted less votes than ones

cast, cast votes for a different candidate than intended by the voter, and swapped

votes cast for the candidates during the counting stage. Whether they are delib-

erate mistakes or not, the security of electronic voting machines used for national

elections must be ensured. They must achieve a much higher standard of security

and tolerate less errors.

Furthermore, the paper by Kohno et al. [KSRW04] offers a critical review

of a specific voting machine (AccuVote-TS by Diebold, Inc) used for elections

in some states in the United States. The paper highlights the lack of security

mechanisms implemented, and even highlights the lack of high quality on the

software developed. Example threats include the possibility of voters to produce

their own smartcards (authentication token) to cast multiple votes, view partial

results, and terminate the voting period early; non-existent cryptographic mech-

anisms to protect the communication of the voting machines; and deficiency in

the quality of the software developed.

The next section briefly analyse the security of an Electronic Voting And

Counting System (eVACS) trialled in the 2001 and 2004 federal elections in the

Australian Capital Territory (ACT).

2.5 An Analysis of eVACS

eVACS stands for Electronic Voting and Counting System. It was commer-

cially developed for the federal elections in the Australian Capital Territory

(ACT). The source-code is publicly available from the ACT electoral commis-

sion http://www.elections.act.gov.au/Electvote.html, last accessed on 29

June 2005. However, simulation of the actual voting environment and the actual

voting process are not possible since the configuration data was not made public.

Using email correspondence, the ACT electoral commission declined to provide

the complete source code, documentations, and configuration data. Hence, we

only made informal security analysis based on the available source code. The

2004 source code was chosen to be analysed since it is more recent than the 2001

source code.

2.5. An Analysis of eVACS 17

electronic
voting booth

electronic
voting booth

electronic
voting booth

data entry
workstation

data entry
workstation
data entry

workstation

ballot−box server

. . .

. . .

counting server

ELECTRONIC VOTING

ELECTRONIC COUNTING

zip disk

Local Area Network

Closed

Local Area Network

Closed

Figure 2.2: A high-level system diagram of eVACS.

2.5.1 System Overview

eVACS is written in C, and is built on a Debian Linux platform. The 2004 source

code has 86 .h files with 3812 lines in total, and 171 .c files totalling 33242 lines

of code.

Deployed in a polling station, the voting system has four main components

consisting of electronic voting booths, a ballot-box server, data entry worksta-

tions, and a counting and configuration server. Figure 2.2 illustrates eVACS with

its main components based on the information available from the ACT electoral

commission website.

The electronic voting part of eVACS consists of a number of electronic voting

booths connected to a ballot-box server through a closed local area network. The

electronic counting part of eVACS consists of a number of data entry workstations

connected to a counting server.

Voters cast their votes electronically through the electronic voting booths.

Votes cast are communicated to the ballot-box server. At the end of the voting

period, the entire votes stored on the ballot-box server are transported to the

counting server by using zip disks and not by using network connection. Also,

18 Chapter 2. Voting, Electronic Voting, and Security

votes cast manually using paper ballots are translated to their electronic votes

equivalent using the data entry workstations by the authorities at the end of the

voting period. The counting server receives both the electronic votes and the

translated votes, and use the appropriate counting method to produce a voting

result. The counting server is also used to perform other administrative functions

on the system, e.g. generating barcodes for authentication to the electronic voting

booths. The barcode is required to gain access to an electronic voting booth, and

confirm the vote before being cast to the ballot-box server.

2.5.2 The Voting Process

Prior to the election, all configuration data is set up on the counting (config-

uration) server. The configuration is then transferred to the ballot-box server.

Configuration data include: candidate names, polling station identity, and a list

of barcodes.

During the voting period, voters are authenticated as per the traditional

paper-based voting, and asked whether they wish to vote electronically or use

the traditional paper-based method. A voter choosing to use the traditional

paper-based method proceeds by being given a ballot paper, casting the vote on

the ballot paper, and placing the ballot paper in a ballot-box.

On the other hand, a barcode is chosen at random and is given to the voter

choosing to use eVACS. Voter authorisation on the electronic voting booth com-

puter is by using the barcode. The electronic voting booth computer communi-

cates the barcode to the ballot-box server for validation and to inform that the

voting process is initiating. Upon validation of an invalid barcode, the ballot-box

server returns an error message to the voting booth computer. Otherwise, the

ballot-box server returns the equivalent of a ballot-paper containing the names

of candidates to the voting booth computer.

The voter may select the candidates in a particular preference ordering, and

restart or complete their selection afterwards. The selection is displayed on the

screen for confirmation, and the voter is allowed to change or confirm their se-

lection. The voting booth computer returns a warning given invalid selection

or informal vote, however casting invalid or informal vote is allowed. The voter

confirms the selection by using the barcode, and both the vote and a log of key

sequence pressed are then communicated to the ballot-box server.

The ballot-box server checks that the same barcode is used to initiate the

2.5. An Analysis of eVACS 19

voting process, checks that the keystroke recorded reflects the vote cast, marks

the barcode as being used, and stores the vote and barcode in two different

database tables in two different hard drives. Otherwise, the ballot-box server

returns an error message to the voting booth computer.

At the end of the voting period, paper-ballots are translated into their equiv-

alent electronic form using the data entry workstations by voting authorities, and

these are communicated to the counting server. Votes collected on the ballot-box

server are then communicated to the counting server via a zip disk. The counting

server counts the votes, and produces a voting result.

The system uses an Apache web server to store and communicate (using

HTTP) the configuration data, and uses a PostgreSQL server to store the votes

cast.

2.5.3 Observations

Government review of the 2004 system is not available as of the writing of this

thesis. The 2001 review is available, but it does not provide much detail regard-

ing testing and auditing of the system. The findings of BMM International, a

software auditing firm contracted to audit the software code, were that eVACS

code “appeared to neither gain nor lose votes, appeared to faithfully implement

the Hare-Clark algorithm or vote counting provided to BMM by the Commission;

and was written in a consistent, structured and maintainable style”.

Our own observations on the source code reveal that although the code con-

form to a coding standard, it relies on the physical security of the closed local

area network for its communication, relies on a simple vote validity verification

based on recorded keystroke, and does not rely on the appropriate cryptographic

primitives to generate barcodes.

While the security level might be sufficient for a small-scale deployment sce-

nario, appropriate security mechanisms and cryptographic primitives are required

for a secure deployment in a larger scale. This is because it is more difficult to

ensure physical security on each of the computer or local area network in a large-

scale deployment scenario.

Example threats include gaining unauthorised access to the closed network

by using the network cable of a voting booth computer, generation of fraudulent

barcodes, and a corrupt authority manipulating the voting result.

By gaining access to the closed network, a malicious entity can observe and

20 Chapter 2. Voting, Electronic Voting, and Security

manipulate network traffic, or even gain unauthorised access to the ballot-box

server. Since only plain HTTP protocol and available security mechanisms are

not properly implemented on the server (e.g. authenticated database connection),

the malicious entity can perform the following actions:

• observe barcodes communicated, and produce fraudulent barcodes,

• disrupt the voting process by pretending to be the ballot-box server and

returning error messages to the voting booth computers,

• disrupt the voting process by performing a Denial of Service attack against

the ballot-box server,

• modify recorded keystrokes and votes communicated from the voting booth

computers to the ballot-box server,

• manipulate the configuration data on the ballot-box server, and

• manipulate the barcode or vote database on the ballot-box server.

Further threats also exist should an attacker gain access to either a data entry

workstation, the counting server, or the electronic counting network. It is easier

to manipulate the voting result having access to the counting machine.

By having a number of fraudulently generated barcodes, a voter can cast

the same vote multiple times. This can affect the voting result, benefiting the

malicious voter. Also, it is straight-forward that a corrupt authority can easily

manipulate the system to his/her advantage.

In conclusion, the security of eVACS is adequate with the assumptions of

small-scale deployment, closed network, and physical security. However, it is not

scalable for a large-scale deployment since security mechanisms implemented are

not sufficient.

Proper implementation of cryptographic primitives offer stronger logical au-

dit trail compared to typical audit trail mechanism using log files. While log

files themselves may be corrupted or compromised, it is substantially more dif-

ficult to compromise the confidentiality and integrity of data based on a hard

mathematical problem (e.g. a discrete log problem). This is discussed further in

Section 2.8.

2.6. Security Threats 21

2.6 Security Threats

There are various security threats in any voting scenario. Typical threats include

coercion/intimidation of a voter to cast a vote in a particular manner, disruption

to the voting process, to tampering of votes cast or tampering of the voting result

itself. A number of specific possible threats using a particular electronic voting

system (eVACS) are listed in the previous section.

Based on the separation of duties, below is a list of entities and examples of

possible security threats in current secret-ballot electronic voting.

• developers/vendors: as investigated in [Har03], developers/vendors have

their own interest which may motivate them to deliberately corrupt the

voting machine/software. Voting machines may be compromised in such a

way as to produce a particular result which benefits the developers/vendors.

An example of this type of threat is to modify the counting program to

discard a particular type of vote, or to produce a fixed result regardless of

votes cast. A number of suggested mechanisms to counter this type of threat

include quality assurance, secure programming principles, and independent

testing and certification.

• authorities: similar to the above threat, the authorities may also tamper

with the voting machine or software for their own benefit. Note that this

is also a problem with the paper-based voting. Election authorities may

selectively disable voting terminals in a particular district, or corrupt the

voting result. The ease of tampering with the result is inversely proportional

to the trust level given. An authority with a high level of trust can more

easily manipulate the voting result compared to an authority given a low

level of trust. The level of trust should be chosen based on reputation

and security clearance of an authority. Furthermore, a set of regulations

(e.g. codes of conduct, procedures, fines, and punishments) and auditing

mechanisms must be enforced to prevent such a security breach.

• voters: vote buying/selling (trading), or even coercion and intimidation are

threats to producing a voting result reflecting the true opinion of voters.

Private voting was enforced to eliminate this problem. Voting in national

elections is now conducted privately inside a polling booth. A dishonest

voter may also try to cast more than the one allowed vote (double voting)

22 Chapter 2. Voting, Electronic Voting, and Security

to affect the voting result in favour of the dishonest voter, undermining

the votes of other honest voters. In traditional paper-based voting, official

ballots printed and distributed by the government are enforced to alleviate

these problems. This is known as the Australian ballot, or secret-ballot,

since it was first used in the states of Victoria and South Australia in 1856

to enforce compulsory secrecy and prevent double voting.

• external: external entities might disrupt or manipulate voting result for

their own benefit whether it is personal, financial, or political (e.g. a ter-

rorist organisation). Examples of this type of threat include physically

blocking polling sites or coercion/intimidation of voters not to cast their

votes during the voting period. Other possible threats also include compro-

mising the voting machines, tally server, or performing a denial of service

attack on the system such that voting is somehow disrupted or the vot-

ing result is manipulated. Currently, precautions to prevent such threats

include placing security guards in polling places to ensure the physical secu-

rity of the system (and the polling site), and using secure private networks

as the communication channel.

• equipment failures/glitches and unforeseen events: accidents or some un-

foreseen events may occur and disrupt the voting process. Suggestions to

minimise problems from this threat include sealing the voting machines, or

making them tamper-resistant, and employing some redundancy for robust-

ness.

Compared to current online commercial transactions, a different and higher

security level is required for an electronic system since voting results affect a

great deal of people’s lives. The use of electronic voting also allows the attack

sophistication to increase with the use of computer automation. A set of security

requirements and proper design and development are required to produce a secure

electronic voting system, in which the results are publicly acceptable.

2.7 Security Requirements

Security in voting is one important factor to ensure acceptance of voting result. In

order to mitigate the threats discussed in the previous section, there are a number

of security requirements that need to be satisfied in a secure secret-ballot voting

2.7. Security Requirements 23

scenario. While the complexity of the requirements differ according to the voting

application and its corresponding risk assessment, listed below are the important

requirements to provide security in secret-ballot voting commonly found in the

literature.

• Privacy: An essential requirement for voting, the relationship of voter iden-

tity and the corresponding vote cast are to be kept private only to that

particular voter, such that voters are able to express their true opinions

without being coerced or intimidated. In the case of voting, anonymity

also depends on the total number of voters and variations of votes cast (i.e.

hiding in a crowd; refer to Definition 1 in Section 2.8).

• Receipt-freeness: A stronger notion of the privacy requirement, voters must

not be able to obtain nor construct a receipt which can prove the content

of their vote to a third party. This is to prevent vote buying and/or selling,

such that voters are not used as proxies to cast votes. This concept is

further discussed in Chapter 6.

• Accuracy (Correctness): As a basic property, voting results must be pro-

duced from the correct tally of individual votes, i.e. only valid votes are to

be counted, and invalid votes are to be discarded.

• Fairness: Each candidate or choice in voting must be given an equal chance.

This is achieved by ensuring that no partial tally is to be revealed before the

end of the voting period, so as not to advantage or disadvantage a particular

candidate or choice.

• Eligibility: As a more specific requirement under fairness, only eligible

and rightful voters can cast a vote to prevent fraudulent votes from be-

ing counted.

• Non-reusability: Also a more specific requirement under fairness, an eligible

voter can only cast his/her vote once to ensure that each voter has equal

influence in the voting result.

• Robustness: Voting systems need to be able to tolerate certain faulty con-

ditions and manage some disruptions.

24 Chapter 2. Voting, Electronic Voting, and Security

• Verifiability: Correctness of the voting process must at least be “publicly

verifiable” by voting participants. A stronger notion of verifiability is “uni-

versal verifiability” where everyone (including observers and outside parties

- not only those participating in voting) is able to verify that the voting

was conducted correctly and that the result is not corrupted.

Especially in the United States, the media has highlighted the fact that current

electronic voting machines lack a proper auditing mechanism. Note that the

electronic voting machines scrutinised did not use a proper cryptographic voting

protocol as a foundation to their electronic voting system. Compared to paper-

based voting, it seems to be quite problematic to have an auditing mechanism

and satisfy receipt-freeness while maintaining privacy at the same time.

The use of paper ballots provides a straight-forward mechanism for a physical

audit-trail in voting results verification by using a recount of the paper ballots.

However, it is not as straight-forward to verify the integrity of electronic data

should some manipulation of the voting result be suspected in electronic voting.

For this reason, cryptography is required as a foundation in designing elec-

tronic voting systems. This is discussed in the next section.

2.8 Cryptographic Voting Protocols

Having highlighted the lack of security provided by a straight-forward implemen-

tation of vote collection and counting in software (most commercially available

electronic voting products), this research is focusing on providing a solid founda-

tion of secure secret-ballot electronic voting systems. This is by enforcing security

mechanisms to achieve the requirements by using cryptographic voting protocols

in designing such voting systems.

In electronic voting, cryptography offers a mechanism for a verifiable logi-

cal audit trail as compared to the traditional paper-based voting. Cryptography

offers verifiability through mathematical proofs that the confidentiality and in-

tegrity of the voting result is preserved.

While accuracy is essential, cryptographic voting protocols in the literature

are developed based on the privacy requirement. A ballot initially contains an

encrypted vote originated from a particular voter. To satisfy the accuracy re-

quirement, voting result must reflect all the votes from each individual ballot.

To satisfy the privacy requirement, the relationship of the identity of a voter

2.8. Cryptographic Voting Protocols 25

Table 2.2: Framework categorisation of cryptographic voting protocols.

Framework Voter identity Corresponding vote

Naive in clear in clear
Homomorphic encryption in clear hidden: encrypted
Mix-network hidden: anonymised in clear
Hybrid hidden (some) hidden (others)

and its corresponding vote (“voter-vote” relationship) must remain private to the

particular voter.

Definition 1. After the end of the voting period, if every vote is only known

to lie in the vote space (containing all the possible choices), then we say that a

complete vote privacy is achieved. Otherwise, if every vote is only known to

be among a large number of published votes - whose number is much larger than

the number of all possible choices - we say that strong vote privacy is achieved.

In cryptographic voting protocols, correct voting results are produced while

voter-vote relationships are kept secret. Voting results are produced by decrypting

the combination of valid ballots cast; or by tallying (in the usual manner without

any cryptographic means) the anonymised individual votes cast in the ballots.

In other words, the privacy requirement is satisfied by either maintaining the

confidentiality of the individual vote cast, or by maintaining the confidentiality

of each voter’s identity.

The first method is achieved by using a homomorphic encryption function.

Homomorphic encryption and related voting protocols are further discussed in

Chapter 4. The second method is achieved by simulating the use of ballot-boxes

using mix-networks. Mix-networks and related voting protocols are further dis-

cussed in Chapter 5. Cryptographic voting protocols in the literature are typically

classified into these two main frameworks. This is summarised in Table 2.2.

Homomorphic Encryption. Pioneered by Benaloh [Ben96], privacy is satisfied

by employing a confidentiality service for the individual vote cast. Voting

result is obtained by decrypting the combination of the encrypted votes.

Mix-networks. Pioneered by Chaum [Cha81], privacy is provided by anonymis-

ing ballots cast. As it receives encrypted votes as inputs, the mix-network

26 Chapter 2. Voting, Electronic Voting, and Security

outputs shuffled votes in plaintext format. A mix-network is also known as

an anonymous channel.

To satisfy other security requirements, cryptographic voting protocols employ

other cryptographic primitives aside from using either homomorphic encryption

or mix-networks. Some of the primitives are listed below.

• Public Key Infrastructure: an infrastructure for entity identification, and

public-private key certification. This is required to satisfy the eligibility

requirement.

• Digital signatures: prove authenticity and integrity of messages. This is

required to satisfy the accuracy requirement.

• Blind signatures: this technique is comparable to the use of carbon copy in

physical paper-based transaction. The primitive is typically used to autho-

rise the ballot from an authenticated eligible voter (privacy and eligibility

requirements). Privacy is achieved using pseudonyms. However, voting

protocols employing blind signatures often also employ mix-networks for

stronger anonymity.

• Threshold cryptography: distributing trust to a quorum of authorities,

threshold cryptography is employed to prevent a number of corrupt author-

ities below the threshold value being able to somehow tamper with voting

results. Based on secret-sharing (Appendix A), techniques include thresh-

old re-encryption (Chapter 6) to provide stronger re-encryption service on

ballots and satisfy the receipt-freeness requirements; and threshold decryp-

tion to ensure individual ballot remains unopened (privacy and robustness

requirements).

• Zero-knowledge proof techniques: an important technique to verify correct

operations of other cryptographic primitives, a zero-knowledge proof tech-

nique convinces a verifier with a certain (high) probability that the prover

indeed holds the knowledge of a particular value without revealing it to the

verifier (verifiability and privacy requirement). Appendix C contains more

information on zero-knowledge protocols.

The Australian preferential system is used as an example of a flexible ballot

structure in voting. The ballot for preferential voting systems is quite complex

2.9. Summary 27

as it contains a preference of the available choices. Thus the possibility of all

available preferences is of factorial size. This presents an interesting challenge

when providing a simple design to enable real-world electronic voting for such a

system in a secure and efficient manner.

Chapter 4 and Chapter 5 presents our work in the homomorphic encryption

and mix-network area respectively for voting. A case-study using straight-forward

adaptation of preferential systems is presented for both approaches. Using a set

number of preferences prior to a voting period, both frameworks can be combined.

This offers benefits from both frameworks, and is presented in Chapter 7.

Basic primitives such as secret sharing, ElGamal and Paillier cryptosystems,

and the concept of zero-knowledge proof techniques are described in Appendix A,

Appendix B, and Appendix C respectively. Further details on some other cryp-

tographic primitives used in voting protocols are provided later in this thesis as

required.

2.9 Summary

This chapter offers an overview of the many complex issues involved in voting.

The issue of voter education, legislation, and politics were not covered as they

are outside the scope of the research. Descriptions of voting procedures, various

counting systems, types of electronic voting, general observations on a specific

voting system (eVACS), and security threats and requirements in electronic voting

were provided in this chapter. An overview of cryptographic voting protocols was

also provided as a basis for later chapters.

The next chapter contains our work on batch verification. The techniques

presented can be implemented in many schemes, especially in electronic voting,

for better efficiency and performance. These techniques are essential for designing

secure and practical cryptographic voting protocols.

28 Chapter 2. Voting, Electronic Voting, and Security

Chapter 3

New Batch Theorems

and Their Applications

in Zero-Knowledge Protocols

In cryptographic voting protocols, producing a voting result requires the pro-

cessing of many ballots. Such processing may include encryption, re-encryption,

shuffling, decryption, or threshold decryption operations (more details on these

operations are provided in later chapters). Correctness of such operations are

proven and verified using zero-knowledge (ZK) proof and verification protocols.

Batching is a technique to perform a number of similar operations with a

single operation. Such a technique offers great computational cost savings as

compared to when performing the operations individually.

In this chapter, we propose five new batch theorems – two for computing

equality of discrete logarithms with a common base, two for computing equality

of discrete logarithms with a common exponent, and one for computing N th roots.

These theorems employ the small exponents (SE) test by Bellare et al.

Previous work on batching is reviewed and analysed. Deficiencies and limita-

tions in the currently existing theorems and techniques are avoided. The work by

Bellare et al. [BGR98] was successfully attacked by Boyd and Pavlovski [BP00].

The original work by Bellare et al. is extended in this chapter.

The batch theorems are applied to the ZK protocols. The resulting techniques

include batch ZK proof and verification of correct re-encryptions, and batch ZK

29

30
Chapter 3. New Batch Theorems and Their Applications in Zero-Knowledge

Protocols

proof and verification of correct decryptions. Both the proof and verification

operations are batched. Later chapters illustrate the use of these techniques in

cryptographic voting protocols. However, the theorems can be applied in many

other appropriate schemes.

This chapter provides a fundamental cryptographic primitive for this thesis.

Some material from this chapter has been previously published in [APB+04].

3.1 Background

In this thesis, batching is defined as a cryptographic technique by which many

instances of the same cryptographic operation can be performed in a batch (a

single instance of operation achieving the same effect as many instances of the

individual operation), such that the overall computational cost can be lowered.

The first practical batch scheme was proposed by Fiat [Fia89], where encryption,

decryption, digital signature generation and digital signature verification using

the RSA cryptosystem are batched.

Batch has a very wide range of applications, especially for combining many

zero-knowledge (ZK) proof constructions and verifications. This is because they

are frequently applied operations in cryptographic protocols. Also, it is very

often that many instances of the same ZK proof and verification function appear

simultaneously. More details on ZK proof and verification protocols are provided

in Appendix C.

Bellare et al. [BGR98] gave the first definition of batch ZK proof and ver-

ification, in which three batch techniques for verification of common-base ex-

ponentiations are proposed. The objective is to verify yi = gxi mod p, where

i ∈ {1, 2, . . . , n}, xi ∈ Zq, yi ∈ Z
∗
p, p and q are large primes, p|q − 1, and g is

a generator for the group G of order q. The naive solution is to individually

calculate gxi and compare the results with yi for i = 1, 2, . . . , n.

An intuitive idea to batch verify the n equations is to test
∏n

i=1 yi = g
∑n

i=1 xi.

Harn [Har98] used this idea to construct a batch verification protocol. However

this method is not sound since it is easy to pass the verification for an input

containing a pair (xi, yi) where yi 6= gxi. For example, y1 = zgx1 and y2 = z−1gx2,

where any random z can pass the verification. In this chapter, this scheme is

called naive batch verification.

Bellare et al. proposed three batch techniques based on discrete logarithms

3.1. Background 31

• RS test: Repeat the following atomic test independently L times and
accept if and only if all sub-tests accept.

1. For i ∈ {1, 2, . . . , n}, choose ti at random from {0, 1}.

2. Compute z1 =
∏n

i=1 yti
i and z2 =

∑n
i xiti.

3. Accept if z1 = gz2, reject otherwise.

• SE test:

1. For i ∈ {1, 2, . . . , n}, choose small integers ti with length L at ran-
dom.

2. Compute z1 =
∏n

i=1 yti
i and z2 =

∑n
i=1 xiti.

3. Accept if z1 = gz2, reject otherwise.

• Bucket test: Set m ≥ 2 and M = 2m. Repeat the following atomic
test independently L/(m− 1) times and accept if and only if all sub-tests
accept.

1. For i ∈ {1, 2, . . . , n}, choose ti from {1, 2, . . . , M} at random.

2. For j = 1, 2, . . . , M , let Bi = {i : ti = j}.

3. For j = 1, 2, . . . , M , compute zj,1 =
∏

i∈Bj
yi and zj,2 =

∑

i∈Bj
xiti.

4. Run SE test on the instances (z1,1, z1,2), (z2,1, z2,2), . . . , (zM,1, zM,2).

Figure 3.1: Techniques for batch verifying exponentiations with common bases
by Bellare et al..

with a common base. They are RS (random subset) test, SE (small exponents)

test and bucket test. These three tests are illustrated in Figure 3.1. Unless

specified otherwise, multiplication in the figure is computed modulo p.

For i ∈ {1, 2, . . . , n}, Bellare et al. proved that if yi ∈ G, the SE test costs

n+L+nL/2+ExpCost(log2 q) modular multiplications, where ExpCostn(log2 q)

denotes the number of modular multiplications required to compute n exponen-

tiations in a common base with different exponents of the same bit-length of q.

The probability that incorrect inputs can pass the verification in this test is no

more than 2−L. Thus, when L is 20 the failure probability is smaller than one in

a million. Efficiency can be improved greatly when the bit-length of L is much

smaller than the bit-length of q. A similar efficiency improvement can be achieved

with the bucket test.

Bellare et al. use the SE test or bucket test together with a slightly modified

32
Chapter 3. New Batch Theorems and Their Applications in Zero-Knowledge

Protocols

Digital Signature Standard (DSS) scheme to achieve efficient batch signature

verification.

Although the SE test and bucket test are more secure than the naive batch

verification through use of the random small exponents ti for i ∈ {1, 2, . . . , n},

they are sound only under the assumption that yi ∈ G. Otherwise, an input

containing a false pair (xi, yi) with yi 6= gxi can still be generated to pass the batch

verification. Boyd and Pavlovski noticed that Bellare et al. seem to overlook the

impact of this assumption. Although the security theorem provided for the SE

test is correct, its application to DSS verification is inappropriate as there is no

efficient method to verify yi ∈ G (one exponentiation is required). When yi /∈ G,

the probability for a false batch to pass the verification can be much greater

than 2−L (when yi = g′(p−1)/2gxi, the probability is at least 1
2

where g′ denotes a

generator for Z
∗
p). In this application, soundness and high efficiency cannot be

achieved simultaneously.

The RS test does not offer as much efficiency improvement as the other two

tests. The bucket test is a variation of the SE test and is more efficient when the

batch is of greater size. For i ∈ {1, 2, . . . , n}, all the pairs of (xi, yi) are divided

into buckets, and SE test is performed in each bucket. In this chapter we focus

on the SE test. It should be noted that the bucket test can also be applied in all

the theorems and applications provided in this chapter.

3.2 Batch Theorems

The fundamental nature of batch is to obtain efficiency improvements. Batch

theorems presented in this section replace some of the full-length exponentiations

with short-length exponentiations.

The length of an exponent in a full-length exponentiation is greater than the

length of an exponent in a short-length exponentiation. This comparison also

applies to computational cost in terms of modular exponentiations. The compu-

tational cost for a full-length exponentiation is greater than the computational

cost for a short-length exponentiation.

When a batch theorem has two versions, with and without group membership

test respectively, the version with the test is called a strict theorem and the

version without the test is called a loose theorem. This follows the terminology

used by Hoshino et al. [HAK01].

3.2. Batch Theorems 33

Five batch theorems are presented in this section. The theorems employ

small exponents test from the work by Bellare et al. In Section 3.3, applications

of these theorems are based on the ElGamal and Paillier cryptosystem. The

first four theorems are based on the ElGamal cryptosystem parameters. The last

theorem is based on the Paillier cryptosystem parameters. More details on the

cryptosystems are provided in Appendix B.

Background for the first four theorems (Section 3.2.1 and Section 3.2.2) are

described as follows. Let q be a large prime, such that p = 2q+1 is a strong prime.

The group G, of order ord(G) = q and a generator g, is a cyclic multiplicative

subgroup in Z
∗
p. The value of y = gx where x is selected at random from Z

∗
q.

The absolute value of z is defined as ±z where +z or z denotes that z ∈ G, and

−z(modp) denotes that z ∈ Z
∗
p \ G (in the group Z

∗
p, but outside the group G).

As g′ denotes a generator for Z
∗
p, −1 = g′q. For i ∈ {1, 2, . . . , n}, and zi ∈ Z

∗
p, the

following two equations hold:

(±z1)(±z2) . . . (±zn) = ±(z1z2 . . . zn) (3.1)

(±z)n = ±(zn) (3.2)

Parameters for the last theorem are described at the beginning of Section 3.2.3.

3.2.1 Equality of Logarithms with Common Bases

For i ∈ {1, 2, . . . , n}, the two theorems in this subsection are designed to batch

instances of logg yi = logc zi into a single equation. The left hand side of the

previous equation has g as a common base, while the right hand side has c as the

common base.

In some applications, a strict batch theorem is applied if both values of yi, zi ∈

G. Otherwise, a loose batch theorem is applied if either values of yi /∈ G or values

of zi /∈ G.

A Strict Theorem

Unless specified otherwise, any multiplicative computation in this subsection oc-

curs in the cyclic group G, and i ∈ {1, 2, . . . , n}.

The following theorem is designed to batch instances of logg yi = logc zi into

a single equation, where both values of yi, zi ∈ G. An application of this theorem

34
Chapter 3. New Batch Theorems and Their Applications in Zero-Knowledge

Protocols

To prove and verify: logg yi = logc zi, for i ∈ {1, 2, . . . , n}.

Prover Verifier

τi ∈R Zq

γi,1 = gτi mod p
γi,2 = cτi mod p

γi,1,γi,2

−−−−−→
ti ∈R {1, 2, . . . , 2

L}
u ∈R Zq

ti,u
←−−−−−

wi = τi − utir
′
i mod q

wi

−−−−−→
∏n

i=1 γi,1
?
= g(

∑n
i=1 wi)

(
∏n

i=1 yti
i)u mod p

∏n
i=1 γi,2

?
= c(

∑n
i=1 wi)

(
∏n

i=1 zti
i)u mod p

Figure 3.2: A batch ZK proof-verification technique for equality of discrete loga-
rithms.

is to batch zero-knowledge proof-verification of equality of logarithms illustrated

in Figure 3.2.

Theorem 3.2.1. G is a cyclic group with q as the smallest factor of ord(G), gen-

erators g and c, and a security parameter L, where 2L < q. The small exponents ti

are random L-bit strings, and yi, zi ∈ G. If ∃k ∈ {1, 2, . . . , n} ∧ logg yk 6= logc zk,

then logg

∏n
i=1 yti

i 6= logc

∏n
i=1 zti

i with a probability (taken over choice of ti) of no

less than 1− 2−L.

To prove Theorem 3.2.1, we first prove the following lemma:

Lemma 3.2.2. If ∃k ∈ {1, 2, . . . , n} ∧ logg yk 6= logczk, given a definite set S =

{ti|ti < 2L∧ i ∈ {1, . . . , k− 1, k +1, . . . , n}}, then there is only at most one small

exponent tk satisfying logg

∏n
i=1 yti

i = logc

∏n
i=1 zti

i .

Proof (Lemma 3.2.2). If the lemma is incorrect, the following two equations are

3.2. Batch Theorems 35

satisfied simultaneously where logg yk 6= logc zk and tk 6= t′k.

logg

n∏

i=1

yti
i = logc

n∏

i=1

zti
i

logg(

k−1∏

i=1

yti
i)(y

t′
k

k)(

n∏

i=k+1

yti
i) = logc(

k−1∏

i=1

zti
i)(z

t′
k

k)(

n∏

i=k+1

zti
i)

Without loss of generality, suppose t′k > tk. We can combine and simplify the

previous two equations to be logg y
t′
k
−tk

k = logc z
t′
k
−tk

k . Thus, (t′k − tk) logg yk =

(t′k − tk) logc zk. Note that t′k − tk 6= 0 because 1 ≤ (tk, t
′
k) < 2L < ord(G) and

tk 6= t′k. Therefore, logg yk = logc zk. This is contradictory to the assumption of

logg yk 6= logc zk.

Proof (Theorem 3.2.1). Lemma 3.2.2 implies that among the (2L)n possible com-

binations of ti, at most (2L)n−1 of them can satisfy logg

∏n
i=1 yti

i = logc

∏n
i=1 zti

i

when yi, zi ∈ G and logg yk 6= logc zk. Therefore, given a random small expo-

nent ti, if logg yk 6= logc zk, then logg

∏n
i=1 yti

i = logc

∏n
i=1 zti

i is accepted with a

probability of no more than 2−L.

For i ∈ {1, 2, . . . , n}, instances of logg yi = logc zi can be batched using

the equation logg

∏n
i=1 yti

i = logc

∏n
i=1 zti

i when yi, zi ∈ G. This is accord-

ing to Theorem 3.2.1. The probability that logg

∏n
i=1 yti

i = logc

∏n
i=1 zti

i while

logg yk 6= logc zk for some k ∈ {1, 2, . . . , n} is no more than 2−L.

A Loose Theorem

In Theorem 3.2.1, there is a condition that g, yi, c, zi ∈ G for i ∈ {1, 2, . . . , n}.

However, in some applications there is an uncertainty of satisfaction on this con-

dition. An additional computation is often required to verify the condition. In

reality, this extra computation is too expensive such that in many cases it prevents

the applicability of Theorem 3.2.1.

To overcome this problem, Theorem 3.2.3 is proposed. This theorem does not

require the pre-condition that the LHS and RHS of the batch equation be in the

same cyclic subgroup of Z
∗
p.

An application of this theorem is to batch zero-knowledge proof-verification

of equality of logarithms for checking valid ElGamal re-encryptions. This is de-

scribed in Section 3.3.1.

36
Chapter 3. New Batch Theorems and Their Applications in Zero-Knowledge

Protocols

Unless specified otherwise, any multiplicative computation in this subsection

occurs in the cyclic group G, and i ∈ {1, 2, . . . , n}.

Theorem 3.2.3. Let q be a large prime, such that p = 2q + 1 is a strong prime.

The group G, of order q and generator g, is a cyclic multiplicative subgroup in Z
∗
p.

For x ∈R Z
∗
q, yi, zi ∈ Z

∗
p, L is a security parameter satisfying 2L < q, and small

exponents ti are random L-bit strings. If ∃k ∈ {1, 2, . . . , n}∧ logg±yk 6= logc±zi,

then logg

∏n
i=1 yti

i 6= logc

∏n
i=1 zti

i with a probability (taken over choice of ti) of no

less than 1− 2−L.

To prove Theorem 3.2.3, we first prove the following lemma:

Lemma 3.2.4. If ∃k ∈ {1, 2, . . . , n} ∧ logg±yk 6= logc±zk, given a definite set

S = {ti|ti < 2L ∧ i ∈ {1, . . . , k − 1, k + 1, . . . , n}}, then there is only at most one

small exponent tk satisfying logg

∏n
i=1 yti

i 6= logc

∏n
i=1 zti

i .

Proof (Lemma 3.2.4). If this lemma is incorrect, the following two equations are

satisfied simultaneously where logg±yk 6= logc±zk and tk 6= t′k.

logg

n∏

i=1

yti
i = logc

n∏

i=1

zti
i

logg(
k−1∏

i=1

yti
i)(y

t′
k

k)(
n∏

i=k+1

yti
i) = logc(

k−1∏

i=1

zti
i)(z

t′
k

k)(
n∏

i=k+1

zti
i)

Without loss of generality, suppose t′k > tk. We can combine and simplify the pre-

vious two equations to be logg±y
t′
k
−tk

k = logc±z
t′
k
−tk

k . Thus, (t′k − tk) logg±yk =

(t′k − tk) logc±zk. Note that t′k − tk 6= 0 because 1 ≤ (tk, t
′
k) < 2L < q and

tk 6= t′k. Therefore, logg±yk = logc±zk. This is contradictory to the assumption

of logg±yk 6= logc±zk.

Proof (Theorem 3.2.3). Lemma 3.2.4 implies that among the (2L)n possible com-

binations of ti, at most (2L)n−1 of them can satisfy logg

∏n
i=1 yti

i = logc

∏n
i=1 zti

i

when logg±yk 6= logc±zk. Therefore, given a random small exponent ti, if

logg±yk 6= logc±zk, then logg

∏n
i=1 yti

i = logc

∏n
i=1 zti

i is accepted with a proba-

bility of no more than 2−L.

For i ∈ {1, 2, . . . , n}, instances of logg±yi = logc±zi can be batched using the

equation logg

∏n
i=1 yti

i = logc

∏n
i=1 zti

i when q is a large prime, p = 2q+1 is a strong

prime, and g, c ∈ G. This is according to Theorem 3.2.3. The probability that

3.2. Batch Theorems 37

logg

∏n
i=1 yti

i = logc

∏n
i=1 zti

i while logg±yk 6= logc±zk for some k ∈ {1, 2, . . . , n}

is no more than 2−L.

Note: Tests of
(

yi

p

)

= 1 and/or
(

zi

p

)

= 1 (using Legendre symbol) can be

performed to determine whether yi, zi ∈ G or−yi,−zi ∈ G. If the test is accepted,

then yi, zi ∈ G, otherwise −yi,−zi ∈ G.

3.2.2 Equality of Logarithms with Common Exponents

For i ∈ {1, 2, . . . , n}, the two theorems in this subsection are designed to batch

instances of logg y = logci
zi into a single equation. The value of y ∈ G, and the

value of logg y is the same for every pair of (ci, zi).

In some applications, a strict batch theorem is applied if both values of ci, zi ∈

G. Otherwise, a loose batch theorem is applied if either values of ci /∈ G or values

of zi /∈ G.

A Strict Theorem

Applications of this theorem are to batch zero-knowledge proof - verification of

equality of logarithms for checking valid centralised ElGamal decryptions and for

checking valid threshold Paillier decryptions. This is described in Section 3.3.2.

As before, any multiplicative computation in this subsection occurs in the

cyclic group G, and i ∈ {1, 2, . . . , n} unless specified otherwise.

The following theorem is designed to batch instances of logg y = logci
zi into

a single equation, where both values of ci, zi ∈ G.

Theorem 3.2.5. G is a cyclic group with q as the smallest factor of ord(G),

generators g and ci, and a security parameter L, where 2L < q. The small

exponents ti are random L-bit strings, and y, zi ∈ G. If ∃k ∈ {1, 2, . . . , n} ∧

logg y 6= logck
zk, then logg y 6= log∏n

i=1 c
ti
i

∏n
i=1 zti

i with a probability (taken over

choice of ti) of no less than 1− 2−L.

To prove Theorem 3.2.5, we first prove the following lemma:

Lemma 3.2.6. If ∃k ∈ {1, 2, . . . , n} ∧ logg y 6= logck
zk, given a definite set S =

{ti|ti < 2L∧ i ∈ {1, . . . , k− 1, k +1, . . . , n}}, then there is only at most one small

exponent tk satisfying logg y = log∏n
i=1 c

ti
i

∏n
i=1 zti

i .

38
Chapter 3. New Batch Theorems and Their Applications in Zero-Knowledge

Protocols

Proof (Lemma 3.2.6). If the lemma is incorrect, the following two equations are

satisfied simultaneously where logg y 6= logck
zk and tk 6= t′k.

logg y = log∏n
i=1 c

ti
i

n∏

i=1

zti
i

logg y = log
(
∏k−1

i=1 c
ti
i)(c

t′
k

k
)(
∏n

i=k+1 c
ti
i)

(

k−1∏

i=1

zti
i)(z

t′
k

k)(

n∏

i=k+1

zti
i)

Let y = gx, the two previous equations can be re-written as:

(

n∏

i=1

cti
i)x =

n∏

i=1

zti
i

((
k−1∏

i=1

cti
i)(c

t′
k

k)(
n∏

i=k+1

cti
i))x = (

k−1∏

i=1

zti
i)(z

t′
k

k)(
n∏

i=k+1

zti
i)

Without loss of generality, suppose t′k > tk. We can combine and simplify the

previous two equations to be c
x(t′

k
−tk)

k = z
t′
k
−tk

k . Thus, (cx
k/zk)

t′
k
−tk = 1. As

(cx
k/zk) ∈ G, t′k − tk is a factor of ord(G) if (cx

k/zk) 6= 1. Since 0 < (t′k − tk) <

ord(G), therefore (cx
k/zk) = 1 or cx

k = zk. This is contradictory to the assumption

of logg y 6= logck
zk.

Proof (Theorem 3.2.5). Lemma 3.2.6 means that among the (2L)n possible com-

binations of ti, at most (2L)n−1 of them can satisfy logg y = log∏n
i=1 c

ti
i

∏n
i=1 zti

i

when ci, zi ∈ G and logg y 6= logck
zk. Therefore, given a random small expo-

nent ti, if logg y 6= logci
zi, then logg y = log∏n

i=1 c
ti
i

∏n
i=1 zti

i is accepted with a

probability of no more than 2−L.

For i ∈ {1, 2, . . . , n}, instances of logg y = logci
zi can be batched using the

equation logg y = log∏n
i=1 c

ti
i

∏n
i=1 zti

i when ci, zi ∈ G. This is according to Theo-

rem 3.2.5. The probability that logg y = log∏n
i=1 c

ti
i

∏n
i=1 zti

i while logg y 6= logck
zk

for some k ∈ {1, 2, . . . , n} is no more than 2−L.

A Loose Theorem

As for Theorem 3.2.1, we also specify a loose version of Theorem 3.2.5. An

application of this theorem is to batch zero-knowledge proof-verification of equal-

ity of logarithms for checking valid threshold ElGamal decryptions described in

Section 3.3.2.

3.2. Batch Theorems 39

Theorem 3.2.7. Let q be a large prime, such that p = 2q + 1 is a strong prime.

The group G, of order q and generator g, is a cyclic multiplicative subgroup in Z
∗
p.

For x ∈R Z
∗
q, y = gx ∈ G, zi ∈ Z

∗
p, L is a security parameter satisfying 2L < q

and small exponents ti are random L-bit strings. If ∃k ∈ {1, 2, . . . , n} ∧ logg y 6=

logck
±zk mod p, then logg y 6= log∏n

i=1 c
ti
i

∏n
i=1 zti

i with a probability of no less than

1− 2−L.

To prove Theorem 3.2.7, we first prove the following lemma:

Lemma 3.2.8. If ∃k ∈ {1, 2, . . . , n} ∧ logg y 6= logck
±zk, given a definite set

S = {ti|ti < 2L ∧ i ∈ {1, . . . , k − 1, k + 1, . . . , n}}, then there is only at most one

small exponent tk satisfying logg y = log∏n
i=1 c

ti
i

∏n
i=1 zti

i .

Proof (Lemma 3.2.8). If the lemma is incorrect, the following two equations are

satisfied simultaneously where logg y 6= logck
±zk and tk 6= t′k.

logg y = log∏n
i=1 c

ti
i

n∏

i=1

zti
i

logg y = log
(
∏k−1

i=1 c
ti
i)(c

t′
k

k
)(
∏n

i=k+1 c
ti
i)

(

k−1∏

i=1

zti
i)(z

t′
k

k)(

n∏

i=k+1

zti
i)

Let y = gx, the two previous equations can be re-written as:

(

n∏

i=1

cti
i)x =

n∏

i=1

zti
i

((
k−1∏

i=1

cti
i)(c

t′
k

k)(
n∏

i=k+1

cti
i))x = (

k−1∏

i=1

zti
i)(z

t′
k

k)(
n∏

i=k+1

zti
i)

Without loss of generality, suppose t′k > tk. We can combine and simplify the

previous two equations to be c
x(t′

k
−tk)

k = z
t′
k
−tk

k . Thus, (cx
k/zk)

t′
k
−tk = 1. Because

(cx
k/zk) ∈ Z

∗
p, t′k − tk is a factor of p − 1 if (cx

k/zk) 6= 1. As 1 ≤ tk < t′k,

0 < (t′k − tk) < q. Hence, if t′k − tk is a factor of p− 1, (t′k − tk) = 2. Therefore,

(cx
k/zk) = 1 ∨ (cx

k/zk)
2 = 1. In short (cx

k/zk) = ±1, or cx
k = ±zk. This is

contradictory to the assumption of logg y 6= logck
±zk.

Proof (Theorem 3.2.7). Lemma 3.2.8 means that among the (2L)n possible com-

binations of ti, at most (2L)n−1 of them can satisfy logg y = log∏n
i=1 c

ti
i

∏n
i=1 zti

i

40
Chapter 3. New Batch Theorems and Their Applications in Zero-Knowledge

Protocols

when y ∈ G and logg y 6= logck
±zk. Therefore, given a random small expo-

nent ti, if logg y 6= logci
±zi, then logg y = log∏n

i=1 c
ti
i

∏n
i=1 zti

i is accepted with a

probability of no more than 2−L.

For i ∈ {1, 2, . . . , n}, instances of logg y = logci
±zi can be batched using the

equation logg y = log∏n
i=1 c

ti
i

∏n
i=1 zti

i when q is a large prime, p = 2q + 1 is a

strong prime, and g, y ∈ G according to Theorem 3.2.7. The probability that

logg y = log∏n
i=1 c

ti
i

∏n
i=1 zti

i while logg y 6= logck
±zk for some k ∈ {1, 2, . . . , n} is

no more than 2−L.

Note: A test of
(

zi

p

)

= 1 (using Legendre symbol) can be performed to

determine whether zi ∈ G or −zi ∈ G. If the test is accepted, then zi ∈ G,

otherwise −zi ∈ G.

3.2.3 Computations of N th Root

Unless specified otherwise, parameters for the following theorem are described

as follows. The values of p′ and q′ are large primes, such that both p = 2p′ + 1

and q = 2q′ + 1 are strong primes. The value of N = pq, and GCD(N, p′q′) = 1

where GCD denotes a Greatest Common Divisor. The cyclic group G is a set

of quadratic residues in Z
∗
N2 . Any multiplicative computation in this subsection

occurs in the cyclic group Z
∗
N2 with modulo N2, and i ∈ {1, 2, . . . , n}.

The following theorem is designed to batch instances of r
1
N

i into a single cal-

culation, where the values of ri ∈ ZN2 . An application of this theorem is to batch

zero-knowledge proof-verification of knowledge of roots for checking valid Paillier

re-encryptions in Section 3.3.1.

Theorem 3.2.9. Let the values of ri ∈ Z
∗
N2 , and L be a security parameter,

where 2L < min(p′, q′). Small exponents ti are random L-bit strings. If there

exists a polynomial-time deterministic algorithm which can calculate (
∏n

i=1 rti
i)

1
N

with a probability (taken over choice of ti) bigger than 2−L, then the values of r
1
N

i

can be calculated in polynomial time.

To prove Theorem 3.2.9, we first prove the following lemma:

Lemma 3.2.10. Let ri ∈ Z
∗
N2 , ti < 2L < min(p, q), and k ∈ {1, 2, . . . , n}. If

more than one possible small exponents tk can be found such that (
∏n

i=1 rti
i)

1
N

can be calculated in polynomial time, given a definite set S = {ti|ti < 2L ∧ i ∈

{1, . . . , k − 1, k + 1, . . . , n}}, then r
1
N

k can be calculated in polynomial time.

3.2. Batch Theorems 41

Proof (Lemma 3.2.10). Let the two possible small exponents be tk and t′k, where

tk 6= t′k. Suppose Γ = (
∏n

i=1 rti
i)

1
N and Γ′ = ((

∏k−1
i=1 rti

i)(r
t′
k

k)(
∏n

i=k+1 rti
i))

1
N can

be calculated in polynomial time. Without loss of generality, suppose t′k > tk.

The value of ω = (Γ/Γ′), or ωN = r
t′
k
−tk

k . According to the Eucledian algorithm,

there exist integers a and b, such that b(t′k − tk) = aN + GCD(N, t′k − tk). Note

that t′k − tk < 2L < min(p, q). Thus, GCD(N, t′k − tk) = 1 and (ωb/ra
k)

N = rk.

Since ω can be calculated in polynomial time, both values of a and b can also be

calculated in polynomial time from N and t′k− tk using the algorithm. Therefore,

N th root of rk can be calculated in polynomial time if r
1
N

i can also be calculated

in polynomial time.

Proof (Theorem 3.2.9). Assume that there exists a polynomial-time deterministic

algorithm which can calculate (
∏n

i=1 rti
i)

1
N with a probability (taken over choice of

ti) bigger than 2−L. If the assumption is incorrect, then for every possible combi-

nation of small exponents t1, t2, . . . , tk−1, tk+1, . . . , tn in {0, 2, . . . , 2L−1}n−1 there

exists at most one small exponent tk in {0, 2, . . . , 2L − 1} such that (
∏n

i=1 rti
i)

1
N

can be calculated in polynomial time. This implies the probability that the cal-

culation of (
∏n

i=1 rti
i)

1
N can be computed in polynomial time is no more than 2−L

(calculation of (
∏n

i=1 rti
i)

1
N in polynomial time is only possible with at most 2(n−1)L

combinations of ti out of 2nL possible combinations). This is a contradiction to

the assumption.

Hence, we can deduce that for every integer k ∈ {1, 2, . . . , n}, there must

exist integers tk, t
′
k ∈ {1, 2, . . . , 2

L−1}n+1 such that tk 6= t′k and the following two

equations can be computed in polynomial time.

Γ = (

n∏

i=1

rti
i)

1
N

Γ′ = ((

k−1∏

i=1

rti
i)(r

t′
k

k)(

n∏

i=k+1

rti
i))

1
N

Therefore (combining this proof with Lemma 3.2.10) for k ∈ {1, 2, . . . , n}, the

calculation of r
1
N

k can be computed in polynomial time.

For i ∈ {1, 2, . . . , n}, instances of r
1
N

i can be batched using the equation

(
∏n

i=1 rti
i)

1
N . This is according to Theorem 3.2.9. If the values of r

1
N

i is not

known, then the probability of computing (
∏n

i=1 rti
i)

1
N is negligible.

42
Chapter 3. New Batch Theorems and Their Applications in Zero-Knowledge

Protocols

3.3 Applications in Zero-Knowledge Proof - Ver-

ification Protocols

In a zero-knowledge (ZK) proof-verification protocol, a prover demonstrates to a

verifier the knowledge of a secret value satisfying a certain relation. The verifier is

not to obtain knowledge of the secret. Thus, in this scenario there are two players:

the prover P and the verifier V; and two operations: proof and verification. More

details on ZK proof-verification protocols are provided in Appendix C.

Especially in cryptographic voting protocols, a large number of inputs (bal-

lots) from voters are required to be processed by voting authorities. This pro-

cessing includes operations such as: encryption, re-encryption, decryption, or

threshold decryption. It is necessary to prove these operations (typically their

correctness) for verifiability. This is performed by using ZK proof-verification

protocol. When the proofs and their corresponding verifications are batched,

efficiency is greatly increased.

The applications provided are to batch the proofs and verifications per voting

authority (not per voter). This is because the number of voting authorities are

normally much smaller than the number of voters, e.g. in a national election. It

should be noted that straight-forward extensions of the theorems to many other

applications and schemes are not limited to electronic voting scenario.

Batch theorems provided in the previous section are extended and applied to

construct batch ZK proof and verification techniques. In the traditional batch

techniques [BGR98, HAK01], there is only one verifier, while no secret informa-

tion is involved in the verification. Our proposed techniques batch both the ZK

proofs and their corresponding verifications.

For simplicity, we describe the batch techniques for one authority. It is

straight-forward to apply the techniques for many authorities. The technique

is simply repeated by each authority.

In order to make the details as clear as possible, interactive descriptions of

the proof verifications are used in this section. In practice, the proofs are usually

applied in a non-interactive manner.

Section 3.3.1 details applications of some of the new techniques to prove and

verify valid re-encryptions. Another application to prove and verify valid decryp-

tion or threshold decryption is provided in Section 3.3.2.

3.3. Applications in Zero-Knowledge Proof - Verification Protocols 43

3.3.1 Re-Encryptions

After a party re-encrypts multiple ciphertexts (or encrypts multiple secret mes-

sages), it is necessary to prove that each re-encryption (or encryption) is valid.

Efficiency is greatly increased when the re-encryption (or encryption) proofs and

their corresponding verifications are batched.

For simplicity, only the batch technique for ZK proof-verification of valid re-

encryption is described in this subsection. For encryptions, the messages can be

regarded as a special ciphertext encrypted using the identity function. As such,

it is straight-forward to apply the technique to verification of valid encryption.

ElGamal Cryptosystem

Designing a strict batch ZK proof-verification technique to check correctness of

ElGamal re-encryptions requires the application of Theorem 3.2.1. However,

application of this theorem requires 2n instances of membership test in G for n

instances of ZK proof-verification protocols. This test is usually of high cost (of

2n full-length exponentiations). Hence it does not provide significant efficiency

improvement over individual ZK proof-verification.

We present a batch ZK proof-verification techniques for checking valid ElGa-

mal re-encryptions. It employs a loose verification based on Theorem 3.2.3.

This technique does not provide a strict validity verification, but it is suffi-

ciently strong for applications such as mix-networks (Chapter 5). Unless specified

otherwise, all multiplications in this subsection are computed in the group of Z
∗
p.

For i ∈ {1, 2, . . . , n}, suppose there are n ciphertexts ci = (αi, βi). These ci-

phertexts are re-encrypted to c′i = (α′
i, β

′
i). According to Theorem 3.2.1, loose ver-

ification of correct re-encryptions of ElGamal ciphertexts (from one re-encryption

authority - the prover) can be batched using SE test. This is by using the Chaum-

Pedersen [CP93] ZK proof of equality of discrete logarithm (Appendix C.3) as:

logg

n∏

i=1

(

±
α′

i

αi

)ti

= logy

n∏

i=1

(

±
β ′

i

βi

)ti

(3.3)

The interactive batch ZK proof-verification protocol for this scenario is shown

in Figure 3.3. This protocol can be made non-interactive. This is by using a

hash function, employing the well-known Fiat-Shamir heuristic [FS86] using two

collision-resistant hash functions H1 and H2. The range of H1 is {0, 1}L for

44
Chapter 3. New Batch Theorems and Their Applications in Zero-Knowledge

Protocols

To prove and verify: logg±(α′
i/αi) = logy±(β ′

i/βi), for i ∈ {1, 2, . . . , n}.

Prover Verifier

τi ∈R Zq

γi,1 = gτi mod p
γi,2 = yτi mod p

γi,1,γi,2

−−−−−→
ti ∈R {1, 2, . . . , 2

L}
u ∈R Zq

ti,u
←−−−−−

wi = τi − utir
′
i mod q

wi

−−−−−→
∏n

i=1 γi,1
?
= g(

∑n
i=1 wi)

(
∏n

i=1(α
′/α)ti)u mod p

∏n
i=1 γi,2

?
= y(

∑n
i=1 wi)

(
∏n

i=1(β
′/β)ti)u mod p

Figure 3.3: A batch ZK proof-verification technique for verifying valid ElGamal
ciphertext re-encryptions.

producing the small exponents ti, and the range of H2 is Zq for producing the

challenge u. The small exponents and challenge are generated as follows:

ti = H1(γi,1, γi,2, g, y, (α′
i/αi), (β

′
i/βi))

u = H2(g, y, {γi,1, γi,2, (α
′
i/αi), (β

′
i/βi)})

According to Theorem 3.2.3, the above batch ZK proof-verification technique

guarantees that:

logg±

(
α′

i

αi

)

= logy±

(
β ′

i

βi

)

(3.4)

Equivalently D(c′i) = D(ci) OR D(c′i) = g′qD(ci), where D denotes an ElGamal

decryption function for the corresponding ciphertext.

This loose verification technique does not completely guarantee correct re-

encryption. Namely, unless ±(α′
i/αi) ∈ G ∧ ±(β ′

i/βi) ∈ G, the batch verification

can only be passed with negligible probability. Thus, the batch verification result

is not yet satisfactory as the recovered secret message may be incorrect: ±si ∈ G.

To fix this, the decryption requires one extra step, i.e. multiplying si with

(−1) when si /∈ G. After si is recovered through the decryption procedure, we

3.3. Applications in Zero-Knowledge Proof - Verification Protocols 45

test if
(

si

p

)

= 1 (using the Legendre symbol). If it is accepted, si ∈ G. Otherwise,

si = −si mod p. The additional cost is only one exponentiation per ciphertext.

This batch technique is sufficient in some applications where there are many

re-encryption authorities (provers).

Paillier Cryptosystem

Paillier cryptosystem (Appendix B.2) also allows re-encryption of its ciphertext.

For i ∈ {1, 2, . . . , n}, suppose there are n ciphertexts ci each containing a secret

message si. The ciphertexts ci can be re-encrypted using new random values r′i as

c′i = cir
′N
i mod N2. Theorem 3.2.9 is developed using the parameters of Paillier

cryptosystem. Thus, the theorem is suitable to batch verify re-encryptions of

these Paillier ciphertexts.

According to Theorem 3.2.9, verification of correct re-encryptions of Paillier

ciphertexts (from one re-encryption authority - the prover) can be batched using

SE test using Guillou-Quisquater [GQ88] ZK proof of knowledge of root (Ap-

pendix C.2) as:
(∏n

i=1 c′tii
∏n

i=1 cti
i

) 1
N

mod N2 (3.5)

The interactive batch ZK proof-verification protocol for this scenario is shown

in Figure 3.4. This protocol can be made non-interactive. This is by using a

hash function, employing the well-known Fiat-Shamir heuristic [FS86] using two

collision-resistant hash functions H1 and H2. The range of H1 is {0, 1}L for

producing the small exponents ti, and the range of H2 is ZN for producing the

challenge u. The small exponents and challenge are generated as follows:

ti = H1(γi, N, (c′i/ci))

u = H2(N, {γi, (c
′
i/ci)})

According to Theorem 3.2.9, the above batch ZK proof-verification technique

guarantees knowledge of the new random values r′i by proving the knowledge of

(
∏n

i=1 c′tii /
∏n

i=1 cti
i)

1
N mod N2. This proves correct re-encryptions of Paillier ci-

phertexts. Consequently, decryptions of the re-encrypted ciphertexts corresponds

to decryptions of the original ciphertexts D(c′i) = D(ci), where D denotes a Pail-

lier decryption function for the corresponding ciphertext.

46
Chapter 3. New Batch Theorems and Their Applications in Zero-Knowledge

Protocols

To prove and verify proof of knowledge of (c′i/ci)
1
N mod N2,

for i ∈ {1, 2, . . . , n}.

Prover Verifier

τi ∈R (1, N2 − 1)
γi = τN

i mod N2

γi

−−−−−→
ti ∈R {1, 2, . . . , 2

L}
u ∈R Z

∗
N

ti,u
←−−−−−

wi = τi(
∏n

i=1 r′tii)−u mod N2

wi

−−−−−→
∏n

i=1 γi
?
=
(∏n

i=1 c
′ti
i

∏n
i=1 c

ti
i

)u

(
∏n

i=1 wi)
N mod N2

Figure 3.4: A batch ZK proof-verification technique for verifying valid Paillier
ciphertext re-encryptions.

3.3.2 (Centralised) Decryptions and Threshold Decryp-

tions

After a party (a decryption authority) decrypts multiple ciphertexts on his/her

own (we name this centralised decryptions), it is necessary to prove that each

of the decryptions is valid. The recovered plaintexts must correspond to those

contained in the decrypted ciphertexts.

This is also true for multiple parties (decryption authorities) cooperatively

decrypting multiple ciphertexts. Each partial decryption must be proven to be

valid.

The computational cost of individual ZK proof-verification protocol for each

decryption or partial decryption is high. Efficiency is greatly increased when a

batch technique is applied for this scenario.

Table 3.1 summarises the applicability of the batch theorems to either cen-

tralised or threshold decryption of ElGamal and Paillier cryptosystems. We de-

scribe one batch technique for ZK proof-verification of valid ElGamal decryptions

(centralised, non-threshold) and describe the rest of the techniques for threshold

decryptions based on ElGamal and Paillier cryptosystems.

3.3. Applications in Zero-Knowledge Proof - Verification Protocols 47

Table 3.1: Applicability of batch to different types of decryption.

Decryption type ElGamal Cryptosystem Paillier Cryptosystem

Centralised yes no
Threshold yes yes

ElGamal Cryptosystem (Centralised and Threshold)

Correctness proofs and verifications of both centralised and threshold decryp-

tion for ElGamal cryptosystem can be batched. Theorem 3.2.5 is applicable in

both the centralised and threshold decryptions scenarios, while Theorem 3.2.7

is also applicable in the threshold decryptions scenario. In this subsection, all

multiplicative computations are of modulo p.

Centralised Decryptions: Designing a strict batch ZK proof-verification

technique to check correctness of centralised decryptions for ElGamal cryptosys-

tem requires the application of Theorem 3.2.5 (strict). However, application of

this theorem requires 2n instances of membership test in G for n instances of ZK

proof-verification protocols. This test is usually of high cost (of 2n full-length

exponentiations). To implement efficient membership test in G, parameters and

algorithm for the ElGamal cryptosystem are modified as follows:

• Key generation:

The private key x is chosen at random from Zq. The value of g is randomly

chosen as a generator of G. The public parameters (g, y = gx) are published.

• Encryption:

A message s ∈ Z
∗
p is encrypted using a random value r ∈ Zq as c = (α, β) =

(gr, sy2r).

• Re-encryption:

A ciphertext is re-encrypted using a new random value r′ ∈ Zq as c′ =

(α′, β ′) = (αgr′, βy2r′).

• Decryption:

The original message is reconstructed from the ciphertext c as s = (β/s′ 2),

where s′ = αx. Reconstruction of the original message from the re-encrypted

ciphertext follows accordingly.

48
Chapter 3. New Batch Theorems and Their Applications in Zero-Knowledge

Protocols

For i ∈ {1, 2, . . . , n}, suppose there are n ciphertexts ci = (αi, βi), decrypted

to si = (βi/s
′ 2
i). Theorem 3.2.5 is suitable to batch verify centralised decryptions

of these ElGamal ciphertexts as:

1. For this modified version of ElGamal, G is a cyclic subgroup of Z
∗
p.

2. The public parameters of g ∈ G and y ∈ G are publicly verifiable by testing
(

g
p

)

= 1 and
(

y
p

)

= 1 (using the Legendre symbol as in [HAK01]). This

proves g and y to be generators of G, if g, y 6= 1.

3. The values of α2
i and s′ 2

i in the verification equation logg y = logα2
i
s′ 2

i are

explicitly in G.

4. The small exponents ti can be chosen at random while satisfying ti < 2L <

q.

According to Theorem 3.2.5, verification of correct centralised decryptions of

ElGamal ciphertexts (from one decryption authority - the prover) can be batched

using SE test using Chaum-Pedersen ZK proof of equality of discrete logarithm

(Appendix C.3) as:

logg y = log
(
∏n

i=1 α
ti
i)2

(

n∏

i=1

s′ ti
i)2 (3.6)

The interactive batch ZK proof-verification protocol for this scenario is shown

in Figure 3.5. This protocol can be made non-interactive. This is by using a

hash function, employing the well-known Fiat-Shamir heuristic [FS86], and the

challenge u using the collision-resistant hash function H, where H : (0, 1)∗ → Zq

as follows:

u = H(γ1, γ2, g, y, {αi, s
′
i, ti})

Producing the small exponents non-interactively requires a different scenario.

The decryption authority (the prover) is required to commit to the small expo-

nents prior to receiving the ciphertexts. This is as follows:

1. Prior to receiving the ciphertexts, the decryption authority (the prover) se-

lects initial small exponents t′i ∈ {1, 2, . . . , 2
L} at random. Using a suitable

commitment function, the small exponents are committed and published,

e.g. using a hash function with a range of {0, 1}L as {H(t′i)}.

3.3. Applications in Zero-Knowledge Proof - Verification Protocols 49

To prove and verify: logg y = logα2
i
s′ 2

i , for i ∈ {1, 2, . . . , n}.

Prover Verifier

ti ∈R {1, 2, . . . , 2
L}

ti
←−−−−−

τ ∈R Zq

γ1 = gτ mod p
γ2 = (

∏n
i=1 αti

i)2τ mod p
γ1,γ2

−−−−−→
u ∈R Zq

u
←−−−−−

w = τ − ux mod q
w

−−−−−→
γ1

?
= gwyu mod p

γ2
?
= (
∏n

i=1 αti
i)2w

(
∏n

i=1 s′ ti
i)2u mod p

Figure 3.5: A batch ZK proof-verification technique for verifying valid centralised
decryptions of ElGamal ciphertexts.

2. The decryption authority then receives and produces their values of s′i.

3. The small exponents ti are then calculated using a collision-resistant hash

function as ti = H(t′i, s
′
i).

Note that the use of digital signature on the published values is required to

authenticate them. The rest of the non-interactive batch ZK proof-verification

protocol follows from the interactive one, with an additional verification for the

small exponents.

According to Theorem 3.2.5, the above batch ZK proof-verification technique

guarantees that logg y = logα2
i
s′ 2

i . Equivalently D(ci) are performed using the

corresponding private key x, where D denotes an ElGamal decryption function

for the corresponding ciphertext.

Threshold Decryptions: Pedersen [Ped92] presented a threshold ElGamal

signature scheme. This scheme can be used for threshold decryption. This scheme

is recalled in Appendix B.1.2.

Using the modification as in the above centralised decryptions, it is straight-

forward to apply the centralised decryptions batch technique for a threshold de-

50
Chapter 3. New Batch Theorems and Their Applications in Zero-Knowledge

Protocols

P1 P2 Pj Pm

c1 −→ z1,1 zi,2 · · · z1,j · · · z1,m −→ s1

c2 −→ z2,1 z2,2 · · · z2,j · · · z2,m −→ s2

...
...

...
...

...
...

ci −→ zi,1 zi,2 · · · zi,j · · · zi,m −→ sj

...
...

...
...

...
...

cn −→ zn,1 zn,2 · · · zn,j · · · zn,m −→ sm

Figure 3.6: A threshold decryption scenario of m participants {Pj}, n ciphertexts
{ci}, nm partial decryptions {zi,j}, recovering n secret messages {si}.

cryptions scenario. This is based on Theorem 3.2.5 (strict).

However, since threshold decryptions are performed in this scenario, the modi-

fication is not necessary. A loose batch ZK proof-verification technique is sufficient

with a final check at the end. This is based on Theorem 3.2.7.

For j ∈ {1, 2, . . . , m}, suppose a threshold decryption authority (the prover)

has a private key share xj and the corresponding public verification key vj. For

i ∈ {1, 2, . . . , n}, there are n ciphertexts ci = (αi, βi). The threshold decryption

authority compute his/her corresponding partial decryptions of zi,j = α
xj

i . Fig-

ure 3.6 offers an illustration of a threshold decryption scenario. For simplicity,

we present a batch technique for one threshold decryption authority (the prover).

The index j = 1 is omitted from our description, except to distinguish the dif-

ferent private key share xj, its corresponding public verification key vj, and the

partial decryption of a particular authority zi,j.

According to Theorem 3.2.7, verification of correct threshold decryptions of

ElGamal ciphertexts (from one decryption authority - the prover) can be batched

using SE test using Chaum-Pedersen ZK proof of equality of discrete logarithm

(Appendix C.3) as:

logg(vj) = log∏n
i=1 α

ti
i
(

n∏

i=1

zti
i,j) (3.7)

The interactive batch ZK proof-verification protocol for this scenario is shown

in Figure 3.7. This protocol can be made non-interactive as in the centralised

decryption scenario (fixing the small exponents).

Another method to produce the small exponents by cooperation of the thresh-

old decryption authorities is as below (we use the index j ∈ {1, 2, . . . , m} to dis-

tinguish the different authorities in the description below). This is also shown in

3.3. Applications in Zero-Knowledge Proof - Verification Protocols 51

To prove and verify: logg(vj) = logαi
±zi,j, for i ∈ {1, 2, . . . , n}.

Prover Verifier

ti ∈R {1, 2, . . . , 2
L}

ti
←−−−−−

τ ∈R Zq

γ1 = gτ mod p
γ2 = (

∏n
i=1 αti

i)τ mod p
γ1,γ2

−−−−−→
u ∈R Zq

u
←−−−−−

w = τ − uxj mod q
w

−−−−−→
γ1

?
= gwvu

j mod p

γ2
?
= (
∏n

i=1 αti
i)w

(
∏n

i=1 zti
i,j)

u mod p

Figure 3.7: A batch ZK proof-verification technique for verifying valid threshold
decryptions of ElGamal ciphertexts.

Figure 3.8.

1. For j ∈ {1, 2, . . . , m}, each authority (prover) Pj selects the initial small

exponents t′j ∈ {1, 2, . . . , 2
L} at random. Using a suitable commitment

function, the small exponents are committed and published, e.g. using a

hash function with a range of {0, 1}L as {H(t′j)}.

2. Each authority Pj then produces and publishes their partial decryptions

zi,j = α
xj

i,j.

3. The initial small exponents published in the first step is then revealed by

publishing them.

4. The small exponents ti are then calculated using a collision-resistant hash

function as ti = H({t′j, αi,j}, i).

Note that the use of digital signature on the published values is required to

authenticate them. Non-interactively each threshold decryption authority uses

the same small exponents ti as opposed to using different small exponents values

ti,j provided by the verifier for each authority in the interactive version.

52
Chapter 3. New Batch Theorems and Their Applications in Zero-Knowledge

Protocols

P1 P2 · · · Pj · · · Pm

↓ ↓ ↓ ↓
H(t′1) H(t′2) · · · H(t′j) · · · H(t′m)
↓ ↓ ↓ ↓

zi,1 zi,2 · · · zi,j · · · zi,m

↓ ↓ ↓ ↓
t′1 t′2 · · · t′j · · · t′m

tj = H({t′j, αi,j}, i)

Figure 3.8: A technique to produce small exponents non-interactively.

This technique (loose) does not completely guarantee correct threshold de-

cryptions. Namely, unless zi,j = ±α
xj

i , the batch verification can only be passed

with negligible probability. Thus, the batch verification result is not yet satisfac-

tory as the recovered secret message may be incorrect: ±si ∈ G. To fix this, the

decryption requires one extra step, i.e. multiplying si with (−1) when si /∈ G.

After si is recovered through the combining (of partial decryptions) procedure,

we test if
(

si

p

)

= 1 (using the Legendre symbol). If it is accepted, si ∈ G.

Otherwise, si = −si mod p. The additional cost is only one exponentiation per

ciphertext. This batch technique is sufficient in some applications where there

are many threshold decryption authorities (provers).

Paillier Cryptosystem (Threshold)

Damg̊ard and Jurik [DJ00] improved the threshold version of Paillier cryptosys-

tem by Fouque et al. [FPS00]. This scheme is recalled in Appendix B.2.2.

For j ∈ {1, 2, . . . , m}, suppose a threshold decryption authority (the prover)

has a private key share xj and the corresponding public verification key vj. For

i ∈ {1, 2, . . . , n}, there are n ciphertexts ci. The threshold decryption authority

compute his/her corresponding partial decryptions of zi,j = c2∆xj , where ∆ = m!.

Theorem 3.2.5 (strict) is suitable to batch verify threshold decryptions for Paillier

cryptosystem as:

1. For threshold version of Paillier, G is a set of quadratic residues in Z
∗
N2 with

order MN = pqp′q′, the smallest factor of which is min(p, q, p′, q′).

2. The value of v is trusted to be a generator of squares in Z
∗
N2 . As vj is

3.3. Applications in Zero-Knowledge Proof - Verification Protocols 53

To prove and verify: logv(vj) = logc4
i
zi,j, for i ∈ {1, 2, . . . , n}.

Prover Verifier

ti ∈R {1, 2, . . . , 2
L}

ti
←−−−−−

τ ∈R ZN

γ1 = vτ mod N2

γ2 = (
∏n

i=1(c
4
i)

ti)τ mod N2

γ1,γ2

−−−−−→
u ∈R [0, A)

u
←−−−−−

w = τ − uxj mod q
w

−−−−−→
γ1

?
= vwvu

j mod N2

γ2
?
= (
∏n

i=1(c
4
i)

ti)w

(
∏n

i=1(z
2
i,j)

ti)u mod N2

Figure 3.9: A batch ZK proof-verification technique for verifying valid threshold
decryptions of Paillier ciphertexts.

produced using v, and z2
i,j are explicitly squared by the verifier, thus vj, zi,j ∈

G (a set of quadratic residues in Z
∗
N2).

3. The values of c4
i is a square, and v is trusted to be squares in Z

∗
N2 chosen by

the trusted dealer. Therefore, both c4
i , v ∈ G. Thus, c4

i and v are generators

of G with a very large probability (ord(MN)
MN

).

4. The small exponents ti can be chosen at random while satisfying ti < 2L <

min(p, q, p′, q′).

According to Theorem 3.2.5, verification of correct threshold decryptions of

Paillier ciphertexts (from one decryption authority - the prover) can be batched

using SE test using Chaum-Pedersen ZK proof of equality of discrete logarithm

(Appendix C.3) as:

logv(vj) = log∏n
i=1(c

4
i)ti (

n∏

i=1

(z2
i,j)

ti) (3.8)

The interactive batch ZK proof-verification protocol for this scenario is shown

in Figure 3.9. Where A× ord(G) is much smaller than N , the challenge u must

be chosen in [0, A) such that the shared secret key xi is statistically hidden in the

54
Chapter 3. New Batch Theorems and Their Applications in Zero-Knowledge

Protocols

response w as in [PS99, BFP+01]. Analysis in [PS99] suggests the minimum size

of the challenge A to be 80 bits, and 128 bits for more secure applications.

Using a hash function and employing the well-known Fiat-Shamir heuristic,

the protocol is made non-interactive. The prover produces the small exponents

tj, and challenge u very similar to the non-interactive protocol explained in the

previous (threshold decryptions for ElGamal cryptosystem) subsection.

Unlike in the previous subsection, extra verification to ensure that partial

decryptions passing the batch verification are not −zi,j is not necessary. This

is because partial decryptions zi,j are explicitly squared in the share combining

phase to reconstruct the secret message.

According to Theorem 3.2.5, the above batch ZK proof-verification technique

guarantees that logv(vj) = logc4i
zi,j. Equivalently, partial decryptions zi,j are

computed using the corresponding shared private key xj.

3.4 Analysis

This section offers security and efficiency analysis of the theorems and techniques

presented in this thesis.

3.4.1 Security

It is straight-forward that each of the theorems and techniques in this chapter is

complete. This is because if the batch verification equations in the batch ZK

proof-verification protocols are correct, they output positive results.

Batch theorems in this chapter are applied using standard three-move ZK

proof-verification protocols, known as Σ-protocol [CD95]. Hence, the techniques

are correct, specially sound, and honest-verifier ZK. The proof of sound-

ness for the batching operation is proven in the respective theorems. This is

straight-forward for batch re-encryptions techniques.

The batch techniques for centralised decryptions and threshold decryptions

are very similar. They are based on Chaum-Pedersen’s zero-knowledge proof of

equality of discrete logarithms protocol. We slightly modify the protocol where

the verifier randomly selects the small exponents at the beginning of the protocol

run. We discuss the soundness of these particular techniques below. A short

discussion on error probability is also provided at the end of this subsection.

3.4. Analysis 55

Soundness

The proof of soundness for the batch techniques for centralised decryptions and

threshold decryptions follows from Chaum-Pedersen’s scheme as they are essen-

tially the same. The small exponents ti are chosen randomly in a very similar

manner (ti < 2L) to choosing the random challenge.

Given the same random small exponents and commitments, no matter which

challenge is chosen, the prover reveals no other information than the fact that the

discrete logarithms of the verification key to the base of verification base equals

the discrete logarithms of the product of the decryption shares to the base of the

product of the ciphertexts (Equation 3.6, 3.7, 3.8).

In the interactive version, the probability for a prover to cheat is negligible.

It is not feasible to forge the decryption shares where the verification is accepted

without the knowledge of the share decryption key. Also, where the prover in-

deed holds the decryption key share, the probability of producing bad decryption

shares where the verification is accepted is also negligible. This is because the

small exponents and challenge are chosen randomly by the verifier. For example,

in batching the verification of correct ElGamal decryption shares, the probability

of a prover guessing a correct random small exponent and challenge, and the ver-

ification is accepted is 2−LC−1 (where C denotes the choice of possible challenge

selected - accordingly to each batch technique).

In the non-interactive version, we also follow Chaum-Pedersen’s protocol with

a slight addition in choosing the random small exponents based on the coin-

flipping protocol. On one version of the non-interactive protocol, a hash function

can be used with the input (s′i or zi,j, accordingly) chosen by a single prover

to compute the small exponents if it is guaranteed that the ciphertexts are not

received prior to the commitment phase.

Otherwise, we avoid the use of a hash function with the input (s′i or zi,j, ac-

cordingly) chosen by a single prover to compute the small exponents. This is

because it might be possible for a dishonest participant to try fixing the corre-

sponding values (s′i or zi,j, accordingly) and produce the small exponents, such

that the verification is accepted and the share combining fails. A distributed

source of randomness (based on the coin-flipping protocol) is required as the

small exponents are only of length L, where L is small.

The probability of a prover forging the corresponding values (s′i or zi,j, ac-

cordingly) and fixing the small exponent share is negligible. This is because the

56
Chapter 3. New Batch Theorems and Their Applications in Zero-Knowledge

Protocols

prover is required to commit to the random share first before publishing the corre-

sponding values, and the small exponents are produced by hashing the combined

random shares (common reference string) of all the participants. As a collision-

resistant hash function is used to produce the small exponents, a prover can only

attempt to forge his decryption share if all the participants collude.

The rest of the protocol is a Σ-protocol [CD95], and thus has a special sound-

ness property as proven in [CD95]. The proof of soundness for the batching

operation is proven in the respective theorems.

Error probability

In any of the batch techniques presented, the probability that a dishonest au-

thority (prover) is discovered is overwhelmingly large for the following reasons.

• As indicated in the theorems, the probability that the batch verification

equation is satisfied given incorrect parameters is 2−L.

• As the prover has to guess the challenge u at random, the probability that

the batch verification test is accepted where the batch verification equation

is not satisfied is C−1, where C denotes the choice of possible challenge

selected - accordingly to each batch technique.

• Therefore, the probability that the batch verification is not accepted given

incorrect share decryption is (1− 2−L)(1− C−1).

As C−1 is very small, e.g. 2−1024, the probability that a dishonest participant

being undetected given incorrect share decryption(s) is approximately 2−L.

3.4.2 Efficiency

Efficiency improvements using the batch theorems are summarised in Table 3.2

based on the number of modular multiplications required. In the table, CBL

stands for common-base logarithm and CEL stands for common-exponent loga-

rithm. The figures in the table show that all the applications of the batch theo-

rems greatly reduce the computational cost required compared to when batch is

not applied.

We follow Bellare et al. [BGR98] in measuring the cost of our algorithms,

where ExpCostn(log2 q) denotes the number of modular multiplications required

3.4. Analysis 57

Table 3.2: Efficiency improvement for applications using the batch theorems.

Verification Computational cost
(Theorem) without batch with batch

Equality of 2nExpCost(log2 ord(G)) 2nExpCost(log2 ord(G))
CBL (strict) +n +n + 1
Equality of 2nExpCost(log2 q) 2ExpCost(log2 q)
CBL (loose) +n +n + 1

Prover Equality of 2nExpCost(log2 ord(G)) 2nExpCost(log2 ord(G))
CEL (strict) +n +ExpCostn(L) + 1
Equality of 2nExpCost(log2 q) 2nExpCost(log2 q)
CEL (loose) +n +ExpCostn(L) + 1
Knowledge 2nExpCost(log2 N) 2ExpCost(log2 N)
of root +n +ExpCostn(L) + 1
Equality of 4nExpCost(log2 ord(G)) 4ExpCost(log2 ord(G))
CBL (strict) +2n +2ExpCostn(L) + 2
Equality of 4nExpCost(log2 q) 4ExpCost(log2 q)
CBL (loose) +2n +2ExpCostn(L) + 2

Verifier Equality of 4nExpCost(log2 ord(G)) 4ExpCost(log2 ord(G))
CEL (strict) +2n +2ExpCostn(L) + 1
Equality of 4nExpCost(log2 q) 4ExpCost(log2 q)
CEL (loose) +2n +2ExpCostn(L) + 1
Knowledge 2nExpCost(log2 N) 2ExpCost(log2 N)
of root +n +ExpCostn(L) + 1

to compute n exponentiations in a common base with different exponents of the

same bit-length of q.

From Table 3.2, the batch technique cost one additional modular exponen-

tiation for proving equality of common base logarithms on both the strict and

loose versions. However, for the rest of the operations shown in the table, it is

clear that the batch technique offers an efficiency improvement. The cost of n

modular exponentiations without batch (third column in the table) is replaced

by ExpCostn(L) + 1 modular exponentiations by using batch (fourth column in

the table).

Batching offers a performance increase in many cryptographic protocols. The

increase is proportional to the number of instances batched. The more instances

batched, the efficiency improvement increases accordingly.

58
Chapter 3. New Batch Theorems and Their Applications in Zero-Knowledge

Protocols

3.5 Summary

Five new batch theorems are presented in this chapter. They are more complex

and versatile than realised in previous works [BGR98, HAK01, SK95]. Issues

concerning group memberships in previous works are efficiently addressed in the

batch theorems and their corresponding applications.

The theorems are extended and applied into batch techniques for batching

zero-knowledge (ZK) proof-verification protocols related to typical operations in

ElGamal and Paillier cryptosystems. These operations are encryptions and de-

cryptions.

As these operations are widely applied in cryptographic schemes, the tech-

niques developed are beneficial to improve the efficiency of such schemes. Detailed

applications of the batch theorems into the corresponding batch techniques are

provided. It should be straight-forward to modify existing schemes to employ our

batch techniques and greatly increase their efficiency.

The techniques were developed with specific applications to cryptographic

voting schemes. This is introduced at the beginning of this chapter, and is

shown in later chapters, especially in Chapter 5. As described in Chapter 2.8,

homomorphic-encryption and mix-network are two main frameworks in crypto-

graphic voting protocol. Two mix-network schemes employing the batch tech-

niques are presented in Chapter 5.

The next chapter discusses the use of homomorphic encryption in crypto-

graphic voting protocol.

Chapter 4

Homomorphic Encryption based

Voting

In a cryptographic voting protocol, homomorphic encryption is one of the fun-

damental primitives employed to satisfy the privacy requirement. That is, the

voter-vote relationships must be kept private. A particular vote cast must not

be linkable to its corresponding vote. The voting result is revealed, while each

individual ballot is never opened. A particular voter can only be linked to a par-

ticular ballot, where the vote contained in the ballot is kept private to the voter.

This is discussed in Chapter 2.8.

This chapter offers research in homomorphic encryption based voting. Back-

ground information for homomorphic voting is presented. A generic description of

the homomorphism property in a cryptosystem is provided. Two brief examples

of homomorphic encryption schemes and their use in voting are recalled.

We present a new voting scheme based on a multiplicative homomorphism

property. It is an alternative to the commonly used additive homomorphic

voting protocols with similar security and a comparable (or better) efficiency.

The multiplicative homomorphic voting scheme has been previously published

in [PAB+04a].

A preferential voting system case study using a homomorphic encryption

scheme is also discussed in this chapter. The Australian House of Representa-

tives described in Chapter 2.3.1 is used as a reference for the preferential voting

system. This case study has been previously published in [ABDV03].

59

60 Chapter 4. Homomorphic Encryption based Voting

4.1 Background

Homomorphic voting schemes are efficient when the number of candidates or

choices is small. However, homomorphic voting has a drawback where each vote

must be verified to be valid. With no vote validity check, correctness of the

tallying cannot be guaranteed. When the number of candidates or choices is large

(e.g. in a preferential voting), computational and communicational cost for the

proof and verification of vote validity is so high that homomorphic voting becomes

less efficient than mix voting. Hence, it is widely believed that homomorphic

voting is only suitable for elections with a small number of candidates or choices

(e.g. “YES/NO” voting).

This section contains background information for this chapter. The concept

of homomorphic encryption is explained. Two examples of additive homomor-

phic cryptosystems popularly used in the literature - ElGamal and Paillier - are

recalled.

4.1.1 Homomorphic Encryption

Homomorphic encryption is generically defined as below.

Definition 2. Let E be a public encryption function, s a secret message, and

D() the corresponding function. A cryptosystem has a homomorphism property

when E(s1) � E(s2) = E(s1 ⊕ s2), where � and ⊕ are some binary operators.

This is also known as homomorphic encryption.

If we observe the left hand side of the above equation, it is evident that the

ciphertexts of individual messages can be combined using a binary operator, �.

The right hand side of the equation suggests that such a combining operation will

result in another ciphertext, the decryption of which will result in a combination

of the individual votes, s1 ⊕ s2. Note that the binary operators � and ⊕ may

be equal. Thus, it will be possible to compute the combination of the individual

messages without having to retrieve the individual messages themselves. Thereby,

the individual messages can remain confidential.

For such a conclusion to be valid, the following assumption should be satisfied.

Assumption 1. If the decryption authority can decrypt the combination cipher-

text E(s1 ⊕ s2), then the decryption authority can also decrypt the individual

ciphertexts, namely E(s1) and E(s2). If the decryption authority decrypts the

4.1. Background 61

individual ciphertexts, then the confidentiality of the individual message is com-

promised. Therefore, the decryption authority must be trusted not to decrypt the

individual ciphertexts.

Such an assumption can be satisfied by designing a threshold decryption func-

tion (refer to Appendix B), which can be informally defined as follows:

Definition 3. The ability to compute D is distributed among a set of decryption

authorities such that a threshold of the decryption authorities can decrypt any

ciphertext by co-operating with each other. Therefore, a threshold of the decryp-

tion authorities are trusted not to co-operate in the decryption of the individual

ciphertexts.

In cryptographic voting protocols, the additive homomorphism property is

commonly used in the literature. By using a cryptosystem with such a property,

a combination of encrypted votes (ballots) yields accumulation of votes. The

voting result is then obtained from the accumulation of votes, while no individual

ballot is opened and the corresponding individual vote remains a secret.

4.1.2 A Modified ElGamal Cryptosystem

The ElGamal cryptosystem (see Appendix B.1) has a natural multiplicative ho-

momorphism property. For i ∈ {1, 2, . . . , n}, n ciphertexts are combined as the

following equation.
n∏

i=1

ci =

((
n∏

i=1

αi

)

,

(
n∏

i=1

βi

))

(4.1)

The corresponding decryption yields a combination of the individual messages as

the following equation, where x denotes the private decryption key.

n∏

i=1

si =

∏n
i=1 βi

(
∏n

i=1 αi)
x (4.2)

Where D denotes a corresponding decryption function, the above equation can

also be written as
∏n

i=1 D(ci) = D(
∏n

i=1 ci).

For the ElGamal cryptosystem to produce an accumulation of the messages

(additive homomorphism) instead, the message structure for encryption is slightly

modified. A common generator g1 for the group G is published. A message s

is encrypted using a value r ∈ Zq selected at random, using g1, as c = (α, β) =

62 Chapter 4. Homomorphic Encryption based Voting

(gr, gs
1y

r), where y = gx and g is also a public generator of the group G. This

property was used in the scheme by Cramer et al. [CFSY96].

After the modification, combination of the ciphertexts yields accumulation of

the individual messages. The ElGamal cryptosystem is now additive homomor-

phic. For i ∈ {1, 2, . . . , n}, n ciphertexts are combined as in the original ElGamal

cryptosystem (Equation 4.1). The corresponding decryption now yields an ac-

cumulation of the individual messages using a discrete logarithm (DL) search as

the following equation, where DL denotes a discrete logarithm search function.

DL

(∏n
i=1 βi

(
∏n

i=1 αi)
x

)

= DL

(
n∏

i=1

gsi

1

)

= DL
(

g
∑n

i=1 si

1

)

=

n∑

i=1

si

Recovering the accumulation of individual messages requires a discrete loga-

rithm (DL) search. The search may be computationally expensive if the number

of ciphertexts is large. The cost of such a search may be lowered by lowering

the number of ciphertexts to be decrypted. Instead of decrypting a combination

of the entire ciphertexts at once, the ciphertexts can be grouped into smaller

number for decryptions.

A very simple “YES/NO” voting scenario using this setting (this is the sce-

nario in [CFSY96], although extensions to a 1-out-of-K voting scenario are pos-

sible) is as follows. Let 1 denote a “YES” vote, and −1 denote a “NO” vote.

Each voter encrypts either a 1 or a −1, and submits the corresponding bal-

lots and a non-interactive zero-knowledge proof of correct ballot construction

(i.e. the ballot must only contain either a 1 or a -1) by proving the predicate

logg(α) = logy(β) ∨ logg(α) = logy(−β) (later we show a more complex protocol

in Figure 4.2).

The proofs are verified, and valid ballots are combined. Decryption of the

valid ballots (with the DL search) yields either a positive (more 1 than −1 votes)

or negative number (more −1 than 1 votes). If the result is a positive, than

“YES” wins, otherwise “NO” wins.

Paillier cryptosystem, on the other hand, has a natural additive homomor-

phism property. A voting scheme based on this cryptosystem is recalled in the

4.1. Background 63

∑n
i=1 Cki

︷ ︸︸ ︷

|

dlog2 ne
︷ ︸︸ ︷

00 · · ·00
︸ ︷︷ ︸

k=K

|

dlog2 ne
︷ ︸︸ ︷

00 · · ·00
︸ ︷︷ ︸

k=K−1

| · · · |

dlog2 ne
︷ ︸︸ ︷

00 · · ·00
︸ ︷︷ ︸

k=2

|

dlog2 ne
︷ ︸︸ ︷

11 · · ·11
︸ ︷︷ ︸

k=1

|

dlog2 ne
︷ ︸︸ ︷

00 · · ·00
︸ ︷︷ ︸

k=0

|

Figure 4.1: A pictorial representation of the accumulation of homomorphic votes,
where all voters selects the same vote of C1, namely ki = 1.

next subsection.

4.1.3 The Scheme by Baudron et al.

The Paillier cryptosystem (refer to Appendix B.2) has a natural additive homo-

morphism property. Decryption of a combination of ciphertexts yields an accu-

mulation of the messages. It is very straight-forward to adapt the cryptosystem

for a voting system.

Baudron et al. [BFP+01] proposed a novel technique for the design of cryp-

tographic voting protocols. They assumed a 1-out-of-K voting system and pre-

sented arguments for the efficiency of their proposal. The message structure is

modified as to allow a summation register for each candidate or choice.

Let n be the maximum number of voters in a particular constituency or dis-

trict. The voting authorities compute a system constant C = 2dlog2 ne. If there

are K candidates or choices in voting, the authorities assign a unique number,

k ∈ {1, 2, . . . , K!}, to every candidate or choice.

The rest of the protocol follows from the original Paillier cryptosystem (after

the modification to the message structure). The vote to be encrypted is of the

form Ck, where k represents the candidate or choice selected. The value s′ is

obtained after the decryption of a combination of ballots. The value s′ represents

a concatenation of K bit strings of length log2 C = dlog2 ne. Each bit string

counts the number of voters who voted for a value k ∈ {1, 2, . . . , K}.

For simplicity, let log2 C = log2 n. Figure 4.1 presents a pictorial representa-

tion of the accumulation of votes, where all voters choose for the first candidate

or choice, namely, k = 1. For i ∈ {1, 2, . . . , n}, it is shown that the summation

register for k = 1 accommodates all the votes, where ki denotes a candidate or

choice selection of the ith voter.

64 Chapter 4. Homomorphic Encryption based Voting

Baudron et al. use three zero-knowledge proof of knowledge protocols in their

scheme. We provide brief descriptions for these protocols as below. More detail

on zero-knowledge protocols is provided in Appendix C.

1. Proof of knowledge of an encrypted message: The voter employs

this protocol to prove that he knows the vote that is encrypted in a par-

ticular vote ciphertext. This proof requires the voter (prover) to compute

four exponentiations and the voting authorities (verifier) to compute three

exponentiations.

2. Proof that an encrypted message lies in a given set of messages:

The voter employs this protocol to prove that he has encrypted a valid vote.

For a 1-out-of-K voting system, Q is the set of valid votes of size K. This

proof requires the voter (prover) and the voting authorities to compute 3K

exponentiations each.

3. Proof of equality of plaintexts: Baudron et al. expected the voter to

encrypt the same vote to three different sets of officials (local, regional, and

national). The voters were expected to prove such a fact.

4.2 Multiplicative Homomorphic Voting

Current homomorphic encryption based voting schemes exploit an additive ho-

momorphism property in the underlying cryptosystem (e.g. Paillier cryptosys-

tem [Pai99]). A single threshold decryption is performed over the combination

of encrypted votes (ballots) to recover the accumulation of the votes and reveal

the total number of votes for any candidate or choice. Using this method, vote

privacy is achieved since no single vote is decrypted (Table 2.2 in Chapter 2.8).

We discover that a multiplicative homomorphism property in the underly-

ing cryptosystem (e.g. ElGamal cryptosystem [ElG85]) can also be exploited to

construct an alternative homomorphic encryption tallying with comparable (or

better) efficiency without decrypting any individual vote.

A multiplicative homomorphic encryption algorithm (e.g. ElGamal cryptosys-

tem) is employed to produce a ballot and a single decryption is performed over

the combination of ballots to obtain the product of the votes. Afterward, this

product is factorised and the voting result is revealed.

4.2. Multiplicative Homomorphic Voting 65

As in the additive homomorphic voting, no single vote is decrypted in mul-

tiplicative homomorphic voting. Thus, vote privacy is also preserved. The most

important advantage of multiplicative homomorphic voting is that the scheme is

more efficient than additive homomorphic voting and more efficient than other

voting schemes when the number of candidates is small. Multiplicative homo-

morphic voting offers an alternative homomorphic encryption tallying with com-

parable (or better) efficiency without compromising vote privacy.

A disadvantage of additive homomorphic voting compared to multiplicative

homomorphic voting is inefficiency due to the following reasons.

• If the Paillier cryptosystem is employed, the following drawbacks in effi-

ciency exist.

– Inefficient set-up:

In voting schemes, the private key of the encryption algorithm must

be generated and shared by multiple tally authorities, such that it is

not required to trust any single party to achieve vote privacy. As the

private key is a factorisation secret in the Paillier cryptosystem, dis-

tributed key generation is highly inefficient. In comparison, distributed

key generation in the ElGamal cryptosystem (distributed generation

of a secret logarithm as the private key) is much more efficient as

described in [Fel87, Ped91, GJKR99].

– Multiple encryption:

Typically, a voter has to perform an encryption for each candidate or

choice, and prove that each of his encryption contains a valid message

(candidate or choice).

– Inefficiency of multiplicative and exponentiation computations:

In the Paillier cryptosystem, each multiplication is performed modulo

N2, where N is the product of two large primes and its factorization

is the private key (see [Pai99] or Appendix B.2). In comparison, each

multiplication is performed modulo a large prime p in the original El-

Gamal cryptosystem. If the same encryption strength is required, N

and p should have the same length (e.g. 1024 bits). Although the Chi-

nese Remainder Theorem can be employed to improve the efficiency of

multiplicative computation with a composite modulus in Paillier cryp-

tosystem, Paillier admitted that this efficiency improvement is only

66 Chapter 4. Homomorphic Encryption based Voting

available for key generation and decryption when the factorisation of

N is known. Paillier indicated that a multiplication in his scheme

is more than three times as costly as a multiplication in ElGamal

cryptosystem when N and p are of the same length (e.g. 1024 bits).

Typically, threshold decryption is employed in voting schemes to min-

imise trust and strengthen robustness. Hence, the factorisation of N

is not known to any single tally authority who performs the decryp-

tion. Therefore, we can assume that when the same security strength

is required, a multiplication in the Paillier cryptosystem with thresh-

old decryption is at least three times as costly as a multiplication in

the ElGamal cryptosystem.

• If the modified ElGamal cryptosystem is employed, the following drawbacks

in efficiency exist.

– Multiple encryption:

Usually, a voter has to perform an encryption for each candidate and

prove that each encryption contains a valid message.

– Inefficient discrete logarithm (DL) search:

As previously stated, a search for logarithm is required in the de-

cryption function. Even though the (currently known) most efficient

solution for DL in a certain interval - the Pollard Lambda method -

is employed, 0.5 log2 n exponentiations, O(n0.5) multiplications, and

O(0.5 log2 n) storage are required for n number of voters. As the num-

ber of voters is often large in voting applications (e.g. in a national

election scenario), this is of high cost. For a more efficient search, the

votes may be divided into multiple groups. A separate tallying is per-

formed in each group. However, this division increases the number of

decryptions. A separate decryption is required for every candidate or

choice in each group.

In [LK00, LK02], the modified ElGamal encryption and its additive homo-

morphism are exploited in a very special manner. Only one encryption is

required in a vote, which is composed of several sections, each responding to

a candidate. Thus, only one decryption is required to decrypt the product

of all the ballots. Although the number of encryptions and decryptions are

slightly reduced, they are not the main computational burden in a voting

4.2. Multiplicative Homomorphic Voting 67

scheme. The main computational cost contributing to the overall compu-

tational cost in a voting scheme is from the cost for zero-knowledge proof

of correct ballot construction and the cost of the DL search. This cost in-

creases to O(KnKm−1) multiplications and O(nK−1) full-length (e.g. 1024

bits) storage space, where K denotes the total number of candidates or

choices. As the number of voters is often large in a voting applications, the

cost for the search is intolerable. Therefore, the special additive homomor-

phic tallying in [LK00, LK02] may actually deteriorate efficiency although

they were supposed to improve efficiency.

Our multiplicative homomorphic voting inherits an efficient distributed key

generation, requires only one encryption per vote and requires no brute-force

search. At the same time, it achieves vote privacy not weaker than that of

additive homomorphic voting.

This section presents a design of a multiplicative homomorphic voting scheme.

Security and efficiency analysis of the new scheme are also provided in this section.

4.2.1 The Scheme

A multiplicative homomorphic voting scheme exploits a multiplicative homomor-

phism property of the underlying cryptosystem. The cryptosystem is used to

produce a ballot (an encrypted vote) and to efficiently tally all the ballots with-

out revealing any individual votes. Each voter only needs to encrypt one value

as his/her vote using the multiplicative homomorphic scheme.

Generically, a cryptosystem is multiplicative homomorphic if the following

equation holds E(s1s2) = E(s1)E(s2), where E denotes a corresponding encryp-

tion function for the cryptosystem, and s1 and s2 are two secret messages. When

the combination (product) of the secret messages is not greater than the mul-

tiplicative modulus, decryption of the corresponding combination of ciphertexts

yields the combination of secret messages.

Using the ElGamal cryptosystem, the above multiplication of two encrypted

messages corresponds to: (α1, β1)(α2, β2) = (α1α2 mod p, β1β2 mod p).

In voting, the the secret message si denotes a vote, ci = E(si) denotes a ballot,

and i ∈ {1, 2, . . . , n} where n denotes the number of voters. Using multiplicative

homomorphic voting, decryption of the product of ballots reveals the product of

votes. This is if their product is not over the multiplicative modulus. A certain

mechanism is used to guarantee this assumption (using groups as detailed below).

68 Chapter 4. Homomorphic Encryption based Voting

Then, the product is factorised to recover the tally of votes. Where K denotes

the number of candidates (or set of choices), a 1-out-of-K multiplicative voting

protocol is as follows:

1. Preparation phase: For j ∈ {1, 2, . . . , m}, each tally (decryption) au-

thority cooperates to generate the parameters of ElGamal cryptosystem,

such that each holds a shared secret key xj, and publish their correspond-

ing verification key vj = gxj . The public key g and y are published. The

encryption modulo is p. Detail on threshold ElGamal cryptosystem is pro-

vided in Appendix B.1.2.

Suppose there are K candidates or choices. A set Q = {qk} is selected,

where k = {1, 2, . . . , K}. Each of the element in the set Q represents each

candidate or choice, and has the following two properties:

(a) the element must be a co-prime to the modulo p, such that the multi-

plication of the elements can be factorised; and

(b) the element must be a quadratic residue, in the group G.

To achieve the above properties, the set Q is generated as follows:

(a) The set Q = {1} is initialised. An integer k′, representing the current

size of the set, is initialised as k′ = 1. The index k is also initialised

to be 1.

(b) The kth smallest prime pk is tested as follows:

If pq
k = 1 mod p, then

• pk is a quadratic residue; and

• pk is placed into the set Q and k′ is incremented by 1.

Otherwise, if pq
k 6= 1 mod p, then pk is a quadratic non-residue and

discarded.

(c) If k′ < K, then the index k is incremented by 1, and we go back to

the previous step to choose another small prime pk.

(d) Otherwise, if k′ = K, then the set Q is generated.

From the properties of an element in the set Q, an ElGamal encryption of

such an element is indistinguishable.

4.2. Multiplicative Homomorphic Voting 69

2. Voting phase: Each voter chooses a vote, represented by an element from

the set Q. The voter constructs a ballot, by selecting a value ri at random

from Zq and encrypting the vote si as ci = E(si) = (αi, βi) = (gri, siy
ri).

Afterward, the voter construct a non-interactive zero-knowledge (ZK) proof

of correct ballot construction without revealing the encrypted vote. Both

the ballot and its corresponding ZK proof are made public.

The proof convinces a verifier (public) that the encrypted message si in the

ballot ci corresponds to an element in the set Q. This is shown in Figure 4.2.

For simplicity, we show the proof construction for a voter (i = 1) and remove

the subscript i except to distinguish αi, βi, si, and ri in the figure.

The proof is based on the ZK 1-out-of-K proof of knowledge [CDS94], ex-

tending the ZK proof of equality of discrete logarithms [CP93], and em-

ploying the Fiat-Shamir heuristic [FS86] (non-interactive). Zero-knowledge

protocols are described further in Appendix C.

3. Tally phase: Tally authorities can verify the validity of ballots by checking

the proofs (Figure 4.2). For k ∈ {1, 2, . . . , K}, verification of the above

proof can be performed by checking the digital signature sig(u) and the

following equations: u
?
= H(g, y, αi, βi, {γk,1}, {γk,2}; u

?
=
∑K

k=1 uk; γk,1
?
=

gwkαuk

i ; and γk,2
?
= ywk(βi/qk)

uk . If all the tests are accepted, then we are

convinced that the vote in the ballot is indeed one of the elements in the

set Q with a very large probability.

Valid ballots ci (for simplicity, assume all n ballots are valid where i ∈

{1, 2, . . . , n}) are then divided at random into groups of size n′, such that

max (Q)n′

< p. The function max (Q) outputs the largest element in the set

Q. If max(Q)n < p, then the division is not necessary and all the ballots

can be processed in one group.

In each group, the following multiplicative homomorphic tallying is per-

formed.

(a) Let c′1, c
′
2, . . . , c

′
n′ be the ballots in the group.

(b) The tally authorities cooperate to calculate s′ = D(
∏n′

i=1 c′i), where

D denotes an appropriate threshold decryption function (refer to Ap-

pendix B.1.2).

70 Chapter 4. Homomorphic Encryption based Voting

To prove:
(logg αi = logy(βi/q1)) ∨ (logg αi = logy(βi/q2)) ∨ · · · ∨ (logg αi = logy(βi/qK)).

(a) Where 1 ≤ k′ ≤ K and k ∈ {1, 2, . . . , K} \ k′, the voter chooses the vote
si = q′k. Values of τk′ , {τk, uk, wk} ∈ Zq are selected at random. Both
generator g and y are committed to two witnesses as below.

γk′,1 = gτk′

γk′,2 = yτk′

The voter then simulates the rest of the witnesses as below.

{γk,1 = gwkαuk

i }

{γk,2 = ywk(βi/qk)
uk}

(b) The voter produces a random challenge u, using a collision-resistant hash
function H with a range of Zq, where k ∈ {1, 2, . . . , K} as below.

u = H(g, y, αi, βi, {γk,1}, {γk,2} (4.3)

The challenge is also digitally signed by the voter as sig(u) to prove the
authenticity of the challenge. The signature can also be used to prevent
double voting (non-reusability, refer back to Chapter 2.7).

(c) The voter computes the challenge uk′ and the response wk′ as below.

uk′ = u−
∑

k∈{1,2,...,K}\k′

uk

wk′ = τk′ − uk′ri

(d) For k ∈ {1, 2, . . . , K}, the values of {γk,1, γk,2, uk, wk}, u, and sig(u) are
published.

Figure 4.2: A non-interactive ZK proof of correct ballot construction.

4.2. Multiplicative Homomorphic Voting 71

(c) The value of s′ is factorised1 as s′ =
∏K−1

k=1 q
ŝj

j . The number of votes in

this group for the kth candidate or choice is ŝk−1 for k = 2, 3, . . . , K.

The number of votes in this group for the first candidate or choice is

K −
∑K−1

k=1 ŝk.

Tally authorities combine the results in all the groups to obtain a final

voting result.

4.2.2 Analysis

This section offers security and efficiency analysis of the multiplicative homomor-

phic voting scheme.

Security

The following theorem guarantees correctness of our scheme.

Theorem 4.2.1. The multiplicative homomorphic tallying in each group of ballots

c′1, c
′
2, . . . , c

′
n′ is correct.

Proof (Theorem 4.2.1). Let D denotes a corresponding decryption function for a

given ciphertext. In multiplicative homomorphic tallying of a group containing

ballots c′1, c
′
2, . . . , c

′
n′, the following holds where

∏K−1
k=1 qŝk

k is a factorization of s′:

D

(
n′

∏

i=1

c′i

)

= s′

=
K−1∏

k=1

qŝk

k

As encryption in the ElGamal cryptosystem is multiplicative homomorphic, the

following decryptions equality holds:

D

(
n′

∏

i=1

c′i

)

=
n′

∏

i=1

D(c′i) mod p

When the ballots are divided into groups, it is guaranteed that max (Q)n′

< p.

1This factorisation is very efficient as each element in the set Q is very small.

72 Chapter 4. Homomorphic Encryption based Voting

Thus,
∏n′

i=1 D(c′i) < p. Therefore, the following holds:

n′

∏

i=1

D(c′i) = D

(
n′

∏

i=1

c′i

)

=
K−1∏

k=1

qŝk

k

For i ∈ {1, 2, . . . , n′}, D(c′i) are verified to be in the set Q at the beginning of the

tally stage,
∏n′

i=1 D(c′i) is also a factorization of s′.

As there is a unique factorization for any integer,
∏n′

i=1 D(c′i) and
∏K−1

k=1 qŝk

k

are the same factorization. Namely, each prime factor in
∏n′

i=1 D(c′i) is also a

prime factor in
∏K−1

k=1 qŝk

k . Each prime factor in
∏K−1

k=1 qŝk

k is also a prime factor

in
∏n′

i=1 D(c′i).

Therefore, all the non-one votes encrypted in ballots c′1, c
′
2, . . . , c

′
n′ and only

these votes (contained in the ballots) are prime factors in
∏K−1

k=1 qŝk

k . Hence, every

non-one vote is correctly recovered.

As the number of vote in each group is a constant n′, the number of “1” votes

is also correctly recovered if there are any.

The following offers a discussion that the multiplicative homomorphic tallying

does not reveal any individual vote.

• Indistinguishability: The use of ElGamal encryption is semantically se-

cure due to the choice of message space in the set Q. Elements in the set

Q are guaranteed to be either all quadratic residues or all non-quadratic

residues, where the value p = 2q + 1 is a strong prime (a parameter of

the ElGamal cryptosystem, see Appendix B.1). Without the private key to

decrypt the ballots, it is difficult to obtain any information about any vote.

• Private key (decryption) security: As the private key is protected by

a threshold key sharing mechanism (Appendix B.1.2), no individual ballot

is decrypted if a threshold trust on the tally authorities is assumed.

• Unlinkability: The only decryptions performed are decryptions of com-

binations of ballots. The resulting decryptions only reveal the product of

votes (in each group). This offers unlinkability to each vote, since a de-

cryption does not link a particular vote to its corresponding voter. The

4.2. Multiplicative Homomorphic Voting 73

revealed information (from the decryptions) says no more than that a par-

ticular voter in each group may have cast a vote in that group. Note that

this also depends on the size of each group and variations of votes cast (i.e.

hiding in a crowd).

• The group size is sufficiently large for strong vote privacy: As

homomorphic tallying is only applied to elections with a small number of

candidates, K and max (Q) are small2. As p is large (e.g. with a length of

1024 bits), the size of a group dlogmax (Q) pe is large compared to K where

dxe denotes the smallest integer no smaller than a real number x. For

example, when K = 2 and log2 p = 1024 (p is of 1024 bit size), we obtain:

Q = {1, 2} (for simplicity, assuming 2 is a quadratic residue), max(Q) = 2,

and the group size is larger than 1024. When there are only two candidates

(small variation of votes) and more than 1024 votes combined in each group

(a vote is hidden inside a large group), very strong vote privacy is achieved.

Every operation in the voting scheme is publicly verifiable. Note that public

proofs of correct ballot construction and correct decryptions are provided by the

voters and tally authorities respectively.

Efficiency

The computational cost of additive homomorphic voting employing Paillier en-

cryption and that of the proposed multiplicative homomorphic voting are listed

in Table 4.1. As the DL search in the decryption of the modified ElGamal en-

cryption in [HK04, KY02, LK00, LK02] is too inefficient3 (both in computation

and space requirement), computational cost for the modified ElGamal encryption

is omitted from the comparison table.

As only small primes are employed to represent the candidates or choices,

the computational cost for the final factorisation in multiplicative homomorphic

voting is negligible compared to full-length exponentiation.

2The value of max (Q) is no larger than the (2K−1)th smallest prime, which is several times
of K when K is small.

3Although some computation in the Pollard Lambda method can be pre-computed, pre-
computation can be employed in most voting schemes. For example, the exponentiation compu-
tation in ballot construction and all the computation in the proof of correct ballot construction
(if necessary) can be pre-computed in mix-network voting, Paillier-based additive homomorphic
voting, and multiplicative homomorphic voting.

74 Chapter 4. Homomorphic Encryption based Voting

Table 4.1: A computational cost comparison of the two types of homomorphic
voting.

Operation Homomorphic voting
Additive Multiplicative

Distributed key generation highly inefficient efficient
Encryption per vote 6K 2
Vote validity proof per vote 12K + 6 4K − 2
Vote validity verification per vote 12K + 6 4K
Tallying computation per tallier 9K or4 9(K − 1) 3dn logp max(Q)e

To make a precise efficiency comparison of the two types of homomorphic

voting, it is supposed that the same strength of encryption security is required

in both types of homomorphic voting. That is, N in Paillier cryptosystem for

additive homomorphic voting and p in ElGamal cryptosystem for multiplicative

homomorphic voting have the same length. Thus, an exponentiation computation

in ElGamal cryptosystem is counted as one standard exponentiation, and an

exponentiation computation in Paillier cryptosystem is counted as three standard

exponentiations.

Standard exponentiations are counted in every operation in Table 4.1. This

table shows that multiplicative homomorphic voting is always more efficient than

additive homomorphic voting in key generation, vote encryption and ballot va-

lidity check.

When the number of voters is not too large, multiplicative homomorphic vot-

ing is also more efficient than additive homomorphic voting in tallying. For

example, when K = 2, log2 p = 1024 and n = 1024, the required number of

standard exponentiations for tallying in additive homomorphic voting is 12 or 6,

while the required number of standard exponentiations for tallying in multiplica-

tive homomorphic voting is three. Even if multiplicative homomorphic tallying

is less efficient than additive homomorphic tallying when the number of voters is

large, it has a trivial influence on the total cost of the voting scheme as illustrated

in Table 4.1. It is assumed that the additive homomorphic voting (no existing

example is referred to in this section) employs a threshold Paillier cryptosystem

and performs every necessary operation listed in the table.

4It is often assumed that a decryption is necessary for every candidate or choice. However,
when n, the total number of voters, is known and each vote has been verified to be valid, K−1

4.2. Multiplicative Homomorphic Voting 75

Table 4.2: An efficiency comparison of MV, AHV, and MHV.

Key A voter’s A tallier’s Communicational
generation computation computation cost

MV efficient 8 18n 1024(6n + 18mn)
= 18000000 = 98304000000

highly 18K + 6 (12K + 6)n 2048(6m(K − 1)
AHV5 inefficient = 42 +9(K − 1) +(10K + 4)n)

= 30000009 = 49152061440
4K 4Kn 1024(2n(m + 1)

MHV efficient +3dn logp max(Q)e +3dn logp max (Q)e)
= 8 = 8003000 = 6147072000

A more comprehensive efficiency comparison is presented in Table 4.2. The

computational and communicational cost of MV (mix-network based voting),

AHV (additive homomorphic voting), and the proposed MHV (multiplicative

homomorphic voting) are presented in the table. Mix-network based voting is

presented in Chapter 5 in this thesis.

In the table, m denotes the number of tally authorities. For simplicity, voters’

signature on the votes are omitted. Therefore, signature generations and verifica-

tions are not taken into account. In this comparison, it is supposed that Golle’s

mix network [GZB+02] (one of the most efficient mix-network schemes) with the

tally authorities as mix servers are employed in the mix-network based voting,

threshold Paillier cryptosystem is employed for the additive homomorphic vot-

ing, and ElGamal cryptosystem is employed for the multiplicative homomorphic

voting (our scheme). The computational cost is measured in terms of the number

of standard exponentiations required, and the communicational cost is measured

in terms of the size of the communicated messages in bits.

An example scenario is given in Table 4.2, where m = 5, K = 2, log2 p = 1024

and n = 1000000. For simplicity, it is assumed that 2 is a quadratic residue

modulo p, hence Q = {1, 2}. In this example, it is shown that even when the

number of voters is large, multiplicative homomorphic voting is still more efficient

than mix-network based voting and additive homomorphic voting.

decryption is sufficient. The tally authorities choose K − 1 candidates or choices at random,
and decrypt the accumulation of votes for each of them. The vote of the left candidate is n
minus the sum of the votes for the K − 1 chosen candidates. We call this economical tallying.

5It is assumed economical tallying in Table 4.1 is employed.

76 Chapter 4. Homomorphic Encryption based Voting

The above tables apply to previous suggested implementations of each scheme.

However, our suggestion for using relatively small groups of voters can also be

applied to additive homomorphic voting using ElGamal cryptosystem. In this

case, most of the savings shown for multiplicative homomorphic voting also apply.

4.3 A Preferential Voting Case Study

We propose the following straight-forward adaptation of the scheme by Baudron

et al [BFP+01] (refer back to Section 4.1.3) to design a cryptographic preferential

voting protocol. A preferential voting system is described in Chapter 2.3.1.

The zero-knowledge proof of equality of plaintexts is not applicable in our

scheme (as used in the original scheme) as it requires the voters to encrypt the

vote only for a set of local authorities (constituency). Note that such a modifica-

tion will not adversely affect the security of the system because the threshold de-

cryption function of Paillier cryptosystem requires every tally authority to prove

correct decryption operations.

In this new system, the voter is expected to vote for a particular sequence of

candidates rather than to vote for the candidates themselves, as was proposed in

the original scheme. Hence, this scheme can also be called a 1-out-of-K! voting

scheme.

1. Preparation phase: In this discussion, we assume that the voter must

provide a rank for every candidate or choice. The size of the vote in this

cryptosystem is log2 CK! bits. That is, each sequence is represented by

a counter that can count up to C. Figure 4.3 presents a pictorial repre-

sentation of the preferential vote (Ck), which chooses the first sequence of

candidates, namely, k = 1.

The voting authorities choose and publish a public key for a Paillier cryp-

tosystem (Appendix B.2), which can be used by the voters to communicate

their votes confidentially to the authorities, for each constituency or dis-

trict. The modulus, N , must be chosen such that the entire vote can be

encrypted in one block, namely CK! < N2. Since the size of N increases

exponentially with the increase in the number of candidates, this scheme

would be impractical when K > 5 for a polling booth with 1000 voters.

2. Voting phase: Each voter i performs the following.

4.3. A Preferential Voting Case Study 77

Ck

︷ ︸︸ ︷

|

dlog2 ne
︷ ︸︸ ︷

00 · · ·00
︸ ︷︷ ︸

k=K!

|

dlog2 ne
︷ ︸︸ ︷

00 · · ·00
︸ ︷︷ ︸

k=K!−1

| · · · |

dlog2 ne
︷ ︸︸ ︷

00 · · ·00
︸ ︷︷ ︸

k=2

|

dlog2 ne
︷ ︸︸ ︷

00 · · ·01
︸ ︷︷ ︸

k=1

|

dlog2 ne
︷ ︸︸ ︷

00 · · ·00
︸ ︷︷ ︸

k=0

|

Figure 4.3: A pictorial representation of the homomorphic preferential vote Ck,
where k = 1

(a) identifies to the vote collecting authority appropriately;

(b) selects a sequence, ki, to represent his/her preference;

(c) constructs a ballot by encrypting the selection as ci = E(Cki) using

the Paillier cryptosystem, where E is the corresponding encryption

function for Paillier cryptosystem (this operation costs 2 exponentia-

tions);

(d) proves knowledge of encrypted message using the aforementioned proof

technique (refer back to Section 4.1, this operation costs 4 exponenti-

ations);

(e) proves that the encrypted message lies in the set {C, C2, . . . , CK!} (this

operation costs 3(K!) exponentiations).

This phase requires each voter to compute 2 + 4 + 3(K!) = 3(K!) + 6

exponentiations.

3. Tally phase: The vote collecting authority performs the following.

(a) verifies the two proofs generated by every voter;

(b) forwards the validated votes to the tally authorities.

Note that this simple system does not provide privacy for voters who do

not cast a proper vote. In order to do so, a dummy vote must be encoded

for use in the system. That is, k ∈ {1, 2, . . . , K!, (K!)+1}, where (K!)+1th

vote would represent a dummy vote. The vote collecting authority must

perform (3(K!) + 4) exponentiations in n parallel runs.

Afterward, the tally authority performs the following.

78 Chapter 4. Homomorphic Encryption based Voting

(a) combine the ballots as c =
∏n

i=1 ci =
∏n

i=1 E(Cki) = E(
∑n

i=1 Cki mod

N2) (for simplicity, assume all ballots are valid);

(b) decrypt the combined ciphertext c in a threshold fashion to obtain

s′ =
∑n

i=1 Cki.

Note that s′ represents a concatenation of K! bit strings of length log2 C =

dlog2 ne. Each bit string counts the number of voters who voted for a se-

quence k ∈ {1, 2, . . . , K!}. The number of exponentiations that each tally

authority must perform is three. To verify correct decryption operation,

four exponentiations per tally authority is required. If the number of tally

authorities who took part in the decryption procedure is m, then the veri-

fication of this step would require 4m exponentiations.

The Australian House of Representatives is used as a reference for the prefer-

ential voting system (refer back to Chapter 2.3.1). The average case figures for

this system are 100000 voters and 20 candidates (K = 20) per constituency. We

partition the constituency into polling booths containing 1000 voters (n = 1000)

each for efficiency reasons.

Table 4.3 summarises the complexity of the above protocol, when K = 20 and

n = 1000, in terms of the number of exponentiations and parallel processes each

entity must perform. Two processes are said to be in parallel when the input of

each process is not dependent on the output of the other process.

A vote for such a preferential voting system requires a size of at least log2(K!)

bits, where K denotes the number of candidates or choices. Clearly, the size of

the vote for a K-candidate preferential voting strategy will be much greater than

the corresponding vote for a 1-out-of-K voting strategy when K increases. Hence,

the voting scheme proposed by Baudron et al. (or any other homomorphic voting

schemes) is highly impractical for a straight-forward adaptation of the elections

of the Australian House of Representatives. This also applies for an election

scenario for the Australian Senate, especially since there is more candidates for

senate elections (average case: K = 60). It is information theoretically impossible

to reduce or compress the ballot size in this (straight-forward) scenario since a

preferential system is of factorial order.

However, it is possible to use this approach for a preferential system when a

small number of pre-set preferences is allowed, tallying of the pre-set preferences

uses the homomorphic encryption approach, while tallying of the non pre-set

preferences uses a mix-network approach.

4.4. Summary 79

Table 4.3: The computational complexity for the adapted voting system using
homomorphic encryption.

Entity Parallel processes Exponentiations
per process

Voter 1 3(K!) + 6
= 14597412049059840000

Vote collecting authority n = 1000 3(K!) + 4
= 14597412049059839998

Tally authorities 1 3

This is a promising framework inheriting benefits from both approaches, and

is further discussed in Chapter 7. We name this a hybrid approach.

4.4 Summary

A new homomorphic encryption based voting protocol is presented in this chapter.

It uses a multiplicative homomorphism property, as compared to the commonly

used additive homomorphism property in voting. The new scheme provides an al-

ternative, with comparable security and efficiency, to other existing homomorphic

encryption based voting protocols.

From the preferential voting case study, the size of a vote for a preferential

voting system is inherently larger than a 1-out-of-K voting system. In preferential

voting, the vote size is at least log2 K! bits to accommodate all the available

preferences. Thus, the size increases in a factorial order when K increases. On

the other hand, the vote size only increases linearly in a 1-out-of-K voting system

when K increases.

Also, any voting system that employs the homomorphic encryption approach

require the voter to prove that a valid vote was encrypted in the ballot. This is

such that the tally obtained from individual vote is correct. The computational

complexity of such a proof is O(K!).

Straight-forward implementation of preferential voting system using this ap-

proach is not possible. Unless an efficient proof technique is available to validate

the encrypted votes, the homomorphic encryption approach is not practical for a

straight-forward adaptation of a preferential voting system.

However, it is possible to combine the homomorphic encryption approach with

80 Chapter 4. Homomorphic Encryption based Voting

a mix-network approach (later described in Chapter 5) into a hybrid approach

when a small number of pre-set preferences is used. This promising approach is

further discussed in Chapter 7.

Voting protocols that employ the mix-network approach do not require a com-

plex proof of correct ballot construction. In fact, the computational complexity

of the mix-network is not adversely affected by K. Therefore, mix-network based

voting protocols are ideally suited for a straight-forward adaptation of preferential

voting systems.

The next chapter provides a more detailed study on mix-networks and their

use in cryptographic voting protocols.

Chapter 5

Mix-Network based Voting

Mix-networks are an important tool to implement anonymity. They are widely

employed in many cryptographic applications such as anonymous email, electronic

auction, and electronic voting. The first mix-network scheme was proposed by

Chaum [Cha81] mainly to realise anonymous email. Various types and usage of

mix-networks have been proposed subsequently. Although they are of different

design, they share some common properties.

In cryptographic voting protocols, voters submit encrypted votes (ballots) as

inputs to the mix-network. The mix-network outputs anonymised plaintext votes

corresponding to those in the input ballots. The voting result is then obtained

from the plaintext votes. Using a mix-network in a voting scenario, voter-vote

relationships are kept private to each voter.

This chapter contains study on mix-networks. Background information for a

mix-network is presented. A generic description of a mix-network is provided.

Two mix-network schemes by Abe [Abe99, AH01] and Golle et al. [GZB+02] are

recalled.

A new mix-network scheme extending from the work by Abe is presented. As

Abe uses binary gates in his mix-network construction, we use extended binary

mixing gates (EBMGs) in our mix-network construction. This is made efficient

by using batch techniques from Chapter 3. The new scheme has been previously

published in [PAB+04b].

A modification to the mix-network scheme of Golle et al. is provided. The

modification allows a more efficient scheme, while having a trace-back mecha-

81

82 Chapter 5. Mix-Network based Voting

|

|
PSfrag replacements

...

...
...

...

sπ(i) = D(ci)

A mix-network

c1 sπ(1)

c2 sπ(2)

ci sπ(i)

ci−1 sπ(i−1)

cn sπ(n)

Figure 5.1: An illustration of a mix-network with n inputs.

nism to identify dishonest entities. This work has been previously published

in [ALBD04a]. The scheme is later used in Chapter 6.

Batch theorems and techniques from Chapter 3 are used to offer example

applications of batching in a mix-network.

A preferential voting system case study using a mix-network scheme is also

discussed in this chapter. This case study continues from the one presented in

Chapter 4.3. The case study has been previously published in [ABDV03].

5.1 Background

A mix-network is typically composed of a few mix servers, each in charge of

a shuffling. Suppose a number of users are to use the mix-network to achieve

anonymity. Each of them encrypts his/her input and submits it to the mix

network. Each server shuffles the inputs sequentially.

The shuffling operation of each server on its inputs includes two steps. The

first step is to process the inputs, which may be through either re-encryption or

decryption. Afterward, the inputs are then permuted in the second step. Finally

the outputs of the mix-network are published in plaintext.

It is required that outputs of a mix-network is a permutation of the users’

inputs, but are anonymous and unlinkable to the users. A typical mix-network is

illustrated in Figure 5.1.

5.1. Background 83

A mix-network is generically defined as below.

Definition 4. Let D be a decryption algorithm (corresponding to its input cipher-

text) computable only by a mix-network, and π : Zn → Zn be a secret permutation

function selected at random. For i ∈ {1, 2, . . . , n}, the mixing operation of the

mix-network can be described (outputs) as sπ(i) = D(ci).

The left hand side of the equation (see Figure 5.1) is a random sorted set

of (output) plaintexts {sπ(i)}. These (output) plaintexts correspond to the right

hand side, decryptions D of a set of (input) ciphertexts {ci}. Thus, a mix-

network can be viewed as a confidentiality translation service, translating the

confidentiality service from the input ciphertexts to the identity of each ciphertext

owner. A mix-network anonymises its outputs plaintexts given a set of input

ciphertexts, or hides its input-output relationships.

To achieve a stronger level of anonymity, a mix-network typically consists

of a number of mix-servers. Each mix-server shuffles a set of inputs, and pro-

duces a permuted set of outputs. When at least one of the mix-server holds its

permutation secret, input-output relationships are also kept secret.

According to the processing of inputs performed by each server, mix-networks

in the literature are typically classified into those (schemes) employing a decryp-

tion chain [Cha81, JJ01, OA00, PIK93] and those (schemes) employing a re-

encryption chain [GZB+02, JJR02, BG02, OKST97, SK95, Abe99, AH01, FS01,

Nef01, Gro03, PBDV04].

In a decryption chain mix-network (the original scheme by Chaum), the

shuffling of a mix server is composed of decryption and permutation. Its charac-

terisation is as follows:

• Each input is encrypted with every mix server’s public key in sequence.

• Each mix server removes one layer of encryption on all the inputs by per-

forming decryption using the private key of the server. Afterward, the

inputs are permuted and forwarded to the next server.

• Outputs of the last mix server are plaintexts of the original inputs of the

first server.

In a re-encryption mix-network, the shuffling of a server is composed of

re-encryption and permutation. Its characterisation is as follows:

84 Chapter 5. Mix-Network based Voting

• Each input is encrypted only once with a public encryption key while the

corresponding private key is shared by several decryption authorities.

• Each mix server re-encrypts, permutes, and forwards all the inputs to the

next mix server.

• The decryption authorities (can be the mix servers themselves) cooperate

to decrypt the final encrypted outputs.

In the former type (decryption chain), each input is sequentially encrypted

for each of the mix server to decrypt. Consequently, failure of any mix server

implies that the corresponding plaintexts cannot be recovered if each mix server

holds its own private key secret (as required to achieve strong privacy). There-

fore [OKST97], decryption chain mix-networks inherently lack robustness. Hence,

we only consider re-encryption chain mix-networks employing threshold decryp-

tion in this thesis.

5.1.1 Re-Encryption Chain Mix-Networks

Ogata et al. [OKST97] introduced a basic structure for re-encryption chain mix-

networks illustrated in Figure 5.2. Their scheme was further developed in many

later papers.

Suppose an ElGamal cryptosystem with threshold decryption is employed us-

ing the scheme by Pedersen [Ped92]. Decryption authorities employ a distributed

key generation scheme [Fel87, Ped91, GJKR99] to generate a private key x, which

is shared by themselves. The public key is (g, y = gx).

For i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, m servers SVj form a mix-network

to mix n ciphertext inputs ci. Inputs to SVj are cj−1,i, while c0,i = ci. On server

SVj, inputs cj−1,i = (αj−1,i, βj−1,i) are re-encrypted and permuted (shuffled) to

cj,πj(i) = (αj,πj(i), βj,πj(i)) = (grj,iαj−1,i, y
rj,iβj−1,i), where the values of rj,i are

selected at random from Z1, and πj is a secret random permutation of [1, n]. The

outputs of SVj are cj,i, while the final outputs c′i = cm,i.

The shuffling correctness, from n inputs to n outputs on every server, must

be verified. This is discussed on the next subsection. Finally, a quorum of the

decryption authorities (e.g. the mix servers themselves) cooperate to decrypt c′i.

5.1. Background 85

|

|

PSfrag replacements

re-encrypt and permute

re-encrypt and permute

re-encrypt and permute

re-encrypt and permute

SV 1

SV 2

SV j

SV m

· · ·

· · · · · ·

· · ·· · ·

· · · · · ·

· · ·

· · · · · ·

...
...

...
...

...

...

...
...

...
...

c0,1 = c1
c0,2 = c2 c0,i = ci c0,n = cn

c′1 = cm,1
c′2 = cm,2 c′i = cm,i c′n = cm,n

c1,1 c1,2 c1,i c1,n

cj−1,1 cj−1,2 cj−1,i cj−1,n

cm−1,1 cm−1,2 cm−1,i cm−1,n

Figure 5.2: A basic structure for re-encryption mix-networks introduced by Ogata
et al.

5.1.2 Verification of Correct Mixing Operations

Many of the early mix-network schemes offer security and robustness in exchange

for efficiency. Proof-verification of correct mixing and decryption operations are

often time consuming. Some recent schemes improve on efficiency by sacrificing

the verification of correct mixing and decryption operations. According to the

different correctness verification mechanisms, mix-networks can be classified into

three categories:

1. No verification: In this category, correctness is not verified and the mix

servers are trusted to perform the shuffling correctly. An example of this

86 Chapter 5. Mix-Network based Voting

category is the scheme by Ohkubo and Abe [OA00]. Strong trust is neces-

sary in such mix-networks.

2. Global mix verification: Mix-networks in this category do not provide a

verification of correct shuffling by each mix server separately. Instead, mix-

ing correctness on the entire mix-network is verified after the final plaintext

outputs are produced. Schemes in this category include [Cha81, PIK93,

VBD00, GZB+02]. Drawbacks to this approach include:

(a) A cheating mix server cannot be identified instantly.

(b) If an incorrect shuffling is found, a mix-network in the third category

must be employed to perform another mixing.

(c) Some outputs may be revealed in plaintexts even when the shuffling is

incorrect and another mixing is required.

3. Individual mix server verification: In this category [SK95, JJ01, Abe99,

AH01, FS01, OKST97, JJR02, BG02, Nef01, Gro03, PBDV04], each mix

server first verifies the correctness of the previous server’s shuffling. Then, it

shuffles its inputs, proves the correctness of its own shuffling, and forwards

the outputs to the next mix server. Although schemes in the first two

categories are more efficient, schemes in this category are still very useful

as;

(a) they overcome the shortcomings of the first two categories.

(b) they form a necessary sub-function (to handle anomalous situations

when cheating in the shuffling is found) in the second category.

However, there exist various problems with schemes in this category. For

example, the scheme by Juels and Jakobsson [JJ01] is not publicly verifi-

able; some schemes [JJR02, BG02] do not provide sufficient correctness and

privacy guarantee for many applications; and other schemes [Abe99, AH01,

OKST97, SK95] are inefficient.

Three recently proposed mix-network schemes [FS01, Nef01, Gro03] offer

great improvement in this category. However, these three schemes are still

not optimally efficient for large-scale applications (e.g. a national election)

as their computational cost is linear to the number of inputs.

5.1. Background 87

In the third category, the scheme by Abe [Abe99] offers an essential efficiency

improvement technique over naive mix-network schemes. For l ∈ {1, 2, . . . , n!},

suppose πj,l represents all n! possible permutations for πj. For i ∈ {1, 2, . . . , n},

a naive method to verify correctness of shuffling by SVj is to test the following

assertion:

(

logg

αj,πj,1(i)

αj−1,i
= logy

βj,πj,1(i)

βj−1,i

)

∨

(

logg

αj,πj,2(i)

αj−1,i
= logy

βj,πj,2(i)

βj−1,i

)

∨

· · · ∨

(

logg

αj,πj,n!(i)

αj−1,i

= logy

βj,πj,n!(i)

βj−1,i

)

A proof for the above assertion can be implemented using zero-knowledge

proof of n-out-of-n × n! equality of discrete logarithms. The proof is based on

the zero-knowledge proof of partial knowledge by Cramer et al. [CDS94] (refer

to Appendix C),This type of verification allows proving of correctness without

compromising privacy.

However, this test is too inefficient because the computational cost for both

the prover and verifier on every mix server is O(n · n!) exponentiations. Abe

made an efficiency improvement on this test by dividing an n-input-to-n-output

shuffling into a number of 2-input-to-2-output shuffling. Correctness verification

in each of the 2-input-to-2-output shuffling is much more efficient, where the

cost of the correctness verification in all the of 2-input-to-2-output shuffling is

now O(n log2 n). However, Abe’s schemes are still not efficient enough for many

applications.

Based on the proof of valid shuffling, an alternative classification to mix-

network schemes can be presented as below.

• Permutation-based: this method proves that some valid permutation is used

in the mix-network which may be any permutation of {1, 2, . . . , n}, where

n is the number of inputs to the mix-network. Examples of this method

include mix-network scheme by Groth [Gro03], and Golle et al. [GZB+02].

The computational cost of the proof and the corresponding verification is

high if no batch technique (refer back to Chapter 3) is employed.

• Input-based: this method proves that each input is shuffled to any output.

An example of this method is the mix-network by Peng et al. [PBDV04].

It is more efficient, but its privacy and soundness are weaker.

88 Chapter 5. Mix-Network based Voting

|

|

PSfrag replacements

· · ·

· · ·

...
...

2 log2 n− 1 columns of binary gates
(n

/2
)

ro
w

s
of

b
in

ar
y

ga
te

s

in
p
u
ts

c i

ou
tp

u
ts

s π
(i

)

Figure 5.3: An example mix-network by Abe with n inputs.

In this mix-network area, our research is focused on re-encryption chain mix-

networks with permutation-based proof of valid shuffling. This is because re-

encryption chain mix-networks offer better robustness compared to decryption-

chain mix-networks, and permutation-based mix-networks offer stronger privacy

and soundness compared to input-based mix-networks.

5.1.3 The Mix-Network Scheme by Abe

Abe [Abe99, AH01] proposed an efficient and robust mix-network scheme. For

i ∈ {1, 2, . . . , n}, it uses the ElGamal cryptosystem (see Appendix B.1) in re-

encrypting the set of input ciphertexts {ci}, to produce a randomly permuted

set of output plaintexts {sπ(i)}, where π denotes a secret permutation function.

Figure 5.3 illustrates the mix-network by Abe constructed from a number of

mixing gates.

Gates with two inputs and two outputs construct the mix-network. We call

this a binary gate. The binary gate provides an efficient zero-knowledge proof-

verification of correct shuffling at each gate for proof of correct mixing. The

following provides a formal description of the shuffling operation in each gate as

5.1. Background 89

|

|

PSfrag replacements

Not switched Switched

(α0, β0)(α0, β0)

δ = 0 (α1, β1)(α1, β1) δ = 1 (α′
0, β

′
0)

(α′
0, β

′
0) (α′

1, β
′
1)

(α′
1, β

′
1)

Figure 5.4: A shuffling operation inside a mixing gate.

shown in Figure 5.4. Select randomiser values of r0, r1 ∈ Z at random, and a

switching value of δ ∈ {0, 1} at random. The secret permutation π is determined

by the value of δ, which determines outputs of a gate to either be switched or not

switched (see Figure 5.4). Compute the following as outputs of the shuffle.

(α′
δ, β

′
δ) = (α0g

r0, β0y
r0)

(α′
δ̄, β

′
δ̄) = (α1g

r1, β1y
r1)

A shuffling requires 4 modular exponentiations (for the re-encryptions). Each

gate then proves in zero-knowledge (i.e. without revealing their secret switching

value δ), that the shuffling is correct (refer to Appendix C), where:

logg

(
α′

0

α0

)

= logy

(
β ′

0

β0

)

∧ logg

(
α′

1

α1

)

= logy

(
β ′

1

β1

)

OR

logg

(
α′

0

α1

)

= logy

(
β ′

0

β1

)

∧ logg

(
α′

1

α0

)

= logy

(
β ′

1

β0

)

This zero-knowledge proof-verification costs 12 modular exponentiations to

compute the proof and 16 modular exponentiations for verification. The total

cost for shuffling is shown in Table 5.1.

There are two similar schemes proposed by Abe, namely MiP-1 and MiP-2,

briefly described as follows:

MiP-1 is a one-phase scheme of randomised decryption. Each gate in the mix-

network performs a threshold decryption and mixing operation of the in-

puts. Proofs of correct threshold decryptions and shuffling operation are

produced at each gate. This is to ensure that outputs and inputs may differ

only in their ordering, and that the outputs are not modified or replaced in

90 Chapter 5. Mix-Network based Voting

Table 5.1: Computational cost at each gate for MiP-2.

Type of operation Modular exponentiations required

Main (re-encryptions) 4
Proof construction 12
Verification 16

Total 32

any way from the inputs. The final outputs are a mixed (permuted) set of

plaintext messages.

MiP-2 is a two-phase scheme of permutation and decryption. Each gate in the

mix-network randomly permutes the ordering of the two input ciphertexts.

A proof of correct shuffling operation is also produced to ensure the integrity

of the output ciphertexts. Threshold decryptions are performed after the

gates are finished mixing the set of input ciphertexts. This is to produce

the corresponding mixed (permuted) set of plaintext outputs.

The robust mix-network of Abe offers efficiency in computation and commu-

nication of complexity O(tn log2 n), where t is the number of tolerable corrupt

mix servers and m is the number of input ciphertexts. There are m servers in

the mix-network, each controlling a number of gates. The mix-network employs

a (t, m) threshold decryption scheme, where t + 1 denotes the minimum num-

ber of servers required for successful decryptions of the ciphertexts out of the m

servers in the mix-network. Thus, the mix-network can tolerate up to t servers

to be corrupt as a decryption will fail unless at least t + 1 servers collaborate in

decrypting a ciphertext.

Combined with the batch technique in Chapter 3, the binary gate can be

extended to shuffle two groups of inputs to offer better efficiency. We detail this

extension in Section 5.2.1.

5.1.4 The Optimistic Mix-Network Scheme by Golle et al.

Using a threshold ElGamal cryptosystem, Golle et al. [GZB+02] proposed a very

efficient re-encryption mix-network scheme using an optimistic approach. Cor-

rect mixing is checked by using a proof of product (POP, refer to Expression 5.1),

5.1. Background 91

proving that the product of input ciphertexts is preserved in the product of out-

put ciphertexts. The proof of product exploits the (multiplicative) homomorphic

property of the underlying ElGamal cryptosystem. However, a checksum is re-

quired to verify the integrity of the messages. Also, the inputs are required to be

encrypted twice, named double enveloping, to support backup mixing.

Double enveloping protects the anonymity of the original ciphertext owner

from a relation attack by a dishonest mix server. When an input message is

encrypted only once, a dishonest server can modify its output by multiplying

two inputs (ci and ci′) and outputs the re-encryptions of the product of the two

inputs (cici′, where i 6= i′) and an encryption of 1. This attack passes the proof

of product test.

By observing the attacked (combined) plaintext output after decryption, the

related ciphertexts can be identified. Double encryption is used to prevent such

attacks, such that when the first mixing for the outer encryption is found to be in-

correct, the inner encrypted messages are recovered by the decryption authorities

and mixed again using a more robust, heavy-weight verifiable mix-network.

Based on the scheme by Pedersen [Ped91], a threshold version of ElGamal

cryptosystem is employed with properly generated parameters. The private key

is x, and the public keys are g and y = gx. Several decryption authorities share the

private key x as xj, where j ∈ {1, 2, . . . , m}. A secret message s is encrypted with

a random value r as c = (α, β) = (gr, syr). A collision-resistant hash function H is

used to produce the hash checksum h = H(α, β). A double encrypted ciphertext is

then produced with different random values r1 and r2 as c1 = (α1, β1) = (gr1, αyr1)

and c2 = (α2, β2) = (gr2, βyr2). An encryption of the hash checksum is produced

using a random value r3 as c3 = (α3, β3) = (gr3, hyr3).

For n messages and i ∈ {1, 2, . . . , n}, inputs to the mix-network is a triplet of

the form (ci,1, ci,2, ci,3). The mix-network is a basic re-encryption mix-network,

where each mix-server re-encrypts its input triplets (each of the element in a

triplet) and outputs them in a random order. Afterward, the mix-server proves

the preservation of product of messages in the mixing (POP) by proving the

following expression.

(
n∏

i=1

αi =

n∏

i=1

α′
π(i)

)

∧

(
n∏

i=1

βi =

n∏

i=1

β ′
π(i)

)

∧

(
n∏

i=1

hi =

n∏

i=1

h′
π(i)

)

(5.1)

Using this technique, the computational complexity for proving correct mixing

92 Chapter 5. Mix-Network based Voting

operation is independent of the number of inputs n.

After the mixing is completed, each output is decrypted by a quorum of

decryption authorities. The final output of the mix-network are triplets of the

form (α′
π(i), β

′
π(i), h

′
π(i)), where π(i) denotes the result of total permutation of i.

Integrity of each output is verified by checking the corresponding hash checksum.

h′
π(i) = H(α′

π(i), β
′
π(i))

Recent research revealing possible attacks on this mix-network scheme include

Abe and Imai [AI03] and Wikström [Wik02]. Abe and Imai show that anonymity

can be compromised by cheating the hash checksum. The first mix server can

intentionally swap the hash checksum of two inputs, and a malicious user can

use the hash checksum of another input. Although the dishonest entity will be

identified, anonymity is compromised. This type of attack can be avoided by

requiring a proof of knowledge of the hash value. However, efficiency is sacrificed

since proving knowledge of a plaintext value in an encryption without revealing

it is quite complex.

Wikström shows that an anonymity compromise is possible by exploiting the

same key used for the inner and outer encryptions. The second mix session can

be used as a decryption oracle to the first mix session. Simply using different

keys for the inner and outer encryptions will eliminate this problem.

We propose a more optimistic approach by modifying this scheme. A trace-

back protocol is employed to identify a corrupt entity in the mix-network. This

is presented in Section 5.3.

5.2 A New Mix-Network using Extended Bi-

nary Mixing Gates

Input-output relationships of a mix-network must be kept secret. Because of this

requirement, proving correctness of the mixing operation is often made compli-

cated. Currently, there is no acceptably efficient method to check this. Hence,

mix-network schemes to date do not accommodate real-world applications re-

quiring a large number of messages to be shuffled, e.g. in a national election.

Current research in this area aims at producing a secure and practical scheme for

implementation in the real-world.

5.2. A New Mix-Network using Extended Binary Mixing Gates 93

The proposed scheme in this section offers an alternative to the straight-

forward implementation of our batch technique discussed in the previous section.

The resulting scheme balances security and performance by using extended binary

mixing gates (EBMGs). This is a new notion, an extension of the use of binary

mixing gates originally proposed by Abe [Abe99] (refer back to Section 5.1.3). In

our scheme, each gate employs batch techniques to re-encrypt ciphertexts, and

to prove and verify correctness of the shuffling operation. The design is based on

a re-encryption chain mix-network employing individual mix server verification.

In an EBMG, a new batch re-encryption technique is employed to improve

the efficiency of re-encryptions. The permutation is gate-based and simplified,

such that correctness proof and verification of the shuffling can be batched.

Our proposed mix-network achieves the essential property of correctness and

privacy. Proofs that outputs of the mix-network indeed correspond to its inputs

are publicly verifiable. Although our mix-network does not offer all possible

permutations, its privacy level is sufficient for many schemes, such as for a secret-

ballot voting scheme.

Allowing a flexible input format, the shuffling process requires at least two

rounds of mixing to adequately achieve pairwise privacy. The proposed mix-

network is robust as a compromised mix server only weakens the privacy of the

mix-network, where the switching positions of EBMGs controlled by that mix

server is revealed.

Our proposed mix-network is correct, private, robust and publicly verifiable

while being one of the most efficient mix-network schemes to date. The proposed

batch re-encryption technique can be implemented in other re-encryption chain

mix-network schemes to increase their performance. The proposed mix-network

offers a higher level of security and efficiency compared to previous schemes.

In this section, a batch re-encryption technique using combinations of shared

randomisers is presented. Details of two types of EBMG, one employing ElGa-

mal cryptosystem and the other employing Paillier cryptosystem are provided.

Two mix-network protocols based on the EBMGs and their privacy analysis are

presented. Security and efficiency analysis of the proposed mix-network is also

discussed.

94 Chapter 5. Mix-Network based Voting

5.2.1 A New Batch Re-Encryption Technique

In a re-encryption chain mix-network, re-encryptions and permutations are per-

formed on every mix server. The computational cost of shuffling for n ciphertexts

on a mix server is O(n). In this section, we present a new technique to batch

re-encryption of ciphertexts. The n instances of re-encryption are batched, such

that the computational cost on a server is reduced to O(log2 n).

Suppose an encryption function E is:

• semantically secure (see Appendix B or [Mao03, Chapter 14]), in which a

message s is encrypted to c = E(s, r), where r is a random integer;

• homomorphic, and there is an identity message I such that for any message

D(E(s)E(I)) = s (e.g. I is 1 in ElGamal encryption and 0 in Paillier

encryption), where D denotes the corresponding decryption function.

Ciphertexts c1, c2, . . . , cn encrypted using the encryption function E have to

be shuffled. A batch re-encryption and permutation technique for n inputs in a

shuffling (inside a mix network) is as follows, where Bk(i) denotes the kth bit of

integer i.

1. For k ∈ {1, 2, . . . , log2 n}, the server randomly selects log2 n secret integers

rk,0, and log2 n secret integers rk,1.

2. The server performs log2 n different probabilistic encryptions, each to obtain

the values for Rk,0 = E(I, rk,0) and to obtain the values for Rk,1 = E(I, rk,1).

3. The server calculates c′i = cπ(i)

∏log2 n
k=1 Rk,Bk(i), where π is a random permu-

tation function of {1, 2, . . . , n}.

The random value for each ciphertext is interdependent according to its posi-

tion. Thus, the batch re-encryption technique is only secure when the permuta-

tion is kept secret. This is such that the dependencies of random values used in

the re-encryption are not obvious for an observer.

This technique of batch re-encryption can be applied to any re-encryption

chain mix-network. It does not complicate validity verification of correct shuffling,

as the original verification function can still be used after the batch re-encryption

technique is employed. It does not compromise the privacy of the mix-network

as the number of possible permutations and their distribution is unchanged after

batch re-encryption technique is employed.

5.2. A New Mix-Network using Extended Binary Mixing Gates 95

|

|

PSfrag replacements

OR
δ = 0 δ = 1

c1, . . . , cn′c1, . . . , cn′ cn′+1, . . . , c2n′cn′+1, . . . , c2n′

c′1, . . . , c
′
n′ c′1, . . . , c

′
n′c′n′+1, . . . , c

′
2n′ c′n′+1, . . . , c

′
2n′

Figure 5.5: Two possible inputs to outputs permutations in an EBMG.

5.2.2 The Extended Binary Mixing Gate

Using the batch re-encryption technique in the previous subsection and the batch

theorem from Chapter 3.2.1 and Chapter 3.2.3, we detail two types of Extended

Binary Mixing Gate (EBMG) in this subsection. One performs ElGamal re-

encryptions, and the other performs Paillier re-encryptions. The proposed mix-

network is comprised of EBMGs as shown in Figure 5.6. The mix-network pro-

tocol is described in the next subsection.

A normal binary mixing gate (as in the scheme by Abe [Abe99]) mixes two

inputs to two outputs by re-encrypting the inputs, and randomly permutes the

ordering of its output. The mixing is required to be:

• correct: output plaintexts are a permutation of plaintexts contained in the

input ciphertexts; and

• private: the permutation must be kept secret.

An EBMG shuffles 2n′ inputs {c1, c2, . . . , c2n′}, to 2n′ outputs {c′1, c
′
2, . . . , c

′
2n′}

by re-encrypting the inputs and partially permuting them. For i ∈ {1, 2, . . . , 2n′},

the shuffling by an EBMG must be as below. This is illustrated in Figure 5.5.

• correct: when D denotes the corresponding decryption function, the shuf-

fling is correct if: D(ci) = D(c′i) OR D(ci) = D(c′i+n′ mod 2n′); and

• private: whether D(ci) = D(c′i) OR D(ci) = D(c′i+n′ mod 2n′) is not revealed.

Either ElGamal or Paillier cryptosystem may be employed to encrypt and

re-encrypt the inputs, and decrypt the outputs in a threshold manner. We use

these two cryptosystem as examples and detail two EBMG protocols accordingly.

96 Chapter 5. Mix-Network based Voting

ElGamal Cryptosystem

ElGamal cryptosystem (Appendix B.1) is employed with the public parameters

of (p, g, y) and input messages ci = (αi, βi), where i ∈ {1, . . . , 2n′}, and 2n′

is the number of input messages. Suppose n = 2n′ for simplicity. The batch

re-encryption technique in Section 5.2.1 is employed, where random values for re-

encryptions are pre-computed and shared by all the EBMGs. Inside an ElGamal

cryptosystem-based EBMG, its inputs are shuffled as follows:

1. Select a bit δ at random from {0, 1} as a switching variable (see Figure 5.5).

2. For k ∈ {1, 2, . . . , log2 n}, select secret integers rk,0 and rk,1 from Zq at

random. Compute the values of RAk,0 = grk,0 mod p; RAk,1 = grk,1 mod p;

RBk,0 = yrk,0 mod p; and RBk,1 = yrk,1 mod p.

3. For i ∈ {1, 2, . . . , 2n′} and i′ = i + kδ mod 2n′, the output ciphertexts are

constructed as follows:

c′i′ = (α′
i′, β

′
i′)

=

((

αi

log2 n
∏

k=1

RAk,Bk(i) mod p

)

,

(

βi

log2 n
∏

k=1

RBk,Bk(i) mod p

))

4. For i ∈ {1, . . . , 2n′}, construct a non-interactive zero-knowledge (ZK) proof

of correct shuffling operation by proving that one of the two following equa-

tions hold (similar to ZK proof construction in Chapter 4.2.1):

logg±

(
α′

i

αi
mod p

)

= logy±

(
β ′

i

βi
mod p

)

(5.2)

logg±

(
α′

i+n′ mod 2n′

αi
mod p

)

= logy±

(
β ′

i+n′ mod 2n′

βi
mod p

)

(5.3)

The notation ±x denotes an absolute value of x. This notation is described

in Chapter 3.2.

The computational cost for proving “Equation 5.2 OR Equation 5.3” is 6n′

full-length exponentiations, and the corresponding verification costs 8n′ full-

length exponentiations. When n′ is large, the computational cost increases ac-

cordingly.
For i ∈ {1, . . . , 2n′} and ti < 2L < q, we use Theorem 3.2.3 from Chapter 3.2.1

to construct a batch ZK proof-verification technique and batch both Equation 5.2

5.2. A New Mix-Network using Extended Binary Mixing Gates 97

and Equation 5.3 respectively as the following two equations:

logg ±





2n′

∏

i=1

(
α′

i

αi

)ti

mod p



 = logy ±





2n′

∏

i=1

(
β′

i

βi

)ti

mod p



 (5.4)

logg ±





2n′

∏

i=1

(
α′

i+n′ mod 2n′

αi

)ti

mod p



 = logy ±





2n′

∏

i=1

(
β′

i+n′ mod 2n′

βi

)ti

mod p



 (5.5)

Using the batch technique, computational the cost for proving “Equation 5.4

OR Equation 5.5” is 6 full-length exponentiations. The corresponding verification

costs 8 full-length exponentiations. We ignore exponentiation cost using an L-

bit exponents (e.g. log2 L = 20 bits) since the computational cost is much less

compared to full-length exponentiations (e.g. log2 q = 1024 bits), and is typically

smaller than 5% of the entire computational cost.

Paillier Cryptosystem

Paillier cryptosystem (Appendix B.2) is employed with the public key of (p, g, y)

and input messages ci, where i ∈ {1, . . . , 2n′}, and 2n′ is the number of input

messages. Suppose n = 2n′ for simplicity. The batch re-encryption technique

in Section 5.2.1 is employed, where random values for re-encryptions are pre-

computed and shared by all the EBMGs. Inside a Paillier cryptosystem-based

EBMG, its inputs are shuffled as follows:

1. Select a bit δ at random from {0, 1} as a switching variable (see Figure 5.5).

2. For k ∈ {1, 2, . . . , log2 n}, select secret integers rk,0 and rk,1 from Z
∗
N at

random. Compute the values of Rk,0 = rN
k,0 mod N2; and Rk,1 = rN

k,1 mod

N2.

3. For i ∈ {1, 2, . . . , 2n′}, output ciphertexts c′i′ = ci

∏log2 n
k=1 Rk,Bk(i), where

i′ = i + kδ mod 2n′ and Bk(i) denotes the kth bit of integer i.

4. For i ∈ {1, . . . , 2n′}, construct a non-interactive ZK proof of correct shuf-

fling operation by proving the knowledge (by proving the ability to compute)

98 Chapter 5. Mix-Network based Voting

of one of the two following calculations:

(
c′i
ci

) 1
N

modN2 (5.6)

(
c′i+n′ mod 2n′

ci

) 1
N

modN2 (5.7)

The computational cost for proving the knowledge of one of the above two

calculations is 4n′ full-length exponentiations, and the corresponding verification

costs 4n′ full-length exponentiations. When n′ is large, the computational cost

increases accordingly.

For i ∈ {1, . . . , 2n′} and ti < 2L < min(p, q, p′, q′), we use Theorem 3.2.9 from

Chapter 3.2.3 to construct a batch ZK proof-verification technique and batch both

of the previous naive calculations respectively as the following two calculations:

(
2n′

∏

i=1

(
c′i
ci

)ti
) 1

N

modN2 (5.8)

(
2n′

∏

i=1

(
c′i+n′ mod 2n′

ci

)ti
) 1

N

modN2 (5.9)

Using the batch technique, the computational cost for proving the ability to

compute one of the above calculations (from a possible of the above two calcu-

lations) is 4 full-length exponentiations. The corresponding verification costs 4

full-length exponentiations. We ignore exponentiation cost using an L-bit expo-

nents (e.g. log2 L = 20 bits) since the computational cost is much less compared

to full-length exponentiations (e.g. log2 N = 1024 bits).

5.2.3 The Mix-Network Protocol

The mix-network consists of a number of mix servers, each in charge of one level

(row in Figure 5.6) of EBMGs. For simplicity, let the number of inputs to the

mix-network n to be a power of 2.

The Core

There are a total of m = log2 n levels (row in Figure 5.6). In the jth level, there

are 2−jn EBMGs, where j ∈ {1, 2, . . . , m}. The number of EBMGs required in

5.2. A New Mix-Network using Extended Binary Mixing Gates 99

|

|

PSfrag replacements

EBMG

EBMG EBMG

EBMG · · ·

· · ·

· · ·

· · ·

· · · · · ·

· · ·

...

...

...

SV 1

SV 2

SV j

SV m

c1 = c0,1

c2 = c0,2

c3 = c0,3

c4 = c0,4

ci = c0,i cn = c0,n

c′1 = cm,1

c′2 = cm,2

c′3 = cm,3

c′4 = cm,4

c′i = cm,i c′n = cm,n

Figure 5.6: A core EBMGs construction in the proposed mix-network.

the mix-network core is n− 1. This is illustrated in Figure 5.6.

As the EBMGs can employ either ElGamal or Paillier re-encryption (refer back

to Section 5.2.2), the proposed mix-network can either use threshold version of

ElGamal [Ped92] or Paillier [DJ00] cryptosystem (refer to Appendix B).

Batch re-encryption technique in Section 5.2.1 is applied at each mix servers

(rows in Figure 5.6), and batch zero-knowledge proof-verification technique - in

Chapter 3.2.1 for ElGamal cryptosystem, or Chapter 3.2.3 for Paillier cryptosys-

tem - is applied at each EBMG in the core mix-network.

The core mix-network protocol is detailed as below.

1. The inputs c0,1, c0,2, . . . , c0,n are divided into n
2

pairs in the first mix server

(first row of EBMGs; refer to SV 1 in Figure 5.6). For i ∈ {1, 2, . . . , n
2
},

every two successive inputs of c0,2i−1 and c0,2i are shuffled to c1,2i−1 and

c1,2i by an EBMG. The shuffled outputs {c1,1, c1,2, . . . , c1,n} of the first mix

server SV 1 are then sent to the second mix server SV2 to be its inputs.

2. Inputs of the jth row of EBMGs are ciphertexts cj−1,1, cj−1,2, . . . , cj−1,n. For

i = 1, 2, . . . , 2−jn, ciphertexts cj−1,2j(i−1)+1, cj−1,2j(i−1)+2, . . . , cj−1,2ji (every

2j successive inputs) are mixed to cj,2j(i−1)+1, cj,2j(i−1)+2, . . . , cj,2ji by one

EBMG. The jth mix server has n
2j EBMGs. The outputs of this jth mix

server cj,2j(i−1)+1, cj,2j(i−1)+2, . . . , cj,2ji are forwarded as inputs to be shuffled

100 Chapter 5. Mix-Network based Voting

by the j + 1th mix server.

3. Each output from the last row of mixing is verified to be in the group G.

Any output not in the group G is changed to its absolute value (refer back

to the loose theorems in Chapter 3.2 and Chapter 3.3.2).

4. The final output ciphertexts are decrypted in a threshold manner by some

decryption authorities (e.g. the mix servers themselves).

Ciphertexts Distances

As illustrated in Figure 5.6, the value of the switching variable δ determines

the output positions of the ciphertexts processed in an EBMG. Structured as in

Figure 5.6, the final output positions of the ciphertexts mixed by the core mix-

network are determined by the values of the switching variables δ, each in the

EBMGs processing the ciphertexts.

A user with a unique input in ci can identify his own message output by the

core mix-network (in plaintext after c′i is decrypted), and identify the values of

switching variables in every EBMG the ciphertext went through1. Using this

information, the user can further identify the initial input positions of the out-

put plaintexts (after the final output ciphertexts are decrypted) with a certain

probability in relation to the distances between the ciphertexts. This is because

after going through the core mixing, although all input ciphertexts are output to

different output positions, the distances between those ciphertexts (Definition 5)

are constant.

Definition 5. The function ∆(cî, cǐ) denotes the distance of the target ciphertext

cǐ from the anchor ciphertext cî. The value of ∆(cî, cǐ) = (log2 ε(cî, cǐ)) − 1,

where ε(cî, cǐ) denotes the number of elements in the smallest set of 2i′ successive

ciphertexts {ci, ci+1, . . . , ci+2i′−1} containing cî and cǐ, where 2i′|i− 1.

For n number of inputs, there are log2 n bits of switching variables determining

the final output position of each ciphertext. Each of the bit indicates the value

of each switching variable in each EBMG that the ciphertext went through. The

most significant bit indicates the value of the switching variable in the EBMG in

SV m, and m = log2 n.

1The user can trace back and deduce the value of each switching variable δ in each EBMG
that his/her ciphertext went through, from the last EBMG in SV m back to the first EBMG in
SV 1. Thus, switching positions in those EBMGs are revealed.

5.2. A New Mix-Network using Extended Binary Mixing Gates 101

An attack scenario with 8 input ciphertexts and one malicious user is as

follows. Let n = 8, and a malicious user submits a unique input as c1 into

the core mix-network. As input c2 is in the same pair with c1, their distance is

∆(c1, c2) = 0. Thus, the malicious user can successfully identify the user with

input c2. We name c2 the immediate neighbour of c1 as they have the minimum

possible distance. The value of ∆(c1, {c3, c4}) = 1, and ∆(c1, {c5, . . . , c8}) = 2.

Thus, the malicious user can identify the senders of c3 and c4 as one of two users,

and identify the senders of {c5, . . . , c8} as one of four users. This is because the

malicious user can only guess the switching position δ in EBMG in SV 1 for c3

and c4, and need to guess the switching position δ in EBMG in SV 2 and SV 1 for

{c5, . . . , c8}. Note that {c5, . . . , c8} have the maximum possible distance to c1.

For n inputs, and 1 ≤ î, ǐ ≤ n, a malicious user with a unique plaintext input

in cî′ can identify the initial input position ǐ of the final ciphertext output cǐ′ from

2∆(c
î′

,cǐ′) possible number of initial input ciphertexts. This is because ∆(cî, cǐ) =

∆(cî′ , cǐ′). The malicious user requires ∆(cî′ , cǐ′) bits of switching information on

the final ciphertext output of cǐ′ to determine the initial input position ǐ of cǐ′ .

Since the smallest possible distance ∆ between two ciphertexts is 0, mixing us-

ing the core mix-network only achieves pairwise privacy. Furthermore, the privacy

of the core mix-network can be compromised when half of the users collaborate,

such that each of the ciphertexts input by the honest user is an immediate neigh-

bour (have the minimum distance of ∆ = 0) of one of the ciphertexts input by the

malicious users. The best case scenario for an honest user is when the distance

between his ciphertext cǐ and the ciphertext of a malicious user cî is maximum,

where ∆(cî, cǐ) = (log2 n)− 1.

When the number of choices for the input messages is very small compared

to the number of the input n (e.g. in a “yes/no” voting system), the probability

for any input to be unique is small. Thus, the privacy of the mix-network can

be achieved in most cases. However, when the number of choices for the input

messages is not small enough, the probability for an input to be unique may be

significant. Then, the previously described attack scenario is feasible. In this

case, a solution is required to overcome this problem. We provide a method to

prevent the attack using two rounds of mixing in the next subsection.

102 Chapter 5. Mix-Network based Voting

|

|

PSfrag replacements

· · ·

· · ·· · ·

· · ·· · ·

· · ·

c1

c′1

c2

c′2

c3

c′3

cn
2

c′n
2

cn
2
+1

c′n
2
+1

cn
2
+2

c′n
2
+2

cn
2
+3

c′n
2
+3

cn

c′n

Figure 5.7: An example of a public fixed n-to-n permutation.

Two Rounds of Mixing

Limiting the allowable input format is not acceptable for schemes requiring a

more flexible input format, such as in electronic auction schemes with unspecified

threshold of biddable price, or in electronic voting schemes using a preferential

system. Two rounds of mixing are required to sufficiently alter the relative posi-

tions of ciphertexts, such that the ciphertexts are in maximum distances to each

other.

We employ two rounds of mixing and a public fixed n-to-n permutation in

between the two rounds. The public n-to-n permutation (illustrated in Figure 5.7)

permutes the ciphertexts, such that a final output distance in any two consecutive

ciphertexts in the pair is of maximum value. The two rounds of mixing protocol

are as follows:

1. Input ciphertexts are shuffled as in the core mixing protocol (refer back

to Section 5.2.3). The output ciphertexts of the first round of mixing are

directly forwarded (no decryption is performed) to the public fixed n-to-n

permutation.

2. For n ciphertexts ci, the public fixed n-to-n permutation outputs ci′ =

c(i+(n/2)(i mod 2)) mod n, where i ∈ {1, 2, . . . , n}.

3. The output ciphertexts of the public fixed n-to-n permutation are forwarded

as inputs to the second round of mixing, shuffled as in the core mixing

protocol (refer back to Section 5.2.3).

4. The final output ciphertexts are decrypted in a threshold manner by some

decryption authorities (e.g. the mix servers themselves).

5.2. A New Mix-Network using Extended Binary Mixing Gates 103

The final output ciphertexts are not decrypted at the end of the first round.

They are directly forwarded to the public fixed n-to-n permutation before being

submitted as inputs to the second round. A malicious user can only guess the

initial position of the ciphertext at the second round. Thus, the best case scenario

for a malicious user is to guess the initial position of his final ciphertext output

pair from the other half of the initial input ciphertexts with a probability of 2
n
.

The probability of a malicious user successfully identifying the initial input

ciphertext position of any of the other ciphertexts is 1
n−1

. A collaboration of

n − 1 malicious users is required to successfully compromise the privacy of the

mix-network.

5.2.4 Analysis

Security and efficiency of the proposed mix-network is analysed in this subsec-

tion. Correctness and privacy level of the mix-network are discussed. A privacy

and computational cost comparison of the proposed scheme and other efficient

schemes is also provided.

Security

The implementation of EBMG in Section 5.2.2 is correct as the batch technique

in Chapter 3 fails with negligible probability. Also, as the batch technique is

witness-hiding, the EBMG protocol is private.

Our proposed mix-network is correct as each EBMG constructing the mix-

network is also correct. Also, since each EBMG is private, any input to the mix-

network may be mixed to any of the n outputs in the mix-network. Moreover,

for any input, the n possible shuffling results are equally likely. Thus, diffusion

of any single input is optimally achieved.

Since binary gates are used to shuffle the inputs, the core mixing protocol only

achieves pairwise privacy. After the core mixing process has concluded, a mali-

cious user with a unique input can identify the message of his pair input shuffled

by the same EBMG in SV 1. Furthermore, a collaboration of malicious users can

further weaken the privacy of the core mix-network. We refer to Section 5.2.3 for

a detailed analysis and two alternatives to alleviate this problem.

The number of possible permutations using the core mix-network is 2n−1,

where each permutation is equally likely. Two rounds of mixing achieves 22(n−1)

possible permutations.

104 Chapter 5. Mix-Network based Voting

Table 5.2: A comparison of privacy level in terms of diffusion achieved, where κ
indicates the number of honest mix servers in a (t, m) threshold cryptosystem.

Mix-network scheme One input All inputs Uniform

Abe [Abe99] (if κ > t) 1 among n (if κ > t) n! perms no

Abe & Hoshino [AH01] (if κ > t) 1 among n (if κ > t) n! perms yes

Furukawa & Sako [FS01] 1 among n n! perms yes

Neff [Nef01] 1 among n n! perms yes

Groth [Gro03] 1 among n n! perms yes

Our scheme 1 among n 2n−1 perms yes
(the core mix-network)

Our scheme (two rounds) 1 among n 22(n−1) perms yes

Although the proposed mix-network does not offer all possible permutations,

we consider the privacy level to be strong enough for many applications requiring

a large number of messages to be communicated anonymously, i.e. where n is

large.

Table 5.2 compares the anonymity level of our proposed scheme with other

high-performance mix-network schemes. The degree of privacy is measured in

terms of diffusion offered by a mix-network. A mix-network with perfect privacy

has n! permutations, each of them equally likely.

In the proposed mix-network, if one mix server is compromised or the mixing

for that mix server is revealed, the number of possible outputs for an input and

the number of possible permutations in the mix-network is reduced by half (i.e.

reveal the values of switching variables as in Section 5.2.3), while the rest of

possible shuffling and permutations are still equally likely.

To address this problem and achieve a stronger privacy, the entire mixing

process can be repeated a number of times sufficiently (i.e. extending from Sec-

tion 5.2.3).

Efficiency

The computational cost of one mixing operation (the core mix-network) is as

follows:

• Re-encryption: 4(log2 n)2 full-length exponentiations using ElGamal cryp-

tosystem; and 2(log2 n)2 full-length exponentiations using Paillier cryp-

tosystem.

5.2. A New Mix-Network using Extended Binary Mixing Gates 105

Table 5.3: A computational cost comparison for mixing the ciphertexts, in full-
length exponentiations.

Mix-network scheme Mixing Verification of correct mixing

Abe [Abe99] > 16(n log2 n− n + 1) > 16(n log2 n− n + 1)

Furukawa & Sako [FS01] 40n 40n

Groth [Gro03] 32n + 12n/κ′ + 12 24n + 12n/κ′ + 24

Our scheme (one round) 4(log2 n)2 + 6(n + 1) 10(n− 1)

Our scheme (two rounds) 8(log2 n)2 + 12(n + 1) 20(n− 1)

• Proof of valid mixing: 6(n − 1) full-length exponentiations using ElGamal

cryptosystem; and 4(n− 1) full-length exponentiations using Paillier cryp-

tosystem.

• Verification of valid mixing: 10(n− 1) full-length exponentiations using El-

Gamal cryptosystem; and 4(n−1) full-length exponentiations using Paillier

cryptosystem.

We compare computational cost of the proposed mix-network against other

mix-network schemes currently considered efficient. The comparison figure is

summarised in Table 5.3 based on the use of ElGamal cryptosystem. In the table,

we assume 4 mix servers are used in the mix-network [FS01, Nef01, Gro03], n is

the number of inputs to the mix-network, and κ′ is a parameter smaller than n.

In the mix-network scheme by Abe [Abe99], we only provide a lower threshold

of its computational cost as the concrete number of gates was not provided. The

mix-network by Neff [Nef01] is not included in the table as the protocol is not

provided in great detail. However, its performance should be similar to the mix-

network scheme by Groth [Gro03], as they employ similar techniques.

Research in mix-network schemes mainly focuses on improving the efficiency of

verifying correct mixing operation. Although the performance gain is not signifi-

cant, the batch re-encryption technique in Section 5.2.1 can also be implemented

in other re-encryption chain mix-network schemes (or other appropriate schemes)

to improve their overall efficiency.

From Table 5.3, our proposed mix-network scheme performs better than the

other schemes. Our proposed mix-network is able to achieve correctness and

privacy in a very efficient manner. Note that one round of mixing using our

proposed mix-network is sufficient to provide security and privacy for simple

106 Chapter 5. Mix-Network based Voting

schemes, such as in a “yes/no” voting system.

5.3 A Proposed Optimistic Mix-Network

This section offers a modification of the scheme by Golle et al. discussed in

Section 5.1.4. This is to be used for a receipt-free voting scheme in Chapter 6.

To provide a private re-encryption for the initial mix-network inputs and

to eliminate the attacks to the mix-network scheme, the scheme is modified as

follows:

• The hash checksum is removed to invalidate the relation attacks [AI03,

Wik02].

• Single encryption is used instead of double encryption to prevent a cipher-

text owner from using the inner encryption of the double enveloping as a

receipt (refer to Chapter 6).

• We only check that
∏

si =
∏

s′i in the proof of product, where si and s′i

are the plaintext messages before and after the mixing respectively.

For n messages and i ∈ {1, 2, . . . , n}, each ciphertext owner interacts with a

re-encryption authority to generate a ciphertext (αi, βi) for his/her message si.

These are input ciphertexts to the mix-network.

Using the appropriate ElGamal cryptosystem parameters (see Appendix B.1),

the proposed mix-network protocol is as follows:

1. Re-encrypt and randomly permute the ordering of ciphertexts:

Each mix server receives n input ciphertexts (αi, βi). The ciphertexts are

re-encrypted to be (α′
i, β

′
i). The mix server then outputs the re-encrypted

ciphertexts in a random order (α′
π(i), β

′
π(i)), where π(i) is a random permu-

tation of i.

2. Prove preservation of products (individual mix server verification):

Each mix server proves Equation 5.10 in zero-knowledge.

logg

∏n
i=1 α′

i
∏n

i=1 αi

= logy

∏n
i=1 β ′

i
∏n

i=1 βi

(5.10)

Correctness of the mixing operation is publicly verifiable by anyone using

the public values of g, y, (αi, βi) and (α′
i, β

′
i). Using the Chaum-Pedersen

5.3. A Proposed Optimistic Mix-Network 107

protocol in [CP93] (refer to Appendix C), this zero-knowledge proof requires

2 exponentiations for a proof construction and 6 exponentiations for the

corresponding verification.

For a highly trusted mix-network, a verification variation named global ver-

ification can be used. This technique takes a more optimistic approach as the

preservation of product is verified, not by the mix servers in each shuffling, but

by the decryption authorities after the entire mixing (all the shufflings) is com-

pleted. Decryption authorities decrypt the product of the first input ballots and

the product of the last output ballots of the mix-network, and check the equality

of these two values.

Individual mix server verification offers early detection of error in mixing.

Thus, mixing can be aborted and done by other mix servers. This verification

technique is preferable as it provides a check for correct shuffling on each mix

server. Using the global verification, each mix server is not required to produce

any proof. Thus, mixing is more efficient, however errors will only be detected

when the proof of products is checked.

The scheme employs a trace-back protocol to reveal a dishonest entity should

an invalid ciphertext be found. The invalid ciphertext is traced backward to

each of the entities starting from the mix server, re-encryption authority, to the

ciphertext owner. Thus, cheating is discouraged since a dishonest entity will be

revealed. The protocol is as follows:

1. The last mix server is required to reveal the ith input corresponding to

the π(i)th invalid output, and prove the correctness of its re-encryption by

revealing the random value used for re-encryption. This process is repeated

by all mix servers in a reverse order of shuffling until an invalid shuffling is

found.

2. If mixing was found to be correct, the re-encryption authority is required

to reveal the corresponding input and output re-encryption, and prove the

re-encryption by revealing the random number.

3. If re-encryption by the re-encryption authority was found to be correct, the

ciphertext owner is identified.

A dishonest mix server takes two different inputs, and produces two outputs

which are re-encryptions of 1 and the product of the two input ciphertexts. As

108 Chapter 5. Mix-Network based Voting

the product of both the inputs and outputs are still preserved, proof of correct

mixing is accepted, but the recovered messages are invalid.

However, the dishonest mix server will be identified using the trace-back pro-

tocol and can be sanctioned accordingly. When a trace-back occurs to a specific

mix server in the middle of the mix servers, input-output relationship will not be

revealed. When an invalid ballot is traced back to the first mix server, this server

will know the input-output relationship.

Our optimistic mix-network requires three times less computation compared

with the scheme by Golle et al. This is because our scheme uses a single encryption

while the scheme by Golle et al. uses three encryptions for the double enveloping.

In terms of the proof of product (POP), our scheme requires three times less

computation if we use the individual mix server verification. If we use the global

verification, our scheme is much more efficient, since only the initial input product

and final output product are decrypted by a quorum of decryption authorities

and compared. Attacks [AI03, Wik02] on the mix-network scheme by Golle et al.

are not applicable in this scheme, while efficiency is improved threefold.

The proposed optimistic mixnet is more light-weight because single encryp-

tion is used. One major limitation of the mix-network is the possibility of an

invalidation attack by a dishonest mix server. Although, any misbehaviour caus-

ing invalidation can be traced back easily. As we believe that the mix-network

is very efficient, future work will be focused on improving the security properties

while retaining the efficiency.

We employ this proposed scheme to construct an efficient receipt-free voting

scheme in Chapter 6.

5.4 Applications of Batching in A Mix-Network

Continuing from Chapter 3, theorems detailed in that chapter are used in this

section. Example applications on the use of batch ZK proof and verification

techniques for re-encryption and decryption/threshold decryption in mix-network

are presented. An improvement analysis on the mix-network using our batch

techniques is also provided.

5.4. Applications of Batching in A Mix-Network 109

5.4.1 Batching in A Re-Encryption Chain Mix-Network

An important application of batch zero-knowledge proof-verification of correct

re-encryptions is batch zero-knowledge proof-verification of correct shuffling. We

discuss the application of batching for a mix-network for batch proof and verifi-

cation techniques without sacrificing either privacy or soundness.

Shuffling using ElGamal Re-Encryption

A single shuffling is seldom used in a mix-network. Normally, several shufflings

are employed together to form a mix-network, such that the mixing is private if

the permutation of at least one mix server is kept secret. Thus, it is sufficient

to achieve correctness, soundness and privacy of the entire mix-network while

ignoring correctness, soundness and privacy of any single shuffling in most appli-

cations. A modification with an added extra test for group memberships on the

final plaintext outputs of the mix-network is required. After this modification,

the mix-network is satisfactory for most applications.

A straight-forward application of batching for ElGamal only guarantees that

logg±(α′
i/απ(i)) = logy±(β ′

i/βπ(i)). A final check must be performed after the

mix-network has completed the (entire) mixing process. The final output cipher-

texts of the mix-network are decrypted. Each output message must be verified to

be in the group G. If all the messages are in G, no more processing is required.

Otherwise, one or more of the messages are outside the group G. These messages

are then corrected to be in G (refer back to Chapter 3.3.1).

Although any single shuffling is not guaranteed to be strictly correct or sound,

the final check guarantees that the mix-network as a whole is strictly correct

and sound. The mix-network is also publicly verifiable and efficient (with a

computational cost linear to the product of the number of inputs and the number

of mix servers).

This modification adds n full-length exponentiations (for the final membership

check) to the total cost of the mix-network. Where it is not necessary to perform

a membership test in every shuffling, the mix-network is still efficient. After the

batch technique is adopted, efficiency of the mix-network is improved.

110 Chapter 5. Mix-Network based Voting

Shuffling using Paillier Re-Encryption

With the support of Theorem 3.2.9, a batch ZK proof-verification technique

can be employed to design a correct, publicly verifiable, sound and efficient re-

encryption mix-network employing Paillier encryption.

The protocol is correct and publicly verifiable. According to Theorem 3.2.9,

the shuffling is sound. It is also efficient, requiring only O(n) exponentiations.

The probability that a dishonest mix server does not perform the shuffling as

described, but passes the verification is negligible.

5.4.2 Threshold Decryptions

An important application of batch proof-verification of correct threshold decryp-

tions is checking of valid final output decryptions in mix-networks.

In a decryption chain mix-network, centralised decryption is employed. Hence,

if ElGamal encryption is employed, batch verification of correct decryption op-

eration is feasible. Each mix server must publicly prove that decryption of all

its inputs is correct. If the proof for each decryption is presented and verified

separately, the computational cost is high for both the mix server and any verifier.

The mix server can employ the batch verification technique as in Chapter 3.3.2

to efficiently prove and verify correctness of decryptions. If the batch verification

fails, the mix server must have performed at least one incorrect decryption.

In a re-encryption mix-network, the power to decrypt is typically shared

among multiple decryption authorities. After the shuffling is completed by all

the mix servers, a quorum of decryption authorities have to cooperate to decrypt

the mixed ciphertexts. The authorities have to publicly prove that their partial

decryptions are correct. Once again, separate proofs for each partial decryption

imply a high computational cost.

After the efficiency of shuffling has been improved (such as in [GZB+02, Gro03,

PBDV04]), proof and verification of correct decryption operation becomes an ef-

ficiency bottleneck. Thus, batch proof-verification technique for verifying correct

threshold decryptions can be applied to improve the efficiency of a re-encryption

mix-network and remove this bottleneck.

Batch proof-verification of correct threshold Paillier decryptions in Chap-

ter 3.3.2, or of threshold ElGamal decryptions in Chapter 3.3.2 can be employed

to batch correct partial decryption proofs and verifications on the final decryp-

5.5. A Preferential Voting Case Study 111

Table 5.4: Efficiency improvement in a mix-network using batching techniques.

Mix network Soundness Computational cost

Permutation-based verification of
shufflings without batch verifica-
tion of decryptions [Gro03]

strong 4n(n!− 1) + 5mn + 2n

Input-based verification of shuf-
flings without batch verification
of decryptions [PBDV04]

moderate mn(4n− 2) + 5mn

Permutation-based batch verifi-
cation of shufflings and batch ver-
ification of decryptions

strong 9mn + 2m

tions in a re-encryption mix network.

After batching, decryption verification becomes more efficient as the computa-

tional cost for proof and verification of correct partial decryptions for a decryption

authority decreases from O(n) to O(1) full-length exponentiations. The proba-

bility that a dishonest authority performs incorrect decryption but passes the

validity check is negligible.

5.4.3 Improvements Analysis

Using theorems in Chapter 3, issues concerning group membership in the al-

gorithms of Bellare et al. are efficiently solved. Batch ZK proof-verification

techniques have been applied to batch proving and verifying correctness of en-

cryptions, re-encryptions and decryptions based on these theorems.

Efficiency improvement in mix-network is illustrated in Table 5.4, where the

number of full-length exponentiations are counted in an ElGamal re-encryption

mix-network with n inputs and m mix servers.

As illustrated in the table, application of batching in a mix-network offers a

great efficiency improvement. In the table, row 2 and 3 (without batching) is

computationally more expensive compared to the last row (with batching).

5.5 A Preferential Voting Case Study

In a mix-network, the size of each input does not directly affect the efficiency of

a mix-network. Thus, we propose an efficient generic secret-ballot voting scheme

112 Chapter 5. Mix-Network based Voting

utilising a robust mix-network. We use the preferential voting system described

in Chapter 2.3.1. This section continues from the case study in Chapter 4.3.

The scheme is as follows:

1. Preparation phase: Parameters for the cryptosystem are initialised, and

integers representing each preference of the candidates or choices are de-

fined. For K number of candidates or choices, there are K! such integers.

2. Voting phase: Each voter i performs the following:

(a) selects a sequence, k ∈ {1, . . . , K!}, to represent his/her preference;

(b) encrypts the selection, e.g. E(ki) = ci = (αi, βi) = (gri, kiy
ri), us-

ing a semantically secure encryption algorithm such as the ElGamal

cryptosystem.

(c) communicates the encrypted vote (ballot) ci to a vote collecting au-

thority, and attach a digital signature of the ballot.

3. Tally phase: The vote collecting authority performs the following:

(a) verifies the identity of the voter by checking the digital signature;

(b) forwards the ballots from authorised voters to a mix-network to be

anonymised.

Afterward, the tally authority performs the following:

(a) collects the valid plaintext votes s′π(i) output by the mix-network,

where π is a secret permutation function of the mix-network;

(b) processes the plaintext votes electronically by using a program for

counting the preferences and calculating the winning candidate or

choice.

In contrast to voting protocols based on the homomorphic encryption ap-

proach, the size of each input does not affect the complexity of the scheme. This

is because the votes are plaintexts after being anonymised by the mix-network.

Therefore, any voting system (e.g. preferential voting system) can be imple-

mented using the proposed scheme. Tallying is transparent and can be performed

using a counting program for that voting system. Only the number of inputs con-

tribute to the efficiency of the scheme.

5.5. A Preferential Voting Case Study 113

Table 5.5: A complexity analysis for the adapted voting system using a robust
mix-network.

Entity Parallel processes Exponentiations per process

A voter 1 2
The mix-network (2t log2 n)− 1 32t(2 log2 n− 1)

= 20t− 1 = 608t

In a straight-forward adaptation of electronic preferential voting employing

mix-network, the vote need not be in a special form as in the homomorphic

encryption approach. In this case, the vote can be of the form an integer ranging

from 1 to K!, where K denotes the total number of candidates or choices in the

preferential voting. Thus, the vote size is dlog2(K!)e.

We employ the mix-network by Abe [Abe99, AH01] described in Section 5.1.3

in this case study. We choose to use MiP-2 since it separates the mixing and

decryption, and thus is more straight-forward to understand.

Each voter generates exactly one ballot (mix-network input). Therefore, the

number of inputs is the same as the number of voters, n. Analysing MiP-2,

the total number of modular exponentiations required for the mixing operation

and constructing the corresponding zero-knowledge proof is 32(2 log2 n− 1) (see

Table 5.1). The main factor contributing to the computational cost of the scheme

is the construction of a zero-knowledge proof required at each switching gate. The

number of mixing gates an input is required to pass through in the mix-network

is 2 log2 n− 1 [Abe99], directly proportional to the number of input n.

In the case of an election for the Australian House of Representatives2, the

number of modular exponentiations required for the scheme is presented in Ta-

ble 5.5 (we count log2 1000 to be 10 for simplicity). In addition to Table 5.5,

the number of threshold decryption operation required is 3 + 4t exponentiations.

Vote tabulation is performed as in the traditional counting of votes without any

cryptographic processing required. This is because outputs of the mix-network

are randomly permuted plaintext votes.

When the mix-network by Abe is replaced by our two-rounds EBMG mix-

network, the computational cost for the voter remains. The total computational

cost for the mix-network is now 12812 modular exponentiations (refer back to

2We use parameters as in Chapter 4.3, where the number of candidates K = 20, and the
number of voters (per polling booth) n = 1000.

114 Chapter 5. Mix-Network based Voting

Section 5.2.4) as compared to 608t(20t − 1) = 12160t2 − 608t (see Table 5.5)

using the mix-network by Abe.

The size of the electronic vote for a preferential voting system is inherently

larger than for a 1-out-of-K voting system, when the number of candidates, K,

increases. In the case of preferential voting system, the size of the vote is at least

log2 m! bits. Each vote in this scenario is of dlog2(20!)e = 62 bits.

The number of candidates does not affect the computational complexity of the

mix-network. Only the number of inputs affect the computational complexity of

the mix-network. In the case of an election for the Australian Senate where

the number of voters (per polling booth) is also n = 1000, the computational

complexity previously discussed remains.

As discussed in the Chapter 4.3, any voting system that employs the homo-

morphic encryption approach will require the voter to prove that a valid vote was

encrypted. The computational complexity of such a proof is O(K!). Also, the

vote size is O(2log2 n). Unless an efficient proof technique is available to validate

the encrypted vote, the homomorphic encryption approach will not be practi-

cal for a straight-forward adaptation for preferential voting systems as shown in

Chapter 4.3.

Voting systems that employ a mix-network, on the other hand, do not require

such a proof from the voter or are restricted by a structured vote requirement.

In fact, the computational complexity of a mix-network is not adversely affected

by the number of candidates or choices. Therefore, a mix-network based voting

system is well suited for a straight-forward adaptation of a preferential voting

system. This include the Australian elections for the house of representatives

and the Australian senate elections.

However, a combination of both approaches leads to a promising framework

(a hybrid approach) where a small number of pre-set of preferences is allowed.

This is shown in Chapter 7.

5.6 Summary

Two mix-network schemes and a shuffling scheme have been reviewed and im-

proved. A preferential voting case study using a mix-network has also been

presented in this chapter.

A mix-network scheme by Abe [Abe99, AH01] is extended, such that its ef-

5.6. Summary 115

ficiency is increased. A further work to further optimise the extended scheme

is possible. Mix servers may be arranged in such a way, such that the shuffling

process can be done in parallel. This will allow the mix-network to achieve better

throughput.

The scheme by Golle et al. [GZB+02] is modified to allow better efficiency

with a weaker trust assumption. However, a trace-back protocol is provided in

the modification to identify a dishonest entity.

Example applications of batch techniques in a mix-network have also been

presented.

From the case study, secure secret-ballot voting scheme accommodating write-

in votes can only be realised using mix-network. In addition to that, mix-network

is more suitable to realise secure secret-ballot voting scheme accommodating a

straight-forward adaptation of a preferential system. In Chapter 7, the homomor-

phic encryption and the mix-network approach are combined to form a hybrid

framework with the advantages of both approaches.

The next chapter offers research into receipt-freeness. It is one of the many

important requirements for a secure secret-ballot voting scheme.

116 Chapter 5. Mix-Network based Voting

Chapter 6

Receipt-Free Voting

Receipt-freeness is one important requirement for secret-ballot voting (refer back

to Chapter 2.7). It is a stronger notion of the privacy requirement, such that

a voting result reflects true opinions of the voters. This is to prevent vote buy-

ing/selling, or coercion/intimidation. Without receipt-freeness, a voter may be

used as a proxy to cast a vote instead of casting his/her own vote.

Two models of receipt-free voting are presented in this chapter. The first

model improves the efficiency of the scheme by Lee et al. [LBD+04] by using

an optimistic mix-network instead of a verifiable one. An optimistic mix-network

from Chapter 5.3 is used for this model. This model has been previously published

in [ALBD04a].

Based on the first model, the second model lowers the trust requirement of one

re-encryption authority (a randomiser) to a threshold of re-encryption authorities.

This is by using two new techniques. One is a threshold re-encryption technique,

and the other is a batch verification technique to verify designated verifier re-

encryption proofs. This model has been previously published in [ALBD05].

The work presented in this chapter offers a foundation to providing receipt-

freeness in an efficient manner. Example models provided in this chapter are

based on the mix-network approach.

117

118 Chapter 6. Receipt-Free Voting

6.1 Background

The concept of receipt-freeness in voting is described. A receipt-free voting

scheme by Lee et al. [LBD+04] is recalled, and a designated verifier re-encryption

proof (DVRP) protocol is also recalled. This section provides a basis for both of

our proposed models.

6.1.1 Receipt-Freeness

Abuses of voting include the use of coercion, intimidation, and selling/buying of

votes. These abuses are aimed at corrupting a voting result, such that the result

favours a particular candidate or choice. The concept of secret-ballot was first

designed to prevent such threats from producing an unfair and corrupted result.

This is achieved by using official ballot papers, vote casting in a private booth,

and public ballot submissions into a ballot box.

The concept of receipt-freeness was first investigated by Benaloh and Tuin-

stra [BT94]. It is an important property required to provide a fair voting result,

to ensure that voters are not used as proxies to cast votes. To achieve this, voters

should not be able to provide a receipt for any vote cast in the ballot. Otherwise,

the receipt can be used to satisfy a coercing or a vote-buying party.

In a cryptographic voting protocol, a ballot contains an encrypted vote. A

vote buyer can provide the random value r used to construct a particular ballot

(encrypt a particular vote). Since ballots are public, a buyer can check that

a particular ballot contains a particular vote by opening the ballot using the

random value r.

For example, in an ElGamal cryptosystem setting, a ballot is constructed as

c = (α, β) = (gr, syr). With a knowledge of the random value r, the ballot can

be opened by simulating the ballot construction. Hence, the vote s is revealed.

A solution to this problem is to provide a private randomisation service to

each ballot, such that the random value in a ballot is changed and unknown to

the voter.

Both for the homomorphic encryption and mix-network approaches, randomi-

sation can be performed right after a ballot is submitted. For the homomorphic

encryption approach, the randomisation is performed before the ballot is made

public. For the mix-network approach, the randomisation is performed before the

ballot is forwarded as one of the inputs to a mix-network.

6.1. Background 119

However, the randomisation process requires an untappable channel. Used

by Okamoto [Oka97], such a channel is required to hide a ballot before it is

randomised. No third party can observe (tap) the communication between a

sender and receiver using the untappable channel. Such a channel can be realised

using a physical security assumption.

6.1.2 The Scheme of Lee et al.

Receipt-freeness is typically achieved by randomising the ballot. This is to remove

a voter’s knowledge of the random value used for ballot construction (encryption

of a vote). The randomisation eliminates the voter’s ability to prove the content

of the ballot to a third party using a knowledge of the random value used for the

ballot construction. At the same time, the voter must receive an assurance that

the randomised ballot contains the same vote.

The mix-network based receipt-free voting scheme of Lee et al. employs a

tamper-resistant hardware device named tamper-resistant randomiser (TRR) and

an untappable channel. The TRR performs the role of a third party randomiser.

Correct randomisation is verifiable through the use of a designated verifier re-

encryption proof (DVRP).

Afterward, the ballots are then anonymised by the mix-network, and each

output of the mix-network is decrypted by a quorum of tally (decryption) au-

thorities.

The voting phase consists of the following four sub-phases.

1. Each voter prepares a first ballot by encrypting his vote. The ballot is

then sent to TRR for randomisation.

2. The TRR randomises the first ballot with a re-encryption to produce a final

ballot.

3. The TRR also produces a designated verifier re-encryption proof

(DVRP) to prove the correctness of the re-encryption to the voter. The

final ballot and the DVRP are then sent to the voter.

4. The voter checks the DVRP, then signs and submits the final ballot to

a mix-network if the check is accepted.

We note that the scheme employs a verifiable mix-network. Efficiency im-

provements are possible by alternatively using an optimistic mix-network.

120 Chapter 6. Receipt-Free Voting

6.1.3 A Designated Verifier Re-Encryption Proof

A designated verifier proof was first introduced by Jakobsson et al. [JSI96], and

applied for re-encryption in voting by Lee and Kim [LK02]. The fundamental

idea is that the proof will only convince a designated verifier, and the proof is not

transferable (not convincing) to others (to verify). This is possible as the prover

proves knowledge of either the value in question OR the private key belonging to

the designated verifier.

The prover constructs the proof by simulating a proof of knowledge of the pri-

vate key belonging to the designated verifier. On the other hand, the designated

verifier is convinced of the proof if the verification is accepted. This is because

only the designated verifier holds the knowledge of the private key. Thus, the

proof is not transferable (not convincing to others) since a designated verifier

can construct a proof of knowledge of the private key and simulate the proof of

knowledge for the random value used for the re-encryption.

Correctness proof of a re-encryption by a re-encryption authority is only

verifiable to (only convinces) a designated verifier for the proof. A designated

verifier re-encryption proof (DVRP) only convinces a designated verifier. A re-

encryption authority constructs the proof by simulating the zero-knowledge proof

of knowledge of the private key corresponding to the public key yi owned by the

designated verifier, and combines this proof with a zero-knowledge proof of equal-

ity of discrete logarithms (that the same randomisation value r′ is used in both

ciphertext parts). The second premise is proved using the following equation.

logg

α′

α
= logy

β ′

β

A non-interactive version1 of the DVRP protocol is recalled as follows:

1. The re-encryption authority selects values of τ, u′, w′ ∈ Zq at random.

2. The re-encryption authority computes commitments of (γ1, γ2) = (gτ , yτ),

and simulates the knowledge of the private key of yi owned by a designated

verifier by producing γ3 = gw′

yu′

i .

3. The re-encryption authority computes the value of a challenge u using a

one-way collision-resistant hash function H, with a range of Zq, as u =

H(γ1, γ2, γ3, α
′, β ′).

1In the interactive version of the protocol, the voter selects the challenge u at random.

6.2. Two New Cryptographic Primitives 121

4. The re-encryption authority calculates the response w = τ − r′(u + u′).

5. The re-encryption authority sends the values of (u, u′, w, w′) to the desig-

nated verifier.

After receiving the proof, the designated verifier can perform the check using

the following Equation 6.1.

u = H

(

gw

(
α′

α

)(u+u′)

, yw

(
β ′

β

)(u+u′)

, gw′

yu′

i , α′, β ′

)

(6.1)

If the verification is accepted, a designated verifier is convinced that the re-

encryption was indeed correct since the re-encryption authority knows the value

of r′ used in re-encrypting the ciphertext. On the other hand, a proof transferred

to another entity will not be convincing since the designated verifier can always

construct a valid proof from his/her possession of the private key corresponding

to the public key yi (construct the proof by both simulating the knowledge of the

random value r′ AND proves the knowledge of the private key corresponding to

the public key yi).

6.2 Two New Cryptographic Primitives

We present two new cryptographic primitives to construct a receipt-free voting

protocol for our model 2 (refer to Section 6.4). A threshold re-encryption tech-

nique is proposed, and a batch designated verifier re-encryption proof (DVRP) is

presented.

6.2.1 A Threshold Re-Encryption Technique

A new technique is developed to perform a re-encryption by a threshold of re-

encryption authorities instead of relying on a single trusted authority. The as-

sumption of a single trusted re-encryption authority can be removed. The tech-

nique offers robustness in a re-encryption operation, and lowers the trust for a

re-encryption authority.

The idea is based on the secret sharing scheme by Shamir [Sha79] (refer to

Appendix A). The scheme is applied to share a message s = gε into m messages

sj = gεj , where ε is shared using Shamir’s (t, m) secret sharing scheme. Each

122 Chapter 6. Receipt-Free Voting

sj is then encrypted with the value of rj ∈ Zq selected at random using the

ElGamal cryptosystem as (αj, βj) = (grj , sjy
rj) and forwarded to m authorities

for re-encryption.

The jth re-encryption authority performs the re-encryption by selecting a value

r′j ∈ Zq at random, and computes (α′
j, β

′
j) = (αjg

r′j , βjy
r′j).

From a quorum S of honest authorities, the re-encrypted ciphertext is then

constructed as below where µj =
∏

j′ 6=j
j′

j′−j
.

(α′, β ′) =

(
∏

j∈S

α
′µj

j ,
∏

j∈S

β
′µj

j

)

(α′, β ′) =
(

g
∑

j∈S(rj+r′j)µj , g
∑

j∈S εjµjy
∑

j∈S(rj+r′j)µj

)

Decryption of (α′, β ′) using the secret key x (where y = gx) is performed to

recover the original message s = β ′/α′x. This is because ε =
∑

j∈S εjµj.

As in a re-encryption of a ciphertext, each re-encryption authority is also

required to prove that his/her re-encryption of a partial ciphertext is correct by

using a DVRP as in the Section 6.1.3.

Individual verification of each DVRP is inefficient. A batch theorem from

Chapter 3 can be used to construct a batch DVRPs verification technique. The

batch technique allows efficient verification of the DVRPs. This is detailed in the

next subsection.

6.2.2 A Batch DVRP Verification Technique

Based on Theorem 3.2.3 (refer back to Chapter 3.2.1), verifications of each of the

DVRP can be batched for better efficiency. This is similar to the loose verification

technique in Chapter 3.3.1.

We use the small exponents test to batch verify the designated verifier re-

encryption proofs. Small exponents of L-bit length are used to bind each cor-

responding challenge and response values in batching. A typical value of the

security parameter L might be 20. For j ∈ {1, 2, . . . , m}, the batch verification

is implemented to check a zero-knowledge proof of knowledge of the following

equation.

logg

m∏

j=1

(
α′

j

αj

)tj

= logy

m∏

j=1

(
β ′

j

βj

)tj

(6.2)

6.2. Two New Cryptographic Primitives 123

The jth re-encryption authority produces a non-interactive proof to Equa-

tion 6.2 as follows:

1. Selects at random the values of τj, u
′
j, w

′
j ∈ Zq.

2. Commits to the generator g and public key y as (γj,1, γj,2) = (gτj mod

p, yτj mod p), and simulates the knowledge of the private key of yi owned

by the designated verifier by computing γj,3 = gw′

jtjy
u′

jtj
i mod p.

3. Produces a small exponent tj and a challenge uj by using a one-way collision-

resistant hash function H as (tj, uj) = H(γj,1, γj,2, γj,3, α
′
j, β

′
j), where the

range of H is {0, 1}L × Zq.

4. Calculates the response wj = τj − tjr
′
j(uj + u′

j) mod q.

5. Sends the values of (γj,1, γj,2, γj,3, u
′
j, uj, wj, w

′
j, tj) to the designated verifier.

Verification of the proofs can be batched by checking the following:

(tj, uj)
?
= H(γj,1, γj,2, γj,3, α

′
j, β

′
j)

m∏

j=1

γj,1
?
= g

∑m
j=1 wj

m∏

j=1

(
α′

j

αj

)tj(uj+u′

j)

mod p

m∏

j=1

γj,2
?
= y

∑m
j=1 wj

m∏

j=1

(
β ′

j

βj

)tj(uj+u′

j)

mod p

m∏

j=1

γj,2
?
= g

∑m
j=1 w′

jy
∑m

j=1 tju′

j

i mod p

Cheating is possible if a dishonest authority can guess the value of the small

exponents and the value of the challenge. The probability of guessing the chal-

lenge is negligible (q−1). Hence, the probability of cheating the batch verification

is similar to the probability of guessing the value of the small exponents 2−L (refer

back to Chapter 3.1).

Note that when the verification is accepted (Equation 6.2 is satisfied), further

checking needs to be performed to verify that both values of α′
j and β ′

j are in

the group G, the subgroup of Z
∗
p of order q. This can be performed efficiently by

124 Chapter 6. Receipt-Free Voting

using the Legendre symbol as follows:

(
α′

j

p

)

= 1

(
β ′

j

p

)

= 1

If either α′
j /∈ G or β ′

j /∈ G, then the value that is not in G is simply converted to

be in G by multiplying by −1.

Should the batch verification fail, divide and conquer, cut and choose (select a

subset of the proofs at random to verify), binary search method [PMPS00], or even

individual verification, can be performed to identify the dishonest re-encryption

authority and discard his/her partial re-encryption.

6.3 Model 1 - with A Single Administrator

We use the proposed optimistic mix-network in Chapter 5.3 to construct model

1. Efficiency improvement is obtained over the scheme by Lee et al. [LBD+04] by

employing the optimistic mix-network in Chapter 5.3 and combining the role of

the first mix server with the role of a randomiser.

Figure 6.1 offers an overview of our Model 1. Participants of the scheme

are voters, a trusted administrator (re-encryption authority), an optimistic mix-

network, and tally (decryption) authorities. The scheme employs a two-way un-

tappable communication channel to be used by the voters and the administrator.

6.3.1 The Protocol

Based on the scheme by Pedersen [Ped91], a threshold version of ElGamal cryp-

tosystem is employed (for threshold decryptions). The appropriate parameters

p, q, g and y = gx are made public, while the secret key x is shared among tally

authorities for opening the mixed ballots. Each voter has a public-private key

pair through an already established key distribution mechanism, such as Public

Key Infrastructure (PKI), where yi = gxi corresponds to the public key of the ith

voter.

Focusing on the interaction between the voter and administrator (voting

phase, step 1 in Figure 6.1), the protocol is as follows. For simplicity, we provide

6.3. Model 1 - with A Single Administrator 125

2. Mixing

two−way untappable channel

1.2. Ballot publishing1.4. Approval
1.3. DVRP

1.1. Vote

3.2. publish result

Administrator

3.1. Tally

Voter

Talliers

Mixers

Bulletin Board

Result

Approval Ballots

Voting parameters

|

|

Figure 6.1: An overview of Model 1.

details of the protocol for one voter (i = 1) and omit the subscript i (n number

of voters, i ∈ {1, 2, . . . , n}).

1. Vote casting (using two-way untappable channel):

Each voter chooses and encrypts a vote s as a ballot c = (α, β) = (gr, syr),

where r ∈ Zq is a value selected at random by the voter. The ballot (α, β) is

then sent to the administrator with the voter’s signature. The administrator

checks the eligibility of the voter and the validity of the voter’s signature,

and accepts or rejects the submitted ballot accordingly.

2. Ballot publishing:

After the voting period has ended, the administrator re-encrypts each ballot

using a new random value r′ as (α′, β ′) = (αgr′, βyr′), and posts the re-

encrypted vote (α′, β ′) in a random order to the bulletin board.

3. DVRP (using two-way untappable channel):

The administrator provides each voter with a DVRP which proves the cor-

rectness of the re-encryption. Using the DVRP, the administrator person-

ally proves to the voter his/her knowledge of either the random value of r ′

used for re-encryption OR the private key of the voter xi (yi = gxi, refer

back to Section 6.1.3).

126 Chapter 6. Receipt-Free Voting

4. Approval:

Each voter checks the validity of the DVRP as in equation 6.1 and posts

an approval message with his/her signature on the bulletin board if the

DVRP is accepted, or refutes otherwise. The approval message format can

be pre-agreed in the system such that it is fresh but does not include any

personal information which can be used as a receipt. For example, a voter

can sign the hash value of all the published ballots.

Afterward, the re-encrypted ballots are forwarded as inputs to the optimistic

mix-network (mixing phase, step 2 in Figure 6.1). Either individual or global

verification can be employed according to the confidence level (refer back to Chap-

ter 5.3).

Outputs of the mix-network are then decrypted by a quorum of tally author-

ities. The plaintext votes are published on the public bulletin board along with

the voting result (tally phase, step 3 in Figure 6.1). Correctness of the threshold

decryption process is publicly verifiable as each tally authority publishes a proof

of correct partial decryption on the bulletin board, by proving the knowledge of

his/her share of the secret key used to produce the partial decryptions.

The scheme employs a trace-back protocol (refer back to Chapter 5.3) to reveal

a dishonest entity should an invalid vote be found. Cheating is discouraged since

a dishonest entity will be identified and sanctioned accordingly. Note that in this

scenario, vote content of a ballot remains a secret unless the administrator is also

a buyer (i.e. the voter was forced to use a particular random value beforehand).

Otherwise, a dishonest administrator can only use the signature of a voter to

prove that a particular ballot came from the voter without knowing its vote

content (the vote content of the first ballot submitted to the administrator).

6.3.2 Trust and Security Issues

Since the scheme employs a single trusted administrator, a compromised admin-

istrator can collude with the voter to buy/sell the vote (or act as an agent for the

buyer). A dishonest voter can send the value r to the administrator, along with

the ballot (α, β), through the two-way untappable channel during re-encryption.

The administrator can then check that a particular vote s is contained in the

ballot by repeating the encryption process.

Also, a collusion between an administrator and a voter allows the administra-

tor to submit a ballot on behalf of the voter, where the voter approves the ballot

6.4. Model 2 - with Multiple Administrators 127

irrespective of the proof from the administrator.

This particular cheating method cannot be detected since a two-way untap-

pable channel is employed and the ballot is not tampered in any way. Both

privacy and receipt-freeness are compromised.

We propose a novel way to alleviate this issue by employing multiple admin-

istrators instead of employing a single trusted administrator. Thus, the trust

is distributed among a threshold (quorum) number t + 1 from all m adminis-

trators (t-out-of-m). A voter splits a vote and constructs partial ballots for the

administrators. The administrators re-encrypt and produce DVRPs for the voter.

Receipt-freeness can still be satisfied up to a collaboration of t administrators.

6.4 Model 2 - with Multiple Administrators

We present our second model in this section. Note that the privacy issues in

the first model remain in the second model. The first mix server still needs

to be trusted to maintain the secrecy of voter-vote relationships. However, our

second model offers more robustness in receipt-freeness by employing a threshold

of administrators to perform re-encryption of the initial ballot. A threshold of

administrators must collude to provide evidence of a vote and compromise receipt-

freeness.

For simplicity, we describe the threshold re-encryption protocol for one voter

(i = 1), and omit the subscript i.

1. Vote casting (using two-way untappable channels):

The voter chooses a value rj ∈ Zq at random, and a vote s = gε (the

list of valid votes can be published prior to the voting phase). For j ∈

{1, 2, . . . , m}, the value ε is then shared using (t, m) Shamir’s secret-sharing

scheme into m values εj. Each of the partial votes sj = gεj is then encrypted

as partial ballots (αj, βj) = (grj , sjy
rj). Each of the partial ballot (αj, βj)

are then sent to the corresponding administrators along with the signature

of the voter. Each administrator checks the eligibility of the voter and the

validity of the signature. The partial ballot is either accepted or rejected

depending on the verification result.

2. Ballot publishing:

At the end of the voting period, each of the administrators re-encrypts

128 Chapter 6. Receipt-Free Voting

each partial ballot (αj, βj) using a new random value r′j as (α′
j, β

′
j) =

(αjg
r′j , βjy

r′j), and posts the re-encrypted partial ballot (α′
j, β

′
j) to the bul-

letin board, tagged with the identity of the voter for ballot identification and

partial ballots combining, and a signature of the re-encrypted partial ballot.

Note that since each partial ballot is tagged for partial ballots combining,

shuffling is not provided by the administrators.

3. DVRP (using two-way untappable channels):

Each administrator provides the voter with a DVRP which proves the cor-

rectness of the partial re-encryption. Using the DVRP, each administrator

individually proves to the voter his/her knowledge of either the random

value of r′j used for re-encryption or the private key of the voter xi (yi = gxi,

refer back to Section 6.2.2).

4. Batch DVRP verification:

The voter batch verifies the proofs by performing the checks as in Sec-

tion 6.2.2.

5. Approval:

A period of time is provided for voters to mark the invalid partial ballot to

be excluded in the partial ballots combining step.

6. Partial ballots combining:

Correct partial ballots are combined from a quorum of partial ballots as in

Section 6.2.1.

6.5 Analysis

Security and efficiency analysis of our two proposed models are presented in this

subsection.

6.5.1 Security

Our proposed models are based on known building blocks whose security prop-

erties are already established. This subsection discusses the overall security of

our models. We analyse our proposed models based on the security requirements

discussed in Chapter 2.7.

6.5. Analysis 129

• Privacy: In the first model, ballots are randomised and mixed first by the

administrator and then by the mix servers. If at least one of these entities

remains honest, privacy of voters is maintained. A threat in privacy can

occur when a specific invalid ballot is traced back to the voter. If the invalid

ballot is traced back only to the mix servers, privacy is maintained since

we assume that the administrator does not disclose voter-vote relationship.

Since an optimistic mix-network is employed, the second model also inherits

this problem. The first mix server is assumed to be honest; a verifiable mix-

network can be employed if this can not be reasonably assumed.

• Receipt-freeness: In the first model, since a voter’s ballot is randomised

additionally by the administrator, a voter loses his knowledge of the ran-

domness of the encrypted ballot and cannot construct any receipt. Also,

the voter cannot transfer the DVRP of the administrator to any third party.

This is because it is a personal proof and the voter can construct the proof

using his private key.

Since a two-way untappable channel is used between the voter and the

administrator, a buyer cannot observe the communication between the voter

and administrator during the voting phase.

Compared to employing a trusted administrator in the first model, the sec-

ond model offers a stronger notion of receipt-freeness. This is by employing

multiple administrators performing threshold re-encryptions. This model

can accommodate up to a threshold number t of dishonest administrators,

and can still maintain receipt-freeness.

• Accuracy: The plaintext votes output by the mix-network are public.

Hence, accuracy of the voting result is straight-forward.

• Fairness: Since voting is only allowed during the voting period prior to

mixing and tallying, the fairness of voting is guaranteed.

• Eligibility: The list of eligible voters is made public and only authenticated

voters are allowed to participate.

• Non reusability: Voters can vote only once since they participate in voting

with their signatures. Any misbehaviour by the administrator, for example,

addition of ballots, is prevented, since a voter’s approval is required for a

ballot to be valid.

130 Chapter 6. Receipt-Free Voting

• Robustness: Using the individual mix server verification, backup mixing

is possible when an invalid mixing in the proof of product is detected. Also,

ballots opening are robust as a threshold decryption is employed.

• Verifiability: In the voting phase, a voter can personally verify the cor-

rectness of administrator’s randomisation by checking the DVRP. Correct

mixing operation is publicly verifiable as anyone can observe and verify the

equality of the product of input and output ballots. The tally phase is

publicly verifiable.

In both of the proposed models, a corrupt mix server can disrupt the voting

by invalidating some ballots during the mixing phase. For example, from two

different inputs, a mix server produces two outputs which are respectively the

product of the two inputs and a re-encryption of 1. As the product of inputs

and outputs is still preserved, the proof of correct mixing is accepted but the

recovered messages are invalid. Note that this is an inherent weakness in an

optimistic mix-network by using a proof of product to prove a correct mixing

operation (refer back to Chapter 5.1.4).

However, the cheating mix server will be identified using the trace-back pro-

tocol and can be sanctioned accordingly. When a trace-back occurs to a specific

mix server in the middle of the mix-network, the voter-vote relationship will not

be revealed. When an invalid ballot is traced back to the first mix server, the

administrator knows the voter-vote relationship.

In the first model, we assume that the administrator is a reputable entity and

does not disclose his/her knowledge (of voter-vote relationship) when a trace-back

occurs. In the second model, a stronger notion of receipt-freeness is achieved by

employing multiple administrators.

We assume that the first mix server is honest such that privacy is not compro-

mised. Alternatively, a verifiable mix-network can be employed if such assumption

is considered to be too strong.

6.5.2 Efficiency

Compared to a voting scheme based on the mix-network by Golle et al., our first

model is more efficient both in computational cost (in terms of the number of

modular exponentiations required) and communicational cost (in terms of the

message size in bits) as shown in Table 6.1 and Table 6.2 respectively.

6.5. Analysis 131

Table 6.1: A computational cost comparison of our first model against a voting
scheme based on the mix-network of Golle et al., where n denotes the number of
voters.

Entity Operation Proposed Golle et al.

Voter Encrypt 2 8
Voting Verify (DVRP) 6 N/A
phase Administrator Re-encrypt 2 N/A

Prove (DVRP) 4 N/A
Mixing Mix server Re-encrypt 2n 6n
phase Prove 2 6

Public Verify 6 18

Efficiency is improved mainly because our optimistic mix-network scheme uses

a single encryption, while the scheme by Golle et al. uses three encryptions for

the double enveloping.

In the voting phase, our first model requires each voter to encrypt the vote

once (2 modular exponentiations), to submit it to the administrator, and later to

verify a DVRP from the administrator (6 modular exponentiations). The scheme

by Golle et al. [GZB+02] requires each voter to perform a double encryption (8

modular exponentiations). We do not compare the cost for digital signature,

since it is an essential operation and requires the same cost. Our scheme is thus

a little more computationally expensive for the voter.

In the mixing phase, our optimistic mix-network requires three times less

computational cost compared with the scheme by Golle et al., since our scheme

uses a single encryption while the scheme by Golle et al. uses three encryptions

for the double enveloping process. In terms of proof of product (POP), our

scheme requires three times less computational cost, if we use the individual mix

server verification. If we use the global verification (refer back to Chapter 5.3), our

scheme is much more efficient, since only the initial input product and final output

product are decrypted by a quorum of decryption authorities and compared.

In the tally phase, our scheme only requires one threshold decryption for each

ballot, where the scheme by Golle et al. requires four threshold decryptions.

The size of a ballot in our scheme is 2 log2 p bits as we use a single ElGamal

encryption, and the DVRP by the administrator is 4 log2 q bits in length. The

ballot size in the scheme by Golle et al. is 6 log2 p bits as they use double en-

cryption. In the mixing phase, our scheme requires three times less bandwidth as

132 Chapter 6. Receipt-Free Voting

Table 6.2: A communicational cost comparison of our first model against a voting
scheme based on the mix-network of Golle et al., where n denotes the number of
voters.

Entity Operation Proposed Golle et al.

Voting Voter Encrypt 2 log2 p 6 log2 p
phase Administrator Proof (DVRP) 4 log2 q N/A
Mixing Mix server Re-encryption 2n log2 p 6n log2 p
phase Proof 2 log2 p + log2 q 6 log2 p + 3 log2 q

compared to the scheme by Golle et al.. However, in the voting phase our scheme

requires interactive communication between voters and the administrator since

voters have to cast their ballots first and approve them later.

For our proposed model 2, the increase in computational cost (especially for

each voter) is linear in the number of administrators due to partial ballot construc-

tions (each costs 2 modular exponentiations). The increase in communicational

cost is also linear in the number of administrators.

6.6 Summary

Two models of efficient and receipt-free mix-network based voting schemes have

been presented. We successfully combined two mix-network based voting schemes

by Lee et al. [LBD+04] and Golle et al. [GZB+02] to provide both efficient mixing

and receipt-freeness at the same time. In our first model, the administrator

provides both randomisation service and mixing service in the voting phase.

Although an optimistic mix-network is employed, and an invalidation attack

by a mix server is possible, the public trace-back procedure discourages any misbe-

haviour by the administrator or the mix server. Because of its efficiency, the pro-

posed voting scheme can be preferred in practical real world election applications.

An example is in political elections, in which the administrator is considered to be

a reputable entity and a timely tally is required. Moreover a mix-network based

voting scheme offers more flexibility on the ballot structure, such as preferential

voting.

In addition, our proposed model 2 offers a stronger notion of receipt-freeness

and robustness. It employs threshold re-encryptions and batch verification tech-

niques. The first technique is to re-encrypt partial ballots, and the second is to

6.6. Summary 133

batch verify the designated verifier re-encryption proofs.

Both models presented in this chapter offer a framework for providing receipt-

freeness efficiently. Future work is possible by employing different mix-network

schemes to obtain different security and efficiency levels. Based on the work

from this chapter, it is also possible to produce a receipt-free homomorphic en-

cryption based voting scheme. A recent mechanism providing receipt-freeness by

Chaum [Cha04] can also be further examined.

The next chapter presents a hybrid framework to realise a cryptographic vot-

ing protocol accommodating a flexible ballot structure. It combines the use of

homomorphic encryption and mix-network approaches. The homomorphic en-

cryption approach is more efficient in the tally stage, where a mix-network allows

write-in votes. The hybrid framework inherits these two unique properties from

each approach.

134 Chapter 6. Receipt-Free Voting

Chapter 7

Voting using A Hybrid Approach

This chapter presents a hybrid cryptographic voting protocol. The protocol com-

bines both approaches of homomorphic encryption (see Chapter 4), and mix-

network (see Chapter 5). Both the multiplicative homomorphic voting scheme in

Chapter 4.2 and the EBMG mix-network scheme in Chapter 5.2 are employed to

form the hybrid scheme.

In this chapter, primitives in previous chapters are placed into a recent frame-

work presented by Kiayias and Yung [KY04] to form the hybrid scheme.

The hybrid approach offers the benefit of efficient tallying from the use of the

homomorphic encryption approach, while allowing write-in votes from the use of

the mix-network approach. Thus, the hybrid approach allows the conduct of a

secure secret-ballot election with a flexible ballot structure. An Australian Senate

preferential system election is presented as a case study for the hybrid scheme.

7.1 Background

Cryptographic voting protocols in the literature are normally based on either

homomorphic encryption or mix-network based approach. A recent paper by Ki-

ayias and Yung [KY04] offers a framework for combining both of the approaches

to accommodate a more flexible ballot structure. The combination is most suit-

able for voting systems allowing write-in votes, or voting systems with complex

ballot rules.

This is suited for the Australian preferential system as described in Chap-

135

136 Chapter 7. Voting using A Hybrid Approach

Table 7.1: The vector-ballot framework inherits two essential properties from
homomorphic encryption and mix-network based approaches.

Approach Efficient tallying Allow write-in votes

Homomorphic Encryption yes no
Mix-networks no yes
Vector-ballot yes yes

ter 2.3.1. The use of both homomorphic encryption and mix-network approaches

allows for combining the benefits of efficient tallying and allowing write-in votes.

This approach is applicable to our research goals. The main benefits are illus-

trated in Table 7.1.

A straight-forward approach, to allow efficient tallying and also allow write-

in votes, is to use both homomorphic encryption and mix-network approaches

at the same time. Voters can either submit a vote using the homomorphic en-

cryption approach, or using the mix-network approach. However, this approach

requires grouping of voters into two groups. One uses the homomorphic encryp-

tion approach, and the other uses the mix-network approach. This may leak some

voter-vote relationship information (refer back to Table 2.2).

For example, public verification of the submitted ballots allows anyone to de-

cide which voters made a ballot using the homomorphic or mix-network approach.

More information on a specific voter-vote relationship is revealed when a partic-

ular group of voters (using either the homomorphic or mix-network approach)

is much larger than the other. In the homomorphic encryption group, a vote is

selected from a small pre-determined set of choices. In the mix-network group,

the anonymised individual plaintext votes are made public.

In this scenario, a better approach to offer better protection to hide voter-vote

relationships is by using the vector-ballot framework by Kiayias and Yung [KY04].

This framework allows more protection of voter-vote relationships in the smaller-

sized group category in such a scenario.

Based on the modified additive ElGamal cryptosystem (refer back to Chap-

ter 4.1.2), the vector-ballot framework contains three main ideas. They are:

provably consistent vector-ballot encoding, shrink-and-mix network, and punch-

hole-vector-ballot. Two schemes are provided in their paper. One is realised by

using the first two main ideas. The second is an extension of the first scheme us-

7.1. Background 137

correctness verification

homomorphic−encryption

vector−ballot

tallying

mix−network tallying

invalid vector−ballots
discarded

results aggregation
and publication

|

|

Figure 7.1: Combining both the homomorphic-encryption and mix-network ap-
proaches in a vector-ballot framework.

ing the punch-hole-vector-ballots idea. As there are n vector-ballots, we describe

details for one vector-ballot and omit the vector-ballot index for simplicity.

In provably consistent vector-ballot encoding, the vector-ballot consists of three

parts containing ciphertexts 〈c1, c2, c3〉. The first ciphertext c1 contains a pre-

determined voting choice s1 in the pre-determined set Q, where s1 ∈ Q. The

second ciphertext c2 contains a flag s2 indicating whether the ballot contains a

pre-determined vote (s2 = 0) or contains a write-in vote (s2 = 1). The third

ciphertext c3 contains the write-in vote s3.

The first ciphertext c1 is to be processed using homomorphic encryption. The

second ciphertext c2 indicates whether the vector-ballot is to be forwarded to

the homomorphic encryption tallying, or to be forwarded to a mix-network. The

third ciphertext c3 is to be forwarded to a mix-network if required (according to

the flag in c2).

Correct ballot construction is proved by constructing a zero-knowledge (ZK)

proof for the following premise (see ZK proof construction in Appendix C):

(s1 ∈ Q ∧ s2 = 0 ∧ s3 = 0) ∨ (s1 = 0 ∧ s2 = 1) (7.1)

All first ciphertexts c1 are forwarded for homomorphic encryption tallying after

the proofs are verified.

In shrink-and-mix networks, the second ciphertext c2 of the vector-ballots are

homomorphically combined and decrypted in small groups. A decryption result

of 0 indicates that there are no write-in votes in that small group of vector-ballots.

138 Chapter 7. Voting using A Hybrid Approach

Thus, the mix-network part of the vector ballots c3 for that group are discarded.

Otherwise, the decryption result indicates the number of write-in votes in that

small group of vector-ballots. Thus, the mix-network part of the vector-ballots

c3 are forwarded to the mix-network.

This approach “shrinks” the original number of vector-ballots to a smaller

number of inputs to the mix-network. Hence, mixing of vector-ballots by the

mix-network is more efficient when a majority of the vector-ballots contains pre-

determined voting choices (in the first ciphertext c1). This is because computa-

tional cost in a mix-network is proportional to the number of its inputs.

In punch-hole-vector-ballots, each candidate has his/her own summation reg-

ister encrypted separately (punched) for the homomorphic encryption part. Each

of the three parts in the vector-ballot now contains: ciphertexts each containing

a vote for a candidate (encoded using “1” or “0”), a ciphertext containing the

homomorphic or mix-network flag, and a ciphertext containing the write-in vote.

This approach is suited towards voting with a large number of candidates or

choices. The argument is that the use of separate registers relaxes the burden of

voters by allowing them to construct smaller ciphertexts. It was noted that the

computational complexity for proving a correct punch-hole-vector-ballot encoding

is higher than the normal vector-ballot encoding. However, the efficiency gain

argument is that tallying will be more efficient as a brute-force search (using the

modified additive ElGamal cryptosystem) is more efficient over smaller register

size.

We note that an alternative to the punch-hole-vector-ballots method is to

tally the homomorphic votes using small-sized groups, and accumulate the result

of the small-sized groups to obtain the voting result. This approach would offer

lower computational cost for the voters. Also, as more detail on the punch-hole-

vector-ballots approach was not provided, we only focus on the approach using

the provably consistent vector-ballot encoding and the shrink-and-mix-network.

Figure 7.1 offers a high-level view of a cryptographic voting protocol using the

vector-ballot approach.

7.2 The Hybrid Scheme

A more detailed system diagram of the vector-ballot framework using our primi-

tives is shown in Figure 7.2.

7.2. The Hybrid Scheme 139

Voter 1 3

EBMG mix−network

|

|

Election Results

results for set choices

shrink using

1 2 3

1 2 3

2

multiplicative homomorphic voting

flag ciphertexts

homomorphic tally ciphertext

vector−ballots

Voter

Voter

3

3

3

3

3

3

3

1

1

1

2

2

2

3

3

results for own/write−in choicesPSfrag replacements

...
...

...

...
...

...
...

...
... . .

.

. . .

Figure 7.2: A high-level diagram of vector-ballots processing using our primitives.

Note that by allowing a write-in vote, it is possible for a voter to include

identifying information in the write-in vote (e.g. using a digital signature). This

information reveals his/her particular voter-vote relationship, and compromises

the receipt-freeness requirement. Receipt-freeness is an inherent problem in write-

in votes. As such a vote can be invalidated, there is still an inherent problem of

buying/selling invalid votes.

Both the multiplicative homomorphic voting scheme from Chapter 4.2 and

EBMG mix-network from Chapter 5.2 are employed in the framework by Kiayias

and Yung to realise the hybrid scheme. The ElGamal cryptosystem used is as in

Chapter 4.2 (i.e. not modified for additive homomorphic).

The flag s2 is represented using 0 or 1 in the original scheme by Kiayias and

Yung. This is because the modified ElGamal cryptosystem (additive homomor-

phism, refer back to Chapter 4.1.2) is employed. Since the non-modified ElGamal

cryptosystem (multiplicative homomorphism, refer back to Chapter 4.2) is em-

ployed in our scheme, the flag s2 is now represented using q0 or q1 to accommodate

the multiplicative homomorphism property.

Below are descriptions for the phases in our protocol. More details on both

140 Chapter 7. Voting using A Hybrid Approach

primitives used in this approach have been provided in their respective sections

in this thesis.

1. Preparation phase:

Parameters for a threshold ElGamal cryptosystem and the set of K + 1

suitable elements {q0, q1, q2, . . . , qK} are generated for the multiplicative ho-

momorphic voting and EBMG mix-network as per Chapter 4.2 and Chap-

ter 5.2 respectively. The pre-determined voting choices is in the set Q =

{q1, q2, . . . , qK}. The public key g and y = gx are made public, and the

secret key x is shared among a number of tally authorities in a threshold

manner.

2. Voting phase:

A ciphertext c hides a secret message s, and is constructed using a random

value r as c = (α, β) = (gr, syr). The vector-ballot consists of ciphertext

triplets 〈c1, c2, c3〉.

• If casting a pre-determined voting choice, a voter constructs a vector-

ballot 〈c1, c2, c3〉, where s1 ∈ Q, s2 = q0, and s3 = q0. The voter

then constructs the corresponding zero-knowledge proof. The proof

construction cost 12K + 2 exponentiations.

• Otherwise, casting a write-in vote, a voter constructs the vector ballot

〈c1, c2, c3〉, where s1 = q0, s2 = q1, and s3 containing the write-in

vote. The voter then constructs the corresponding zero-knowledge

proof as in the equation above. The proof construction costs 12K + 4

exponentiations.

Expanding the proof from Equation 7.1, correct vector-ballot construction

is proved by constructing a zero-knowledge proof using Expression 7.2.

The proof can be constructed by combining a proof of equality of discrete

logarithms (using AND logic) inside a proof of 1-out-of-K + 1 equality of

discrete logarithms (using ORlogic). Refer to Appendix C.4 on how to

construct such a proof.

7.2. The Hybrid Scheme 141

(logg α1 = logy(β1/q1) ∧ logg α2 = logy(β2/q0) ∧ logg α3 = logy(β3/q0))

∨

(logg α1 = logy(β1/q2) ∧ logg α2 = logy(β2/q0) ∧ logg α3 = logy(β3/q0))

∨
... (7.2)

∨

(logg α1 = logy(β1/qK) ∧ logg α2 = logy(β2/q0) ∧ logg α3 = logy(β3/q0))

∨

(logg α1 = logy(β1/q0) ∧ logg α2 = logy(β2/q1))

3. Tally phase:

• Homomorphic encryption processing: Tally authorities check the

published zero-knowledge proofs, and accept or reject each vector-

ballot accordingly. Each correct vector-ballot proof verification costs

12K + 8 exponentiations.

For n valid vector-ballots, all of the first ciphertext part c1 of the

vector-ballots are combined for homomorphic decryption if max(Q)n <

p where max(Q) denotes the largest element in Q. Otherwise, the

vector-ballots are combined in smaller-sized groups for this require-

ment to hold.

The resulting combination is then decrypted in a threshold manner by

a quorum of tally authorities. The decryption result is then factorised

as in Chapter 4.2 to obtain the homomorphic encryption voting result.

The decryption for each tally authority costs one exponentiation. Its

corresponding proof costs two exponentiations. The homomorphic tal-

lying costs 3dlogp max(Q)e exponentiations.

• Shrink-and-mix network processing: The second ciphertext part of

the vector-ballots c2 are homomorphically combined (multiplicative)

and decrypted in smaller groups of size n′. The value of n′ denotes the

number of (“shrunken”) inputs to the mix-network, where shrinking

was performed in groups of size n̂1. There are a total of (n/n̂) groups.

142 Chapter 7. Voting using A Hybrid Approach

The processing of the flag (c2) requires each (n/n̂) homomorphic pro-

cessing and (n/n̂) decryptions. Each homomorphic processing requires

a proof construction with a cost of 3dlogp max (q0, q1)e exponentiations.

Each group decryptions and their corresponding proofs cost n̂ and n̂+2

exponentiations (using batch verification) respectively.

If the group decryption indicates that there is at least one vector-

ballot containing a write-in vote, then all the third ciphertext part of

the vector-ballots c3 in the group are forwarded to the EBMG mix-

network and are processed as in Chapter 5.2. Otherwise, they are

discarded.

For each mix server (two-rounds EBMG mixing), shuffling of the ci-

phertexts (shrunken) costs 8(log2 n′)2 + 12(n′ + 1) exponentiations.

Decryptions and their corresponding proofs cost n′ and n′+2 exponen-

tiations (using batch verification) respectively. Validity of the write-in

votes output by the EBMG mix-network are then verified without any

cryptographic processing. Only valid write-in votes are included in the

mix-network tally to obtain the mix-network voting result.

Mix-network processing of vector-ballots may be performed after tallying of

all the homomorphic part is complete. Using this scenario, the voting result

may be revealed by just using the homomorphic tally if the winning margin

for the candidate is larger than the number of write-in votes identified.

Verification of the correct mixing operation (two-rounds EBMG mixing)

costs 20(n′−1) exponentiations. Verification of a correct decryption opera-

tion for each the homomorphic and mix-network processing requires 3n +4

and 3n′ + 4 exponentiations respectively. The value of n′ denotes the total

number of vector-ballots forwarded to the mix-network (accumulation of

n̂).

Afterward, the official total tally is obtained by combining both the homo-

morphic and mix-network tally. All the homomorphic and write-in tally

results are then made publicly available.

1We recommend that n̂|n, such that all groups have equal size. Otherwise, the level of
privacy for ballots in the last few groups may be less than the other groups.

7.3. Analysis 143

Table 7.2: A computational cost comparison for each voter in terms of the number
of modular exponentiations required.

Operation Homomorphic Enc. Mix-network Hybrid
(multiplicative) (2-rounds EBMG)

ballot construction 2 2 6
proof construction 4K − 2 2 12K + 4
proof verification 4K 4 12K + 8

7.3 Analysis

Security of the hybrid voting protocol is inherited from both the security of homo-

morphic encryption and the security of the mix-network scheme employed. Both

the security of the multiplicative homomorphic encryption voting scheme and the

security of the EBMG mix-network scheme have been discussed in Chapter 4.2.2

and Chapter 5.2.4 respectively.

The zero-knowledge proof of correct vector-ballot construction follows a stan-

dard Σ-protocol [CD95], and thus has a special soundness property as proven by

Cramer and Damg̊ard [CD95]. The security of the batching operation has been

discussed in Chapter 3.

Table 7.2 compares the computational cost required by a voter in the three

different approaches. Table 7.3 compares the computational cost required by

a tally authority in three different approaches. In those tables, the value of

n denotes the total number of vector-ballots, n̂ denotes the group size for the

“shrink-and-mix” process, n′ denotes the shrunken total number of vector-ballots

after the “shrink-and-mix” process and m denotes the number of mix servers or

tally authorities.

Note that the computational cost for proof and verification for each tally

authority employs batch technique in Chapter 3. As the hybrid approach bears

the computational cost from both the homomorphic encryption and mix-network

approaches, a lower cost can be obtained by using more efficient homomorphic

encryption and mix-network schemes. The computational cost required to process

the ciphertexts containing the flag (for homomorphic or mix-network tallying) is

also considered in both tables.

For the homomorphic encryption approach (second column in both tables),

the computational cost is mainly contributed to proof constructions and verifica-

144 Chapter 7. Voting using A Hybrid Approach

Table 7.3: A computational cost comparison for each tally authority in terms of
the number of modular exponentiations required.

Operation Homomorph. Enc. Mix-network Hybrid
(multiplicative) (2-rounds EBMG)

shuffle (re-encrypt) not applicable pre-computed pre-computed

shuffle proof not applicable 8(log2 n)2 8(log2 n′)2

+12(n + 1) +12(n′ + 1)

shuffle verification not applicable 20(n− 1) 20(n′ − 1)

decryption 1 n n′ + (n/n̂) + 1

dec. proof 2 m + 2 m + 4

dec. verification 3m + 4 3m + 4 6m + 8

homomorph. proc. 3dn logp max (Q)e not applicable 3dn logp max (Q)e

+3(n/n̂)
dn̂ logp max (q0, q1)e

tions of correct vector-ballot. The cost is proportional to the number of allowed

choices K (e.g. candidates). Afterward, the tallying is very efficient as only the

combination of the ballots are required to be decrypted to reveal the voting result.

For the mix-network approach (third column in both tables), the compu-

tational cost is mainly contributed to the shuffling and decryption proofs and

verifications of mixed vector-ballots. The cost is typically proportional to the

number of input ciphertexts n. However, ballot construction is very efficient as

it does not require such complicated proofs and verifications of correct ballot

construction compared to the homomorphic encryption approach.

7.4 A Preferential Voting Case Study

As illustrated in Table 7.1, the hybrid approach combines two essential proper-

ties. The first is efficient tallying from the use of the homomorphic encryption

approach. The second one is accommodation of write-in votes from the use of

the mix-network approach.

The hybrid approach can be applied to the preferential system for Australian

Senate election (refer back to Chapter 2.3.3). Votes from a pre-determined set of

party preferences are tallied using the homomorphic encryption approach. At the

same time, votes not in the pre-determined set (write-in votes) are tallied using

the mix-network approach.

7.4. A Preferential Voting Case Study 145

Since a pre-determined set of preferences is not used in the official ballot

papers in the elections for the House of Representatives, the hybrid approach

offers no additional advantage from the use of a mix-network approach. Hence,

the Australian elections for the House of Representatives are not discussed in this

case study.

The case study presented in this section is specific to the Australian Senate

Election using our hybrid protocol. A comparison is provided to the use of only

the mix-network approach for the election. The use of only the homomorphic

encryption approach is not included in the comparison since it is not possible to

accommodate all the preferences for the election as discussed in Chapter 4.3.

We use the following parameters for the case study.

• The value of K = 20 denotes the pre-determined set of party preferences, as

there are 20 political parties. These pre-determined set of party preferences

are for the first ciphertext c1 in the vector-ballot. They are later tallied

using the homomorphic encryption approach.

• There are 60 candidates, indicating a total of possible preferences of 60!.

Each of the possible preferences can be represented by a single integer.

In this case, the size of the integer is log2 60! = 273 bits. A voter is to

select his/her own preference from the space of all possible preferences when

his/her vote is not in the pre-determined set of party preference. These non

pre-determined preferences are for the third ciphertext c3 in the vector-

ballot. They are later tallied using the mix-network approach.

• We assume an average case scenario, where the value of n = 2500000 de-

notes both the number of voters and the number of valid vector-ballots. For

simplicity, all the vector-ballots are assumed to be valid.

• A well-known statistic for the Australian Senate elections (refer back to

Chapter 2.3.3) indicates that 95% of voters select a vote from the pre-

determined set of party preferences. This means that the group-size for

voters casting his/her own preference (write-in vote) is much smaller than

the group-size for voters casting a party preference. From the statistic, the

probability that a voter selects his/her own preference (inside c3, the write-

in vote part of the ballot) is 20−1. In a worst-case scenario, one out of every

20 ballots contains a write-in vote (for 2500000 ballots).

146 Chapter 7. Voting using A Hybrid Approach

Table 7.4: A computational cost comparison for each voter in an Australian
Senate election scenario.

Operation Mix-network Hybrid
(2-rounds EBMG)

ballot construction 2 6
proof construction 1 244
proof verification 2 248

For efficiency reasons, we define the size of the groups for “shrinking” the

mix-network inputs to be 10. Where each group contains exactly one write-

in vote, the value of n′ = 1250000 denotes the number of vector-ballots

forwarded to the mix-network.

In the best case scenario, this grouping hides every one ballot containing

a write-in vote in a group of n̂ = 10 ballots. This also means that all the

125000 (5%) ballots each containing a write-in vote is hidden among a total

of n′ = 1250000 ballots. Note that there is a trade-off between the size

of the group n̂ and the privacy of a ballot from the smaller-sized group

category.

• Let the value of m = 10 denotes both the number of tally authorities and

the number of mix servers. For simplicity, the number of tally authorities

and the number of mix servers are assumed to be the same.

• Also for simplicity, it is assumed that the value of dlog2 2500000e = 22, the

value of dlog2 1250000e = 21, the value of logp max(Q) = 0.006, and the

value of logp max (q0, q1) = 0.001.

Table 7.4 offers a computational cost comparison for each voter in an Aus-

tralian Senate election scenario. The second column shows the computational

cost required using only the 2-rounds EBMG mix-network. Total computational

cost using this approach is 3 modular exponentiations for each voter, and 2 mod-

ular exponentiations for a tally authority (verifier). The third column shows

the computational cost required using the hybrid scheme. Total computational

cost using this approach is 250 modular exponentiations for each voter, and 248

modular exponentiations for an administrator (verifier).

Table 7.5 offers a computational cost comparison for each tally authority in

7.4. A Preferential Voting Case Study 147

Table 7.5: A computational cost comparison for each tally authority in an Aus-
tralian Senate election scenario.

Operation Mix-network Hybrid
(2-rounds EBMG)

shuffle (re-encrypt) pre-computed pre-computed
shuffle proof 30003884 15003540
shuffle verification 49999980 24999980
decryption 2500000 1500001
dec. proof 12 14
dec. verification 34 68
homomorphic proc. not applicable 795000

an Australian Senate election scenario. Total computational cost using the 2-

rounds EBMG mix-network is 32503896 modular exponentiations for each mix

server, and 50000014 modular exponentiations for a verifier. Total computational

cost using the hybrid approach is 17298555 modular exponentiations for a tally

authority, and 25000048 modular exponentiations for a verifier. Using this figure,

the hybrid approach is about 50% more efficient than the straight-forward mix-

network approach. Moreover, an initial count of 95% of votes in the homomorphic

group can be released after only 4.8% of the total computational effort.

Assume a worst case scenario for an average computer today to take one

millisecond to compute one modular exponentiation. A voter requires 0.25 second

to construct a vector-ballot and its corresponding proof in a hybrid scenario.

Accordingly, a tally authority requires 17298.555 seconds, or 4.81 hour, to process

the entire vector-ballots.

Note that the most computationally intensive task of a tally authority is to

produce the shuffle proof. Also note that the computational cost for producing

a shuffle proof is proportional to the number of input ciphertexts. Hence, a

performance increase can be obtained by parallellising the shuffle operation using

a smaller number of input ciphertexts, i.e. in smaller-sized groups. Further

performance increase can also be obtained by parallellising output decryptions of

the mix-network.

Dividing the mix-network inputs into four equally smaller groups of 312500

inputs, the computational cost of producing the shuffle proof becomes 3752900

modular exponentiations. The entire tally process for one tally authority now

148 Chapter 7. Voting using A Hybrid Approach

requires less than two hours (about 100 minutes) to complete.

Better performance for the tally authorities can also be achieved by using

a more powerful computer to process the vector-ballots. Also, as technology

advances and more powerful computers are available, performance of the tallying

process will also increase accordingly.

7.5 Summary

The homomorphic encryption and mix-network schemes presented in the the-

sis have been combined as a hybrid approach using the vector-ballot framework

of Kiayias and Yung [KY04]. Both the multiplicative homomorphic encryption

scheme from Chapter 4.2 and the EBMG mix-network scheme from Chapter 5.2

are employed.

This is to realise a hybrid approach suitable for the preferential system in Aus-

tralia by allowing both a pre-determined party’s preference in the homomorphic

part, while also allowing voters to choose their own preference in the mix-network

part. This hybrid approach offers the benefit of efficient tallying while allowing

write-in votes.

The hybrid scheme is suited for the scenario of senate elections in the Aus-

tralian federal elections as there are a large number of candidates to be given

a preference, or choose from a much smaller number of pre-determined party

preferences.

We observe that more efficiency gain may be obtained by using batch proof and

verification on the correct vector-ballot proofs. Our application of batching tech-

niques has been based on “AND logic” zero-knowledge proof construction. Future

study can be performed on batching techniques for “OR logic” zero-knowledge

proof construction. This can be applied to constructing and verifying proofs of

correct homomorphic ballot construction. This offers more efficiency for voters.

Chapter 8

Summary and

Research Directions

This thesis contains new work in the area of secure secret-ballot electronic voting

allowing a flexible ballot structure, specifically in accommodating the Australian

federal elections. Areas related to cryptographic voting protocols have been stud-

ied, a case study on preferential voting system has been performed, and novel

techniques and improvements in some areas have been proposed.

The next section provides a summary of our research and an outline of the

main contributions. A brief description of each contribution is recalled.

Afterward, discussions on potential future works are presented. A short con-

clusion is also provided.

8.1 Summary of Research

An electronic voting system named eVACS has been analysed. The conclusion

is that the use of cryptographic primitives should be one of the fundamental

mechanisms implemented to provide security. It complements physical security

by providing logical security. The analysis has been presented in Chapter 2.

This research is concentrated in cryptographic voting protocols. A crypto-

graphic primitive (batch), and details of cryptographic voting protocols (homo-

morphic encryption, mix-network, and hybrid) have been studied. Table 8.1

presents a summary of main contributions in this research.

149

150 Chapter 8. Summary and Research Directions

Table 8.1: Summary of main contributions.

Topic Sub-topic Contribution

Electronic voting evaluation review of eVACS
system
Cryptographic batch theorems new batch theorems
primitives theorems applications to

zero-knowledge protocols
Electronic voting homomorphic multiplicative homomorphic voting
framework encryption preferential system case study

mix-networks a scheme using batch techniques
a scheme using EBMG
applications of batching
preferential system case study

receipt-freeness receipt-free and efficient
(requirement) mix-network based scheme
hybrid combine new schemes in

this research
preferential system case study

Voting involves processing of individual ballots. Since all individual require-

ments are similar, it is possible to perform a single processing accommodating

all the ballots. This is called batching. Generically, individual operations with

a specific similarity can be combined into a single batch. Batch theorems have

been presented, and new techniques using the theorems have been developed.

The use of these techniques in appropriate schemes increases the efficiency and

practicality of such schemes. These theorems and techniques have been presented

in Chapter 3.

Homomorphic encryption is the basis of one framework for cryptographic vot-

ing protocols. It maintains the encryption of a vote inside a ballot. Individual

votes are kept secret, while decryption of a ballot combination reveals the voting

result. Two main contributions have been made in this area. First, an alternative

scheme has been presented. It exploits a multiplicative property of homomor-

phism instead of the commonly used additive one. Efficiency of the new scheme

is comparable to existing schemes. Second, a preferential voting case study con-

cluded that this framework provides efficiency in vote tallying. However, it is

only suited for voting using a structured vote. These results have been presented

in Chapter 4.

8.1. Summary of Research 151

|

|

PSfrag replacements

privacy, accuracy,

receipt-freeness, public verifiability

efficiency, lower cost,

scalability, convenience

Figure 8.1: Secure electronic voting with a flexible ballot structure.

Mix-network is the basis for another framework for cryptographic voting pro-

tocols. Similar to the use of ballot-boxes, ballots are anonymised inside a mix-

network. The resulting output is a set of anonymised plaintext votes. It is

essential that the output votes corresponds to votes inside the input ballots. Two

new primitives have been presented in achieving this requirement. One offers

efficiency by extending on the use of grouping and batch (EBMG), and the other

offers to maintain security while improving efficiency of existing schemes by using

batch techniques. A preferential voting case study concluded that this framework

allows voting using write-in (unstructured/free-form) votes. However, vote tal-

lying is not as efficient as the homomorphic encryption one. These results have

been presented in Chapter 5.

Receipt-freeness is an important requirement for secret-ballot voting. It pre-

vents vote selling/buying or coercion/intimidation. Emphasising on this require-

ment, an efficient mix-network based scheme have been presented. The scheme

employs a particular re-encryption technique to achieve this property. The re-

encryption is combined with an optimistic mix-network for efficiency. A new

threshold re-encryption technique, and a batch designated verifier re-encryption

proof technique have also been presented. These techniques allow the distribution

of trust from a single trusted re-encryption authority to a (threshold) number of

re-encryption authorities. The scheme and techniques have been presented in

Chapter 6.

152 Chapter 8. Summary and Research Directions

The hybrid approach combines both the homomorphic encryption and mix-

network approach. Both the multiplicative homomorphic voting scheme and the

EBMG mix-network scheme have been combined into a hybrid approach. A pref-

erential voting case study concluded that this approach is suitable for preferential

voting allowing a small pre-set of preferences using the homomorphic encryption,

and other available preferences using the mix-network. This hybrid approach has

been presented in Chapter 7.

Figure 8.1 offers a high-level abstract description of our research. The result-

ing contributions offer a promising foundation for a secure and practical secret-

ballot electronic voting accommodating any type of counting systems. The next

section list a number of possible future work directions for this area.

8.2 Possible Research Directions

This section offers a number of possible research directions continuing from the

work presented in this thesis.

Optimum efficiency for more practical schemes: Batch theorems pre-

sented in Chapter 3 can be developed into many other batch techniques. Appli-

cations of such techniques in appropriate cryptographic schemes would improve

efficiency, performance, and practicality of such schemes. This seems to be a

straight-forward extension of this research.

Specifically, techniques developed from the batch theorems in this research

have been on the use of “AND logic”. It should be possible to devise a tech-

nique for the use of “OR logic”. This offers a more efficient construction of

zero-knowledge proof of correct homomorphic ballot. Furthermore, it might be

possible to combine verification of valid homomorphic ballot and correct homo-

morphic tally decryption.

Using a combination of batch techniques, it might also be possible to merge

all the required proof verifications in a re-encryption mix-network scheme. Zero-

knowledge proof verifications of knowledge of plaintext, re-encryption shuffle, and

(threshold) decryption may be combined into a single verification. This allows

for a much more efficient verifiable mix-network.

More research into homomorphic encryption voting schemes: Our

research has been concentrating on the novel use of the mix-network approach.

This is due to the focus on allowing a flexible ballot structure. Outside of this

8.2. Possible Research Directions 153

focus, we believe there are avenues for improvements or alternative techniques

available for better use of homomorphic encryption in cryptographic voting pro-

tocols.

A possible extension would be to distribute the ballots during casting instead

of distributing the power of ballot decryption (threshold). The scheme of Schoen-

maker [Sch00] may be extended/improved.

Alternative mix-network schemes: Our research has mainly been con-

centrated on mix-network based voting protocols. However, we believe that more

work is possible in this area. Our contributions have been in the use of a shuffling

proof to formally show a correct mixing operation. Further research is possible

on the use of input-based verifications.

Most re-encryption chain based mix-network schemes employ decryption at

the end. A combination with threshold decryption in the shuffling may be possible

by extending the scheme of Abe [Abe99]. This promises improved efficiency.

Further work is also possible in the area of decryption chain based mix-network.

Use of other cryptosystems: ElGamal and Paillier are the two popular

cryptosystems used as the foundation of protocols in this research. It might be

possible to use other cryptosystems optimised for voting purposes. The use of

an identity-based cryptosystem in voting protocols deserves attention. It is an

alternative use of public-key based cryptosystems. It may eliminate the need of

a Public Key Infrastructure, which will be beneficial to a voting protocol consid-

ering the large number of voters and their corresponding certificates verification

overhead.

Develop a prototype system: We acknowledge that further study and

testing are required before deployment of a live secure secret-ballot electronic

voting system is possible. However, a prototype system can be built as a proof of

concept that outcomes of this research are practical and usable. Such a prototype

will also show that it is possible to further develop the system to be used in a

real-world.

Among other issues, scalability need to be considered and tested thoroughly.

This is because there are many factors affecting the running of an actual nation-

wide election with a large number of voters.

Investigations into preventative measures for network security at-

tacks: Aside from authentication and verification using public key cryptosystems

and zero-knowledge protocols respectively, other cryptographic primitives may be

154 Chapter 8. Summary and Research Directions

integrated into a voting protocol to help minimise network security attacks. Dis-

tributed Denial of Service (DDoS) is an example of a network security attack. It

only requires a low level of skill to perform (using available tools on the Internet),

but may cause serious consequences (denies voters their right to vote, affects a

voting result, etc).

The use of cryptographic measures such as client puzzles [JB99] or crypto-

graphic salt [PKBD01] can be included in the protocol to minimise the impact of

this attack. Otherwise, servers must simply provide a high bandwidth connections

to accommodate the attack bandwidth.

Other network security attacks must also be considered. Each respective

possible protective measures must be implemented.

Research outside the cryptographic voting protocol area: Actual de-

ployment of a secure electronic voting system in the real-world clearly requires

collaboration from other areas of discipline as well. From selecting a suitable

counting system to creating a new law on electronic voting, inter-disciplinary

research collaboration is required to produce a mature, secure, and publicly ac-

ceptable electronic voting system.

In conclusion, electronic voting offer many potential benefits compared to its

traditional counterpart. A study on cryptographic voting protocols allowing a

flexible ballot structure has been presented in this thesis. Novel primitives and

new schemes have been developed. Further extensions and improvements on our

research are possible.

We acknowledge that further work is required in other areas such as policies,

procedures, and standards before a secure electronic voting system is to actually

be used in a real world environment. However, we believe that our research offers

a promising start towards the goal of having such a system.

Appendix A

Shamir’s Secret-Sharing Scheme

This appendix recalls the well-known “Shamir’s secret sharing scheme” [Sha79],

also known as “(t, m) threshold scheme” where t < m. Such a scheme is useful

for robustness, or distributing trust from a single entity to a threshold/quorum

of entities.

A secret d is divided into m shares dj with a threshold of t using a polynomial

function f(x) of degree t. The secret d can only be reconstructed using at least t+

1 shares of dj using Lagrange interpolation. The secret d can not be reconstructed

using t (the threshold value) or fewer shares.

The (t, m) secret sharing scheme is as follows:

Secret sharing: Let the polynomial function be f(x) =
∑t

r=0 arx
r. The value

of a0 is set as the secret d, and the remaining values for ar are set at random.

For j ∈ {1, 2, . . . , m}, the secret share dj is computed as dj = f(j).

Secret shares combining: The secret d is reconstructed using Lagrange inter-

polation by using the set S containing at least t + 1 of the secret shares dj

as d =
∏

j∈S djµj, where µj =
∏

j′∈S\j
j′

j′−j
.

An example application of the scheme is in the sharing of a secret decryption

key to m participants, where each participant is given one share dj of the secret

d. The plaintext contained in a known ciphertext can only be revealed using

the secret decryption key d. If an attacker successfully compromises t or fewer

participants (their shares dj are known to the attacker), their compromised shares

can not be used to reconstruct the decryption key d and the plaintext contained

155

156 Appendix A. Shamir’s Secret-Sharing Scheme

in the ciphertext remains secret to the attacker. On the other hand, the message

can be revealed by at least t + 1 uncompromised/honest participants. This is

by reconstructing the secret decryption key d using Lagrange interpolation with

their shares dj on the polynomial f(x), and decrypting the ciphertext with the

secret decryption key. This illustrates robustness and trust distribution among

m number of participants.

Appendix B

ElGamal and Paillier

Cryptosystems

ElGamal and Paillier are two popularly used public-key cryptosystems in cryp-

tographic voting protocols in the literature. Both cryptosystems are used as

foundations to the cryptographic voting protocols in the thesis.

Both cryptosystems are recalled in this appendix. We also recall the applica-

tion of Shamir’s secret-sharing technique (Appendix A) in the threshold version

of the cryptosystems. Both versions allow decryption by a quorum of decryption

authorities instead of decryption by a single decryption authority. This offers

robustness and distribution of trust to the authorities.

B.1 ElGamal Cryptosystem

The security of ElGamal cryptosystem [ElG85] is based on the hard problem

of finding discrete logarithms over finite fields. Exponentiations are easy, but

computing logarithms is not easy. Currently there is no known algorithm to

efficiently solve such a problem.

B.1.1 Basic Cryptosystem

The ElGamal cryptosystem used in the thesis is as below.

1. Key generation:

157

158 Appendix B. ElGamal and Paillier Cryptosystems

Randomly select a large prime q, such that p = 2q + 1 is a strong prime.

G is a cyclic subgroup in Z
∗
p of order q with a generator g. The private

decryption key is x ∈ Zq, while g and y = gx mod p is the public encryption

key. The parameters p, q, g, and y are made public, while x is kept secret.

2. Encryption:

Select a random r ∈ Zq and encrypt a secret message (plaintext) s ∈ Z
∗
p as

c = (α, β), where α = gr mod p and β = syr mod p.

3. Decryption:

The original message s is reconstructed by using the decryption key x and

computing s = β
αx mod p.

Two different ciphertexts can correspond to the same plaintext using a differ-

ent value of r. This allows the ElGamal cryptosystem to possess the ciphertext

indistinguishability property, or equivalently to satisfy semantic security [GM84].

This cryptosystem also allows re-encryption of ciphertexts. Without know-

ing the secret message, a ciphertext can be re-encrypted by updating the random

value. Let a new re-encryption random value be r′. The re-encrypted ciphertext

c′ is constructed as c′ = (α′, β ′) = (αgr′ mod p, βyr′ mod p). The original ran-

dom value r is now updated (after re-encryption) to be r + r′. Decryption of the

ciphertext will yield the original plaintext. Specifically, D(c) = D(c′) where D

denotes an ElGamal decryption function for the corresponding ciphertext.

Without revealing the plaintext, one can produce a zero-knowledge proof of

ciphertext construction. This is by proving the knowledge of the random value r

used in α (Appendix C.1) as logg α.

For a correct re-encryption proof, one proves the knowledge of the new ran-

dom value r′ used to produce both α′ and β ′ from α and β using Chaum-

Pedersen [CP93] zero-knowledge proof of equality of discrete logarithms (Ap-

pendix C.3) as logg
α′

α
= logy

β′

β
.

B.1.2 Threshold Version

Pedersen [Ped92] presented a threshold ElGamal signature scheme based on

Shamir’s (t, m) secret-sharing scheme (Appendix A). It is straight-forward to

adjust the scheme into a threshold decryption protocol. The threshold decryp-

tion version is obtained by sharing the private decryption key d to m number of

B.2. Paillier Cryptosystem 159

decryption authorities. For j ∈ {1, 2, . . . , m}, each of the m authorities has a

share xj of the private decryption key x. To decrypt a ciphertext, each author-

ity computes a partial decryption using his/her share. A quorum of the partial

decryptions are then combined to reconstruct the secret message s.

The protocol is as below.

1. Key generation and sharing:

Randomly select a large prime q, such that p = 2q + 1 is a strong prime.

G is a cyclic subgroup in Z
∗
p of order q with a generator g. The private

decryption key is x ∈ Zq, while g and y = gx mod p is the public encryption

key. Using Shamir’s (t, m) secret sharing scheme, let f(x) =
∑t

r=0 arx
r,

where a0 = x, and the rest of ar are random values. For j ∈ {1, 2, . . . , m},

distribute the secret share xj = f(j) to m decryption authorities, and each

authority computes the verification key vj = gxj . The parameters p, q, g,

y, and vj are made public, while x and xj are kept secret.

2. Encryption:

Select a random r ∈ Zq and encrypt a secret message s ∈ Z
∗
p as c = (α, β),

where α = gr mod p and β = syr mod p.

3. Partial decryption:

Each of at least t + 1 authorities compute correct partial decryptions zj =

αxj , and proves the knowledge of the secret share xj using a zero-knowledge

proof of equality of discrete logarithms (Appendix C.3) of: logg(vj) =

logα(zj). Since q is public, g and α can be publicly verified to be generators

of G.

4. Decryption:

Correctness of each partial decryption zj is verified using the zero-knowledge

protocol shown in the previous step. S is the set containing at least t +

1 correct partial decryptions. The original plaintext is reconstructed by

computing s = β
∏

j∈S z
µj
j

, where µj =
∏

j′∈S\j
j′

j′−j
.

B.2 Paillier Cryptosystem

The Paillier cryptosystem [Pai99] is based on the hard problem of determining

composite degree residuosity. Currently there is no known algorithm to efficiently

solve such a problem.

160 Appendix B. ElGamal and Paillier Cryptosystems

B.2.1 Basic Cryptosystem

There are three closely related cryptosystems presented in the original paper by

Paillier [Pai99]. We recall the first one, as it is the most well-known of the three.

The Paillier cryptosystem used in this thesis is as below.

1. Key generation:

Randomly select primes p′ and q′, such that both p = 2p′+1 and q = 2q′+1

are strong primes, and GCD(N, φ(N)) = 1, where N = pq and M = p′q′.

Select x and e, such that x = 0 mod M and x = e−1 mod N . Choose a

random value of b ∈ Z
∗
N and set the value of g to be g = (1+N)xbN mod N2.

The parameters N and g are made public, while M , p, q, p′, q′, x, e and

λ(N) are kept secret, where λ(N) = lcm((p− 1)(q − 1)).

2. Encryption:

Select a random value r ∈ Z
∗
N , and encrypt a secret message (plaintext) s

as c = gsrN mod N2.

3. Decryption:

The original message s is reconstructed as s = L(cλ(N) mod N2)

L(gλ(N) mod N2)
mod N , where

input of the L-function is an element from the set {u < N 2|u = 1 mod N},

and L(u) = u−1
N

.

Two different ciphertexts can correspond to the same plaintext using a differ-

ent value of r. This is known as the ciphertext indistinguishability property, or

having semantic security [GM84].

This cryptosystem also allows re-encryption of ciphertexts. Without know-

ing the secret message, a ciphertext can be re-encrypted by updating the random

value. Let a new re-encryption random value be r′. The re-encrypted ciphertext

c′ is constructed as c′ = cr′N mod N2. The original random value r is now up-

dated (after re-encryption) to be rr′. Decryption of the ciphertext will yield the

original plaintext.

Without revealing the plaintext, one can produce a zero-knowledge proof of

ciphertext construction by proving the knowledge of the secret message s in the

ciphertext c (Appendix C.2) similar to using zero-knowledge proof of knowledge

of root.

For a correct re-encryption proof, one proves the knowledge of the new random

value r′ by using zero-knowledge proof of knowledge of root (Appendix C.2) as

(
c′i
ci

)
1
N .

B.2. Paillier Cryptosystem 161

B.2.2 Threshold Version

Based on the threshold version of RSA signature by Shoup [Sho00], Fouque et

al. [FPS00] proposed a threshold version of Paillier cryptosystem in the context of

voting or lotteries. The scheme was later improved by Damg̊ard and Jurik [DJ00]

oriented toward a homomorphic electronic voting scheme. We recall the protocol

as follows:

1. Key generation:

Randomly select primes p′ and q′, such that both p = 2p′ + 1 and q =

2q′ + 1 are strong primes, and GCD(N, φ(N)) = 1, where N = pq and

M = p′q′. Select x and e, such that x = 0 mod M and x = e−1 mod N .

Choose a random value of b ∈ Z
∗
N and set the value of g to be g = (1 +

N)ebN mod N2. Using Shamir’s (t, m) secret sharing scheme, let f(x) =
∑t

r=0 arx
r mod MN , where a0 = x and random values for the rest of ar ∈

{1, 2, . . . , N ∗M − 1}. For j ∈ {1, 2, . . . , m}, distribute the secret share

xj = f(j) to m decryption authorities. Select a random value of v, a square

that generates the cyclic group of squares in Z
∗
N2 , to be the verification base.

Each decryption authority then computes their corresponding verification

key vj = v∆xj mod N2 and ∆ = m!. The parameters N , g, v and vj

are made public, while M , p, q, p′, q′, x, e and xj are kept secret, where

j ∈ {1, 2, . . . , m}.

2. Encryption:

Select a random value r ∈ Z
∗
N , and encrypt a secret message (plaintext) s

as c = gsrN mod N2.

3. Partial decryption:

Each of at least t + 1 authorities compute correct partial decryptions zj =

c2∆xj and proves the knowledge of the secret share xj using a zero-knowledge

proof of equality of discrete logarithms (Appendix C.2) of: logv(vj) =

logc4(z
2
j).

4. Decryption:

Correctness of each partial decryption zj is verified using the zero-knowledge

protocol shown in the previous step. S is the set containing at least t + 1

correct partial decryptions. The original plaintext s is reconstructed by

162 Appendix B. ElGamal and Paillier Cryptosystems

computing s = L(c′) mod N2)
4∆2 mod N2)

mod N , where c′ =
∏

j∈S z
2µS

0,j

j mod N2, and

µS
0,j = ∆

∏

j′∈S\j
−j

j−j′
∈ Z.

As in the original scheme by Damg̊ard and Jurik, v is chosen to be a generator

of the group in Z
∗
N2 by the trusted dealer. Therefore, v and vj are squares in the

group of Z
∗
N2 .

Appendix C

Zero-Knowledge

Proof and Verification Protocols

Zero-knowledge (ZK) protocols allows a prover to demonstrate knowledge of a

secret to a verifier while revealing nothing extra of use to the verifier. Verification

of a ZK proof only convinces the verifier that the prover actually does (or does

not) know the secret.

More generally, the protocol allows proving and verifying the truth of an

assertion while revealing no extra information about the assertion itself other

than its actual truth.

Three important property of the protocol are recalled as below.

• completeness: given an honest prover and an honest verifier, the protocol

succeeds with an overwhelming probability.

• soundness: a dishonest prover can successfully execute protocol runs only

by either knowing the secret, or by having the ability of extracting the

secret in polynomial time.

• zero-knowledge: a polynomial-time simulator can produce an indistin-

guishable transcript compared to a transcript from a real protocol run.

A standard three-move ZK protocol, known as Σ-protocol [CD95], has a spe-

cial soundness property as proven in [CD95]. A general structure of such a pro-

tocol is as follows:

163

164 Appendix C. Zero-Knowledge Proof and Verification Protocols

To prove and verify proof of knowledge of logg y.

Prover Verifier

τ ∈R Zq

γ = gτ mod p
γ

−−−−−→
u ∈R Zq

u
←−−−−−

w = τ − ux mod q
w

−−−−−→
γ

?
= gwyu mod p

Figure C.1: An interactive ZK proof-verification protocol for verifying knowledge
of a discrete logarithm.

1. Prover → Verifier: witness (commitment)

2. Prover ← Verifier: challenge

3. Prover → Verifier: response

In an interactive version of the protocol, the verifier selects the challenge at

random. In a non-interactive version of the protocol, a well-known Fiat-Shamir

heuristic technique [FS86] is typically used. The technique uses a collision-

resistant hash function for a prover to generate the challenge.

This appendix recalls a number of standard ZK protocols.

C.1 Knowledge of A Discrete Logarithm

Based on the scheme by Schnorr [Sch91], Figure C.1 illustrates a standard inter-

active ZK proof of knowledge of a discrete logarithm in an ElGamal cryptosystem

setting, where y = gx.

This proof can be made non-interactive by using the well-known Fiat-Shamir’s

heuristic by employing a collision-resistant hash function H with a range of Zq.

The challenge is generated by the prover as u = H(g, y, γ). Given the transcript

values of {γ, u, w}, a verifier can check that u
?
= H(g, y, (gwyu mod p)).

C.2. Knowledge of a Root 165

To prove and verify proof of knowledge of r = (c′/c)
1
N .

Prover Verifier

τ ∈R (1, N2 − 1)
γ = τN mod N2

γ
−−−−−→

u ∈R Z
∗
N

u
←−−−−−

w = τr−u mod N2

w
−−−−−→

γ
?
= (c′/c)uwN mod N2

Figure C.2: An interactive ZK proof-verification protocol for verifying knowledge
of a root.

C.2 Knowledge of a Root

Based on the scheme by Guillou-Quisquater [GQ88], Figure C.2 illustrates a

standard interactive ZK proof of knowledge of a root in a Paillier cryptosystem

setting, where c′ = crN mod N2.

This proof can be made non-interactive by using the well-known Fiat-Shamir’s

heuristic by employing a collision-resistant hash function H with a range of ZN .

The challenge is generated by the prover as u = H(c′, c, γ). Given the transcript

values of {γ, u, w}, a verifier can check that u
?
= H(c′, c, ((c′/c)

1
N wN mod N2)).

C.3 Equality of Discrete Logarithms

Based on the scheme by Chaum-Pedersen [CP93], Figure C.3 illustrates a stan-

dard interactive ZK proof of equality of discrete logarithms in an ElGamal cryp-

tosystem setting, where y = gx and z = cx.

This proof can be made non-interactive by using the well-known Fiat-Shamir’s

heuristic by employing a collision-resistant hash function H with a range of Zq.

The challenge is generated by the prover as u = H(g, y, c, z, γ1, γ2). Given the

transcript values of {γ1, γ2, u, w}, a verifier can check that the challenge u
?
=

H(g, y, c, z, (gwyu mod p), (cwzu mod p)).

166 Appendix C. Zero-Knowledge Proof and Verification Protocols

To prove and verify equality of logg y = logc z.

Prover Verifier

τ ∈R Zq

γ1 = gτ mod p
γ2 = cτ mod p

γ1,γ2

−−−−−→
u ∈R Zq

u
←−−−−−

w = τ − ux mod q
w

−−−−−→
γ1

?
= gwyu mod p

γ2
?
= cwzu mod p

Figure C.3: An interactive ZK proof-verification protocol for verifying equality
of discrete logarithms.

C.4 Proof Construction

This section offers two examples of combining similar ZK proofs by using AND

logic, and OR logic respectively.

The first is by using the same challenge to produce the different responses

from the corresponding witnesses.

The second is by combining the challenges to produce the different responses

from the corresponding witnesses.

C.4.1 AND Logic

Based on the scheme by Chaum-Pedersen [CP93], Figure C.4 illustrates a stan-

dard interactive ZK proof of equality of n discrete logarithms in an ElGamal

cryptosystem setting, where αi = gxi and βi = yxi.

Note that in this proof construction, each of the equations has its own witness

and response, but all of them share the same challenge.

This proof can be made non-interactive by using the well-known Fiat-Shamir’s

heuristic by employing a collision-resistant hash function H with a range of

Zq. The challenge is generated by the prover as u = H(g, y, {αi, βi, γi,1, γi,2}).

Given the transcript values of {γi,1, γi,2, u, wi}, a verifier can check that u
?
=

H(g, y, {αi, βi, (g
wiαu

i mod p), (ywiβu
i mod p)}).

C.4. Proof Construction 167

To prove and verify equality of ((logg α1 = logy β1) ∧ (logg α2 = logy β2)∧
· · · ∧ (logg αi = logy βi) ∧ · · · ∧ (logg αn = logy αn)), for i ∈ {1, 2, . . . , n}.

Prover Verifier

τi ∈R Zq

γi,1 = gτi mod p
γi,2 = yτi mod p

γi,1,γi,2

−−−−−→
u ∈R Zq

u
←−−−−−

wi = τi − uxi mod q
wi

−−−−−→
γi,1

?
= gwiαu

i mod p

γi,2
?
= ywiβu

i mod p

Figure C.4: An interactive ZK proof-verification protocol for verifying n equality
of discrete logarithms.

C.4.2 OR Logic

Based on the scheme by Chaum-Pedersen [CP93], Figure C.4 illustrates a stan-

dard interactive ZK proof of 1-out-of-n equality of discrete logarithms in an El-

Gamal cryptosystem setting, where αi = gxi and βi = yxi. The prover only knows

one of the discrete logarithms, namely where i ∈ {1, 2, . . . , n}, i′ ∈ {1, 2, . . . , n}\k

and 1 ≤ k ≤ n.

Note that in this proof construction, each of the equations has its own witness

and response, and the combination of challenges is specified by the verifier.

This proof can be made non-interactive by using the well-known Fiat-Shamir’s

heuristic by employing a collision-resistant hash function H with a range of Zq.

The challenge is generated by the prover as u = H(g, y, {αi, βi, γi,1, γi,2}). Given

the transcript values of {γi,1, γi,2, u, ui, wi}, a verifier can check that the combined

challenge u
?
= H(g, y, {αi, βi, (g

wiαui

i mod p), (ywiβui

i mod p)}).

168 Appendix C. Zero-Knowledge Proof and Verification Protocols

To prove and verify equality of ((logg α1 = logy β1) ∨ (logg α2 = logy β2)∨
· · · ∨ (logg αi = logy βi) ∨ · · · ∨ (logg αn = logy αn)), for i ∈ {1, 2, . . . , n}.

Prover Verifier

1 ≤ k ≤ n, and
i′ ∈ {1, 2, . . . , n} \ k

τk, {τi′, ui′, wi′} ∈R Zq

γk,1 = gτk mod p
γk,2 = yτk mod p
γi′,1 = gwi′α

ui′

i′ mod p
γi′,2 = ywi′β

ui′

i′ mod p
γi,1,γi,2

−−−−−→
u ∈R Zq

u
←−−−−−

uk = u−
∑

ui′ mod q
wk = τk − ukxk mod q

wi

−−−−−→
γi,1

?
= gwiαui

i mod p

γi,2
?
= ywiβui

i mod p

Figure C.5: An interactive ZK proof-verification protocol for verifying 1-out-of-n
equality of discrete logarithms.

Bibliography

[ABDV03] Riza Aditya, Colin Boyd, Ed Dawson, and Kapali Viswanathan. Se-

cure e-voting for preferential elections. In Electronic Government:

Second International Conference, EGOV 2003, volume 2739 of Lec-

ture Notes in Computer Science, pages 246–249. Springer-Verlag,

2003.

[Abe99] Masayuki Abe. Mix-networks on permutations networks. In Advances

in Cryptology – ASIACRYPT ’99: 5th International Conference on

the Theory and Application of Cryptology and Information Security,

volume 1716 of Lecture Notes in Computer Science, pages 258–273.

Springer-Verlag, 1999.

[AH01] Masayuki Abe and Fumitaka Hoshino. Remarks on mix-network

based on permutation networks. In Public Key Cryptography: 4th

International Workshop on Practice and Theory in Public Key Cryp-

tosystems, PKC 2001, volume 1992 of Lecture Notes in Computer

Science, pages 317–324. Springer-Verlag, 2001.

[AI03] Masayuki Abe and Hideki Imai. Flaws in some robust optimistic

mix-nets. In Information Security and Privacy : 8th Australasian

Conference, ACISP 2003, volume 2727 of Lecture Notes in Computer

Science, pages 39–50. Springer-Verlag, 2003.

[ALBD04a] Riza Aditya, Byoungcheon Lee, Colin Boyd, and Ed Dawson. An

efficient mixnet-based voting scheme providing receipt-freeness. In

Trust and Privacy in Digital Business: First International Confer-

ence, TrustBus 2004, volume 3184 of Lecture Notes in Computer Sci-

ence, pages 152–161. Springer-Verlag, 2004.

169

170 BIBLIOGRAPHY

[ALBD04b] Riza Aditya, Byoungcheon Lee, Colin Boyd, and Ed Dawson. Im-

plementation issues in secure e-voting schemes. In The Fifth Asia-

Pacific Industrial Engineering and Management Systems Conference,

APIEMS 2004, pages 36.6.1–36.6.14. QUT Publications, 2004.

[ALBD05] Riza Aditya, Byoungcheon Lee, Colin Boyd, and Ed Dawson. Two

models of efficient mixnet-based receipt-free voting using (threshold)

re-encryption. Computer Systems Science and Engineering, page to

appear, 2005.

[APB+04] Riza Aditya, Kun Peng, Colin Boyd, Ed Dawson, and Byoungcheon

Lee. Batch verification for equality of discrete logarithms and thresh-

old decryptions. In Applied Cryptography and Network Security: Sec-

ond International Conference, ACNS 2004, volume 3089 of Lecture

Notes in Computer Science, pages 494–508. Springer-Verlag, 2004.

[Ben96] Josh Daniel Cohen Benaloh. Verifiable Secret-Ballot Elections. PhD

thesis, Faculty of Graduate School, Yale University, 1996.

[BFP+01] Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques

Stern, and Guillaume Poupard. Practical multi-candidate election

system. In Twentieth Annual ACM Symposium on Principles of Dis-

tributed Computing, PODC 01, pages 274–283. ACM Press, 2001.

[BG02] Dan Boneh and Philippe Golle. Almost entirely correct mixing with

applications to voting. In 9th ACM Conference on Computer and

Communications Security, CCS ’02, pages 68–77. ACM Press, 2002.

[BGR98] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification

for modular exponentiation and digital signatures. In Advances in

Cryptology – EUROCRYPT ’98: International Conference on the

Theory and Application of Cryptographic Techniques, volume 1403 of

Lecture Notes in Computer Science, pages 236–250. Springer-Verlag,

1998.

[BP00] Colin Boyd and Chris Pavlovski. Attacking and repairing batch ver-

ification schemes. In Advances in Cryptology – ASIACRYPT 2000:

BIBLIOGRAPHY 171

6th International Conference on the Theory and Application of Cryp-

tology and Information Security, volume 1976 of Lecture Notes in

Computer Science, pages 58–71. Springer-Verlag, 2000.

[BT94] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elec-

tions (extended abstract). In Twenty-Sixth Annual ACM Symposium

on Theory of Computing, STOC ’94, pages 544–553. ACM Press,

1994.

[CD95] Ronald Cramer and Ivan Damg̊ard. Secure signature schemes based

on interactive protocols. In Advances in Cryptology – CRYPTO ’95:

15th Annual International Cryptology Conference, volume 963 of Lec-

ture Notes in Computer Science, pages 297–310. Springer-Verlag,

1995.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of

partial knowledge and simplified design of witness hiding protocols. In

Advances in Cryptology – CRYPTO ’94: 14th Annual International

Cryptology Conference, volume 839 of Lecture Notes in Computer

Science, pages 174–187. Springer-Verlag, 1994.

[CFSY96] Ronald Cramer, Matthew Franklin, Berry Schoenmakers, and Moti

Yung. Multi-authority secret-ballot elections with linear work. In Ad-

vances in Cryptology – EUROCRYPT ’96: International Conference

on the Theory and Application of Cryptographic Techniques, volume

1070 of Lecture Notes in Computer Science, pages 72–83. Springer-

Verlag, 1996.

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and dig-

ital pseudonyms. Communications of the ACM, 24(2):84–90, Febru-

ary 1981.

[Cha04] David Chaum. Secret-ballot receipts: True voter-verifiable elections.

IEEE Security and Privacy, 2(1):38–47, January/February 2004.

[CP93] David Chaum and Torben Pryds Pedersen. Wallet databases with

observers. In Advances in Cryptology – CRYPTO ’92: 12th Annual

International Cryptology Conference, volume 740 of Lecture Notes in

Computer Science, pages 89–105. Springer-Verlag, 1993.

172 BIBLIOGRAPHY

[DJ00] Ivan Damg̊ard and Mads Jurik. Efficient protocols based on proba-

bilistic encryption using composite degree residue classes. Cryptology

ePrint Archive, Report 2000/008, 2000. http://eprint.iacr.org/.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme

based on discrete logarithms. In Advances in Cryptology: Proceedings

of CRYPTO 84, volume 196 of Lecture Notes in Computer Science,

pages 10–18. Springer-Verlag, 1985.

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable se-

cret sharing. In 28th Annual IEEE Symposium on Foundations of

Computer Science, pages 427–437. IEEE Computer Society, 1987.

[Fia89] Amos Fiat. Batch RSA. In Advances in Cryptology – CRYPTO ’89:

Proceedings, volume 435 of Lecture Notes in Computer Science, pages

175–185. Springer-Verlag, 1989.

[FPS00] Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. Shar-

ing decryption in the context of voting or lotteries. In Financial

Cryptography: 4th International Conference, FC 2000, volume 1962

of Lecture Notes in Computer Science, pages 90–104. Springer-Verlag,

2000.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solu-

tions to identification and signature problems. In Advances in Cryp-

tology – CRYPTO ’86: Proceedings, volume 263 of Lecture Notes in

Computer Science, pages 186–194. Springer-Verlag, 1986.

[FS01] Jun Furukawa and Kazue Sako. An efficient scheme for proving a

shuffle. In Advances in Cryptology – CRYPTO 2001: 21st Annual

International Cryptology Conference, volume 2139 of Lecture Notes

in Computer Science, pages 368–387. Springer-Verlag, 2001.

[GJKR99] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin.

Secure distributed key generation for discrete-log based cryptosys-

tems. In Advances in Cryptology – EUROCRYPT ’99: International

Conference on the Theory and Application of Cryptographic Tech-

niques, volume 1592 of Lecture Notes in Computer Science, pages

295–310. Springer-Verlag, 1999.

BIBLIOGRAPHY 173

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal

of Computer and System Sciences (JCSS), 28(2):270–299, April 1984.

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-

knowledge protocol fitted to security microprocessor minimizing both

transmission and memory. In Advances in Cryptology – EURO-

CRYPT ’88: Workshop on the Theory and Application of Crypto-

graphic Techniques, volume 330 of Lecture Notes in Computer Sci-

ence, pages 123–128. Springer-Verlag, 1988.

[Gro03] Jens Groth. A verifiable secret shuffle of homomorphic encryptions. In

Public Key Cryptography – PKC 2003: 6th International Workshop

on Practice and Theory in Public Key Cryptography, volume 2567 of

Lecture Notes in Computer Science, pages 145–160. Springer-Verlag,

2003.

[GZB+02] Philippe Golle, Sheng Zhong, Dan Boneh, Markus Jakobsson, and Ari

Juels. Optimistic mixing for exit-polls. In Advances in Cryptology –

ASIACRYPT 2002: 8th International Conference on the Theory and

Application of Cryptology and Information Security, volume 2501 of

Lecture Notes in Computer Science, pages 451–465. Springer-Verlag,

2002.

[HAK01] Fumitaka Hoshino, Masayuki Abe, and Tetsutaro Kobayashi. Le-

nient/strict batch verification in several groups. In Information Secu-

rity: 4th International Conference, ISC 2001, volume 2200 of Lecture

Notes in Computer Science, pages 81–94. Springer-Verlag, 2001.

[Har98] Lein Harn. Batch verifying multiple DSA-type digital signatures.

IEEE Electronic Letters, 34(9):870–871, April 1998.

[Har03] Beverly Harris, editor. Black Box Voting: Ballot Tampering in the

21st Century. Plan Nine Publishing, 2003.

[HK04] Alejandro Hevia and Marcos Kiwi. Electronic jury voting protocols.

Theoretical Computer Science, 321(1):73–94, June 2004.

[JB99] Ari Juels and John G. Brainard. Client puzzles: A cryptographic

countermeasure against connection depletion attacks. In Network and

174 BIBLIOGRAPHY

Distributed System Security Symposium, NDSS ’99, pages 151–165,

1999.

[JJ01] Markus Jakobsson and Ari Juels. An optimally robust hybrid mix

network. In Twentieth Annual ACM Symposium on Principles of

Distributed Computing, PODC 01, pages 284–292. ACM Press, 2001.

[JJR02] Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix

nets robust for electronic voting by randomized partial checking. In

11th USENIX Security Symposium, pages 339–353, 2002.

[JRSW04] David Jefferson, Aviel Rubin, Barbara Simons, and David Wagner.

A security analysis of the secure electronic registration and voting

experiment (SERVE). Online, 2004. Available from http://www.

servesecurityreport.org, last accessed 26 May 2005.

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated

verifier proofs and their applications. In Advances in Cryptology –

EUROCRYPT ’96: International Conference on the Theory and Ap-

plication of Cryptographic Techniques, volume 1070 of Lecture Notes

in Computer Science, pages 143–154. Springer-Verlag, 1996.

[KSRW04] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin, and Dan S.

Wallach. Analysis of an electronic voting system. In 2004 IEEE

Symposium on Security and Privacy, pages 27–40. IEEE Computer

Society, 2004.

[KY02] Aggelos Kiayias and Moti Yung. Self-tallying elections and per-

fect ballot secrecy. In Public Key Cryptography: 5th International

Workshop on Practice and Theory in Public Key Cryptosystems,

PKC 2002, volume 2274 of Lecture Notes in Computer Science, pages

141–158. Springer-Verlag, 2002.

[KY04] Aggelos Kiayias and Moti Yung. The vector-ballot e-voting approach.

In Financial Cryptography: 8th International Conference, FC 2004,

volume 3110 of Lecture Notes in Computer Science, pages 72–89.

Springer-Verlag, 2004.

BIBLIOGRAPHY 175

[LBD+04] Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo

Yang, and Seungjae Yoo. Providing receipt-freeness in mixnet-

based voting protocols. In Information Security and Cryptology –

ICISC 2003: 6th International Conference, volume 2971 of Lecture

Notes in Computer Science, pages 245–258. Springer-Verlag, 2004.

[LK00] Byoungcheon Lee and Kwangjo Kim. Receipt-free electronic voting

through collaboration of voter and honest verifier. In JW-ISC 2000,

pages 101–108, 2000.

[LK02] Byoungcheon Lee and Kwangjo Kim. Receipt-free electronic voting

scheme with a tamper-resistant randomizer. In Information Security

and Cryptology – ICISC 2002: 5th International Conference, volume

2587 of Lecture Notes in Computer Science, pages 389–406. Springer-

Verlag, 2002.

[Mao03] Wenbo Mao. Modern Cryptography: Theory and Practice. Prentice

Hall Professional Technical Reference, 2003.

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application to e-

voting. In 8th ACM Conference on Computer and Communications

Security, CCS ’01, pages 116–125. ACM Press, 2001.

[OA00] Miyako Ohkubo and Masayuki Abe. A length-invariant hybrid mix.

In Advances in Cryptology – ASIACRYPT 2000: 6th International

Conference on the Theory and Application of Cryptology and Infor-

mation Security, volume 1976 of Lecture Notes in Computer Science,

pages 178–191. Springer-Verlag, 2000.

[Oka97] Tatsuaki Okamoto. Receipt-free electronic voting schemes for large

scale elections. In Security Protocols: 5th International Workshop,

volume 1361 of Lecture Notes in Computer Science, pages 25–35.

Springer-Verlag, 1997.

[OKST97] Wakaha Ogata, Kaoru Kurosawa, Kazue Sako, and Kazunori

Takatani. Fault tolerant anonymous channel. In Information and

Communication Security: First International Conference, ICICS ’97,

volume 1334 of Lecture Notes in Computer Science, pages 440–444.

Springer-Verlag, 1997.

176 BIBLIOGRAPHY

[PAB+04a] Kun Peng, Riza Aditya, Colin Boyd, Ed Dawson, and Byoungcheon

Lee. Multiplicative homomorphic e-voting. In Progress in Cryptology

– INDOCRYPT 2004: 5th International Conference on Cryptology

in India, volume 3348, pages 61–72. Springer-Verlag, 2004.

[PAB+04b] Kun Peng, Riza Aditya, Colin Boyd, Ed Dawson, and Byoungcheon

Lee. A secure and efficient mix-network using extended binary mixing

gate. In Cryptographic Algorithms and their Uses – 2004: Interna-

tional Workshop, pages 57–71. QUT Publications, 2004.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree

residuosity classes. In Advances in Cryptology – EUROCRYPT ’99:

International Conference on the Theory and Application of Crypto-

graphic Techniques, volume 1592 of Lecture Notes in Computer Sci-

ence, pages 223–238. Springer-Verlag, 1999.

[PBDV04] Kun Peng, Colin Boyd, Ed Dawson, and Kapali Viswanathan. A cor-

rect, private, and efficient mix network. In Public Key Cryptography

– PKC 2004: 7th International Workshop on Theory and Practice in

Public Key Cryptography, volume 2947 of Lecture Notes in Computer

Science, pages 439–454. Springer-Verlag, 2004.

[Ped91] Torben P. Pedersen. A threshold cryptosystem without a trusted

party (extended abstract). In Advances in Cryptology – EURO-

CRYPT ’91: Workshop on the Theory and Application of Crypto-

graphic Techniques, volume 547 of Lecture Notes in Computer Sci-

ence, pages 522–526. Springer-Verlag, 1991.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure

verifiable secret sharing. In Advances in Cryptology – CRYPTO ’89:

Proceedings, volume 576 of Lecture Notes in Computer Science, pages

129–140. Springer-Verlag, 1992.

[PIK93] Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Efficient

anonymous channel and all/nothing election scheme. In Advances in

Cryptology – EUROCRYPT ’93: Workshop on the Theory and Ap-

plication of Cryptographic Techniques, volume 765 of Lecture Notes

in Computer Science, pages 248–259. Springer-Verlag, 1993.

BIBLIOGRAPHY 177

[PKBD01] DongGook Park, JungJoon Kim, Colin Boyd, and Ed Dawson. Cryp-

tographic salt: A countermeasure against denial-of-service attacks.

In Information Security and Privacy : 6th Australasian Conference,

ACISP 2001, volume 2119 of Lecture Notes in Computer Science,

pages 334–343. Springer-Verlag, 2001.

[PMPS00] Jaroslaw Pastuszak, Dariusz Michatek, Josef Pieprzyk, and Jennifer

Seberry. Identification of bad signatures in batches. In Public Key

Cryptography: Third International Workshop on Practice and Theory

in Public Key Cryptosystems, PKC 2000, volume 1751 of Lecture

Notes in Computer Science, pages 28–45. Springer-Verlag, 2000.

[PS99] Guillaume Poupard and Jacques Stern. On the fly signatures based on

factoring. In 6th ACM Conference on Computer and Communications

Security, CCS ’99, pages 37–45. ACM Press, 1999.

[RR97] Andrew Reynolds and Ben Reilly, editors. The International IDEA

Handbook of Electoral System Design. International Institute for

Democracy and Electoral Assistance, 2 edition, 1997.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards.

Journal of Cryptology, 4(3):161–174, May 1991.

[Sch00] Berry Schoenmakers. Fully auditable electronic secret-ballot elec-

tions. XOOTIC Magazine, July 2000.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM,

22(11):612–613, November 1979.

[Sho00] Victor Shoup. Practical threshold signatures. In Advances in Cryptol-

ogy – EUROCRYPT 2000: International Conference on the Theory

and Application of Cryptographic Techniques, volume 1807 of Lecture

Notes in Computer Science, pages 207–220. Springer-Verlag, 2000.

[SK95] Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme: A

practical solution to the implementation of a voting booth. In Ad-

vances in Cryptology – EUROCRYPT ’95: International Conference

on the Theory and Application of Cryptographic Techniques, volume

921 of Lecture Notes in Computer Science, pages 393–403. Springer-

Verlag, 1995.

178 BIBLIOGRAPHY

[VBD00] Kapali Viswanathan, Colin Boyd, and Ed Dawson. A three phased

schema for sealed bid auction system design. In Information Security

and Privacy : 5th Australasian Conference, ACISP 2000, volume

1841 of Lecture Notes in Computer Science, pages 412–426. Springer-

Verlag, 2000.

[Wik02] Douglas Wikström. How to break, fix and optimize “optimistic mix

for exit-polls”. Technical report, Swedish Institute of Computer Sci-

ence, 2002. Available from http://www.sics.se/libindex.htlm,

last accessed 08 October 2003.

	01front.pdf
	02whole.pdf

