
A Protocol for Secure Electronic Remote Voting
Edoardo Biagioni, Yingfei Dong, W. Wesley Peterson, and KazuoSugihara

University of Hawaii at M̄anoa
esb@hawaii.edu

Abstract—We have developed Distributed, Voter Verified, Se-
cret Ballot Voting (DVVSB) [1], a potentially remote voting
system that allows a voter to directly verify that their votes
are in the final database of tallied votes. DVVSB meets key
requirements of voting systems, such as voter anonymity and
prevention of various vote insertion attacks, e.g., voting more than
once or voting for others. DVVSB is also resistant to malicious
interferences including several common types of Denial of Service
(DoS) attacks. We summarize how DVVSB allows voters to cast
and verify anonymous ballots, then focus on the networking and
distributed computing techniques used to meet these security
goals.

I. I NTRODUCTION AND RELATED WORK

The traditional paper voting process has many advantages
and many disadvantages. Chief among the advantages is
that many mechanisms have been developed to track paper
ballots and to verify, with high likelihood, what the voter’s
intent is on a paper ballot [2]. Among the disadvantages of
paper ballots are expense, physical vulnerability, including
ballot box stuffing, and the small but sometimes significant
number of votes for which the voter’s intent cannot reliably
be determined. Good examples are offered by Shamos [3] on
pages 15-17. A more recent example was the 2008 senatorial
election in the U.S. state of Minnesota [4].

Electronic voting machines would seem to address many
of these issues, especially if backed by Voter Verifiable Paper
Audit Trails (VVPATs). However, even the paper audit trail
is produced by software and is vulnerable to tampering by
insiders and well-organized attackers, as well as subject to
running out of ink. NIST has collected a number of papers
documenting such issues [5].

A number of systems, both paper and electronic, have been
proposed that would allow voters to verify that their votes
were “cast as intended”, and to probabilistically be assured that
there votes were “counted as cast” [6]. Voters cannot directly
verify that their individual votes are counted as cast and as
intended. This is seen as a strength of these systems, as it
puts up a barrier vote coercion and vote buying.

However, these schemes have drawbacks. The resistance to
coercion and vote buying is weak whenever an election allows
write-in voting. Elections that allow remote voting, including
postal (absentee) ballots, are vulnerable to vote buying or
coercion no matter what technology is used. Further, voters
using these so-called “end-to-end” voting systems [7][8][9]
have to place their trust in a mechanism too complicated for
most voters to understand, or even in a database that must be
trusted to store correct ballot interpretations.

In contrast, in Distributed Voter Verified Secret Ballot or
DVVSB [1], each voter has a unique ballot ID. This ballot ID
is attached to the ballot throughout the process, and is only
known to the voter. Once the election is over, the database of
all ballots can be published. Each voter can then verify thatthe
ballot with the unique ballot ID is indeed in the database, and
counted correctly corresponding to the voter’s intent. Further,
anyone can compare the number of ballots in the database to
the number of ballots submitted for certification, and to the
number of registered voters, verifying that the counting has
been performed correctly. This simple operation corresponds
to an audit in paper- or DRE-based electronic elections, and
can be carried out by anyone with access to the Web. This is
a stronger and more easily understood end-to-end guarantee
than offered by any other proposed system.

With DVVSB any problems with the software or any
one misbehaving individual can be detected if it affects the
outcome of the election, and can be detected by the individual
voters.

Voters in DVVSB are anonymous as long as they do not
divulge their ballot ID. Should a voter need to resist coercion
or fool a vote buyer, they can obtain a completely valid
ballot ID from the database of votes cast.

As the name suggests, DVVSB is suitable for distributed
voting, for example, as a computerized replacement for the
current practice of mail-in absentee ballots. DVVSB is also
suitable for electronic voting machines in polling places,where
one VTS can be local, and additional VTSs can be kept at
the central precinct office. Any network disruptions duringthe
election then would not affect the local recording of votes,and
if the signing servers for the polling station were available
locally as well, network availability becomes a convenience
to facilitate tallying rather than a requirement.

A. Overview of DVVSB

This paper focuses on the networking protocol supporting
DVVSB, and on the properties of this protocol that make it
resistant to man-in-the middle and Denial of Service (DoS)
attacks. We begin the description with a summary of DVVSB,
while the details appear elsewhere [1]. The notation used in
this paper is summarized in Table I.

The fundamental strategy of DVVSB has been presented
before [10][11], and is based on Chaum’s blind signatures [12].

In short, the voter uses a computer, thevoting client, to enter
the vote. This voting client accepts a ballot ID from the voter,
concatenating enough random bits to effectively guarantee
uniqueness of this ballot ID. The voter’s ballot selectionb



TABLE I
NOTATION

symbol meaning
BAS Ballot Authentication Server, blindly signs ballots
VTS Vote Tallying Server, records votes
b voter ballot choices
bts ballot to sign: ballot ID with voter ballot choices
k random blinding factor forbts
bts∗ blinded version ofbts, bts∗ = bts × ke mod n
n modulo for an RSA public key
e RSA public key for any server, always65, 537
d RSA secret key for a server
s RSA signature for abts
N number of registered voters
Nsig number of signatures needed to certify a ballot
m maximum number of corrupted BASs
aesk AES256 key for submitting the ballot to a tally server
a encrypted version of nonce and AES-256 key
RSA Rivest-Shamir-Adleman public-key algorithm [13]
RSA2048 RSA using2, 048-bit keys
AES256 Advanced Encryption Standard [14] using 256-bit keys
DoS Denial of Service attack

and the ballot ID together form the ballot to sign,bts. The
only way to link a ballot ID to a specific voter is for someone
to eavesdrop (perhaps electronically) during the voting process
and record the ballot ID selected by the voter and the voting
client. Without this eavesdropping, ballots are anonymous.

The voting client blindsbts so that it cannot be decrypted
by others, and sends it to one or more Ballot Authentication
Servers (BASs), each of which verifies the voter’s credentials
and blindly signs the ballot. The server then returns the blinded
signature to the voting client. This signature confirms thatthe
voter is entitled to vote and has not voted before, and commits
the voter to this ballot. The blinding ensures that the BAS
cannot tell who the voter is voting for, preserving the secrecy
of the ballot.

Only the client can unblind the signature and verify it. The
voting client then sends the unblinded ballot and unblinded
signature(s) to one or more Vote Tallying Servers (VTSs), each
of which verifies the signature and records the vote. The VTSs
can read the ballot, but do not know the identity of the voter.

Once a vote is validly signed, it is a legitimate, anonymous
vote. It can be submitted to a variety of organizations as well
as to the official VTSs, and can be resubmitted until it is
recorded in the final tally.

The option of multiple authentication and tallying serversis
an innovation of DVVSB. A single BAS could, at the end of
the election, fraudulently sign votes for registered voters that
have not yet voted. Multiple BASs prevent this problem as long
as less than1/3 of the BASs are colluding. Multiple VTSs can
independently record submitted votes, making it harder fora
vote to be lost – although a lost vote can be detected, it is
better not to lose votes.

B. DVVSB Resistance to Attacks

The main focus of this paper is the design of the communi-
cation system to protect DVVSB voting against a number of
attacks. Specifically, we have designed the system to be secure
against man-in-the-middle attacks, and to be as resistant as
possible to denial of service (DoS) attacks.

later
verification:
ID=31415...

Voter’s computer

blinded

unblind

signature for

signature for

blinded

response:
ID 31415...
voted for:

signed by: BAS

ballot authentication server tallying server

encrypted,
reliable
channel

Voter

ID=31415...
random ID
ballot +

ballot+ID

ballot+ID

ballot+ID

George Washington

Fig. 1. Exchanges in the DVVSB Protocol. The final verification is optional.

In a man-in-the-middle attack, the attacker is assumed to
have the ability to view the entire message exchange and
remove and replace packets. Such an attacker should have no
way to associate a vote with a voter, and should be unable
to interfere with the voter casting the ballot of their choice.
We assume that the attacker is unwilling to be detected, and
so cannot simply remove all messages to keep the voter from
voting.

In a DoS attack, an attacker, who might be willing to risk
detection, is trying to affect the conduct or the outcome of the
election by effectively disabling one or more of the computers
involved in the communication. Since a voting client computer
is used for a limited time and may have dynamically assigned
IP addresses, it makes a poor target for DoS attacks. We
therefore focus on protecting the voting servers.

C. Assumptions

A secure channel, such as in-person registration or postal
mail, allows the configuration of each voting client, and
similarly for all the voting servers. For example, the voting
clients must know the correct public keys, IP addresses, and
port numbers of the servers. Each client must also obtain as
many 16-byte random shared secrets as there are BASs, one
secret shared with each BAS. As part of this configuration, all
parties agree on the size of each field and the details of the
protocol used, so protocol headers do not provide information
about version number, field sizes, etc.

Each voting client must be able to produce a certain number
of bytes of truly random data for use as keys and blinding
factors. RFC 1750 [15] describes practical means of obtaining
such truly random data, also available on modern operating
systems, e.g. using/dev/random on Linux.

II. PROTOCOLOVERVIEW

The two sets of exchanges are shown in Figure 1. First the
voting client sends the blinded ballot to the BASs and gets
back a blinded signature. Next the voting client sends a single
message to each VTS to record the vote. Each VTS confirms
that the message was received.

A new ballot sent by a voter can be validated by any BAS
with the database of legitimate voters. Likewise, a voting client



can verify that a signature from a BAS or an acknowledgement
from a VTS is valid. A VTS can check that a signature for a
ballot was produced by a given BAS.

The message to a VTS is encrypted using AES256, which
prevents an attacker from recognizing a voter’s choices. The
same packet carries the AES256 key itself, encrypted using
the VTS’s RSA768 public key, so only that VTS can decrypt
the signed ballot.

As long as the VTS does not record IP addresses, the voter
remains anonymous. Alternately, if a corrupt VTS records
IP addresses, anonymity is preserved as long as there is no
way to associate the IP address with a voter.

The messages are sent using UDP at a relatively slow con-
stant rate. If there are multiple signing servers, the client only
needs signatures from a majority of these. As a consequence,
loss of some packets or a minority of servers need not result in
retransmissions. Likewise for VTSs, acknowledgement from
any one VTS is sufficient, though two or more VTSs are
preferable, with each serving as a backup to the other(s).

The remainder of this paper describes in detail the protocol
and format of each message, then considers the protocol’s
resistance to common DoS attacks.

III. PROTOCOLDETAILS

For this protocol, a ballot is a sequence of arbitrary bits
to be communicated to a VTS after the signing server has
confirmed the voter’s eligibility to vote by blindly signingthe
ballot. For this version of the protocol, the maximum ballot
size is 223 bytes, for reasons explained below.

A. Signing the blinded ballot

The sequence of bits representing the vote are the basic
ballot b. The ballot to sign,bts, is formed by a single byte
of zero, 32 bytes of ballot ID, and the basic ballotb, for a
total of 256 bytes, 2048 bits. The length ofb is therefore223
bytes. Thebts must be 2048 bits since RSA2048 is used (in
this version of DVVSB) to sign the ballot. The first byte is
zero to ensure that thebts is less than the public keyn of the
signing server. BAS public keys must be selected so the first
byte of n is nonzero, so thatn > bts.

If the ballot is less that 223 bytes, the ballot is encoded as a
sequence of three fields: a one-byte length field, the ballot data
itself, and sufficient padding to make 223 bytes. The padding
becomes part of the ballot, and should:

• not reveal any information about the voter
• not allow a known-plaintext attack on the ballot, and
• be computable given only the ballot ID and ballot data

For this version of DVVSB we have chosen to use as
padding the last 31 bytes of the ballot ID, repeated and then
truncated as needed.

The voter and the voting client together choose the randomly
selected ballot ID. This ID uniquely identifies a valid, signed
ballot, but not a voter. Multiple ballots with the same ballot ID
and the same voter content can be assumed to be duplicates
and subsequent submissions are ignored by the VTSs. Since32
bytes is256 bits, the chance of two voters randomly selecting

len
x

ballot for processing
x bytes 222 - x bytes

0 ballot ID (32 bytes) voter ballot (223 bytes)0

repeated bytes of ballot ID

Fig. 2. Format of voter ballot to sign.

the same ballot ID when there areN voters is approximately

1 − e
−(n(n−1))

2257 . For one million voters, the probability is
approximately2−217. Holding 10,000 such elections a year,
collision would be very unlikely in the lifetime of the universe.

To see that true randomness is needed, consider a pseudo-
random number generator seeded with the seconds value of a
clock during a 10 hour voting period,36, 000 seconds. Among
the same million voters, collisions are inevitable.

The voting client blindsbts by computingbts∗ = bts ×

ke mod n, wherek is a random blinding factor, ande and
n are the BAS’s public key (we follow the convention that
e = 216 + 1).

As long ask is truly random, there is no way for an attacker
that has access tobts∗ to identify bts. To see this, consider
that for any potential ballotbts′, one can always find a factor
k′ such thatk′e = bts′/bts∗. In other words, any hypothesized
ballot can equally easily be obtained from the blinded ballot,
and possession of the blinded ballot gives no information about
the cleartext ballot. Our implementation obtains the k-inverse
from /dev/random, and inverts it modulon to obtaink.

To allow each BAS to quickly discard invalid ballots, the
ballot submitted to the BAS also includes a SHA-512 HMAC
computed over the blinded ballot and the shared secret that
should be known only to the BAS and the voting client. The
size of the shared secret is not defined by this protocol, but
our current implementation uses 16-byte shared secrets. This
shared secret is associated with a voter ID which must be
unique to each voter but need not be kept secret, since it cannot
be associated with a readable ballot. In this version of the
protocol, the voter ID is 8 bytes. The voter IDs can be assigned
sequentially, and most of these bytes may well be zero. Note
that voter IDs are different from the ballot IDs used to identify
ballots, are assigned at registration time, and are not secret.

The message from the client to the BASs then consists of
256 bytes of the ballot-to-sign (bts) blinded using the factor
k, followed by the 8 bytes of voter ID, and the 64 bytes
of the SHA512 code computed over the blinded ballot, the
voter ID, and the secret shared between the BAS and the
voting client. The voter ID lets the BAS quickly look up the
shared secret, and the SHA512 HMAC lets the BAS quickly
determine whether the sender is in possession of the correct
shared secret.

Each BAS can use the same voter ID to identify the
same voter, but must use a different random shared secret to
minimize the consequences of a BAS being subverted.

A BAS receiving a 328-byte UDP packet first looks up the
voter ID. If the voter ID is not valid, the packet is discarded.
If the voter ID is valid, the BAS checks its storage to see if



voter ID
8 btyesBallot to sign, BTS (256 bytes)

SHA 512
64 bytes

voter ID
8 btyesBallot to sign, BTS (256 bytes)

shared secret
16 bytes

Data over which SHA 512 is computed

Data from voting client to BAS

Signature from BAS to voting client

Signature (256 bytes)

Fig. 3. Format of messages exchanged between voting client andBAS.

this voter has voted before. If so, either:

• the packet is the different and can be discarded, or
• the packet is the same as a previously submitted valid

vote, and the stored answer is sent back.

These operations can be made very fast, so a BAS can
quickly respond to packets with voter IDs it has seen before.

If the voter ID is valid but the voter has not voted before, the
SHA512 computation is done over the packet, the voter ID,
and the shared secret associated with this voter ID. If this
computation does not match the 64-byte HMAC in the packet,
again the packet is discarded.

Otherwise the packet is accepted. The BAS then records the
packet and signs the blinded ballot part of the packet,bts∗, by
raising it to the power of the BAS’s secret keyd modulo the
public keyn. This is sent back as a 256-byte UDP packet.

The voting client unblinds each 256-byte reply from a
BAS by multiplying it by k−1 mod n, using thek−1 and
n corresponding to the IP and port number of the BAS that
replied. The client verifies thatbts = se mod n, showing that
the signature is correct for the original ballot. If the signature
sent by the BAS is not valid, the client simply ignores it,
retransmitting its request(s) when the original timeout expires.

The voting client must gather signatures from at least
a majority of the BASs. With one BAS, one signature is
sufficient. If protection is desired against failure or collusion
of up to m BASs, then there must be at least3m + 1 BASs,
and at leastNsig = 2m + 1 signatures are required. With
four servers, three signatures are required, andm = 1, so one
corrupt server cannot affect the outcome of the election.

While this may recall Threshold Security [16], the public
keys of the BASs are sufficient to verify a ballot, and no secret
keys are needed.

The voting client retransmits requests to each BASs until
it has received signatures from the required number of BASs.
Assuming that sufficient bandwidth and computational capac-
ity for the election has been provisioned, and to add some
protection against denial of service attacks, the requestsare
retransmitted at a constant rate to each BAS that has not yet
responded.

B. Submitting the ballot to be tallied

Once a client has obtained enough valid signatures, it sends
a packet to the VTSs. This packet contains of the 256-byte
ballot-to-sign (bts) followed by the valid signature records.
Each signature record includes the last 8 bytes of the public

96 bytes
RSA768

32 bytes
nonce

32 bytes
noncerandom

32 bytes 32 bytes
AES key

server ID
8 bytes

signature
256 bytes

Signature record, ”sig”

Client to VTS, 352 + 264 * Nsig bytes

256 bytes
BTS sig nsig 1

264 bytes 264 bytes

VTS acknowledgement to client

encrypted using AES

Content encrypted by the client using RSA768

Fig. 4. Format of messages exchanged between voting client andVTS.

key of the signing server, followed by the 256-byte signature
itself, for a total of 264 total bytes per signature record. The
last 8 bytes of the public key of the signing server are used
because:

• they are known to each client and VTS, and
• they are likely to be unique, and the voting authority can

easily ensure that they are unique

Other 64-bit numbers with these properties could be used.
The ballot and the signatures are encrypted using AES 256

using a randomly generated 256-bit keyaesk, different for
each VTS. Counter mode is used with the initial counter value
being the 256-bit number 2.

Next, a 32-byte random nonce and the 32-byte AES key
aesk are concatenated, then padded with on the left (after
a 0 byte at the beginning) with random bytes sufficient to
give a 768-bit number. This 768-bit number is RSA en-
crypted for each VTS using that server’s public keyn, so
a = (0.rand31.nonce.aesk)e mod n. This 768-bit valuea is
appended to the ballot that was encrypted using AES, and sent
to the corresponding VTS. The total size is352 + 264 ∗ Nsig

bytes.
Each VTS listens for packets of size352+264×Nsig bytes.
For packets of acceptable size, the VTS must:

1) use its RSA-768 private key to decrypt the AES-256 key
and the nonce;

2) use the AES-256 key to decrypt the ballot and the
signatures;

3) check to see if the same ballot has already been received,
and if so, resend the prior reply, otherwise

4) verify that at leastNsig signatures match the ballot

If the last step fails, the packet is discarded. If these steps
succeed, this is a newly received valid ballot. It is saved,
and the 32-byte nonce is returned to the voting client as an
acknowledgement.

Once the voting client receives the nonce from at least one
of the VTSs to which it sent its signed ballot, it can assume
that the vote was recorded successfully. Requiring at leasta
acknowledgements protects against failures, or other causes of
data loss, in up toa − 1 VTSs.

The ballot can also be sent to trusted intermediaries, who
can submit it indirectly, and return the nonce to the voter as
evidence that the VTS has decoded the ballot. The voting client



may also retain the signed ballot for later resubmission. Since
the signed ballot is entirely self-validating, it can only have
been signed by someone with access to the BASs’ private keys.

In summary, only legitimate voters may vote, and at most
once. The ballot is valid as long as no more thanm BAS keys
have been revealed, and may be resubmitted if necessary.

IV. RESISTANCE TOMAN-IN-THE-MIDDLE ATTACKS

For a successful man-in-the-middle attacks, an attacker with
access to all the packets must be able to read or modify a
voter’s vote.

Blinding keeps an attacker from reading the messages to or
from the BAS. Encryption, using AES for the contents and
RSA 768 for the AES key, keeps secret messages to the VTS.
The nonce returned by the VTS carries no information of any
use to an attacker.

The BAS can confirm that a message comes from a client
who has the shared secret. The client can verify that the
signature comes from a BAS rather than from an attacker. The
VTS can verify that the signatures match the ballot submitted
by the client. The nonce returned by the VTS assures the client
that the ballot was decrypted by the VTS.

We conclude that the DVVSB protocol prevents man-in-the-
middle attacks.

V. RESISTANCE TODENIAL OF SERVICE ATTACKS

Any attack that completely prevents packet exchange cannot
be frustrated with an end-to-end protocol. Instead, we assume
the network still delivers some fraction of the packets, as
happens if routers drop packets as a result of a DoS attack.

Assume packets from a voting client are delivered to a
server with probabilityp, and the response packets from the
server are delivered with probabilityp′. p = 1 − L, whereL
is the traditional packet loss probability.

Many techniques can improvep and p′, for example
TVA [17]. We assume that all possible protective measures
have been taken, and thatp andp′ are the resulting packet loss
rates. Further, we assume that packet losses are independent
and identically distributed.

In the simplest case of one BAS and one VTS, the probabil-
ity that one exchange is successful ispp′. The probability that
the two exchanges needed to vote are successful, is(pp′)2. For
example, ifp = p′ = 0.5, the probability that voting completes
without retransmission is0.54 = 6.25%.

With retransmission, an average ofpp′ retransmissions are
needed before a signature or ack is successfully received.
Again, for p = p′ = 0.5, an average of 4 transmissions to
each server obtains a reply.

This compares favorably with the behavior of many con-
ventional protocols. For example, using UDP over IPSec [18]
requires at least 4 packets just to set up an encrypted session.
TCP likewise also requires at least a three-way handshake
with each server followed by at least two additional packets.
The resulting probability of communication with one server,
without retransmission, is(pp′)2, which is less than the
probability of successpp′ for one DVVSB data exchange.

When there is a DoS attack TCP reduces its sending rate,
assuming that its traffic is the cause of the dropped packets.
This makes it harder to accomplish the communication task,
and easier to cause DoS. Sending at a fixed, relatively slow
rate avoids this problem. Our implementation sends one packet
to each server every 20 seconds.

Retransmission continues until the required number of
signatures or nonces has been received. Faster or slightly
slower fixed rates of retransmission would also be effective.
The election traffic does not cause congestion as long as the
network is provisioned to handle the expected peak traffic.

A. Specific DoS attacks

We consider three scenarios for DoS Attacks:
• Random: the attacker sends random data
• Replay: the attacker resubmits valid ballots
• Fake: the attacker submits fake ballots, data as close to

a ballot as can be generated without access to the secret
keys

Random packets being sent will usually be of a size
different from valid data, and can easily be discarded by voting
clients and servers alike.

The system is designed to handleReplayed packets as
retransmissions. As described in Section III-A, BASs can
quickly re-send saved responses, and VTSs can as well. For
example, our BAS implementation requires less than200µs to
verify the SHA-512 hash and to retrieve a previously saved
signature. This allows the BAS to handle over 5,000 such 328-
byte packets per second, or 13Mb/s of DoSReplay traffic.
Voting clients will also discard duplicate messages.

This leaves the case ofFake data being sent by an attacker.
Such packets have the same number of bytes as legitimate
packets, so the servers and clients must verify them before
being able to discard them.

There are four packet types to consider: blinded ballots
sent to BASs, signatures sent back to voting clients, encrypted
signed ballots sent to VTSs, and nonces sent back by VTSs
to voting clients to acknowledge receipt.

If the network supports ingress filtering, the attackers cannot
spoof the source IP address, and it is very hard to do a denial
of service attack on the clients. Even without ingress source
filtering, verifying a nonce is trivial and fast, and verifying
returned signatures could be done at a rate of over 2Mb/s.
Attacking any significant number of voting clients with this
much traffic should be challenging, so in what follows, we
focus on DoSFake attacks on the voting servers.

1) DoS attacks on BAS:A BAS must verify each blinded
ballot by first checking the voter ID. If the the corresponding
voter has not voted yet, the SHA-256 HMAC is computed
using the secret shared by the voter and the BAS. Our imple-
mentation reported a time of71µs for one such computation,
on a 2.4GHz Intel Core 2 quad-core CPU. Such a BAS should
be able to discard well over10, 000 invalid packets per second,
or well over 30Mb/s of DoSFake traffic.

The same BAS is capable of signing at least 100 valid
ballots per second. If there is a need to sign ballots more



quickly, the computation can be distributed among different
processors, each signing a separate ballot. This should scale
linearly, as long as one processor is dedicated to distributing
ballots to be signed by the other processors.

We also did a very simple DoS test on an isolated network
of four relatively slow PCs (730MHz) connected through a
100Mb/s Ethernet switch. On this network, a throughput test
using ttcp showed the receiver receiving 89Mb/s. On this
network, the attacker sentFakepackets, with a valid user ID,
from one host to the BAS at an average rate of 78Mb/s. The
client was run 10 times, and had to retransmit an average of
7.4 times before receiving a signature. In the ten trials, the
minimum number of transmissions was 1, the maximum 16,
though in a separate test 24 transmissions were observed. In
this simple test, the client retransmitted every second, sothe
response was relatively quick. With multiple BASs, all of them
can be tried in parallel, so the expected time to collect multiple
signatures is not significantly greater than for one signature.

2) DoS attacks on VTS:In addition to verifying the signa-
tures, the VTS must decrypt a packet encrypted using RSA-
768, and a possibly sizable packet encrypted using AES-256.
In our implementation, it takes 1.5ms for the RSA decryption
on the fast server (about 3ms on the 730MHz processors),
about 0.5ms for the AES-256 decryption, and about 3.7ms
to verify 3 signatures. Assuming a packet is discarded after
failing the first signature verification, a VTS running on server-
grade hardware should take about 3.2ms to recognize that a
packet is not valid, and so be able to discard at least 300
invalid packets per second. If 3 signatures are needed, each
valid packet has1, 144 bytes, and the server can discard about
2.7Mb/s of DoS traffic. This performance is not sufficient to
thwart a determined attacker.

In our simple DoSFake test, each packet had one signature
and so 616 bytes, and we sent about 1850 packets per second
to the VTS, giving about 9Mb/s of DoS traffic. Ten trials
averaged 10.3 client transmissions to get a response, with a
minimum of 3 and a maximum of 18 transmissions.

It should be straightforward to improve VTS speed dramat-
ically by taking advantage of the parallelism inherent in the
problem. Each packet can be verified independently of every
other packet, perhaps after a quick check in a Bloom filter
or hash table to verify that it has not been received before.
So with 128 processors, for example, it should be possible to
handle over 300Mb/s worth of incoming 3-signature packets.

In addition, a voting client only needs a response from a
single VTS. Many independent VTSs can be provided, and
then their data merged at the end of the election, perhaps using
removable storage. It is harder for an attacker to target many
VTSs.

Our VTS can accept about 250 valid votes per second if 3
signatures are required. Again, this problem should scale lin-
early with the number of processors, so if higher performance
is required, more machines can be used.

VI. CONCLUSIONS ANDONGOING WORK

We have introduced the basic design of DVVSB and ex-
plained why the networking protocol is resistant to man-in-
the-middle attacks and some forms of DoS attacks.

We expect to continue implementing our prototype system,
and use it to further evaluate the design, at our lab and on a
larger scale such as at the DETER lab.

We are hoping to perform elections with the prototype
in several local elections, including student board elections,
neighborhood board elections, and educational voting projects
in high schools.

We also hope to work with experts in human-machine
interfaces to design a system that is not only secure and user-
verifiable, but also usable and useful.

REFERENCES

[1] E. Biagioni, Y. Dong, W. W. Peterson, and K. Sugihara, “Practical dis-
tributed voter-verifiable secret ballot system,” inSymposium on Applied
Computing, Honolulu, Mar. 2009.

[2] D. L. Dill. Openness and security. [Online]. Available:
http://vote.nist.gov/speeches/2 - Security Panel/dill-nist.pdf

[3] M. Shamos, “Paper versus electronic records,” Carnegie
Mellon University, Tech. Rep., Apr. 2004. [Online]. Available:
http://vote.nist.gov/threats/papers/paperv electronic records.pdf

[4] Minnesota Secretary of State. (2008, December
12,) US senate recount data. [Online]. Available:
http://electionresults.sos.state.mn.us/SenateRecount.asp

[5] Threat analyses & papers. Most interesting are the VVPAT
and paper trail manipulation papers. [Online]. Available:
http://vote.nist.gov/threats/papers.htm

[6] [Online]. Available: http://www.punchscan.org
[7] D. Chaum, A. Essex, R. T. Carback III, J. Clark, S. Popoveniuc, A. T.

Sherman, , and P. Vora, “Scantegrity: End-to-end voter verifiable optical-
scan voting,”IEEE Security & Privacy, May/June 2008.

[8] R. L. Rivest, “The ThreeBallot voting system,” MIT, Tech.Rep.,
Oct 2006. [Online]. Available: http://people.csail.mit.edu/rivest/Rivest-
TheThreeBallotVotingSystem.pdf

[9] K. Fisher, R. Carback, and A. T. Sherman, “Punchscan: Introduction and
systemm definition of a high-integrity election system,” University of
Maryland, Baltimore County, Tech. Rep., May 2006. [Online].Available:
http://www.punchscan.org/papers/fisherpunchscanwote2006.pdf

[10] A. Fujioka, T. Okamoto, and K. Ohta, “A practical secret voting scheme
for large scale elections,” inAdvances in Cryptology, AUSCRYPT ’92,
ser. Lecture Notes in Computer Science, J. Seberry and Y. Zheng, Eds.,
vol. 718. Berlin: Springer-Verlag, 1993.

[11] L. F. Cranor and R. K. Cytron, “Sensus: A security-conscious
electronic polling system for the internet,” inProceedings
of the Hawai’i International Conference on Systems Sciences,
Wailea, Hawai’i, USA, January 7-10, 1997. [Online]. Available:
http://lorrie.cranor.org/pubs/hicss/hicss.html

[12] D. Chaum, “Blind signatures for untraceable payments,”Advances in
Cryptology - Crypto ’82, pp. 199–203, 1983.

[13] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,”Communications of the ACM,
vol. 21, no. 2, p. 120126, 1978.

[14] Specification for the ADVANCED ENCRYPTION STANDARD (AES),
National Institute for Standards and Technology (NIST) Std. 197, Nov.
2001.

[15] D. Eastlake, 3rd, S. Crocker, and J. Schiller,Randomness
Recommendations for Security, IETF RFC 1750, Dec. 1994. [Online].
Available: http://www.apps.ietf.org/rfc/rfc1750.html

[16] H. Vu, N. Mittal, and S. Venaktesan, “THIS: THreshold security for in-
formation aggregation in sensor networks,” inInternational Conference
on Information Technology (ITNG’07), 2007.

[17] X. Yang, D. Wetherall, and T. Anderson, “A DoS-limiting network
architecture,”SIGCOMM Comput. Commun. Rev, vol. 35, no. 4, pp.
241–252, 2005.

[18] VPNC. VPN protocols. A survey of VPN and IPSec references.
[Online]. Available: http://www.vpnc.org/vpn-standards.html


