
Hunting Trojan Horses

Micha Moffie
Computer Architecture
Research Laboratory

Northeastern University
Boston, MA 02115, USA

mmoffie@ece.neu.edu

Winnie Cheng
Computer Science and

Artificial Intelligence Lab
Massachusetts Institute of

Technology
Cambridge, MA 02139, USA

wwcheng@mit.edu

David Kaeli
Computer Architecture
Research Laboratory

Northeastern University
Boston, MA 02115, USA

kaeli@ece.neu.edu

Qin Zhao
Singapore-MIT Alliance
National University of

Singapore
Singapore 117576

zhaoqin@nus.edu.sg

ABSTRACT
HTH (Hunting Trojan Horses) is a security framework de-
veloped for detecting difficult types of intrusions. HTH is in-
tended as a complement to anti-virus software in that it tar-
gets unknown and zero-day Trojan Horses and Backdoors.
In order to accurately identify these types of attacks HTH
utilizes runtime information available during execution. The
information collected includes fine-grained information flow,
program execution flow and resources used.

In this paper we present Harrier, an Application Secu-
rity Monitor at the heart of our HTH framework. Harrier
is an efficient run-time monitor that dynamically collects
execution-related data. Harrier is capable of collecting in-
formation across different abstraction levels including archi-
tectural, system and library APIs. To date, Harrier is 3-4
times faster than comparable information flow tracking sys-
tems.

Using the collected information, Harrier allows for accu-
rate identification of abnormal program behavior. Prelimi-
nary results show a good detection rate with a low rate of
false positives.

General Terms
Security

Keywords
Program monitoring, Run time environment, Information
flow control, data labeling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASID’06 October 21, 2006, San Jose, California, USA.
Copyright 2006 ACM 1-59593-576-2/06/0010...$5.00.

1. INTRODUCTION
Criminal computer attacks grew at an alarming rate in

2004 [17]. In their 2005 Internet security threat report [21]
Symantec reported that out of the top ten spyware pro-
grams, six were bundled with other programs. The report
further noted that malicious code was being used for finan-
cial gains in a number of cases and that there was a noticable
rise in the occurrence of malicious code that exposes confi-
dential information. Symantec indicated that latter type of
malicious code comprised 74% of the top 50 code samples
reported to them in 2005 [21].

Guarding against malicious code that can either expose
confidential information, or tamper with information is chal-
lenging. These exploits may take the form of Trojan Horses
or Backdoors that are installed without the user’s consent.
Moreover, new malicious code (e.g. zero day attacks) can go
undetected by even the most up-to-date anti-virus programs.
Some Trojan Horses and Backdoors conceal their presence
by executing as a plug-in or as a dynamically-linked library.
Many have very little immediate impact on the normal op-
eration of a system and so are difficult to detect by the user.
These characteristics enable Trojan Horses and Backdoors
to go undetected for a significant period of time, provid-
ing the attacker with a large window of vulnerability on the
system.

To address these difficulties in identifying Trojan Horses
and Backdoors, we have developed Harrier. Harrier is the
centerpiece of our security framework HTH. It is capable of
collecting data flow and control flow information during the
execution and enables us to defend against harmful activity.

The remainder of the paper is organized as follows: In
section 1.1 we highlight the characteristics of Trojan Horses
and Backdoors that motivate our design choices. In sec-
tion 2 we present HTH. We then give a high-level overview
of our security policy in section 3. In section 4 we delve into
the design and implementation of Harrier, and evaluate its
performance in section 5. We review related work in Sec-
tion 6 and then summarize our work, highlighting areas for
future investigation, in section 7.

12

1.1 Security Exploits
We begin by discussing several examples of real-world Tro-

jan Horses and Backdoors:

1. PWSteal.Tarno.Q is a Trojan Horse that logs pass-
words and information typed into web forms. It prop-
agates via email attachments and registers itself as a
browser helper. The Trojan monitors a subset of web
pages (such as those that contain strings such as: bank,
cash, gold and more) and captures keystrokes, as well
as information submitted in several predefined files.
The information is periodically transmitted back to
the attacker via a hard-coded url [20].

2. The Trojan.Lodeight.A code tries to install malicious
code on the compromised computer and opens a Back-
door on TCP port 1084. When this Trojan is executed,
it connects to one of two predefined websites, down-
loads a remote file and then executes it. This remote
file may be any arbitrary program, including a Beagle
worm [20].

3. As part of an adware program, the Trojan.Vundo presents
the user with pop-up advertisements. There are two
components to this Trojan: a downloader and an ad-
ware injector. By exploiting a Microsoft Internet vul-
nerability, the downloader component is executed on
the victim. It then retrieves the adware component
by connecting to a specific IP address. The adware
is injected into different processes as a DLL. Besides
displaying advertisements on the infected machine, it
also degrades performance by decreasing the amount
of virtual memory available [20].

We summarize the execution patterns exhibited by a set
of known malicious examples in Table 1.

Our analysis of the Trojan Horses and Backdoors men-
tioned above, as well as other malicious code examples re-
veals several distinct characteristics and behaviors:

1. The malicious code is executed without user interven-
tion.

2. The malicious code may be directed by a remote at-
tacker once a connection is made.

3. Resources used by the malicious code, such as file names
and network addresses, are hard-coded in the binary.

4. OS resources (processes, memory) used by the mali-
cious code may be consumed for the purpose of de-
grading performance.

A key characteristic of Trojan Horses and Backdoors is
that they cannot be invoked by the attacker and are au-
tonomous – at least until a connection is made.

2. HTH FRAMEWORK
In HTH, our security policy implementation is separated

from our tracking mechanism to allow for flexibility and in-
dependent optimization of each component. Figure 1 shows
HTH’s high-level software architecture.

Analysis Feedback

Program Monitoring & Analysis &
Program Behavior

Tracking Mechanism Policy Implementation

Figure 1: The HTH software architecture.

2.1 Data Sources
A key point in our framework is its ability to track infor-

mation flow in the program and identify the exact source of
the data. This capability is not only important for tracking
information leakage, but also allows us to detect occurrences
where the malicious code is autonomous (e.g., where the ex-
ploit uses hard-coded values).

Our policy rules take into account the source of the data.
We maintain enough information about each data source
in order to make fine-grained distinctions. This differienti-
ates our approach from several solutions that offer a single
”Taint” bit [16, 15, 19, 3]. We divide data sources into
5 resource types, as shown in Table 2. For some resource
types, a resource specifier field is provided to include extra
information on the origin of the resource. For example, for
a file /tmp/0a3f2d.txt that belongs to resource type FILE,
the specifier field includes the resource type of its filename.
(e.g., BINARY, if the filename is a hard-coded value).

Resource Type Description
USER INPUT data is retrieved via user interaction
FILE data is read from a file
SOCKET data is retrieved from a socket interface
BINARY data is part of the program binary image
HARDWARE data originated from hardware (e.g. cpuid)

Table 2: Resource types in HTH.

2.2 Event Monitoring
There are numerous events that need to be monitored to

accommodate the information collected for our policy. We
divide the events into 3 categories:

• Architectural (ISA) events - (instructions executed),

• OS (API) events - system calls, and

• Library (API) events - library routines.

Events such as OS and library calls allow us to collect in-
formation related to the program semantics and program
information flow. Architectural events allow us to collect
information related to program information flow. Carefully
categorizing these events emphasizes the need to accommo-
date different levels of abstraction in our system.

2.3 Design choices
In this initial implementation, our goal was to keep the

monitor as lean, and generic as possible. Analyzing source
code would limit our analysis to one particular language
and would require a specialized front-end for each language.
There is also the issue that the source code may not be
available. Therefore, we have designed Harrier to work with
program binaries. This choice does tie us to a specific ar-
chitecture and OS (an executable format may bound us to
a specific OS).

13

Exploit Name No user Remotely Hard-coded Degrading
intervention directed Resources performance

PWSteal.Tarno.Q

Trojan.Lodeight.A

Trojan.Vundo

W32.Mytob.J@mm

Windows-update.com

W32/MyDoom.B

Phatbot

Sendmail Trojan

TCP Wrappers Trojan

Table 1: Execution patterns exhibited by malicious code.

In order to maintain runtime information (user input,
etc.) and enable us to perform detailed and accurate behav-
ior analysis, we implement Harrier as a runtime monitoring
system. Future research will look into developing hybrid ap-
proaches in which static analysis may be used to accelerate
the runtime monitor.

Although we could potentially track all events at every
abstraction level (architectural, OS, and library), it is desir-
able to reduce the number of events monitored to a generic
and preferably small set (e.g., tracking all library APIs may
very well be intractable). Since Harrier analyzes the pro-
gram binary and does not rely on source code, we are only
able to monitor calls that are made to shared objects. We
assume that debug information is unavailable in the binary,
and thus, restrict our monitoring to shared objects with a
defined API. The main reason for tracking a subset of li-
brary calls is to overcome the semantic gap introduced by
working at either an architectural or OS level.

Harrier is a run time security monitor that analyzes pro-
gram binaries. Harrier tracks architectural, OS and selected
library events. We follow this approach in order to in-
crease both flexibility and usability. Moreover, we expect
this choice to provide the best accuracy and the smallest
number of false positives.

3. SECURITY POLICY
Based on the unique behavior of Trojan Horses and Back-

doors described in section 1.1, we have developed a security
policy composed of a set of rules designed to oversee differ-
ent types of program behavior. We classify rules as one of
three types:

• Execution flow - Rules that monitor the invocation and
execution of new processes. Our target is to detect
malicious code being executed.

• Resource abuse - Includes allocating and using differ-
ent resources from the operating system (e.g., pro-
cesses and memory) with the purpose of draining OS
resources and reducing performance. In our policy we
monitor the number of new processes created, as well
as the rate of creation of new processes.

• Information flow - A set of rules that can enforce the
flow of information between different sources and tar-

gets, classified by the different resource types as dis-
cussed in section 2. For example, a rule that notifies
the user when information is flowing from a file to a
socket (where both, either or none are hardcoded)

4. HARRIER DESIGN AND IMPLEMENTA-
TION

Harrier tracks a program’s execution and generates events
that are further analyzed. The following sections describe
how Harrier monitors and maintains this fine-grained infor-
mation.

4.1 System calls
Harrier tracks multiple system calls. Monitoring the clone

and execve system calls enables the enforcement of resource
abuse and execution flow rules. In the case of an execve
system call, Harrier will modify the executable target such
that a new instance of Harrier is executed and can monitor
the new executable.

System calls such as open, close, read and write are tracked
to provide detailed information about resource types used.
Tracking system calls is essential to understanding program
behavior, as well as for identify entry and exit points in the
data flow.

4.2 Library calls
Occasionally, tracking system calls is not enough to un-

derstand the underlying program behavior. We refer to this
as a semantic gap. Such a semantic gap exists between the
socket library API and its system calls. Monitoring a mini-
mal set of library API functions allows us to track the infor-
mation flow in order to understand the underlying program
behavior.

For example, resolving strawberry.mit.edu to its IP ad-
dress (18.71.0.151) may involve several system calls access-
ing a local host file, a domain name server, or other meth-
ods. Harrier tracks the gethostbyaddr and gethostbyname
routines implemented via a library API to overcome the se-
mantic gap.

4.3 Data flow
Harrier tags each register and memory location with one

or more data sources. Whenever an assignment instruction
is executed, the tag of the newly assigned memory or register

14

is updated. The new tag will hold a composite of the data
sources of the source operands.

Another element of data flow tracking includes locating
hard-coded data. This data is embedded in the binary which
can be the executable itself or libraries that are dynamically
loaded. Harrier monitors binary load events and tags the
data with the BINARY resource type.

The use of the stdin file descriptor with read system calls
identifies trivial user input.

Other channels of user input to the program include com-
mand line arguments, as well as environment and auxiliary
variables (e.g., argc, argv, env, aux). All of this information
is stored on the initial stack as the program begins execution.
Harrier will tag the initial stack with the USER INPUT
data source. Data originating from hardware (e.g., when
the cpuid is executed) is assigned the HARDWARE tag.

4.4 Implementation
Harrier can be viewed as a layer that virtualizes an appli-

cation. It is implemented on top of a dynamic instrumenta-
tion framework. We have developed two versions of Harrier
to date. The first version was based on PIN [12]. This initial
implementation tracks Linux binaries, and served as a proof-
of-concept. Our current version is based on dynamoRIO [2]
and optimizations used in TaintTrace [3]. While our current
implementation only supports Linux, the underlying instru-
mentation tool can also work with Windows executables.

Since dynamic instrumentation is done ’on top of’ the op-
erating system and ’below’ the application, it allows us to
access events across the different abstraction levels, track
data flow, and easily monitor events such as system and li-
brary calls. Figure 2 shows the different types events Harrier
is able to collect.

Application

Harrier

ISA

Operating System

Libraries

OS Calls

Library

Load

Flow
Data

Library Calls (.so)

Figure 2: Events collected from different abstraction
levels

The application is instrumented at different granularities:

1. Instruction – where we instrument before or after an
instruction,

2. Routine – where we instrument on function call or re-
turn,

3. (image) Section – where we identify the different sec-
tions in a binary, and

4. Image - where we instrument when a binary is loaded
or unloaded.

In table 3 we summarize for each policy rule type, the in-
strumentation granularity used and the information gath-
ered across the different abstraction levels.

Our current implementation provides data flow analysis,
as well as selected system and library calls tracking.

5. EVALUATION
The performance of HTH is dependent primarily on the

performance of Harrier. In this section, we evaluate the per-
formance of Harrier using the SPEC2000 INT benchmarks.
We use the current version of Harrier, which is based on
TaintTrace. We ran the benchmarks on a Linux 2.4.20, In-
tel Xeon (Pentium 4) 3.06GHz CPU.

TaintTrace [3] is an efficient information flow tracing tool
that provides instruction-level data tracking. It is built on
top of DynamoRIO [2], a dynamic binary instrumentation
tool. TaintTrace provides 3 types of data information prop-
agation on x86 instructions: Copy, Arithmetic and Control.
TaintTrace uses a shadow memory that allows a fast one-to-
one mapping between program memory and data-flow track-
ing memory. In addition, a number of techniques were used
to minimize the instrumentation overhead, such as aggres-
sive use of dead registers to avoid register spilling. Taint-
Trace is the fastest fine-grain monitoring tool we are aware
of. Harrier is an improvement over TaintTrace to provide
more well-defined data flow information for effective iden-
tification of security threats. In particular, it supports the
resource types and identification fields discussed earlier in
the paper.

In figure 3 we present the overhead introduced by Harrier
(based on TaintTrace). For each of the benchmarks, we
show the relative execution time of Harrier monitoring the
benchmark (with the raw execution time of the benchmark
as 100%).

Harrier introduces an average of 7X slowdown. These re-
sults are significantly better than those reported in previous
work. For MemCheck [19] a median of 26.5X slowdown (for
9 SpecINT and 4 SpecFP benchmarks) was reported. Re-
sults reported for TaintCheck [15] showed around 24X slow-
down for the bzip2 benchmark (the only comparable result
reported).

6. RELATED WORK
A lot of work has been done in the areas of intrusion

detection systems and static and dynamic information flow
systems. Due to the limited space we present only closely
related work.

15

Policy rule type Instrumentation granularity Information gathered

Architectural events
Information Flow Instruction Data Flow (reg/mem, mem/mem, reg/reg)
Information Flow Instruction Hardware Information (CPUID)

OS (API) events
Execution Flow Instruction System Calls (execve)
Resource Abuse Instruction System Calls (clone)
Information Flow Instruction System Calls (IO read/write)
Information Flow Section Binary load
Information Flow Image Binary load
Information Flow Instruction Initial stack location

Library (API) events
Information Flow Routine Data Flow (Closing the semantic gap)

Table 3: Information gathered at different instrumentation granularities.

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

1000%

gzip mcf crafty parser eon perlbmk gap bzip2 twolf Average

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

Benchmark

Relative Performance

Figure 3: Relative performance of Harrier version
2.0(based on TaintTrace).

6.1 Intrusion Detection Systems
HTH builds on top of much work previously done. In

particular system call monitoring was successfully used to
detect malicious code in many Intrusion Detection Systems
[8, 24, 11, 10, 7, 6, 18, 5]. Because system calls provide in-
sight into program behavior and system call tracing can be
done very efficiently, system call monitoring is a key aspect
in many Intrusion Detection and Anomaly detection sys-
tems (as well as in HTH). A discussion of many host-based
anomaly detection systems can be found in Gao et al. [6].

A specialized type of data flow, control flow, can be used
to thwart attacks that change the control flow dynamically.
Kiriansky et al. [9] introduced a control flow monitoring sys-
tem called Program Shepherding.

Static analysis can also be used for intrusion detection.
Wagner et al. [23] show how static analysis can be used to
thwart attacks that change the program behavior from the
original behavior intended by the program author. Unfortu-
nately, this analysis assumes that the program was written
with benign intent. This isn’t the case for Trojan Horses or
Backdoors.

6.2 Information Flow Systems
Information flow security systems have focused on language-

based and static analysis mechanisms [4, 13]. These systems
only allow the programmer to specify the policy. This means
that the user places his trust in the code developer and is
not able to enforce his own security policy.

In contrast, systems such as RIFLE [22] (an architectural
framework) and Perl’s interpreter [16] track the data flow
dynamically and equip the user (in contrast to the program-
mer) with a practical way of enforcing any information flow
policy.

Data Flow tracking systems based on binary rewriting or
instrumentation are closely related to Harrier. Valgrind [14]
has been used to rewrite the binary during runtime to dy-
namically check for overwrite attacks [15]. It can also detect
undefined value errors at the bit level [19]. Beres et al. [1]
describe an information flow monitoring approach based on
dynamic label binding and code rewriting. The MIT Taint-
Trace project [3] uses binary rewriting to track user input
(tainted data) very efficiently. TaintTrace introduces an av-
erage slow down of 5.5 times compared to native execution.
Our work in HTH builds on top of TaintTrace’s efficient data
flow tracking.

Run time information systems are becoming more preva-
lent in secure systems. Many runtime systems specialize in
tracking the source of data (e.g., user input), and develop
security policies for common exploits. In HTH we consider
different sources of data and dynamically track all of them
in order to support our policy. Moreover, our current HTH
implementation allows us to track data flow faster than com-
parable solutions.

7. SUMMARY AND FUTURE WORK
In this paper we presented HTH a security framework

capable of detecting zero-day attacks. Within HTH, Har-
rier (which is based on TaintTrace), introduces an average
overhead which is significantly less than any other current
comparable system.

Harrier is able to collect vast amounts of information and
allows for accurate identification of abnormal program be-
havior. Preliminary results are promising. A good detection
rate coupled with a low false positive rate push us to con-
tinue developing HTH.

Future work will expand and improve upon HTH. First,
we will explore architectural support such as RIFLE to speed
up Harrier. Second we aim to monitor process commu-
nications as well as save meta-information regarding each

16

process behavior between executions. Lastly, we intend to
present a complete security policy within HTH and show a
complete evaluation of its effectiveness including the detec-
tion rate and the false positive rate.

8. ACKNOWLEDGMENTS
This work has been supported by the National Science

Foundation under Grant No. 0310891.

9. REFERENCES
[1] Y. Beres and C. I. Dalton. Dynamic label binding at

run-time. In NSPW ’03: Proceedings of the 2003
workshop on New security paradigms, pages 39–46,
New York, NY, USA, 2003. ACM Press.

[2] Derek Bruening. Efficient, Transparent, and
Comprehensive Runtime Code Manipulation. PhD
thesis, Massachusetts Institute of Technology, 2004.

[3] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige.
TaintTrace: Efficient Flow Tracing with Dynamic
Binary Rewriting. In Proc. 11th IEEE International
Symposium on Computers and Communications.
IEEE, Jun. 2006.

[4] D. E. Denning. A lattice model of secure information
flow. Commun. ACM, 19(5):236–243, 1976.

[5] G. Edjlali, A. Acharya, and V. Chaudhary.
History-based access control for mobile code. In CCS
’98: Proceedings of the 5th ACM conference on
Computer and communications security, pages 38–48,
1998.

[6] D. Gao, M. K. Reiter, and D. Song. On gray-box
program tracking for anomaly detection. In
Proceedings of the 13th USENIX Security Symposium,
pages 103–118, San Diego, CA, USA, Aug. 9-13 2004.

[7] I. Goldberg, D. Wagner, R. Thomas, and E. A.
Brewer. A secure environment for untrusted helper
applications (confining the wily hacker). In
Proceedings of the 6th Usenix Security Symposium,
San Jose, CA, USA, 1996.

[8] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion
detection using sequences of system calls. Journal of
Computer Security, 6(3):151–180, 1998.

[9] V. Kiriansky, D. Bruening, and S. Amarasinghe.
Secure execution via program shepherding. In Security
’02: Proceeding of the 11th USENIX Security
Symposium, San Francisco, August 2002.

[10] C. Ko, T. Fraser, L. Badger, and D. Kilpatrick.
Detecting and countering system intrusions using
software wrappers. In Proceedings of the USENIX
Security Conference, pages 145–156, Jan. 2000.

[11] A. P. Kosoresow and S. A. Hofmeyr. Intrusion
detection via system call traces. IEEE Softw.,
14(5):35–42, 1997.

[12] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instruentation. In
Programming Language Design and Implementation
(PLDI), Jun. 2005. Chicago, IL.

[13] A. C. Myers. Jflow: practical mostly-static
information flow control. In POPL ’99: Proceedings of
the 26th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 228–241,
New York, NY, USA, 1999. ACM Press.

[14] N. Nethercote and J. Seward. Valgrind: A program
supervision framework. In Electronic Notes in
Theoretical Computer Science, volume 89, pages 1–23.
Elsevier, 2003.

[15] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature
generation of exploits on commodity software. In The
12th Annual Network and Distributed System Security
Symposium, Feb. 3-4, San Diego, CA, USA, 2005.

[16] perldoc.perl.org. Perl 5.8.7 documentation, perlsec -
perl security. http://perldoc.perl.org/perlsec.html.

[17] Bruce Schneier. Attack trends 2004 and 2005. In ACM
Queue vol. 3, no. 5. ACM, Jun. 2005.
http://acmqueue.com/.

[18] K. Scott and J. Davidson. Safe virtual execution using
software dynamic translation. In ACSAC ’02:
Proceedings of the 18th Annual Computer Security
Applications Conference, page 209, Washington, DC,
USA, 2002. IEEE Computer Society.

[19] J. Seward and N. Nethercote. Using valgrind to detect
undefined value errors with bit-precision. In USENIX
2005 Annual Technical Conference, pages 17–30, Apr.
10-15, Anaheim, CA, USA, 2005.

[20] Symantec. Symantec security response.
http://securityresponse.symantec.com/avcenter/,
2004-2005.

[21] Symantec. Symantec internet security threat report,
trends for january 05 - june 05, 2005.

[22] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan,
G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani,
and D. I. August. Rifle: An architectural framework
for user-centric information-flow security. In MICRO
37: Proceedings of the 37th annual International
Symposium on Microarchitecture, pages 243–254,
Washington, DC, USA, 2004. IEEE Computer Society.

[23] D. Wagner and D. Dean. Intrusion detection via static
analysis. In SP ’01: Proceedings of the 2001 IEEE
Symposium on Security and Privacy, page 156,
Washington, DC, USA, 2001. IEEE Computer Society.

[24] C. Warrender, S. Forrest, and B. A. Pearlmutter.
Detecting intrusions using system calls: Alternative
data models. In IEEE Symposium on Security and
Privacy, pages 133–145, 1999.

17

