ECS 289M Lecture 8

April 17, 2006

Bell-LaPadula Model, Step 2

- Expand notion of security level to include categories
- Security level is (clearance, category set)
- Examples
- (Top Secret, \{ NUC, EUR, ASI \})
- (Confidential, \{ EUR, ASI \})
- (Secret, \{ NUC, ASI \})

Lattices

- S set, R : $S \times S$ relation
- If $a, b \in S$, and $(a, b) \in R$, write $a R b$
- Example
$-I=\{1,2,3\} ; R$ is \leq
$-R=\{(1,1),(1,2),(1,3),(2,2),(2,3),(3$, 3) \}
- So we write $1 \leq 2$ and $3 \leq 3$ but not $3 \leq 2$

Relation Properties

- Reflexive
- For all $a \in S$, aRa
- On I, \leq is reflexive as $1 \leq 1,2 \leq 2,3 \leq 3$
- Antisymmetric
- For all $a, b \in S, a R b \wedge b R a \Rightarrow a=b$
- On I, \leq is antisymmetric
- Transitive
- For all $a, b, c \in S, a R b \wedge b R c \Rightarrow a R c$
- On I, \leq is transitive as $1 \leq 2$ and $2 \leq 3$ means $1 \leq 3$

Bigger Example

- C set of complex numbers
- $a \in C \Rightarrow a=a_{R}+a_{l}, a_{R}$, ajintegers
- $a \leq_{C} b$ if, and only if, $a_{R} \leq b_{R}$ and $a_{l} \leq b_{l}$
- $a \leq_{C} b$ is reflexive, antisymmetric, transitive
- As \leq is over integers, and a_{R}, a_{l} are integers

Partial Ordering

- Relation R orders some members of set S
- If all ordered, it's total ordering
- Example
$-\leq$ on integers is total ordering
$-\leq_{C}$ is partial ordering on C (because neither $3+5 i \leq_{C} 4+2 i$ nor $4+2 i \leq_{C} 3+5 i$ holds)

Upper Bounds

- For $a, b \in S$, if u in S with $a R u, b R u$ exists, then u is upper bound
- Least upper if there is no $t \in S$ such that $a R t, b R t$, and $t R u$
- Example
- For $1+5 i, 2+4 i \in C$, upper bounds include $2+5 i, 3+8 i$, and $9+100 i$
- Least upper bound of those is $2+5 i$

Lower Bounds

- For $a, b \in S$, if / in S with $I R a, I R b$ exists, then / is lower bound
- Greatest lower if there is no $t \in S$ such that $t R a, t R b$, and IRt
- Example
- For $1+5 i, 2+4 i \in C$, lower bounds include $0,-1+2 i, 1+1 i$, and $1+4 i$
- Greatest lower bound of those is $1+4 i$

Lattices

- Set S, relation R
$-R$ is reflexive, antisymmetric, transitive on elements of S
- For every $s, t \in S$, there exists a greatest lower bound under R
- For every $s, t \in S$, there exists a least upper bound under R

Example

- $S=\{0,1,2\} ; R=\leq$ is a lattice
- R is clearly reflexive, antisymmetric, transitive on elements of S
- Least upper bound of any two elements of S is the greater
- Greatest lower bound of any two elements of S is the lesser

Picture

Arrows represent \leq; total ordering

Example

- C, \leq_{C} form a lattice
$-\leq_{C}$ is reflexive, antisymmetric, and transitive
- Shown earlier
- Least upper bound for a and b :
- $c_{R}=\max \left(a_{R}, b_{R}\right), c_{l}=\max \left(a_{l}, b_{l}\right)$; then $c=c_{R}+c_{l} i$
- Greatest lower bound for a and b :
- $c_{R}=\min \left(a_{R}, b_{R}\right), c_{l}=\min \left(a_{l}, b_{l}\right) ;$ then $c=c_{R}+c_{l} i$

Picture

Arrows represent \leq_{C}

April 17, 2006

Levels and Lattices

- (A, C) dom $\left(A^{\prime}, C\right)$ iff $A^{\prime} \leq A$ and $C^{\prime} \subseteq C$
- Examples
- (Top Secret, \{NUC, ASI\}) dom (Secret, \{NUC\})
- (Secret, \{NUC, EUR\}) dom (Confidential,\{NUC, EUR\})
- (Top Secret, \{NUC\}) -dom (Confidential, \{EUR\})
- Let C be set of classifications, K set of categories. Set of security levels $L=C \times K$, dom form lattice
$-\operatorname{lub}(L)=(\max (A), C)$
$-g l b(L)=(\min (A), \varnothing)$

Levels and Ordering

- Security levels partially ordered
- Any pair of security levels may (or may not) be related by dom
- "dominates" serves the role of "greater than" in step 1
- "greater than" is a total ordering, though

Reading Information

- Information flows up, not down
- "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 2)
- Subject s can read object o iff $L(s)$ dom $L(o)$ and s has permission to read o
- Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
- Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
- "Writes up" allowed, "writes down" disallowed
- *-Property (Step 2)
- Subject s can write object oiff $L(o)$ dom $L(s)$ and s has permission to write o
- Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
- Sometimes called "no writes down" rule

Basic Security Theorem Step 2

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 2, and the *-property, step 2, then every state of the system is secure
- Proof: induct on the number of transitions
- In actual Basic Security Theorem, discretionary access control treated as third property, and simple security property and *-property phrased to eliminate discretionary part of the definitions - but simpler to express the way done here.

Problem

- Colonel has (Secret, \{NUC, EUR\}) clearance
- Major has (Secret, \{EUR\}) clearance
- Major can talk to colonel ("write up" or "read down")
- Colonel cannot talk to major ("read up" or "write down")
- Clearly absurd!

Solution

- Define maximum, current levels for subjects
- maxlevel(s) dom curlevel(s)
- Example
- Treat Major as an object (Colonel is writing to him/her)
- Colonel has maxlevel (Secret, \{ NUC, EUR \})
- Colonel sets curlevel to (Secret, \{ EUR \})
- Now L(Major) dom curlevel(Colonel)
- Colonel can write to Major without violating "no writes down"
- Does $L(s)$ mean curlevel(s) or maxlevel(s)?
- Formally, we need a more precise notation

Formal Model Definitions

- S subjects, O objects, P rights
- Defined rights: \underline{r} read, \underline{a} write, \underline{w} read/write, \underline{e} empty
- M set of possible access control matrices
- C set of clearances/classifications, K set of categories, $L=C \times K$ set of security levels
- $F=\left\{\left(f_{s}, f_{o}, f_{c}\right)\right\}$
- $f_{s}(s)$ maximum security level of subject s
- $f_{c}(s)$ current security level of subject s
- $f_{o}(o)$ security level of object o

More Definitions

- Hierarchy functions $\mathrm{H}: \mathrm{O} \rightarrow P(\mathrm{O})$
- Requirements

1. $o_{i} \neq o_{j} \Rightarrow h\left(o_{i}\right) \cap h\left(o_{j}\right)=\varnothing$
2. There is no set $\left\{o_{1}, \ldots, o_{k}\right\} \subseteq O$ such that, for $i=1, \ldots, k$, $o_{i+1} \in h\left(o_{i}\right)$ and $o_{k+1}=o_{1}$.

- Example
- Tree hierarchy; take $h(o)$ to be the set of children of o
- No two objects have any common children (\#1)
- There are no loops in the tree (\#2)

States and Requests

- V set of states
- Each state is (b, m, f, h)
- b is like m, but excludes rights not allowed by f
- R set of requests for access
- D set of outcomes
$-\underline{y}$ allowed, \underline{n} not allowed, \underline{i} illegal, \underline{o} error
- W set of actions of the system
$-W \subseteq R \times D \times V \times V$

History

- $X=R^{N}$ set of sequences of requests
- $Y=D^{N}$ set of sequences of decisions
- $Z=V^{N}$ set of sequences of states
- Interpretation
- At time $t \in N$, system is in state $z_{t-1} \in V$; request $x_{t} \in R$ causes system to make decision $y_{t} \in D$, transitioning the system into a (possibly new) state $z_{t} \in V$
- System representation: $\Sigma\left(R, D, W, z_{0}\right) \in X \times Y \times Z$
$-(x, y, z) \in \Sigma\left(R, D, W, z_{0}\right)$ iff $\left(x_{t}, y_{t}, z_{t-1}, z_{t}\right) \in W$ for all t
- (x, y, z) called an appearance of $\Sigma\left(R, D, W, z_{0}\right)$

Example

- $S=\{s\}, O=\{0\}, P=\{\underline{\mathrm{r}}, \underline{\mathrm{w}}\}$
- $C=\{$ High, Low $\}, K=\{$ All $\}$
- For every $f \in F$, either $f_{c}(s)=\left(\right.$ High, $\{$ All $\}$) or $f_{c}(s)=$ (Low, \{ All \})
- Initial State:
- $b_{1}=\{(s, o, \underline{r})\}, m_{1} \in M$ gives s read access over o, and for $f_{1} \in F, f_{c, 1}(s)=($ High, $\{$ All $\}), f_{o, 1}(o)=($ Low, $\{$ All $\})$
- Call this state $v_{0}=\left(b_{1}, m_{1}, f_{1}, h_{1}\right) \in V$.

First Transition

- Now suppose in state $v_{0}: S=\left\{s, s^{\prime}\right\}$
- Suppose $f_{c, 1}\left(s^{\prime}\right)=$ (Low, $\{A l l\}$)
- $m_{1} \in M$ gives s and s^{\prime} read access over o
- As s^{\prime} not written to $o, b_{1}=\{(s, o, \underline{r})\}$
- $z_{0}=v_{0}$; if s^{\prime} requests r_{1} to write to o :
- System decides $d_{1}=y$
- New state $v_{1}=\left(b_{2}, m_{1}, f_{1}, h_{1}\right) \in V$
$-b_{2}=\left\{(s, o, \underline{r}),\left(s^{\prime}, o, \underline{w}\right)\right\}$
- Here, $x=\left(r_{1}\right), y=(\mathrm{y}), z=\left(v_{0}, v_{1}\right)$

Second Transition

- Current state $v_{1}=\left(b_{2}, m_{1}, f_{1}, h_{1}\right) \in V$
$-b_{2}=\left\{(s, o, \underline{r}),\left(s^{\prime}, o, \underline{w}\right)\right\}$
$-f_{c, 1}(s)=($ High, $\{$ All $\}), f_{o, 1}(o)=($ Low, $\{$ All $\}$)
- s^{\prime} requests r_{2} to write to 0 :
- System decides $d_{2}=\underline{\mathrm{n}}\left(\right.$ as $f_{c, 1}(s)$ dom $\left.f_{o, 1}(o)\right)$
- New state $v_{2}=\left(b_{2}, m_{1}, f_{1}, h_{1}\right) \in V$
$-b_{2}=\left\{(s, o, \underline{r}),\left(s^{\prime}, o, \underline{\mathrm{w}}\right)\right\}$
- So, $x=\left(r_{1}, r_{2}\right), y=(\underline{y}, \underline{\mathrm{n}}), z=\left(v_{0}, v_{1}, v_{2}\right)$, where $v_{2}=v_{1}$

Basic Security Theorem

- Define action, secure formally
- Using a bit of foreshadowing for "secure"
- Restate properties formally
- Simple security condition
- *-property
- Discretionary security property
- State conditions for properties to hold
- State Basic Security Theorem

Action

- A request and decision that causes the system to move from one state to another
- Final state may be the same as initial state
- $(r, d, v, v) \in R \times D \times V \times V$ is an action of $\Sigma(R, D, W$, $\left.z_{0}\right)$ iff there is an $(x, y, z) \in \Sigma\left(R, D, W, z_{0}\right)$ and a $t \in N$ such that $(r, d, v, v)=\left(x_{t}, y_{t}, z_{t}, z_{t-1}\right)$
- Request r made when system in state v; decision d moves system into (possibly the same) state v^{\prime}
- Correspondence with $\left(x_{t}, y_{t}, z_{t}, z_{t-1}\right)$ makes states, requests, part of a sequence

Simple Security Condition

- $(s, o, p) \in S \times O \times P$ satisfies the simple security condition relative to f (written ssc rel f) iff one of the following holds:

1. $p=\underline{\mathrm{e}}$ or $p=\underline{\mathrm{a}}$
2. $p=\underline{r}$ or $p=\underline{\mathrm{w}}$ and $f_{s}(s) \operatorname{dom} f_{o}(o)$

- Holds vacuously if rights do not involve reading
- If all elements of b satisfy ssc rel f, then state satisfies simple security condition
- If all states satisfy simple security condition, system satisfies simple security condition

Necessary and Sufficient

- $\Sigma\left(R, D, W, z_{0}\right)$ satisfies the simple security condition for any secure state z_{0} iff for every action (r, d, $(b, m$, $\left.f, h),\left(b^{\prime}, m^{\prime}, f^{\prime}, h\right)\right), W$ satisfies
- Every $(s, o, p) \in b-b^{\prime}$ satisfies ssc rel f
- Every $(s, o, p) \in b^{\prime}$ that does not satisfy ssc rel f is not in b
- Note: "secure" means z_{0} satisfies ssc rel f
- First says every (s, o, p) added satisfies ssc rel f; second says any (s, o, p) in b^{\prime} that does not satisfy ssc rel f is deleted

*-Property

- $b\left(s: p_{1}, \ldots, p_{n}\right)$ set of all objects that s has p_{1}, \ldots, p_{n} access to
- State (b, m, f, h) satisfies the *-property iff for each s $\in S$ the following hold:

1. $\quad b(s: \underline{a}) \neq \varnothing \Rightarrow\left[\forall o \in b(s: \underline{a})\left[f_{o}(o) \operatorname{dom} f_{c}(s)\right]\right]$
2. $\quad b(s: \underline{\mathrm{w}}) \neq \varnothing \Rightarrow\left[\forall o \in b(s: \underline{\mathrm{w}})\left[f_{o}(o)=f_{c}(s)\right]\right]$
3. $\quad b(s: \underline{r}) \neq \varnothing \Rightarrow\left[\forall o \in b(s: \underline{r})\left[f_{c}(s) \operatorname{dom} f_{o}(o)\right]\right]$

- Idea: for writing, object dominates subject; for reading, subject dominates object

*-Property

- If all states satisfy *-property, system satisfies *property
- If a subset S^{\prime} of subjects satisfy *-property, then *property satisfied relative to $S^{\prime} \subseteq S$
- Note: tempting to conclude that *-property includes simple security condition, but this is false
- See condition placed on w right for each

Necessary and Sufficient

- $\Sigma\left(R, D, W, z_{0}\right)$ satisfies the *-property relative to $S^{\prime} \subseteq S$ for any secure state z_{0} iff for every action ($r, d,\left(b, m, f, h\right.$), $\left(b^{\prime}, m^{\prime}, f^{\prime}, h\right)$), W satisfies the following for every $s \in S^{\prime}$
- Every $(s, o, p) \in b-b^{\prime}$ satisfies the *-property relative to S^{\prime}
- Every $(s, o, p) \in b^{\prime}$ that does not satisfy the *-property relative to S 'is not in b
- Note: "secure" means z_{0} satisfies *-property relative to S^{\prime}
- First says every (s, o, p) added satisfies the *-property relative to S^{\prime}; second says any (s, o, p) in b^{\prime} that does not satisfy the *property relative to S^{\prime} is deleted

Discretionary Security Property

- State (b, m, f, h) satisfies the discretionary security property iff, for each $(s, o, p) \in b$, then $p \in m[s, o]$
- Idea: if s can read o, then it must have rights to do so in the access control matrix m
- This is the discretionary access control part of the model
- The other two properties are the mandatory access control parts of the model

Necessary and Sufficient

- $\Sigma\left(R, D, W, z_{0}\right)$ satisfies the ds-property for any secure state z_{0} iff, for every action (r, d, (b, m, f, h), ($\left.b^{\prime}, m^{\prime}, f^{\prime}, h\right)$), W satisfies:
- Every $(s, o, p) \in b-b^{\prime}$ satisfies the ds-property
- Every $(s, o, p) \in b^{\prime}$ that does not satisfy the dsproperty is not in b
- Note: "secure" means z_{0} satisfies ds-property
- First says every (s, o, p) added satisfies the ds-property; second says any (s, o, p) in b^{\prime} that does not satisfy ds-property is deleted

