
Rule-Set Modeling of a Trusted Computer System 187

Essay 9

Rule-Set Modeling
of a Trusted Computer System

Leonard J. LaPadula

This essay describes a new approach to formal modeling of a trusted
computer system. A finite-state machine models the access opera-
tions of the trusted computer system while a separate rule set ex-
presses the system’s trust policies. A powerful feature of this
approach is its ability to fit several widely differing trust policies
easily within the same model. We will show how this approach to
modeling relates to general ideas of access control, as you might
expect. We will also relate this approach to the implementation of
real systems by connecting the rule set of the model to the system
operations of a Unix System V system. The trust policies we dem-
onstrate in the rule set of the model include the mandatory access
control (MAC) and discretionary access control (DAC), to increase the
availability of diverse, assured security policies.

• Make it feasible to configure a system with security policies cho-
sen from a vendor-provided set of options with confidence that
the resulting system’s security policy makes sense and will be prop-
erly enforced.

• Construct the model in a manner that allows one to show that it
satisfies an accepted definition of each security policy it repre-
sents.

The remainder of this essay has three parts:

• First we discuss the Generalized Framework for Access Control
view of a trusted system. GFAC motivates the approach we have
taken to modeling.

• Next we describe the modeling approach.

188 Information Security

• Finally we illustrate elements1of the state-machine model and the
rule-set model — the two components of the complete model.

Overview of the Generalized Framework for Ac-
cess Control

The Generalized Framework for Access Control thesis asserts that all
access control is based on a small set of fundamental concepts [ABRA90].
Borrowing some of its terminology and concepts from the ISO “Working
Draft on Access Control Framework” [ISO90], GFAC starts with the
premise that all access control policies can be viewed as rules expressed
in terms of attributes by authorities. The three main elements of access
control in a trusted computer system are:

Authority: An authorized agent must define security pol-

icy, identify relevant security information, and assign
values to certain attributes of controlled resources.

Attributes: Attributes describe characteristics or proper-

ties of subjects and objects. The computer system will
base its decisions about access control on the attrib-
utes of the subjects and objects it controls. Examples of
attributes are:

security classification
type of object
domain of process
date and time of last modification
owner identification

Rules: A set of formalized expressions defines the rela-

tionships among attributes and other security informa-
tion for access control decisions in the computer
system, reflecting the security policies defined by
authority.

The generalized framework explicitly recognizes two parts of

access control — adjudication and enforcement. We use the
term access control decision facility (ADF) to denote the agent that
adjudicates access control requests, and the term access control
enforcement facility (AEF) for the agent that enforces the ADF’s de-

1The reader will find additional analysis and a complete policy model in my

report [LAPA91].

Rule-Set Modeling of a Trusted Computer System 189

cisions. In a trusted computer system, the AEF corresponds to
the system functions of the trusted computing base (TCB) and the
ADF corresponds to the access control rules that embody the sys-
tem’s security policy, also part of the TCB. Figure 1 depicts the
generalized framework in the terms just described.

Figure 1. Overview of the Generalized Framework for Access Control.

Formal modeling approach

Background. The GFAC goals translate into these objectives for our
formal model:

• Develop a modeling technology in which it is easy to express vari-
ous policies besides traditional MAC and DAC.

• Fashion the modeling technology to enable the selection of a de-
sired set of security policies from some preevaluated set without
having to reevaluate the resulting collection of policies.

190 Information Security

• Provide for showing that a model satisfies an accepted definition
 formal methods closer to the final stages of implementation — com-

plete functional design and coding.

Appendix A: Model language and constructs

Language for expressing rules. The method for expressing the
model’s rules departs from the traditional use of mathematical notation.
A mixture of programming language statements and limited mathemati-
cal notation creates a specification language that is intuitively under-
standable to a broad audience.

Both rules of operation and rules of the rule set are defined in a lan-
guage that looks like a programming language. Two basic language con-
structs are used to organize statements and show their
interrelationships: SELECT CASE and IF THEN ELSE.

The SELECT CASE statement has the following syntax:

SELECT CASE attribute
 CASE attribute-value1
 statement-block-1
 CASE attribute-value2
 statement-block-2

 .
 .
 .

 CASE ELSE
 statement-block-n
END SELECT

A statement-block is one or more statements. Individual statements

are terminated by a semicolon. The value of the SELECT CASE state-
ment is the value of the statement-block following the CASE identified
by the current value of the selected attribute. For example, the next
SELECT CASE has the value of statement-block-2 when the “amount”
is $200:

SELECT CASE amount
 CASE $100
 statement-block-1
 CASE $200
 statement-block-2
 CASE ELSE

Rule-Set Modeling of a Trusted Computer System 191

 statement-block-n
END SELECT

If the current value of the selected attribute is not identified by one of

the CASEs given, then the value of the SELECT CASE statement is the
value of the CASE ELSE statement-block.

A final word on the SELECT CASE statement. The END SELECT part
of the statement will be omitted when no ambiguity results — the use of
indentation will make clear the scope of a SELECT CASE.

The IF THEN ELSE statement has the following syntax:

IF
 Boolean-expression
THEN
 statement-block
ELSE
 statement-block

The IF THEN ELSE statement has its usual meaning. A Boolean ex-

pression is an expression consisting of attributes and relational or logi-
cal operations and having a value of TRUE or FALSE.

A FOR-EACH statement is also useful. Its syntax is

FOR-EACH process:
statement-block
END-FOR-EACH

Because attributes may apply to more than one kind of entity, the

language clarifies an ambiguous reference to an attribute by qualifying
each attribute with the name of the entity the attribute belongs to. For
example, the attribute “security-level” applies to processes and several
kinds of objects. “security-level(process)” refers to the security level of
the process.

Rules of operation use the form “[* . . . *]” to identify a system opera-
tion. For example, the Open rule uses the statement [* truncate the file
*] to stand for the Unix operation that deletes the data in a file. Rules
may use the form “(* . . . *)” to enclose a comment, such as (* the direc-
tory search was valid and the file exists *) appearing in the Open rule.

Boolean expressions and all statements except the SELECT CASE
and the IF THEN ELSE end with a semicolon. Boolean expressions use
the usual inequality operators “<” and “>” and use “==” for expressing
equality. Logical operators such as AND and OR are used in obvious
ways.

Rules use the specifications “set-attribute” and “set-attributes” to
manage the values of attributes. The rules of the rule-set model use

192 Information Security

“set-attribute” to designate the value that an attribute should have if
the current request is granted. The syntax for this use is

set-attribute(attribute_name, attribute_value)

The rules of the state-machine model use “set-attributes” to indicate

that they are carrying out the set-attribute specifications given by the
rules of the rule-set model. Suppose, for example, the state-machine
model invokes the rule-set model with a create-file request. Suppose
that the rules of the rule-set model approve the request and give two
set-attribute specifications:

set-attribute(security-level(file), SECRET)
set-attribute(object-category(file), general)

Then, the portion of the create rule that carries out the create request
will include a set-attribute statement. The meaning of the statement is
that the security-level of the file is set to the value SECRET and the
object-category of the file is set to the value general.

Constructs of the state-machine model

Types. A type is a class that is defined by the common attributes pos-
sessed by all its members. The name of each type suggests a useful in-
terpretation for the class. The model uses the following types:

request: {alias, alter, change-owner, change-role, clone,

create, delete, delete-data, execute, get-
permissions-data, get-status-data, modify-
access-data, modify-attribute, modify-
permissions-data, read, read-attribute,
read&write-open, read-open, search, send-
signal, terminate, trace, write, write-open}

process
file
directory
ipc
scd
signal
object: [a file, directory, ipc, or scd]
phase: {“active,” “unused,” “inaccessible”}
flag: {ON, OFF}
mode: {“read,” “write,” “read&write”}

Rule-Set Modeling of a Trusted Computer System 193

Variables. A variable is an alterable entity. The variables of the state-
machine model define the system states. We can think of variables as
functions whose domains are types. Just as naturally, we can regard
them as records of information containing one or more items of data.
The model uses the following variables:

current_process: process
new_process: process
file_name: file
directory_name: directory
truncate_option: flag
create_option: flag
STATUS(object): phase
OPEN(process, object): set(mode)

Constants

TRUE
FALSE
ON
OFF

Expressions

Access-Rules(request, process/object, process/object):
 Extended-Boolean

Effects. An effect is an action of the state machine. The model uses
the following effects:

normal-exit
error-exit
set-attributes
save
restore

Appendix B: Summary of the Clark-Wilson integ-
rity model

Certification Rule 1: All IVPs must properly ensure that all CDIs are in a
valid state at the time the IVP is run.

Certification Rule 2: All TPs must be certified to be valid. That is, they
must take a CDI to a valid final state, given that it is in a valid state to
begin with. For each TP, and each set of CDIs that it may manipulate,

194 Information Security

the security officer must specify a “relation” which defines that execu-
tion. A relation is thus of the form: (TPi, (CDIa, CDIb, CDIc, ...)), where
the list of CDIs defines a particular set of arguments for which the TP
has been certified.

Enforcement Rule 1: The system must maintain the list of relations
specified in Certification Rule 2, and must ensure that the only manipu-
lation of any CDI is by a TP, where the TP is operating on the CDI as
specified in some relation.

Enforcement Rule 2: The system must maintain a list of relations of the
form (UserID, TPi, (CDIa, CDIb, CDIc, ...)), which relates a user, a TP, and
the data objects that TP may reference on behalf of that user. It must
ensure that only executions described in one of the relations are per-
formed.

Certification Rule 3: The list of relations in Enforcement Rule 2 must be
certified to meet the separation of duty requirement.

Enforcement Rule 3: The system must authenticate the identity of each
user attempting to execute a TP.

Certification Rule 4: All TPs must be certified to write to an append-only
CDI (the log) all information necessary to permit the nature of the op-
eration to be reconstructed.

Certification Rule 5: Any TP that takes a UDI as an input value must be
certified to perform only valid transformations, or else no transforma-
tions, for any possible value of the UDI. The transformation should take
the input from a UDI to a CDI, or the UDI is rejected. Typically, this is an
edit program. [Note to the reader: My model of Clark-Wilson integrity al-
lows a TP to access any UDI in the normal manner for access to an ob-
ject by a process in this system, subject to the constraints of the other
(than integrity) policies implemented by the ADF. It is up to the certifica-
tion process to ensure that the TP accesses only those UDIs it should
access for a particular execution. But this is not in keeping with the
spirit of moving as much as possible from certification to enforcement, as
suggested by Clark and Wilson. One possibility for changing this ap-
proach is to add the names of the allowed UDIs for a particular TP to the
triples or, perhaps better, to the TP-CDIs relation, which would have to
be added to the model since it is currently not included. Doing so would
mean that the TP-CDI relation is no longer redundant with the triples.]

Enforcement Rule 4: Only the agent permitted to certify entities may
change the list of such entities associated with other entities — specifi-

Rule-Set Modeling of a Trusted Computer System 195

cally, those associated with a TP. An agent who can certify an entity
may not (that is, must not) have any execute rights with respect to that
entity.

Acknowledgments

I thank Marshall Abrams for his fundamental insights on access con-
trol that led to the modeling approach described in this essay and for his
encouragement during the writing of this essay. I thank James Williams
of the MITRE Corporation for sharing with me his views on the stages of
elaboration of requirements for trusted systems and for many conversa-
tions about formal modeling. I thank Charles W. Flink II of AT&T Bell
Laboratories for his patient and comprehensive explanations of many
design aspects and system calls of System V/MLS, Release 1.2.1.

