
XML-based Distributed Access Control System

Javier López, Antonio Maña, Mariemma I. Yagüe

Computer Science Department
University of Málaga. Spain.

{jlm, amg, yague}@lcc.uma.es

Abstract. Extensions of the role based access control (RBAC) paradigm have
been proposed based in the use of attribute certificates. In order to overcome
some of the limitations of RBAC and be able to implement security
requirements such as the “originator controlled” (ORCON) policy, the concept
of mobile policy has been recently prop osed. Mobile policies are attached to the
data that they control and are enforced by their execution in trusted servers. In
this paper we present an extension of this idea that allows the execution of the
policies in untrusted systems. We also extend the scheme to allow the policies
to be linked to the data but not attached to it. By this modification security
administrators are able to change policies dynamically and transparently.
Finally, we introduce X-ACS, a XML-based language designed to express
policies in a simple and unambiguous way overcoming the limitations of other
approaches. Important features of X-ACS are that it allows the automated
validation of policies and can be used by processors with limited capacity such
as smartcards.

1 Introduction

Although the Internet and the World-Wide Web have lead to the popularization of
distributed systems in most computing disciplines, systems for access control to
information still rely on centralized security administration. Centralized control has
important disadvantages: (a) The control point represents a weak spot for security
attacks and fault tolerance, (b) it does not facilitate the deployment of originator
retained control mechanisms, (c) it reduces system performance because it introduces
a bottleneck for request handling, and (d) it usually enforces homogeneous access
control schemes that do not fit naturally in heterogeneous user groups and
organizations.

On the other hand, distributed access control is still an open problem. Solutions
proposed so far fail to provide the flexibility and manageability required. A system
for distributed access control has been recently proposed based in the concept of
mobile policies [1] to solve some of the limitations of RBAC [2]. This system is
based in the remote execution of the access control policies. Therefore, it addresses a
solution for some of the problems of centralized access control. In this proposal three
important assumptions are made: (i) it is assumed that mobile policies and the
associated data that they control are indivisible, (ii) that the system will guarantee that
the policy is always executed and enforced before access is granted to an object and,

 2

finally, (iii) it is assumed that the policy is always executed in trusted computers. This
approach is consequently limited by the requirement of executing the access control
policies in trusted computers (data servers in this case) which in practice represents
just a small improvement over the single-server model. Furthermore, when access to a
data object is granted, this data has to be send to the client computer where it has no
protection. Finally, because data and policy are compiled in a package, a change in
the policy that controls a data object requires that the data-policy package is
recompiled and distributed to all trusted servers.

In this paper we present ACDACS (Attribute Certificate Distributed Access
Control System). ACDACS is based in extension of the mobile policy concept that
allows us to execute the policies in untrusted systems. We also ext end the scheme to
allow that the policies are linked to the data but not integrated with it. This
modification permits that policies are dynamically changed in a transparent manner.
We also introduce X-ACS; a XML-based authorization language that is designed to
support all the possible authorization scenarios in a simple and unambiguous way and
to facilitate policy validation processes.

The rest of the paper is organized as follows. Section 2 presents the motivations.
Section 3 summarizes some related work. Section 4 describes the ACDACS system.
Finally, section 5 summarizes the conclusions and presents ongoing and future work.

2 Motivation

Inside distributed computing environments, such as extranets or research networks
that comprise several institutions, the access policy applicable to each resource (data
object, service, etc.) must be defined by the owner of the resource. The system must
guarantee that the policy is enforced before access is granted to the resource.
Moreover, there are many different situations where it is desirable that the owner of
each resource is able to retain the control over it and to change the access policy
dynamically and transparently. In these systems traditional centralized access control
mechanisms do not provide the necessary functionality and flexibility. The need of a
central authority and repository is not always acceptable by the institutions sharing
the network. Furthermore, centralized systems are unable to provide means to
guarantee that originators retain control over their information.

Several access control models have been introduced in the literature to fit different
access control scenarios and requirements. Some schemes have also tried to integrate
different models in a unified framework [3]. These approaches represent significant
advances over traditional single -policy systems but, unfortunately, are still
constrained by the underlying models and do not provide the necessary flexibility.

Role based access control is commonly accepted as the most appropriate paradigm
for the implementation of access control in complex scenarios. RBAC can be
considered a mature and flexible technology. Numerous authors have discussed the
access properties and have presented different languages and systems that apply this
paradigm [4-7]. Commercial implementations exist based in RBAC schemes.

The main problem with role based access control is that the mechanisms are built
on three predefined concepts: “user”, “role” and “group”. The definition of roles and

 3

the grouping of users can facilitate management, specially in corporation information
systems, because roles and groups fit naturally in the organizational structures of the
companies. However, when applied to some new and more general access control
scenarios, these concepts are somewhat artificial.

We believe that a more general approach is needed in order to be used in these new
environments. For example, in the referred situations, groups are an artificial
substitute for a more general tool: the attribute. In fact, groups are usually defined
based in the values of some specific attributes (employer, position, …). Some
attributes are even built into most of the access control models. This is the case of the
user element; the identity is just one of the most useful attributes, but it is not
necessary in all scenarios and, therefore, it should not be a built-in component of a
general model.

In actual access control models, the structure of groups is defined by the security
administrator and it is usually static. Although the grouping of users can suffice in
many different situations, it is not flexible enough to cope with the requirements of
more dynamic systems where the structure of groups can not be anticipated by the
administrators of the access control system. In these scenarios new resources are
incorporated to the system continuously and each resource may possibly need a
different group structure and access control policy. Furthermore, the policy for a
given resource may change frequently.

Finally, because the creation and maintenance of access control policies is a
difficult and error prone activity, we have developed a language to express those
policies and validate them to find contradictions or ambiguities.

Our work is focused in the solution of the originator-retained-control is sue
providing fair distributed access control management and enforcement. The basic goal
is to be able to express, validate and enforce access control policies without assuming
the trust in the rest of the computers of the network.

3 Related work

There are a number of research groups working on specification of access control
policies. In [8] an interesting system is presented for policy based management of
networks and distributed systems . The separation of the policy specification from the
access control implementation has been proposed in [9]. This separation follows the
“network-centric” approach of Röscheisen and Winograd [10] and allows the policy
to be modified dynamically, without changing its underlying implementation [11].

Several proposals have been introduced for access control to distributed
heterogeneous resources from multiple sources. The outcome of the Akenti Project
[12] is an access control system designed to address the issues raised in allowing
restricted access to distributed resources (information, processing or communication
capabilities, or physical systems such as scientific instruments) which are controlled
by multiple stakeholders. Drawbacks of the Akenti access control system are the
requirement for the stakeholders to trust the rest of the servers in the network, the
assumption of the existence of a supporting identity PKI (public key infrastructure)

 4

and some security vulnerabilities related to the existence of positive and negative use-
conditions.

The PERMIS Project [13] objective is to set up an integrated infrastructure to solve
identification and authorization problems. A specific goal is to specify the
authorization policy in a language that can be both easily parsed by computers and
read by the security administrators with or without software tools. Various pre-
existing policy languages – for example, Ponder [8] – have been examined, but none
has been found to be ideally suited. The PERMIS group concluded that XML is the
most appropriate candidate for a policy specification language. However, because
PERMIS system is based on the RBAC model, it shares its limitations. Moreover, the
requirement of supporting a PKI is hard to fulfil and it is not necessary in many
authorization scenarios.

Since its inception in 1998, XML has been used for defining specific vocabularies
to represent different human endeavor. In the context of security, the eXtensible rights
Markup Language (XrML) [14] and extensible Access Control Markup Language
(XACML) [15] are two proposals for standard XML extensions in the fields of digital
rights management and access control. While XrML can be considered a mature
specification (first efforts started in 1996), it is not appropriate for our application
scenarios where it is essential to keep specifications simple. XACML is a very recent
(the XACML group started their work on April 16th, 2001) and promising competitor
in the field of access control languages. The 0.8 version of the language was released
on January 10th, 2002. Therefore, XACML is still in the development process.
XACML is based in XML-Schema as is X-ACS. The main differences are that
X-ACS is designed to be used by processors with limited storage and processing
capabilities such as smartcards and oriented to the validation of the policies.

Also based on XML, the Security Assertion Markup Language (SAML) [16] is an
assertion language and messaging protocol for describing, requesting and sending
authentication and authorization data between security domains. The basic goal of
SAML is to promote the interoperability between disparate security systems,
providing the framework for secure e-business transactions across company
boundaries.

Another interesting work is presented in [17,18], where XML is used for defining a
fine-grained access control system for XML documents. This approach differs from
ours in that it is completely ‘server-side’. Authorizations can be specified at document
or instance level (in XML documents), or alternatively at schema level (in Document
Type Definition –DTDs-). Authorizations specified in a DTD are applicable to all
XML documents that conform to it. Our proposal is based in a higher level schema
language, the XML-Schema language [19], proposed by the World Wide Web
Consortium (W3C) as the replacement for DTD, which present a XML syntax and
advanced features such as inheritance, enhanced data types, etc. XML-Schema can be
extended with business rules expressed in Schematron [20]. The expressive power of
both languages allows the definition of advanced integrity constraints in a database-
like style [21].

Other access control languages have been developed in the security community to
support different access control approaches. Jajodia et al. present in [22] a logical
language which allows users to specify the policy according to what access control
decisions are to be made as well as the authorizations. Our work is focused is in this

 5

direction, but in this case we are interested in access control for highly dynamic
systems with an important volume of heterogeneous data and multiple independent
data sources and the originator-retained-control problem. We use XML along with
XML-Schema to enable the definition of policies expressed by means of rules and the
representation of integrity constraints to be verified.

4 The ACDACS system

Taking into account the basic objective of providing means to solve the
originator-retained-control issue, the different scenarios considered and the analysis
of the previous proposals, our main goals for the ACDACS distributed access control
system are:
§ Originator-retained-control. Originators should be able to retain control on the

resources they own even after access is granted to users.
§ Distributed access control management. Administrators should be able to manage

the resources they control regardless of the location of that resource.
§ Distributed access control enforcement. Access control mechanisms must be

distributed in order to avoid bottlenecks in request processing.
§ Flexibility. The system should be applicable in different scenarios.
§ Independence. The system should not depend on underlying infrastructures or

authentication systems.
§ Dynamism. There should be a fast and secure mechanism to change policies.
§ Ease of management. The distributed approach should not introduce complexity of

management.
§ Efficiency. Both access control management and enforcement should be efficient.
§ Security. The distributed access control mechanism must ensure the same level of

security as a centralized one can achieve. Tools to help security administrators
should be provided.

4.1 ACDACS system architecture

The ACDACS system is based on the following idea: the security requirements of
the processes related to the transmission and access to information are feasible if we
can have a trusted software running in the client computer. Therefore, the system is
based in the creation of mobile software elements that are responsible for the transport
of the protected content and the enforcement of the access control.

We present an architecture that allow us to securely execute the access
enforcement mechanism in untrusted systems. Two different alternatives are available
for the software protection mechanism. The first one can be used without an online
connection when accessing the information but requires the use of special smart cards.
The second one requires the use of an online connection to some special access
servers.

The architecture is based in the SmartProt software protection system described in
[23]. This system is based in the partition of the software into functions that are

 6

executed by two collaborating processors. One of those processors has to be a trusted
computing device that enforces the correct execution of the functions and avoids that
these functions are identified or reverse engineered.

Data
Objects

SmartProt
protection

Protected Data
Objects (applets)

Originator

Server 1 Server 2

…

Freely Distributed

X-ACS Policies
Specifications

Mobile policy
generator

Mobile Policies

Licenses

Fig. 1. The ACDACS Architecture

Figure 1 shows the architecture of the system. The unprotected data objects in the
originator computer are transformed into PDOs (protected data objects), Java applets
that protect the data and enforce the access control mechanism. Policies are not
included in the PDO, instead, each PDO is linked to the applicable policy by a mobile
policy that is produced specifically for the client when requested. PDOs can be freely
distributed to untrusted servers.

POLICY(mobilePolicy) 5:

:SecureCoprocessor

Steps 7-8 are
repeated

Install(mobilePolicy) 6:

Originator :Server

Run(protSect) 7:

PolicyReq(ID) 4:

DataReq(req) 1:

Result(res) 8:

PDO(pdo) 2:

Run(pdo) 3:

:Server :Client

Run(protSect) 7:

Install(mobilePolicy) 6:

PolicyReq(ID) 4:

PDO(pdo) 2:

Run(pdo) 3:

POLICY(mobilePolicy) 5:

Result(res) 8:

DataReq(req) 1:

Fig. 2. Functioning of the ACDACS system

Figure 2 shows the process to access the information. When the client requests
some data object from a server it receives the PDO containing it. This PDO runs in
the client computer. Before the PDO can execute the protected sections of its code it

 7

has to retrieve the corresponding mobile policy (which includes the license that
allows the decryption and execution of the protected sections of the PDO). To do this
it sends a request containing the certificate of the public key of the secure coprocessor
(the smart card or the access server). In case the server from where the PDO was
retrieved is the originator of the PDO, it produces the mobile policy for that PDO.
Otherwise it just forwards this request to the PDO originator.

In scenarios where the number of attributes and attribute certification authorities,
also known as SOAs (source of authorizations), are high it might be desirable to avoid
that clients have to verify all the certificates directly. In this case a temporary
authorization mechanism is used to map several attribute certificates from different
SOAs to a single temporary authorization. This temporary authorization is a special
attribute certificate signed by one SOA (probably the originator). This simplifies the
verification that the PDOs perform and is specially useful when the client is accessing
a large number of PDOs from the same originator.

One important constraint to the free distribution of protected information in our
system is that owners of the information must be able to dynamically change the
access control policy. For this requirement to be fulfilled we have to separate the
policy from the PDO. Policies are retrieved from the originator during the execution
of the protected software and are enforced by this software. The reasons to require the
request of the mobile policy at access time and from the originator are that it allows a
high degree of flexibility, and gives the originator more control over the application
of the policies. Nevertheless, originators can define certain validity constraints for
each policy (based on time, number of accesses, etc. depending on the smartcard
features). Therefore policies can be cached by clients and used directly while they are
still valid. Also the generation of the mobile policy is a reasonably fast process while
the generation of PDOs is slower. Furthermore, PDOs are much more stable than
policies. Finally, opposed to PDOs, each mobile policy is specific for a smart card (or
access server).

Policies are specified using X-ACS and are later translated into a more compact
form to be included in the mobile policy. The link between PDO and the
corresponding mobile policy is established by cryptographic means. The structure of
the mobile policy is defined as follows:

MP ::= Policy, EncryptCardPublicKey(PDOkey, validity, H(Policy))

where Policy is the compact representation of the X-ACS policy, CardPublicKey is
the public key of the smart card that will access the PDO, PDOkey is the random
symmetric key used to encrypt the protected sections of the PDO, validity represents
the limits of use of the MP and H is a collision-resistant one way hash function.

The mobile policy includes the key required by the smart card to decrypt and run
the protected sections of the PDO. This key is encrypted and will only be in the clear
inside the right smart card. As the PDO key is only known by the originator it is
impossible for dishonest users to alter mobile policies or produce false ones.

We will now describe the main building blocks of ACDACS: (i) a security
infrastructure for software protection and (ii) a policy specification and validation
language.

 8

4.2 Software Protection

One of the main security problems in information access control systems is the
difficulty for the owner of the information to retain the control over it after it is
accessed by users. The main reason for this is that most security mechanisms are
designed to protect the information while in transit over the network. The result is the
information being defenceless when it (securely) arrives to the client computer. To
deal with this situation, persistent protection mechanisms must be used.

The ability to protect software that runs in the client computer in order to guarantee
that it performs the function that it was intended to, opens a way to solve the previous
problem. Our solution for the originator-retained-control problem is based in the
protection of the mobile software that we use to convey the information. In this
section we will describe the mechanisms used to protect the mobile software in the
ACDACS system. In the following description we use smart cards as secure
coprocessors although, as mentioned, special online access servers can also be used as
secure coprocessors for this scheme.

The SmartProt system includes three actors: the information provider, the card
manufacturer and the client (who possess a smart card). The card manufacturer
certifies the public keys of the smart cards. SmartProt requires smart cards that have
cryptographic capabilities, contain a key pair generated inside the card and ensure that
the private key never leave the card. Cards also contain the public key of the card
manufacturer and some support software. In particular, cards contain an interpreter for
the protected code sections, a l icense manager, a runtime manager and sometimes also
an electronic purse. Each protected software application runs in a sandbox isolated
from others. The contents of the memory used by one application remains between
calls to the card.

Information providers (originators) decide which card manufacturers (or access
servers entities) to trust and is assumed that they have access to digital certificates of
the public keys of these manufacturers. It is presumed that there will be a reduced
number of these manufacturers.

The software contains some protected sections that must be executed by the card. a
license stating conditions like validity, etc. is needed to run the protected software.

 9

A

B

C

D

F

E

G

A

B’

C

D’

F’

E

G

Symmetric
encryption

A

Call ComSC(B’’)

C

Call ComSC(D’’)

Call LoadMP()

E

G

ComSC,
LoadMP, …

B’’

D’’

F’’

original
code

original code with
obscured card-specific

sections

final code

Fresh
Random

key

Symmetric
encryption

Symmetric
encryption

Translation
+

Confusion

Call ComSC(F’’)

Fig. 3. Code transform (production phase).

The production phase is schematized in figure 3. The first step of this phase
consists in the translation of some specific sections of the original application code by
functionally equivalent sections of card-specific code. The translation process also
identifies the dependencies between these protected sections, reorganizes the code and
introduces fake code to confuse the attacker. These sections are then encrypted with a
unique randomly produced key using a symmetric cryptosystem. The last step
substitutes the original code sections by calls to a function that transmits the
respective equivalent protected sections, including code and data, to the card. Some
additional support functions are also included. The protected mobile software
application generated in the production phase can be distributed and copied freely. In
the case of the ACDACS system, the protected application (PDO) is a Java applet
responsible for the transport of the information. Therefore, the protected mobile
software includes the information to be accessed (which is encrypted), the access
control enforcement mechanism and a cryptographic link to the access policy. The
production phase is independent of the client card and will be performed just once for
each piece of mobile software. In the original software protection system, a license
(specifically created for the smart card of the user) is required to run the protected
software. In the ACDACS system the license includes the access policy and is called
Mobile Policy (MP).

In the authorization phase, the new MP is produced linking the policy and the
PDO. The MP contains validity constraints that are set by the security administrator
according to the volatility of the policies. In case a user accessing a PDO already has
a non-expired MP for it, the existing MP can be used, otherwise a new MP has to be
requested and produced. The MP is obtained and loaded in the card as part of the
PDO. When the MP is received by the client smart card it is decrypted, verified and
stored inside the card until it expires or the user explicitly decides to extract it. Once
the MP is correctly installed in the card the protected program can be executed, which
requires the cooperation of the card containing the MP. The protected sections of the
software do not reside in the cards; instead, during the execution of the protected
program, these sections are transmitted dynamically as necessary to the card where
they are decrypted using the installed MP and executed. When finished, the card may

 10

send back some results. Some other partial results will be kept in the card in order to
obtain a better protection against function analysis and other attacks.

To summarize, SmartProt allows a single card to be used to protect many
applications, permits a high degree of complexity in the protected sections, allows the
card to execute any number of those sections and enables the distribution of the
software through Internet because none of the components of a protected application
needs to be preloaded in the hardware (card). The definition of the license (MP)
structure permits a high degree of flexibility. Furthermore, as each application has its
own key, we can manage them individually, which is not possible in other software
protection proposals where the protected sections of all applications are protected
using the same key (usually the protected processor key). In this scheme, because the
protected sections are encrypted using a symmetric key that is kept inside the cards,
and is therefore known only by the software producer, it is impossible for a dishonest
user to produce false sections.

4.3 Authorization language

The XML data model can represent semantic information through descriptive tags.
Complemented by related technologies certain types of database-like schemes can
also be used [21].

XML DTD is the de facto standard XML schema language but has limited
capabilities compared to other schema languages [24], such as its successor
XML-Schema. This language presents a rich set of data types, allowing user-defined
data types, mechanisms such as inheritance, etc. Moreover, XML-Schema uses XML
syntax, enabling the use of XML tools. XML-Schema is the proposal of the W3C for
a more expressive language to replace DTDs. Our work is based on this proposal as it
allows us to represent the semantics of the policies. Although this schema language is
very powerful, there are some constraints that it can not express. For example, “the
value of one <attribute_value> element in a document is greater than the value of the
corresponding <attribute_value> element in another document”, or “if the value of the
<Rights> is ‘Update’ then the value of the <Actions> element should be ‘Notify’”
(co-occurrence constraints).

Schematron is a rule-based schema language well suited to express this kind of
constraints embedded within <appinfo> elements in XML-Schema documents. In
fact, Schematron has its strengths where XML-Schema has its weaknesses (co-
occurrence constraints) and its weaknesses where XML-Schema has its strengths
(structure and data types). The Schematron rules uses the XPath language with the
various extensions provided by XSLT. Nevertheless, in time critical applications, the
overhead of processing the embedded Schematron rules may be too long. It should
also be noted that the Schematron rules can only be applied on specific elements in
the XML instance document. It is not possible to apply Schematron rules to complex
type definitions in XML-Schema. Regrettably, existing implementations do not
provide all the features required in our application.

 11

<?xml version="1.0"?>
<xsd:schema targetNamespace="http://www.lcc.uma.es/ecWeb2002"
 xmlns="http://www.lcc.uma.es/ecWeb2002"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
 <xsd:simpleType name="policy_ID_type">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[A-Z]{3}-[0-9]{3}"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="Rights_Type">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="read"/>
 <xsd:enumeration value="update"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="Actions_Type">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Notify"/>
 <xsd:enumeration value="OnLine_Permission"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:element name="policy">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="parameter" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="access_Rules">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="access_Rule" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="policy_Description" type="xsd:string" use="optional"/>
 <xsd:attribute name="policy_ID" type="policy_ID_type" use="optional"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="access_Rule">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="attribute_Set" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="Right" type="Rights_Type" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="attribute_Set">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="attribute" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="Action" type="Actions_Type" use="optional"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="attribute">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="attribute_name"/>
 <xsd:element name="attribute_value"/>
 <xsd:element name="SOA_ID" type="xsd:string" nillable="false"/>
 </xsd:sequence>
 <xsd:attribute name="attributeID" type="xsd:ID" use="optional"/>
 <xsd:attribute name="attributeDescription" type="xsd:string" use="optional"/>
 <!-- Each (attribute_name, attribute_value) is certified by a signer - SOA_ID - -->
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Fig. 4. PolicyTemplate.xsd

Figure 4 shows the schema of X-ACS policies. This XML-Schema template
facilitates the creation of X-ACS policies, allowing automatic syntactic validation of
X-ACS policies. One of the most important constraints imposed to the design of our
language is that X-ACS policies must be evaluated by processors with a limited
storage and processing capability such as smartcards. For this reason, other related
languages are not well suited for the ACDACS system.

In our language, a policy consists of a set of access_Rule elements. Each one of
these elements defines all the combinations of attribute certificates that allow the user
to gain the access established by the Right attribute. Therefore, it is composed as a
series of attribute_Set required to gain access and the Right obtained over the
data in case access is granted. Each attribute_Set defines a particular attribute

 12

certificate combination associated with an optional Action (that has to be performed
before access is granted).

Attribute certificates will be used to provide evidence of the possession of each
attribute. Therefore, attribute certificates are described stating their name
(attribute_name), value (attribute_value) and the signer of the certificate
(SOA_ID).

Figure 5 shows an instance of the PolicyTemplate.xsd schema containing an
example policy.

<?xml version="1.0" encoding="UTF-8"?>
<policy xmlns="http://www.lcc.uma.es/ecWeb2002"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.lcc.uma.es/ecWeb2002 PolicyTemplate.xsd"
 policy_ID="POL-123"
 policy_Description= "GRANT Read Access TO users possessing a
 temporal authorization WITH Notification
 and GRANT Read and Update Access TO Professors">
 <access_Rules>
 <access_Rule Right="read">
 <attribute_Set>
 <attribute>
 <attribute_name>Position</attribute_name>
 <attribute_value>Professor</attribute_value>
 <SOA_ID>LCC_ADM</SOA_ID>
 </attribute>
 </attribute_Set>
 <attribute_Set Action="Notify">
 <attribute>
 <attribute_name>Tmp_Auth</attribute_name>
 <attribute_value>P123</attribute_value>
 <SOA_ID>UMA_ETSII</SOA_ID>
 </attribute>
 </attribute_Set>
 </access_Rule>
 <access_Rule Right="update">
 <attribute_Set>
 <attribute>
 <attribute_name>Position</attribute_name>
 <attribute_value>Professor</attribute_value>
 <SOA_ID>LCC_ADM</SOA_ID>
 </attribute>
 </attribute_Set>
 </access_Rule>
 </access_Rules>
</policy>

Fig. 5. ExamplePolicy.xml

Suppose our administrator wants to grant authorization to access the marks of a
course to professors and deny it to students. Without a careful analysis, the
administrator states the following X-ACS policy:

<?xml version="1.0" encoding="UTF-8"?>
<policy xmlns="http://www.lcc.uma.es/ecWeb2002"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.lcc.uma.es/ecWeb2002 PolicyTemplate.xsd"
 policy_Description="GRANT write_access TO marks IF Position='Professor' ">
 <access_Rules>
 <access_Rule Right="update">
 <attribute_Set>
 <attribute>
 <attribute_name>Position</attribute_name>
 <attribute_value>Professor</attribute_value>
 <SOA_ID>LCC_ADM</SOA_ID>
 </attribute>
 </attribute_Set>
 </access_Rule>
 </access_Rules>
</policy>

Fig. 6. WrongPolicy.xml

The problem with this policy is that, in some institutions, it is possible for a
professor to be registered as student in courses other than those he teaches. In such a
case, students who are also professors would get access to their own marks.

X-ACS policies are verified in several ways. Policies are verified syntactically
using XML-Schema. Semantic verification is made possible by the use of a specific

 13

Policy Validator that uses the SAX API to parse the document validating it. Finally,
policies can be verified to check their validity in the context where they will be
applied. Policy context verification is based on the definition of a set of global rules
(also expressed using X-ACS). This set of rules establishes a series of facts about the
environment of the system (for example, in a basket team, global rules could state that
the coach may also be player). This semantic information allows the detection of
possible inconsistencies in the declared policy. The administrator can define the test
cases to be checked.

With the aid of the context validation the administrator could have detected the
error in the previous example. The rule should have been stated as follows:

<?xml version="1.0" encoding="UTF-8"?>
<policy xmlns="http://www.lcc.uma.es/ecWeb2002"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.lcc.uma.es/ecWeb2002 PolicyTemplate.xsd"
 policy_Description="GRANT write_access TO Target.marks IF
 Position='Professor' AND Teaches=Target">
 <parameter>Target</parameter>
 <access_Rules>
 <access_Rule Right="update">
 <attribute_Set>
 <attribute>
 <attribute_name>Position</attribute_name>
 <attribute_value>Professor</attribute_value>
 <SOA_ID>LCC_ADM</SOA_ID>
 </attribute>
 <attribute>
 <attribute_name>Teaches</attribute_name>
 <attribute_value>*Target</attribute_value>
 <SOA_ID>LCC_ADM</SOA_ID>
 </attribute>
 </attribute_Set>
 </access_Rule>
 </access_Rules>
</policy>

Fig. 7. RightPolicy.xml

The Target attribute is interpreted by the Validator as a parameter that has to be
instantiated by the test case. The global rules established about the context in the
X-ACS schema, enables the detection of semantically incomplete policies. The Policy
Validator makes the verification of the policy in an automatic way.

5 Conclusions and future work

We have presented the ACDACS distributed access control system. The ACDACS
approach solves the originator-retained-control problem. We have described the
underlying mechanisms that make possible this system: the SmartProt software
protection scheme and the X-ACS language and tools. ACDACS is flexible, can be
applied regardless of the attribute certification scheme, implements distributed access
control management and enforcement mechanisms, does not depend on underlying
infrastructures or authentication systems, allows the dynamic modification of policies
in a transparent and efficient way and is secure.

We have functional implementations of the software protection mechanism and the
PDO (applet) generator. Currently, PDO applets are not signed and, therefore, the
connection to the originator is done using a proxy (Oracle Connection Manager) on
the servers. We plan to use signed applets in future versions.

About X-ACS we have developed the basic XML-Schema specification and the
Policy Validator. Ongoing work is focused in the imp lementation of some of the

 14

components of the system such as the policy writer assistant. Because the
administrator of the access control system has to specify what attributes from what
SOAs are required to access each data object we are working in the definition of a
generic mechanism to allow access control administrators to gain knowledge about
the attributes certified by each SOA. This mechanism is based in tools to allow SOAs
to define XML-Schemas for the attributes they certified. This XML-Schemas will be
accessed by the access control administrators and used by their policy creation and
validation tools. We are also interested in the application of the system to other
scenarios such as digital libraries and pay-per-view.

Acknowledgements

The authors want to acknowledge the authors of [1], and specially, Amgad Fayad
for their help and interesting comments about the first drafts of this work.

The work of Javier López was partially supported by the E.U. through FEDER
project 1-FD97-0850. The work of Antonio Maña was partially supported by the E.U.
through FEDER project 1-FD97-1269-C02-02. The work of Mariemma I. Yagüe was
partially supported by the Spanish Ministry of Science and Technology through
project CICYT TIC99-1083-C02-01.

References

1. Fayad, A. and S. Jajodia, Going Beyond MAC and DAC Using Mobile Policies . In
Proceedings of IFIP SEC’01. Kluwer Academic Publishers. 2001.

2. McCollum, C.J.; Messing, J.R.; Notargiacomo, L. Beyond the pale of MAC and DAC -
Defining new forms of access control. Proceedings of the IEEE Symposium on Security and
Privacy, pp. 190-200. 1990.

3. Jajodia, S.; Samarati, P.; Sapino, M.L.; Subrahmanian, V.S. Flexible support for multiple
access control policies . ACM Transactions on Database Systems, 2000.

4. Baldwin, R. W. Naming and Grouping Privileges to Simplify Security Management in
Large Database. Proceedings of IEEE Computer Society Symposium on Research in
Security and Privacy, pp. 61-70, Oakland, CA, April 1990.

5. Sandhu, R.S., E.J. Coyne, H.L. Feinstein, and C.E. Youman, Role-Based Access Control
Models. IEEE Computer, 1996. 29(2): pp. 38-47.

6. Osborn, S.; Sandhu, R.; Munawer, Q. Configuring Role-Based Access Control to Enforce
Mandatory and Discretionary Access Control Policies. ACM Transactions on Information
and Sy stem Security, 3(2) pp. 85-106. 2000.

7. Sandhu, R.; Ferraiolo, D.; Kuhn R. The NIST Model for Role-Based Access Control:
Towards a Unified Standard. Proccedings of the fifth ACM Workshop on Role-based
Access Control. pp. 47-63. 2000.

8. Damianou, N., Dulay, N., Lupu, E. and M. Sloman. The Ponder Policy Specification
Language. In Proceedings of Policy Worshop 2001. 2001.

9. Wedde, H.F. and M. Lischka. Modular Authorization. In Proceedings of the 6th ACM
Symposium on Access Control Models and Technologies (SACMAT). 2001.

 15

10. Röscheisen, M.; Winograd. T. A Network-Centric Design for Relationship-based Security
and Access Control. Journal of Computer Security, Special Issue on Security in the World-
Wide Web. 1997.

11. Sloman, M.S. Policy Driven Management for Distributed Systems. Journal of Network and
Systems Management, 2(4) pp. 333-360. 1994.

12. Thompson, M., et al., Certificate-based Access Control for Widely Distributed Resources .
Proceedings of the Eighth USENIX Security Symposium. pp. 215-227. 1999.

13. Chadwick, D. W. An X.509 Role-based Privilege Management Infrastructure. Business
Briefing. Global Infosecurity 2002. http://www.permis.org/

14. ContentGuard, Inc. eXtensible Rights Markup Language, XrML 2.0. 2001.
http://www.xrml.org

15. Organization for the Advancement of Structured Information Standards. eXtensible Access
Control Markup Language. http://www.oasis-open.org/committees/xacml/

16. Organization for the Advancement of Structured Information Standards. SAML 1.0
Specification Set. http://www.oasis-open.org/committees/security/

17. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S. and P. Samarati. Securing XML
Documents. In Proc. of the 2000 International Conference on Extending Database
Technology (EDBT2000), Konstanz, Germany, March2000.

18. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S. and Samarati, P. A fine-grained
access control system for XML documents. In ACM Transactions on Information and
System Security (TISSEC), to appear.

19. W3C. XML-Schema. http://www.w3.org/XML/Schema
20. Jelliffe R. Schematron. http://www.ascc.net/xml/resource/schematron/schematron.html
21. Yagüe, M.I., Aldana, J.F. and C.A. Gómez. Integrity issues in the Web. In (Doorn, J. and L.

Rivero, eds.) “Database Integrity: Challenges and Solutions”. ISBN: 1-930708-38-6. 2002.
22. Jajodia, S., Samarati, P. Subrahmanian, V.S. A Logical Language for Expressing

Authorizations. In Proceedings of IEEE Symposium on Security and Privacy. pp.31-42.
1997.

23. Maña, A. and E. Pimentel, An Efficient Software Protection Scheme. In Proceedings of IFIP
SEC’01. Kluwer Academic Publishers. 2001.

24. Lee, D. and W.W. Chu. Comparative Analysis of Six XML-Schema Languages . SIGMOD
Record, Vol. 29, No. 3, pp. 76-87. 2000.

