
DAC vs. MAC

• Most people familiar with discretionary access

control (DAC)

- Example: Unix user-group-other permission bits

- Might set a file private so only group friends can read it

• Discretionary means anyone with access can

propagate information:

- Mail sigint@enemy.gov < private

• Mandatory access control

- Security administrator can restrict propagation

- Abbreviated MAC (NOT a message authentication code)



Bell-Lapadula model

• View the system as subjects accessing objects

- The system input is requests, the output is decisions

- Objects can be organized in one or more hierarchies, H

(a tree enforcing the type of decendents)

• Four modes of access are possible:

- execute – no observation or alteration

- read – observation

- append – alteration

- write – both observation and modification

• The current access set, b, is (subj, obj, attr) tripples

- E.g., (user dm, file grates.txt, r) if I’m currently reading file

• An access matrix M encodes permissible access types

(subjects are rows, objects columns)



Security levels

• A security level is a (c, s) pair:

- c = classification – E.g., unclassified, secret, top secret

- s = category-set – E.g., Nuclear, Crypto

• (c1, s1) dominates (c2, s2) iff c1 ≥ c2 and s2 ⊆ s1

• Subjects and objects are assigned security levels

- levelS(S), levelO(O) – security level of subject/object

- current-level(S) – subject may operate at lower level

- f = (levelS, levelO, current-level) – set of 3 level functions

• State of system is 4-tuple (b,M, f,H)



Security properties

• The simple security or ss-property:

- For any (S, O, A) ∈ b, if A includes observation, then

level(S) must dominate level(O)

- E.g., an unclassified user cannot read a top-secret document

• The star security or *-property:

- If a subject can observe O1 and modify O2, then level(O2)

dominates level(O1)

- E.g., cannot copy top secret file into secret file

- More precisely, given (S, O, A) ∈ b:

if A = r: level(O) is dominated by current-level(S)

if A = a: level(O) dominates current-level(S)

if A = w: level(O) = current-level(S)



Straw man MAC implementation

• Take an ordinary Unix system

• Put labels on all files and directories

• Each user has a security level

• Determine current security level dynamically

- When user logs in, start with lowest curent-level

- Increase current-level as higher-level files are observed

- If user’s level does not dominate current, kill program

- If program writes to file it doesn’t dominate, kill it

• Is this secure?



No: Covert channels

• System rife with storage channels

- Low current-level process executes another program

- New program reads sensitive file, gets high current-level

- High program exploits covert channels to pass data to low

• E.g., High program inherits file descriptor

- Can pass 4-bytes of information to low prog. in file offset

• Other storage channels:

- Exit value, signals, terminal escape codes, . . .

• If we eliminate storage channels, is system secure?



No: Timing channels

• Example: CPU utilization

- To send a 0 bit, use 100% of CPU is busy-loop

- To send a 1 bit, sleep and relinquish CPU

- Repeat to transfer more bits

• Example: Resource exhaustion

- High prog. allocate all physical memory if bit is 1

- Low program tries to allocate memory; if it fails, bit is 1

• More examples: Disk head position, processor

cache/TLB polution, . . .



An approach to eliminating covert channels

• Observation: Covert channels come from sharing

- If you have no shared resources, no covert channels

- Extreme example: Just use two computers

• Problem: Sharing needed

- E.g., read unclassified data when preparing classified

• Approach: Strict partitioning of resources

- Strictly partition and schedule resources between levels

- Occasionally reapportion resources based on usage

- Do so infrequently to bound leaked information

- In general, only hope to bound bandwidth covert channels

- Approach still not so good if many security levels possible



Declassification

• Sometimes need to prepare unclassified report

from classified data

• Declassification happens outside of system

- Present file to security officer for downgrade

• Job of declassification often not trivial

- E.g., Microsoft word saves a lot of undo information

- This might be all the secret stuff you cut from document



Biba integrity model

• Problem: How to protect integrity

- Suppose text editor gets trojaned, subtly modifies files,

might mess up attack plans

• Observation: Integrity is the converse of secrecy

- In secrecy, want to avoid writing less secret files

- In integrity, want to avoid writing higher-integrity files

• Use integrity hierarchy parallel to secrecy one

- Now only most privilegted users can operate at lowest

integrity level

- If you read less authentic data, your current integrity level

gets raised, and you can no longer write low files



DoD Orange book

• DoD requirements for certification of secure

systems

• 4 Divisions:

- D – been through certification and not secure

- C – discretionary access control

- B – mandatory access control

- A – like B, but better verified design

- Classes within divisions increasing level of security



Divisions C and D

• Level D: Certifiably insecure

• Level C1: Discretionary security protection

- Need some DAC mechanism (user/group/other, ACLs, etc.)

- TCB needs protection (e.g., virtual memory protection)

• Level C2: Controlled access protection

- Finer-graunlarity access control

- Need to clear memory/storage before reuse

- Need audit facilities

• Many OSes have C2-security packages

- Was C2 Solaris “more secure” than normal Solaris?



Division B

• B1 - Labeled Security Protection

- Every object and subject has a label

- Some form of reference monitor

- Use Bell-LaPadula model and some form of DAC

• B2 - Structured Protection

- More testing, review, and validation

- OS not just one big program (least priv. within OS)

- Requires covert channel analysis

• B3 - Security Domains

- More stringent design, w. small ref monitor

- Audit required to detect imminent violations

- requires security kernel + 1 or more levels *within* the OS



Division A

• A1 – Verified Design

- Design must be formally verified

- Formal model of protection system

- Proof of its consistency

- Formal top-level specification

- Demonstration that the specification matches the model

- Implementation shown informally to match specification



Limitations of Orange book

• How to deal with floppy disks?

• How to deal with networking?

• Takes too long to certify a system

- People don’t want to run n-year-old software

• Doesn’t fit non-military models very well

• What if you want high assurance & DAC?


