DAC vs. MAC

e Most people familiar with discretionary access
control (DAC)

- Example: Unix user-group-other permission bits

- Might set a file private so only group friends can read it

e Discretionary means anyone with access can
propagate information:

- Mail sigint@enemy.gov < private

e Mandatory access control
- Security administrator can restrict propagation

- Abbreviated MAC (NOT a message authentication code)



Bell-Lapadula model

e View the system as subjects accessing objects
- The system input is requests, the output is decisions

- Objects can be organized in one or more hierarchies,
(a tree enforcing the type of decendents)

e Four modes of access are possible:
- execute — no observation or alteration
- read — observation
- append — alteration

- write — both observation and modification

e The current access set, ), is (subj, obj, attr) tripples

- E.g., (user dm, file grates.txt, r) if I'm currently reading file

e An access matrix )/ encodes permissible access types
(subjects are rows, objects columns)



Security levels

e A security level is a (c, s) pair:
- ¢ = classification — E.g., unclassified, secret, top secret

- s = category-set — E.g., Nuclear, Crypto
e (c1,51) dominates (¢, So) iff ¢ > 3 and s, C s

e Subjects and objects are assigned security levels
- levelg(S), levelp (O) — security level of subject/object
- current-level(S) — subject may operate at lower level

- f = (levelg, levelp, current-level) — set of 3 level functions

e State of system is 4-tuple (b, M, f, H)



Security properties

e The simple security or ss-property:

- For any (5,0, A) € b, if A includes observation, then
level(S) must dominate level(O)

- E.g., an unclassified user cannot read a top-secret document

e The star security or *-property:

- If a subject can observe O; and modify O, then level(Os)
dominates level(O-)

- E.g., cannot copy top secret file into secret file

- More precisely, given (S, 0, A) € b:
it A =r:level(O) is dominated by current-level(S)
if A = a: level(O) dominates current-level(.5)
if A = w: level(O) = current-level(.5)



Straw man MAC implementation

e Take an ordinary Unix system
e Put labels on all files and directories
e Each user has a security level

e Determine current security level dynamically

- When user logs in, start with lowest curent-level

Increase current-level as higher-level files are observed

If user’s level does not dominate current, kill program

If program writes to file it doesn’t dominate, kill it

e Is this secure?



No: Covert channels

e System rife with storage channels
- Low current-level process executes another program
- New program reads sensitive file, gets high current-level

- High program exploits covert channels to pass data to low

e E.g.,, High program inherits file descriptor

- Can pass 4-bytes of information to low prog. in file offset

e Other storage channels:

- Exit value, signals, terminal escape codes, ...

o If we eliminate storage channels, is system secure?



No: Timing channels

e Example: CPU utilization
- To send a 0 bit, use 100% of CPU is busy-loop
- To send a 1 bit, sleep and relinquish CPU

- Repeat to transfer more bits

e Example: Resource exhaustion
- High prog. allocate all physical memory if bit is 1

- Low program tries to allocate memory; if it fails, bit is 1

e More examples: Disk head position, processor
cache/TLB polution, ...



An approach to eliminating covert channels

e Observation: Covert channels come from sharing
- If you have no shared resources, no covert channels

- Extreme example: Just use two computers

e Problem: Sharing needed

- E.g., read unclassified data when preparing classified

e Approach: Strict partitioning of resources

- Strictly partition and schedule resources between levels

Occasionally reapportion resources based on usage

Do so infrequently to bound leaked information

In general, only hope to bound bandwidth covert channels

Approach still not so good if many security levels possible



Declassification

e Sometimes need to prepare unclassified report
from classified data

e Declassification happens outside of system

- Present file to security officer for downgrade

e Job of declassification often not trivial
- E.g., Microsoft word saves a lot of undo information

- This might be all the secret stuff you cut from document



Biba integrity model

e Problem: How to protect integrity

- Suppose text editor gets trojaned, subtly modifies files,
might mess up attack plans

e Observation: Integrity is the converse of secrecy
- In secrecy, want to avoid writing less secret files

- In integrity, want to avoid writing higher-integrity files

e Use integrity hierarchy parallel to secrecy one
- Now only most privilegted users can operate at lowest
integrity level
- If you read less authentic data, your current integrity level
gets raised, and you can no longer write low files



DoD Orange book

e DoD requirements for certification of secure
systems

e 4 Divisions:
- D —been through certification and not secure
- C —discretionary access control
- B—mandatory access control
- A - like B, but better verified design

- Classes within divisions increasing level of security



Divisions C and D

e Level D: Certifiably insecure

e Level C1: Discretionary security protection
- Need some DAC mechanism (user/group/other, ACLs, etc.)

- TCB needs protection (e.g., virtual memory protection)

e Level C2: Controlled access protection
- Finer-graunlarity access control
- Need to clear memory/storage before reuse

- Need audit facilities

e Many OSes have C2-security packages

- Was C2 Solaris “more secure” than normal Solaris?



Division B
e B1 - Labeled Security Protection
- Every object and subject has a label

- Some form of reference monitor
- Use Bell-LaPadula model and some form of DAC

e B2 - Structured Protection
- More testing, review, and validation
- OS not just one big program (least priv. within OS)

- Requires covert channel analysis

e B3 - Security Domains
- More stringent design, w. small ref monitor
- Audit required to detect imminent violations

- requires security kernel + 1 or more levels *within* the OS



Division A

e Al - Verified Design

- Design must be formally verified

Formal model of protection system

Proof of its consistency

Formal top-level specification

Demonstration that the specification matches the model

Implementation shown informally to match specification



Limitations of Orange book

e How to deal with floppy disks?
e How to deal with networking?

e Takes too long to certify a system

- People don’t want to run n-year-old software
e Doesn’t fit non-military models very well

e What if you want high assurance & DAC?



