
Copyright 1994 AT&T and Lumeta Corporation. All Rights Reserved.

Notice: For personal use only. These materials may not be reproduced or distributed in any form

or by any means except that they may be downloaded from this source and printed for personal use.

3

Firewall Gateways

fire wall noun: A fireproof wall used as a barrier to prevent the spread of a fire.

—AMERICAN HERITAGE DICTIONARY

3.1 Firewall Philosophy

Up to this point, we have used the words “firewall” and “gateway” rather casually. We will now
be more precise. A firewall, in general, consists of several different components (Figure 3.1). The
“filters” (sometimes called “screens”) block transmission of certain classes of traffic. A gateway
is a machine or a set of machines that provides relay services to compensate for the effects of
the filter. The network inhabited by the gateway is often called the demilitarized zone (DMZ). A
gateway in the DMZ is sometimes assisted by an internal gateway. Typically, the two gateways
will have more open communication through the inside filter than the outside gateway has to other
internal hosts. Either filter, or for that matter the gateway itself, may be omitted; the details will
vary from firewall to firewall. In general, the outside filter can be used to protect the gateway from
attack, while the inside filter is used to guard against the consequences of a compromised gateway.
Either or both filters can protect the internal network from assaults. An exposed gateway machine
is often called a bastion host.

We classify firewalls into three main categories: packet filtering, circuit gateways, and appli-
cation gateways. Commonly, more than one of these is used at the same time. As noted earlier,
mail is often routed through a gateway even when no security firewall is used.

3.1.1 Costs

Firewalls are not free. Costs include:

� hardware purchase,

51

52 Firewall Gateways

Inside Gateway(s) Outside

Filter Filter

Figure 3.1: Schematic of a firewall.

� hardware maintenance,
� software development or purchase,
� software update costs,
� administrative setup and training,
� ongoing administration and trouble-shooting,
� lost business or inconvenience from a broken gateway or blocked services, and
� the loss of some services or convenience that an open connection would supply.

These must be weighed against the costs of not having a firewall:
� the effort spent in dealing with break-ins (i.e., the costs of a gateway failure), including lost

business, and
� legal and other costs of sponsoring hacker activity.

These cost considerations vary greatly depending on the kind of site one is protecting. Modern
computers are fairly cheap, but a university might not justify such a purchase for a dedicated
gateway machine. For them, student labor can keep the administrative costs low. Universities
often believe that open access to the Internet is part of creating an open community. Of course,
we have found that 90% of our hacker probes come from such open communities (Chapter 11).
Universities do have administrative computers that definitely need protection. Some students have
the time and motivation to seek out the payroll, alumni, and especially the grades databases.

A large company would consider $30,000 worth of hardware cheap insurance if management
gains some assurance that the company secrets will not leak. To the boss the lack of certain
services is regrettable but necessary. Corporate lawyers are quick to worry about potential liability
for harboring hackers, though we are unaware of any such lawsuits. More subtly, the management
of a corporation might be liable for neglecting their fiduciary duties to the shareholders. For
whatever reason, in our experience companies from which hacker attacks originate have been very
quick to solve the problem.

Situating Firewalls 53

Net 1

Net 2

Net 3

Net 5

Net 6

Net 4

Net 7

Figure 3.2: Positioning firewalls.

3.2 Situating Firewalls

Traditionally, firewalls are placed between an organization and the outside world. But a large
organization may need internal firewalls as well to isolate security domains (also known as
administrative domains). A security domain is a set of machines under common administrative
control, with a common security policy and security level.

Consider the network shown in Figure 3.2. The different security domains are indicated
by different shadings. Firewalls, shown by a diode symbol (�), should be positioned at the
boundaries between security domains. The arrow in the diode points to the bad guys. In this case,
we see that NET 1 does not trust any other network, not even NET 2, even though the latter appears
to be an internal net, since it is attached directly to NET 1.

There are many good reasons to erect internal firewalls. In many large companies, most
employees are not (or should not be) privy to all information. In other companies, the cash
business (like the factory, or a phone company’s telephone switches) needs to be accessible to
developers or support personnel, but not to the general corporate population. Even authorized

54 Firewall Gateways

Net 2

Net 3

Net 5

Net 6

Net 4

Net 7

Net 1

C

B

A

Figure 3.3: An example of transitive trust.

users should pass through a security gateway when crossing the firewall; otherwise, if their home
machines, which live outside of the firewall, are compromised, the sensitive equipment on the
inside could be next. The firewall controls the access and the trust in a carefully predictable way.

Transitive trust may also be an issue. In Figure 3.3 suppose that machine A, in full accord
with local security policy, decides to extend trust to machine B. Similarly, machine B decides to
trust machine C, again in accordance with its own policies. The result, though, is that machine A
is now trusting machine C, whether it wants to or not, and whether it knows it or not. A firewall
will prevent this. The diodes from Figure 3.2 would prevent machine A from trusting machine B,
or machine B from trusting machine C. Again, trust can be controlled through a firewall. But
machine C could, if it wished, trust machine B.

3.3 Packet-Filtering Gateways

Packet filters can provide a cheap and useful level of gateway security. Used by themselves, they
are cheap: the filtering abilities come with the router software. Since you probably need a router

Packet-Filtering Gateways 55

to connect to the Internet in the first place, there is no extra charge. Even if the router belongs to
your network service provider, you’ll probably find that they’ll install any filters you wish.

Packet filters work by dropping packets based on their source or destination addresses or ports.
In general, no context is kept; decisions are made only from the contents of the current packet.
Depending on the type of router, filtering may be done at input time, at output time, or both. The
administrator makes a list of the acceptable machines and services and a stoplist of unacceptable
machines or services. It is easy to permit or deny access at the host or network level with a packet
filter. For example, one can permit any IP access between host A and B, or deny any access to B
from any machine but A.

Most security policies require finer control than this: they need to define access to specific
services for hosts that are otherwise untrusted. For example, one might want to allow any host
to connect to machine A, but only to send or receive mail. Other services may or may not be
permitted. Packet filtering allows some control at this level, but it is a dangerous and error-prone
process. To do it right, one needs intimate knowledge of TCP and UDP port utilization on a
number of operating systems.

This is one of the reasons we do not like packet filters very much: as Chapman [1992]
has shown, if you get these tables wrong you may inadvertently let in the Bad Guys.

Even with a perfectly implemented filter, some compromises can be dangerous. We discuss
these later.

Configuring a packet filter is a three-step process. First, of course, one must know what should
and should not be permitted. That is, one must have a security policy, as explained in Section 1.2.
Next, the allowable types of packets must be specified formally, in terms of logical expressions on
packet fields. Finally—and this can be remarkably difficult—the expressions must be rewritten in
whatever syntax your vendor supports.

An example is helpful. Suppose that one part of your security policy was to allow inbound
mail (SMTP, port 25), but only to your gateway machine. However, mail from some particular
site SPIGOT is to be blocked, because of their penchant for trying to mail several gigabytes of data
at a time. A filter that implemented such a ruleset might look like this.

action ourhost port theirhost port comment

block * * SPIGOT * we don’t trust these people
allow OUR-GW 25 * * connection to our SMTP port

The rules are applied in order from top to bottom. Packets not explicitly allowed by a filter
rule are rejected. That is, every ruleset is followed by an implicit rule reading like this.

action ourhost port theirhost port comment

block * * * * default

This fits with our general philosophy: all that is not expressly permitted is prohibited.
Note carefully the distinction between the first ruleset, and the one following, which is intended

to implement the policy “any inside host can send mail to the outside.”

56 Firewall Gateways

action ourhost port theirhost port comment

allow * * * 25 connection to their SMTP port

The call may come from any port on an inside machine, but will be directed to port 25 on the
outside. This ruleset seems simple and obvious. It is also wrong.

31

The problem is that the restriction we have defined is based solely on the outside host’s
port number. While port 25 is indeed the normal mail port, there is no way we can control
that on a foreign host. An enemy can access any internal machine and port by originating

his call from port 25 on the outside machine.
A better rule would be to permit outgoing calls to port 25. That is, we want to permit our

hosts to make calls to someone else’s port 25, so that we know what’s going on: mail delivery.
An incoming call from port 25 implements some service of the caller’s choosing. Fortunately,
the distinction between incoming and outgoing calls can be made in a simple packet filter if we
expand our notation a bit.

A TCP conversation consists of packets flowing in two directions. Even if all of the data is
flowing one way, acknowledgment packets and control packets must flow the other way. We can
accomplish what we want by paying attention to the direction of the packet, and by looking at
some of the control fields. In particular, an initial open request packet in TCP does not have the
ACK bit set in the header; all other TCP packets do. [Strictly speaking, that is not true. Some
packets will have just the reset (RST) bit set. This is an uncommon case, which we do not discuss
further, except to note that one should generally allow naked RST packets through one’s filters.]
Thus, packets with ACK set are part of an ongoing conversation; packets without it represent
connection establishment messages, which we will permit only from internal hosts. The idea is
that an outsider cannot initiate a connection, but can continue one. One must believe that an inside
kernel will reject a continuation packet for a TCP session that has not been initiated. To date, this
is a fair assumption. Thus, we can write our ruleset as follows, keying our rules by the source and
destination fields, rather than the more nebulous “OURHOST” and “THEIRHOST”:

action src port dest port flags comment

allow
�
our hosts � * * 25 our packets to their SMTP port

allow * 25 * * ACK their replies

The notation “
�
our hosts � ” describes a set of machines, any one of which is eligible. In a real

packet filter, you could either list the machines explicitly, or you could specify a group of machines,
probably by the network number portion of the IP address.

3.3.1 Handling IP Fragments

The existence of IP fragmentation makes life difficult for packet filters. Except for the first one,
fragments do not contain port numbers; there is thus little information on which to base a filtering
decision. The proper response depends on the goals you have chosen for your firewall.

If the main threat is penetration attempts from the outside, fragments can be passed without
further ado. The initial fragment will have the port number information and can be processed

Packet-Filtering Gateways 57

appropriately. If it is rejected, the packet will be incomplete, and the remaining fragments will
eventually be discarded by the destination host.

If, however, information leakage is a significant concern, fragments must be discarded. Nothing
prevents someone intent on exporting data from building bogus noninitial fragments and converting
them back to proper packets on some outside machine.

You can do better if your filter keeps some context. Mogul’s screend [Mogul, 1989] caches
the disposition and salient portion of the header for any initial fragment, and subsequent pieces of
the same packet will share its fate.

3.3.2 Filtering FTP Sessions

At least three major services are not handled well by packet filters: FTP, X11, and the DNS.
The problems with the DNS concern the sensitivity of the information itself, as discussed in
Section 2.3; a possible solution is discussed in Section 3.3.4. But the issues surrounding the first
two are clear-cut: normal operation demands use of incoming calls. (The rsh command uses an
incoming call as well, for stderr. However, it is rarely used through firewalls, although there is
no inherent reason why it couldn’t be.)

For FTP, files are transferred via a secondary connection. If the control channel to a server on
THEIRHOST uses the connection

�
ourhost, ourport, theirhost, 21 ���

file transfers will occur on �
ourhost, ourport, theirhost, 20 �

by default. Furthermore, the server must initiate the file transfer call. We thus have the problem
we saw earlier, but without the ability to screen based on the direction of the call.

One idea is to use the range of ourport to make filtering decisions. Most servers, and hence
most attack targets, live on low-numbered ports; most outgoing calls tend to use higher numbered
ports, typically above 1023. Thus, a sample ruleset might be

action src port dest port flags comment

allow
�
our hosts � * * * our outgoing calls

allow * * * * ACK replies to our calls
allow * * * � 1024 traffic to nonservers

That is, packets are passed under one of three circumstances:

1. They originated from one of our machines,

2. They are reply packets to a connection initiated by one of our machines,

3. They are destined for a high-numbered port on our machines.

58 Firewall Gateways

Random port

Create random port
5*256+6 on 1.2.3.4

Listen on 5*256+6

Listen on port 21

Local port 20

(make call)

USER ANONYMOUS

331 Enter Password

PASS ME@MY.HOST

230 Guest Login OK

PORT 1,2,3,4,5,6

200 Port OK

(open port 5*256+6)

STOR myfile

150 Connection Established

(file contents)

226 Transfer Done

Client
(1.2.3.4)

Server
(5.6.7.8)

Data flow

Connection establishment
Figure 3.4: Using FTP normally.

Packet-Filtering Gateways 59

Random port

Random port

Listen on port 21

Create random port
9*256+10 on 5.6.7.8

Listen on 9*256+10

(make call)

USER ANONYMOUS

331 Enter Password

PASS ME@MY.HOST

230 Guest Login OK

PASV

227 Passive (5,6,7,8,9,10)

(open port 9*256+10)

STOR myfile

150 Connection Established

(file contents)

226 Transfer Done

Client
(1.2.3.4)

Server
(5.6.7.8)

Data flow

Connection establishment
Figure 3.5: Using FTP with the PASV command.

60 Firewall Gateways

Strictly speaking, the last two rules apply to all packets, not just packets originating from outside.
But any packets from the inside would be accepted by the first rule, and would not be examined
by the later rules.

Unfortunately, this ruleset does not accomplish what we really want, which is to block incoming
calls to our servers. We said “most servers” live on low-numbered ports, not “all.” A number
of tempting targets, especially X11, inhabit high-numbered ports. Presumably, one could filter
out known dangerous ports; unfortunately, new ones could be added without notice. Thus, a
cautious stance dictates that this heuristic not be adopted. Under certain circumstances, a bypass
is available if you have the source code to the FTP client programs. You can modify the programs
to issue a PASV command to the server, directing it to do a passive open, and thus permitting an
outgoing call through the firewall for the data channel. The difference is shown in Figures 3.4
and 3.5. In the former—the default—the client (1.2.3.4) picks a random port and announces it via
the PORT command; the server opens a connection to it. In the latter, the modified client program
sends a PASV command; in turn, the server (5.6.7.8) generates a random port and asks the client
to initiate the connection.

This variant is not without its problems. The data channel, though an outgoing call, is to a
random port. Such calls are generally barred by sites that wish to restrict outbound data flow. You
also have the obvious problem of distributing modified clients to all inside machines. Also, not
all servers understand the PASV command, even though they should. The issues are discussed
further in [Bellovin, 1994].

3.3.3 Filtering X Window sessions

The problem with X11 is similar to FTP in one respect: proper use requires an incoming call. That
is, the user’s display—screen, keyboard, and mouse—is a server; X11 applications connect to it
via TCP. If the applications are to be run on outside hosts, the connection to the server involves
a call made from the outside, which typical rulesets block. This is especially annoying, since it
represents the category of application—an internal user wishing to use external facilities—that is
typically permitted and desirable.

Unauthorized X11 connections are a considerable threat. Intruders can dump data from
screens, monitor keystrokes, and—under certain circumstances—generate bogus keyboard input.
At a recent conference someone caused all of the public X11 terminals to display advertising
for his company. He could have done worse things, and he could have done them to many X11
terminals around the Internet.

To some extent, the threat posed by X11 can be handled by cooperation from the user commu-
nity and proper configuration of the X11 servers. Conversely, small errors can cause very serious
consequences. As usual, we prefer to err on the side of caution: we recommend blocking any
inbound calls to port numbers 6000–6100, at the very least. (If you have more than 100 X11
servers running on any single host, you should protect the whole range plus a safety margin, of
course.)

There is one possible side effect: if you block all traffic to those ports, rather than just incoming
calls, you run the risk of upsetting random client programs that just happened to be assigned port
numbers in the forbidden range.

Packet-Filtering Gateways 61

bar.com. IN SOA foo.bar.com. hostmaster.foo.bar.com. (
9404011 ;serial
3600 ;refresh
900 ;retry
604800 ;expire
86400) ;minim

bar.com. IN NS foo.bar.com.
bar.com. IN NS x.trusted.edu.
foo.bar.com. IN A 200.2.3.4
x.trusted.edu. IN A 5.6.7.8

foo.bar.com. IN MX 0 foo.bar.com.
*.bar.com. IN MX 0 foo.bar.com.
bar.com. IN MX 0 foo.bar.com.

ftp.bar.com. IN CNAME foo.bar.com.

Figure 3.6: A minimal DNS zone. The inverse mapping tree is similarly small. Note the use of an alias
for the FTP server. The secondary server (X.TRUSTED.EDU) is a sensitive site; any hacker who corrupted it,
perhaps via a site that it trusts, could capture much of your inbound mail and intercept many incoming telnet
calls.

One more property of X11 bears mentioning. On occasion, a legitimate inside user will need
to run an application on an internal machine from an external server. This represents an outgoing
call through the firewall, which is normally not a problem. However, the characteristics of the
remote X11 server make this somewhat more dangerous. First, there is a nontrivial risk that the
server will be penetrated. But that would be a risk even if the user simply used telnet or some
such means to call in. The incremental risk is comparatively low, although the truly cautious may
wish to ban both activities. More seriously, with X11, window managers are simply applications
that use special primitives. They can live anywhere any other application can live. If the user
runs a window manager on the inside of the firewall, an attacker can generate synthetic mouse
movements to ask the window manager to create new processes on the inside. These could be
invisible to the terminal user.

3.3.4 Taming the DNS

Dealing with the DNS is one of the more difficult problems in setting up a firewall. It is utterly
vital that the gateway machine use it, but it poses many risks.

What tack you take depends on the nature of your firewall. If you run a circuit or application
gateway, there is no need to use the external DNS internally. The information you advertise to
the outside world can be minimal (see Figure 3.6). It lists the name server machines themselves
(FOO.BAR.COM and X.TRUSTED.EDU), the FTP and mail relay machine (FOO.BAR.COM again), and
it says that all mail for any host in the BAR.COM domain should be routed to the relay.

62 Firewall Gateways

Of course, the inside machines can use the DNS if you choose; this depends on the number of
hosts and system administrators you have. If you do, you must run an isolated internal DNS with
its own pseudo-root. We do that, but we are careful to follow all of the necessary conventions for
the “real” DNS.

Life is much more difficult for sites that use packet filters. As noted, one does not want to
expose the DNS to curious minds and fingers; however, inside hosts need to use the DNS to reach
outside sites. In some messages to the Firewalls mailing list, Chapman has described a scheme
that works today because of the way most UNIX system name servers happen to be implemented.
But it is not guaranteed to work with all systems.

His approach (Figure 3.7) is to run name servers for the domain on both the gateway machine
and on some inside machine. The latter has the real information—the gateway’s name server
has the sort of minimal file shown in Figure 3.6. Thus, outside machines have no access to the
sensitive internal information.

The tricky parts are

1. permitting the gateway itself to resolve internal names for, say, mail delivery,

2. permitting inside machines to resolve external names, and

3. providing a way for the necessary UDP packets to cross the firewall.

The first part is handled by creating a /etc/resolv.conf file on the gateway that points to
the internal DNS server. That file tells application programs on the gateway, but not the name
server itself, where to go to resolve queries. Thus, whenever, say, mail wants to find an IP address,
it will ask the inside server.

Name server processes pay no attention to /etc/resolv.conf files. They simply use the
tree-structured name space and their knowledge of the root name servers to process all requests.
Queries for names they do not know are thus properly resolved.

The second problem involves queries for external names sent to the internal name server. Of
course, this server doesn’t know about outside machines. Rather than talking to the real servers
directly (we cannot permit that, since we can’t get the replies through the firewall safely), the
inside server has a forward line pointing to the gateway in its configuration file. This line
denotes which server should be queried for any names not known locally. Thus, if asked about an
inside machine, it responds directly; if asked about an outside machine, it passes the query to the
gateway’s name server.

Note the curious path taken by a request for an outside name by a process running on the
gateway machine. It first goes to the inside server, which can’t know the answer unless it’s cached.
It then hops back across the firewall to the outside machine’s own server, and thence eventually to
the distant DNS server that really knows the answer. The reply travels the same twisty path.

The reason that the inside and outside servers can talk through the packet filter is that both
servers use the official DNS UDP port (53) as the source port number when forwarding queries.
There is no requirement that they do so: it is simply a feature of the implementation. But it does
permit a safe filter rule that accepts packets from the outside machine if they are destined for the
inside server’s port 53. (But make sure that your router’s filter is configured to prevent source
address forgery on such packets.) This solves the third problem.

Packet-Filtering Gateways 63

Gateway
Application

GW!xx � InDNS
via resolv.conf Inside

DNS

GW!xx � InDNS

(a) Gateway application calling inside machine.

Gateway
Application

GW!xx � InDNS
resolv.conf Inside

DNS

GW!xx � InDNS

InDNS � GwDNS
via forward Gateway

DNS

InDNS � GwDNS

Outside
World
DNS

(b) Gateway application calling outside machine.

Inside
Application

InAPP!xx � InDNS

Inside
DNS

InAPP!xx � InDNS

(c) Inside application calling inside machine.

Inside
Application

InAPP!yy � InDNS
via resolv.conf Inside

DNS

InDNS � GwDNS
via forward

InAPP!yy � InDNS

Gateway
DNS

InDNS � GwDNS

Outside
World
DNS

(d) Inside application calling outside machine.

Figure 3.7: Passing DNS through a packet filter. The packet filter separates the gateway machine GW from
the inside machines; the latter are always shown as dashed boxes. Note that all incoming packets through
the firewall—that is, all arrows from solid boxes to dashed ones—are from GW and to the inside DNS server
INDNS, which lives on port 53. The query always starts out in the left-most box; in scenario (b), the query
goes back out through the firewall, as noted in the text.

64 Firewall Gateways

One “ı” has been left undotted. If an inside machine opens a connection to some external site,
that site will probably want to look up its host name. But the gateway’s DNS server does not
have that information, and this sort of failure will cause many sites to reject the connection. For
example, a number of FTP sites require that the caller’s IP address be listed in the DNS. Chapman
suggests using a wild card PTR record:

*.3.2.127.in-addr.arpa. IN PTR UNKNOWN.bar.com.

which will a least offer some answer to the query. But if the external site performs a DNS cross-
check, as described in Section 2.3, it will fail; again, many outside sites will reject connections
if this occurs. UNKNOWN.BAR.COM has no IP addresses corresponding to the actual inside
machine’s address. To deal with that, a more complete fiction is necessary. One suggestion we’ve
heard is to return a special-format host name for any address in your domain:

42.3.2.127.in-addr.arpa. IN PTR pseudo_127_2_3_42.bar.com.

When a query is made for an A record for names of this form, the appropriate record can be
synthesized.

3.3.5 Protocols without Fixed Addresses

Some services are problematic for packet filters because they can involve random port numbers.
On occasion the situation is even worse: a number of services always use random port numbers,
and rely on a separate server to supply the current contact information.

Two examples of this are the tcpmux protocol [Lottor, 1988] and the portmapper [Sun Mi-
crosystems, 1990] used by SunOS for RPC [Sun Microsystems, 1988]. In both cases, client
programs contact the mapping program rather than the application. The portmapper also pro-
cesses registration requests from applications, informing it of their current port numbers. On the
other hand, tcpmux will invoke the application directly, passing it the open connection.

This difference gives rise to different filter-based protection mechanisms. With tcpmux, one
can block access to either all such services, or none, simply by controlling access to the tcpmux
port. With the portmapper, each service has its own port number. While one can deny easy access
to them by filtering out portmapper requests, an intruder can bypass the portmapper and simply
sweep the port number space looking for interesting applications. We have seen evidence of this
happening. The only cure is to block access to all possible port numbers used by RPC-based
servers—and there’s no easy way to know what that range is.

3.3.6 Filter Placement

Packet filtering can occur in several places. Figure 3.8 shows a typical router. Packets can be
examined at point (a), point (b), or both. Furthermore, filters can be applied to incoming packets,
outgoing packets, or both. Not all routers permit all of these possibilities, and some have a few
more possibilities; obviously, this affects the style of filters used.

Filtering packets on the way out of the router may increase efficiency, since finding and
applying the filter rule can often be combined with the routing table lookup. On the other hand,

Packet-Filtering Gateways 65

Inside Outside

Router

(a) (b)

Figure 3.8: A typical firewall router.

some information has been discarded, like knowledge of the physical wire on which the packet
arrived. This is especially important in preventing address-spoofing attacks (see Section 3.3.7).
Filtering on input can protect the router itself from attack.

As a general policy, filter out the offending packets as soon as possible. Do not rely on deleting
TCP’s responses; attacks are possible even if the attacker never sees an answer [Bellovin, 1989].
Thus, one should write our first ruleset as

action src port dest port comment

block SPIGOT * * * we don’t trust these people
allow * * OUR-GW 25 connection to our SMTP port
allow OUR-GW 25 * * our reply packets

rather than as the following filter on our responses:

action src port dest port comment

block * * SPIGOT * this rule is subtly different
allow * * OUR-GW 25
allow OUR-GW 25 * *

Note that for this example, the rulesets would be the same for points (a) and (b).
Some routers will only filter on the destination port, rather than on both source and destination.

The idea is that since all TCP conversations involve bidirectional traffic, every message to a given
port will generate an acknowledgment message from that port. However, since components of the
two rules are not tied together, dangerous interactions can occur. The following example, taken
from [Chapman, 1992], illustrates this nicely.

Suppose that you wish to permit incoming and outgoing mail but nothing else. A mail
connection is characterized by a destination port number of 25, and a source port in the high-
numbered range. At point (a), we would use the following filter on output packets, i.e., on packets
leaving the router:

action dest port comment

allow * 25 Incoming mail
allow * � 1024 Outgoing mail response packets
block * * Nothing else

66 Firewall Gateways

Inside Net 1 Inside Net 3

Router

Inside Net 2

GW

To the
Outside

Figure 3.9: A firewall router with multiple internal networks.

That is, we allow traffic if it is either to our mailer daemon or if it appears to be their responses
to outgoing messages from our mailer. The same ruleset is used at point (b) to permit our calls
to their mailer and our responses to their messages. Consider, though, what would happen to
a conversation between two high-numbered ports. Both filters would permit the packet to pass,
since the condition destport � 1024 is satisfied. Such a connection may not be evil, but it was not
what was intended by the administrator.

Strictly speaking, there is a third choice for filter placement: without regard to interface at all.
The screend filter behaves this way. All decisions are made solely on the basis of the addresses in
the packet; there is thus no protection against address-spoofing.

A totally different set of problems can arise if the firewall applies your filter rules in some
other order than the one you specify (and some do). Writing rulesets is hard enough; to have
them rearranged without warning is unacceptable. Chapman gives examples of the unintended
consequences that can result from such behavior [Chapman, 1992]. Fortunately, some router
manufacturers are starting to follow his advice on how to improve things.

3.3.7 Network Topology and Address-Spoofing

For reasons of economy, it is sometimes desirable to use a single router both as a firewall and
to route internal-to-internal traffic. Consider the network shown in Figure 3.9. There are four
networks, one external and three internal. One is inhabited solely by a gateway machine GW. The
intended policies are as follows.

� Very limited connections are permitted through the router between GW and the outside world.

� Very limited, but possibly different, connections are permitted between GW and anything on
NET 2 or NET 3. This is protection against GW being compromised.

� Anything can pass between NET 2 or NET 3.

� Outgoing calls only are allowed between NET 2 or NET 3 and the external link.

Packet-Filtering Gateways 67

What sorts of filter rules should be specified? This situation is very difficult if only output
filtering is done. First, a rule permitting open access to NET 2 must rely on a source address
belonging to NET 3. Second, nothing prevents an attacker from sending in packets from the
outside that claim to be from an internal machine. Vital information—that legitimate NET 3
packets can only arrive via one particular wire—has been ignored.

Address-spoofing attacks like this are difficult to mount, but are by no means out of the question.
Simple-minded attacks using IP source-routing are almost foolproof, unless your firewall filters out
these packets. But there are more sophisticated attacks as well. A number of these are described
in [Bellovin, 1989]. Detecting them is virtually impossible unless source-address filtering and
logging are done.

Such measures do not eliminate all possible attacks via address-spoofing. An attacker can
still impersonate a host that is trusted but not on an internal network. One should not trust hosts
outside of one’s administrative control.

Assume, then, that filtering takes place on input, and that we wish to allow any outgoing call,
but permit incoming calls only for mail, and only to our gateway GW. The ruleset for the external
interface should read:

action src port dest port flags comment

block
�
NET 1 � * * * block forgeries

block
�
NET 2 � * * *

block
�
NET 3 � * * *

allow * * GW 25 legal calls to us
allow * *

�
NET 2 � * ACK replies to our calls

allow * *
�
NET 3 � * ACK

That is, prevent address forgery, and permit incoming packets if they are to the mailer on the
gateway machine, or if they are part of an ongoing conversation initiated by any internal host at
all. Anything else will be rejected.

Note one detail: our rule specifies the destination host GW, rather than the more general
“something on NET 1”. If there is only one gateway machine, there is no reason to permit
open access to that network. If several hosts collectively formed the gateway, one might opt for
simplicity, rather than this slightly tighter security; on the other hand, if the different machines
served different roles, one might prefer to limit the connectivity to each gateway host to the
services it was intended to handle.

The ruleset on the router’s interface to NET 1 should be only slightly less restrictive than this
one. Choices here depend on one’s stance. It certainly makes sense to bar unrestricted internal
calls, even from the gateway machine. Some would opt for mail delivery only. We opt for more
caution; our gateway machine will speak directly only to other machines running the upas mailer,
since we do not trust sendmail. One such machine is an internal gateway. The truly paranoid do not
permit even this. Rather, a relay machine will call out to GW to pick up any waiting mail. At most,
a notification is sent by GW to the relay machine. The intent here is to guard against common-mode
failures: if a gateway running upas can be subverted that way, internal hosts running the same
software can (probably) be compromised in the same fashion.

68 Firewall Gateways

Inside Net 2 Inside Net 1

Router
Firewall
Router

GW

Inside Net 3

(a) (b)

To the
Outside

Figure 3.10: A firewall with output-filtering routers.

Our version of the ruleset for the NET 1 interface reads like this:

action src port dest port flags comment

allow GW *
�
partners � 25 mail relay

allow GW *
�
NET 2 � * ACK replies to inside calls

allow GW *
�
NET 3 � * ACK

block GW *
�
NET 2 � * stop other calls from GW

block GW *
�
NET 3 � *

allow GW * * * let GW call the world

Again, we prevent spoofing, because the rules all specify GW; only the gateway machine is
supposed to be on that net, so nothing else should be permitted to send packets.

If we are using routers that support only output filtering, the recommended topology looks
very much like our schematic diagram (Figure 3.1). We now need two routers to accomplish the
tasks that one router was able to do earlier (Figure 3.10). At point (a) we use the ruleset that
protects against compromised gateways; at point (b) we use the ruleset that guards against address
forgery and restricts access to only the gateway machine. We do not have to change the rules even
slightly. Assuming that packets generated by the router itself are not filtered, in a two-port router
an input filter on one port is exactly equivalent to an output filter on the other port.

Input filters do permit the router to deflect packets aimed at it. Consider the following rule:

action src port dest port flags comment

block * * ROUTER * prevent router access

This rejects all nonbroadcast packets destined for the firewall router itself. This rule is probably
too strong. One almost certainly needs to permit incoming routing messages. It may also be useful
to enable responses to various diagnostic messages that can be sent from the router. Our general
rule holds, though: if you do not need it, eliminate it.

One more point bears mentioning if you are using routers that do not provide input filters. The
external link on a firewall router is often a simple serial line to a network provider’s router. If

Packet-Filtering Gateways 69

Inside Net 1 Inside DMZ Outside DMZ

Router Gateway
Firewall
Router

Inside Net 3

To the
Outside

Figure 3.11: A “belt-and-suspenders” firewall.

you are willing to trust the provider, filtering can be done on the output side of that router, thus
permitting use of the topology shown in Figure 3.9. But caution is needed: the provider’s router
probably serves many customers, and hence is subject to more frequent configuration changes.
The chances of an accident are correspondingly higher. Furthermore, the usefulness of the network
provider’s router relies on the line being a simple point-to-point link; if you are connected via a
multipoint technology, such as X.25, frame relay, or ATM, it may not work.

A rather paranoid configuration, for an application or circuit gateway, is shown in Figure 3.11.
In this variant, which we call belt-and-suspenders, the gateway machine sits on two different
networks, between the two filtering routers. It is an ordinary gateway, except in one respect: it
must be configured not to forward packets, either implicitly or via IP source routing. This can
be harder than it seems; some kernels, though configured not to forward packets, will still do so
if source routing is used. If you have access to kernel source, we suggest that you rip out the
packet-forwarding code. The outside router should be configured to allow access only to desired
services on the gateway host; additionally, it should reject any packet whose apparent source
address belongs to an inside machine. In turn, the gateway machine should use its own address
filtering to protect restricted services, such as application or circuit relays. The inside filter should
permit access only to the hosts and ports that the gateway is allowed to contact.

The theory behind this configuration is simple: the attacker must penetrate not just the packet
filters on the router, but also the gateway machine itself. Furthermore, even if that should occur,
the second filter will protect most inside machines from the now-subverted gateway.

3.3.8 Packet Filters and UDP

32

Filtering TCP circuits is difficult. Filtering UDP packets while still retaining desired
functionality is all but impossible. The reason lies in the essential difference between TCP
and UDP: the former is a virtual circuit protocol, and as such has retained context; the

latter is a datagram protocol, where each message is independent. As we saw earlier, filtering TCP
requires reliance on the ACK bit, in order to distinguish between incoming calls and return packets

70 Firewall Gateways

from an outgoing call. But UDP has no such indicator: we are forced to rely on the source port
number, which is subject to forgery.

An example will illustrate the problem. Suppose an internal host wishes to query the UDP
echo server on some outside machine. The originating packet would carry the address

�
localhost, localport, remotehost, 7 � �

where localport is in the high-numbered range. But the reply would be
�
remotehost, 7, localhost, localport � �

and the router would have no idea that localport was really a safe destination. An incoming packet
�
remotehost, 7, localhost, 2049 ���

is probably an attempt to subvert our NFS server; and, while we could list the known dangerous
destinations, we do not know what new targets will be added next week by a system administrator
in the remote corners of our network. Worse yet, the RPC-based services use dynamic port
numbers, sometimes in the high-numbered range. As with TCP, indirectly named services are not
amenable to protection by packet filters.

A conservative stance therefore dictates that we ban virtually all outgoing UDP calls. It is not
that the requests themselves are dangerous; rather, it is that we cannot trust the responses. The only
exceptions are those protocols where there is a peer-to-peer relationship. A good example is NTP,
the Network Time Protocol. In normal operation, messages are both from and to port 123. It is thus
easy to admit replies, because they are to a fixed port number, rather than to an anonymous high-
numbered port. But one use of NTP—setting the clock when rebooting—will not work, because
the client program will not use port 123. (Of course, a booting computer probably shouldn’t ask
an outsider for the time.)

3.3.9 Filtering Other Protocols

Other protocols are layered on top of IP as well; depending on your environment, these may need
to be filtered also. Of particular import is ICMP, the Internet Control Message Protocol. There
have been instances of hackers abusing it for denial-of-service attacks. On the other hand, filtering
out ICMP denies one useful information. At the very least, internal management hosts should
be allowed to receive such messages so that they can perform network diagnostic functions. For
example, traceroute relies on the receipt of Time Exceeded and Port Invalid packets.

Some routers can distinguish between “safe” and “unsafe” ICMP messages, or permit the filter
to specify the message types explicitly. This lets more of your machines send and respond to
things like ping requests. On the other hand, it lets an outsider map your network.

Most of the other higher level protocols are not important in most environments. Still, if you
do use others, the same care needs to be taken as for TCP and UDP. One such protocol of growing
importance is the IP-over-IP protocol used by the MBone; if you are not careful, it can be used to
bypass your firewall. Router filter lists should also be configured to reject all unneeded protocols.

Packet-Filtering Gateways 71

When Routes Leak

Once upon a time, one of us accidentally tried a telnet to the outside from his workstation. It
shouldn’t have worked, but it did. While the machine did have an Ethernet port connected
to the gateway LAN, for monitoring purposes (see Section 7.1.1), the transmit leads were
cut. How did the packets reach their destination?

It took a lot of investigating before we figured out the answer. We even wondered if
there was some sort of inductive coupling across the severed wire ends. But moving them
around didn’t make the problem go away.

Eventually, we realized the sobering truth: another router had been connected to the
gateway LAN, in support of various experiments. It was improperly configured, and
emitted a “default” route entry to the inside. This route propagated throughout our internal
networks, providing the monitoring station with a path to the outside.

And the return path? Well, the monitor was, as usual, listening in promiscuous mode
to all network traffic. When the acknowledgment packets arrived to be logged, they were
processed as well.

The incident could have been avoided if the internal network was monitored for spurious
default routes, or if our monitoring machine did not have an IP address that was advertised
to the outside world.

3.3.10 Routing Filters

By this point, the virtues and limitations of packet filtering should be clear. What is less obvious
is that routing information should be filtered as well. The reason is simple: if a node is completely
unreachable, it may as well be disconnected from the net. Its safety is almost that good. (But
not quite—if an intermediate host that can reach it is also reachable from the Internet and is
compromised, the allegedly unreachable host can be hit next.) To that end, routers need to be able
to control what routes they advertise over various interfaces.

Consider again the topology shown in Figure 3.9. Assume this time that hosts on NET 2 and
NET 3 are not allowed to speak directly to the outside. They are connected to the router so that
they can talk to each other, and to the gateway host on NET 1. In that case, the router should not
advertise paths to NET 2 or NET 3 on its link to the outside world. Nor should it readvertise any
routes that it learned of by listening on the internal links. The router’s configuration mechanisms
must be sophisticated enough to support this. (Given the principles we have presented here, how
should the outbound route filter be configured? Answer: Advertise NET 1 only, and ignore the
problem of figuring out everything that should not leak.)

72 Firewall Gateways

action src port dest port flags comment

allow SECONDARY * OUR-DNS 53 allow our secondary nameserver access
block * * * 53 no other DNS zone transfers
allow * * * 53 UDP permit UDP DNS queries
allow NTP.OUTSIDE 123 NTP.INSIDE 123 UDP ntp time access
block * * * 69 UDP no access to our tftpd
block * * * 87 the link service is often misused
block * * * 111 No TCP RPC and ...
block * * * 111 UDP no UDP RPC and no...
block * * * 2049 UDP NFS. This is hardly a guarantee
block * * * 2049 TCP NFS is coming: exclude it
block * * * 512 no incoming "r" commands ...
block * * * 513 ...
block * * * 514 ...
block * * * 515 no external lpr
block * * * 540 uucpd
block * * * 6000-6100 no incoming X
allow * * ADMINNET 444 encrypted access to transcript mgr
block * * ADMINNET * nothing else
block PCLAB-NET * * * anon. students in pclab can’t go outside
block PCLAB-NET * * * UDP ... not even with FSP and the like!
allow * * * * all other TCP is OK
block * * * * UDP suppress other UDP for now

Figure 3.12: Some filter rules for a university. Rules without explicit protocol flags refer to TCP. The last
rule, blocking all other UDP service, is debatable for a university.

There is one situation in which “unreachable” hosts can be reached: if the client employs IP
source routing. Some routers allow you to disable that feature: if possible, do it. The reason is
not just to prevent some hosts from being contacted. An attacker can use source routing to do
address-spoofing [Bellovin, 1989]. Caution is indicated: there are bugs in the way some routers
and systems block source routing. For that matter, there are bugs in the way many hosts handle
source routing; an attacker is as likely to crash your machine as to penetrate it.

Filters must also be applied to routes learned from the outside. This is to guard against
subversion by route confusion. That is, suppose that an attacker knows that HOST A on NET 1
trusts HOST Z on NET 100. If a fraudulent route to NET 100 is injected into the network, with a
better metric than the legitimate route, HOST A can be tricked into believing that the path to HOST

Z passes through the attacker’s machine. This allows for easy impersonation of the real HOST Z
by the attacker.

To some extent, packet filters obviate the need for route filters. If rlogin requests are not
permitted through the firewall, it does not matter if the route to HOST Z is false—the fraudulent
rlogin request will not be permitted to pass. But injection of false routes can still be used to subvert
legitimate communication between the gateway machine and internal hosts.

Packet-Filtering Gateways 73

action src port dest port flags comment

allow * * MAILGATE 25 inbound mail access
allow * * MAILGATE 53 UDP access to our DNS
allow SECONDARY * MAILGATE 53 secondary nameserver access
allow * * MAILGATE 23 incoming telnet access
allow NTP.OUTSIDE 123 NTP.INSIDE 123 UDP external time source
allow INSIDE-NET * * * outgoing TCP packets are OK
allow * * INSIDE-NET * ACK return ACK packets are OK
block * * * * nothing else is OK
block * * * * UDP block other UDP, too

Figure 3.13: Some filter rules for a small company. Rules without explicit protocol flags refer to TCP.

As with any sort of address-based filtering, route filtering becomes difficult or impossible in
the presence of complex topologies. For example, a company with several locations could not use
a commercial data network as a backup to a leased-line network if route filtering were in place;
the legitimate backup routes would be rejected as bogus. To be sure, although one could argue
that public networks should not be used for sensitive traffic, few companies build their own phone
networks. But the risks here may be too great. An encrypted tunnel may be a better solution.

Some people take route filtering a step further: they deliberately use unofficial IP addresses
inside their firewalls, preferably addresses belonging to someone else [Rekhter et al., 1994]. That
way, packets aimed at them will go elsewhere.

As attractive as this scheme sounds, we don’t recommend it. For one thing, it’s not neighborly.
If you make a mistake in setting up your filter, you risk polluting the global routing tables for the
Internet (though it would perhaps draw your attention to your mistake). Another reason is that you
risk address collisions as new organizations connect their networks to yours, perhaps by merger or
acquisition. (We did not have such problems when AT&T acquired NCR, because both companies
did use officially-assigned IP addresses.)

Finally, you may convert some day to a different style of firewall, one that lets more packets
flow through. If you ever do that, you’ll have a massive address conversion problem on your
hands, which you’re better off avoiding entirely.

3.3.11 Sample Configurations

We cannot give you the exact packet filter for your site, because we don’t know what your policies
are. But we can give some reasonable samples that may serve as a starting point. The samples in
Figures 3.12 and 3.13 are derived in part from CERT recommendations and from our port number
table in Appendix B.

A university tends to have an open policy about Internet connections. Still, they should block
some common services, such as NFS and TFTP. There is no need to export these services to
the world. Also, perhaps there’s a PC lab in a dorm that has been the source of some trouble,

74 Firewall Gateways

so they don’t let them access the Internet. (They have to go through one of the main systems
that require an account. This gives some accountability.) Finally, there is to be no access to the
administrative computers except for access to a transcript manager. That service, on port 444,
uses strong authentication and encryption.

On the other hand, a small company with an Internet connection might wish to shut out
most incoming Internet access, while preserving most outgoing connectivity. A gateway machine
receives incoming mail and provides name service for the company’s machines. Figure 3.13 shows
a sample filter set.

Remember, we consider packet filters inadequate, especially when filtering at the port level.
In the university case especially, they only slow down an external hacker.

3.3.12 Packet-Filtering Performance

You do pay a performance penalty for packet filtering. Routers are generally optimized to shuffle
packets quickly. The packet filters take time and can defeat the optimization efforts. But packet
filters are usually installed at the edge of an administrative domain. The router is connected by (at
best) a DS1 (T1) line (1.544 Mb/sec) to the Internet. Usually this serial link is the bottleneck: the
CPU in the router has plenty of time to check a few tables. This may become a bigger problem as
faster communications arrive.

Although the biggest performance hit may come from doing any filtering at all, the total
degradation depends on the number of rules applied at any point. It is better to have one rule
specifying a network than to have several rules enumerating different hosts on that network.
Choosing this optimization requires that they all accept the same restrictions; whether or not that
is feasible depends on the configuration of the various gateway hosts. Or you may be able to speed
things up by ordering the rules so that the most common types of traffic are processed first. (But
be careful; correctness is much more important than speed.) As always, there are trade-offs.

There may also be performance problems if you use a two-router configuration. In such cases,
the inside router may be passing traffic between several internal networks as well. Degradation
here is not acceptable.

3.3.13 Implementing Packet Filters

There are a number of ways to implement packet filters. The easiest, of course, is to buy a router
that supports them. But there are some host-based alternatives.

Digital Equipment Corporation has developed screend, a kernel modification that permits a
user process to pass on each packet before it is forwarded [Mogul, 1989, 1991]. It is available on a
number of operating systems, including, of course, Ultrix. A version for BSDI is promised soon.
The code for screend is freely available, but with some strings attached that not everyone will find
acceptable. Unfortunately, you need source to other parts of the kernel in order to install it.

Some other vendors provide similar functionality. SGI systems have ipfilterd, for example.
Of course, there’s no need to use a UNIX system as a packet filter. A number of PC-based

packages exist, such as TAMU [Safford et al., 1993b] and Karlbridge. As we have noted, you
may not need much speed; a surplus unit may work quite well.

Application-Level Gateways 75

3.3.14 Summary

Many advanced gateway designs rely in part on packet filtering. They are likely to work well,
but pure packet filters leave us feeling uncomfortable. Some of these designs become ineffective
if a vendor software problem compromises the packet filter. We have heard of at least two such
software problems to date,1 although the vendors are very careful about such things. Worse yet,
it takes either a conservative stance or a great deal of knowledge about the Internet to design an
effective packet filter. Also, there are highly desirable services that cannot be implemented in a
pure packet-filtering environment.

We are inclined to place our trust in a simpler design. Packet filters are a useful tool, but they
do not leave us with confidence in their correctness and hence their safety.

3.4 Application-Level Gateways

An application-level gateway represents the opposite extreme in firewall design. Rather than using
a general-purpose mechanism to allow many different kinds of traffic to flow, special-purpose code
can be used for each desired application. Although this seems wasteful, it is likely to be far more
secure than any of the alternatives. One need not worry about interactions among different sets of
filter rules, nor about holes in thousands of hosts offering nominally secure services to the outside.
Only a chosen few programs need be scrutinized.

Application gateways have another advantage that in some environments is quite critical: it
is easy to log and control all incoming and outgoing traffic. The SEAL package [Ranum, 1992]
from Digital Equipment Corporation takes advantage of this. Outbound FTP traffic is restricted
to authorized individuals, and the effective bandwidth is limited. The intent is to prevent theft of
valuable company programs and data. While of limited utility against insiders, who could easily
dump the desired files to tapes or floppies, it is a powerful weapon against electronic intruders
who lack physical access.

Electronic mail is often passed through an application-level gateway, regardless of what
technology is chosen for the rest of the firewall. Indeed, mail gateways are valuable for their other
properties, even without a firewall. Users can keep the same address, regardless of which machine
they are using at the time. This book, for example, was composed on no fewer than six different
computers, but mail sent from any of them would bear a return address of RESEARCH.ATT.COM.
The gateway machines also worry about mail header formats and logging (mail logging is a
postmaster’s friend) and provide a centralized point for monitoring the behavior of the electronic
mail system.

It is equally valuable to route incoming mail through a gateway. One person can be aware of all
internal connectivity problems, rather than leaving it to hundreds of random system administrators
around the Internet. Reasonably constant mail addresses—Firstname.Lastname@ORG.DOMAIN

is popular—can be accepted and processed. Different technologies, such as uucp, can be used to
deliver mail internally. Indeed, the need for incoming mail gateways is so obvious that the DNS

1See CERT Advisory CA-92:20, December 10, 1992, and CERT Advisory CA-93:07, April 22, 1993.

76 Firewall Gateways

has a special feature—MX records—defined to support them. No other application has a defined
mechanism for indirect access.

These features are even more valuable from a security perspective. Internal machine names
can be stripped off, hiding possibly valuable data (see Section 2.3). Traffic analysis and even
content analysis and recording can be performed to look for information leaks. But these abilities
should be used with the utmost reluctance, for both legal (Chapter 12) and ethical reasons.

Application gateways are often used in conjunction with the other gateway designs, packet
filters and circuit-level relays. As we show later (Section 4.5.7), an application gateway can be
used to pass X11 through a firewall with reasonable security. The semantic knowledge inherent
in the design of an application gateway can be used in more sophisticated fashions. As described
earlier, gopher servers can specify that a file is in the format used by the uuencode program. But
that format includes a file name and mode. A clever gateway could examine or even rewrite this
line, thus blocking attempts to force the installation of bogus .rhosts files or shells with the
setuid bit turned on.

The type of filtering used depends on local needs and customs. A location with many PC users
might wish to scan incoming files for viruses.

We note that the mechanisms just described are intended to guard against attack from the
outside. A clever insider who wanted to retrieve such files certainly would not be stopped by
them. But it is not a firewall’s job to worry about that class of problem.

The principal disadvantage of application-level gateways is the need for a specialized user
program or variant user interface for most services provided. In practice, this means that only the
most important services will be supported. This may not be entirely bad—again, programs that
you do not run cannot hurt you—but it does make it harder to adopt newer technologies. Also,
use of such gateways is easiest with applications that make provision for redirection, such as mail
and X11. Otherwise, new client programs must be provided.

3.5 Circuit-Level Gateways

The third type of gateway—our preference for outgoing connections—is circuit level. Circuit
gateways relay TCP connections. The caller connects to a TCP port on the gateway, which
connects to some destination on the other side of the gateway. During the call the gateway’s relay
program(s) copy the bytes back and forth: the gateway acts as a wire.

In some cases a circuit connection is made automatically. For example, we have a host outside
our gateway that needs to use an internal printer. We’ve told that host to connect to the print
service on the gateway. Our gateway is configured to relay that particular connection to the printer
port on an internal machine. We use an access control mechanism to ensure that only that one
external host can connect to the gateway’s printer service. We are also confident that this particular
connection will not provide a useful entry hole should the external host be compromised.

In other cases, the connection service needs to be told the desired destination. In this case,
there is a little protocol between the caller and the gateway. This protocol describes the desired
destination and service, and the gateway returns error information if appropriate. In our imple-
mentation, called proxy, the destination is a host name. In socks (discussed later), it is the numeric

Circuit-Level Gateways 77

IP address. If the connection is successful, the protocol ends and the real bytes start flowing.
These services require modifications to the calling program or its library.

In general, these relay services do not examine the bytes as they flow through. Our services
do log the number of bytes and the TCP destination. These logs can be useful. For example,
we recently heard of a popular external site that had been penetrated. The Bad Guys had been
collecting passwords for over a month. If any of our users used these systems, we could warn
them. A quick grep through the logs spotted a single unfortunate (and grateful) user. Chapter 11
shows some statistical information we have gathered from our proxy logs.

The outgoing proxy TCP service provides most of the Internet connectivity our internal users
need. As noted, though, protocols such as FTP and X11 require incoming calls. But it is too much
of a security risk to permit the gateway to make an uncontrolled call to the inside.

Any general solution is going to involve the gateway machine listening on some port. Though
we defer discussion of the details until the following chapter, this approach demonstrates a subtle
problem with the notion of a circuit gateway: uncooperative inside users can easily subvert the
intent of the gateway designer, by advertising unauthorized services. It is unlikely that, say, port 25
could be used that way, as the gateway machine is probably using it for its own incoming mail
processing, but there are other dangers. What about an unprotected telnet service on a nonstandard
port? An NFS server? A multiplayer game? Logging can catch some of these abuses, but probably
not all.

Clearly, some sorts of controls are necessary. These can take various forms, including a time
limit on how long such ports will last (and a delay before they may be reused), a requirement for
a list of permissible outside callers to the port, and even user authentication on the setup request
from the inside client. Obviously, the exact criteria depend on your stance.

The other big problem with circuit relays is the need to provide new client programs. Although
the code changes are generally not onerous, they are a nuisance. Issues include availability of
application source code for various platforms, version control, distribution, and the headache to
users of having to know about two subtly different programs.

Several strategies are available for making the necessary changes. The best known is the socks
package [Koblas and Koblas, 1992]. It consists of a set of almost-compatible replacements for
various system calls: socket, connect, bind, etc. Converting an application is as simple as
replacing the vanilla calls with the socks equivalents. A version of it has been implemented via a
replacement shared library, similar to that used in securelib [LeFebvre, 1992] and 3-D FS [Korn
and Krell, 1989]. This would permit existing applications to run unchanged. But such libraries
are not portable, and it may not be possible to include certain of the security features mentioned
earlier.

Our own approach is somewhat different. We made a simple change to the IPC library
described in Section 6.1. Instead of writing

fd = ipcopen("tcp!desired.host!portnum", "");

a programmer can now write

fd = ipcopen("proxy!desired.host!portnum", "");

to make a call through the gateway. Naturally, this call recurses through the normal path selection
mechanism; thus, the path to the gateway could use the Datakit VCS (dk) instead of TCP:

78 Firewall Gateways

Outside
Machine

Incoming
telnet

Gateway
rlogin

Inside
Machine

Authentication
Server

Firewall

Figure 3.14: Call flow diagram for incoming telnet access.

fd = ipcopen("dk!nj/astro/gateway.relay", "");

Application and circuit gateways are well suited for some UDP applications. The client
programs must be modified to create a virtual circuit to some sort of proxy process; the existence
of the circuit provides sufficient context to allow secure passage through the filters. The actual
destination and source addresses are sent in-line. However, services that require specific local port
numbers are still problematic.

3.6 Supporting Inbound Services

Regardless of the firewall design, it is generally necessary to support various incoming services.
These include things like electronic mail, FTP, logins, and possibly site-specific services. Naturally,
access to any of these must be blessed by the filter and the gateway.

The most straightforward way to do this is to provide these services on the gateway itself. This
is the obvious solution for mail and FTP. For incoming logins, we provide a security server; users
must have one-time password devices to gain access to inside machines. If they pass that test,
the gateway program will connect them to an inside machine, using some sort of preauthenticated
connection mechanism such as rlogin (Figure 3.14).

Ganesan has implemented a gateway that uses Kerberos to authenticate calls [Ganesan, 1994].
Once the gateway has satisfied itself about the identity of the caller, it will pass the connection on
to the desired internal server. This scheme assumes that the external Kerberos server is secure,
because anyone who penetrates it will be able to spoof the firewall.

Regardless of the scheme used, all incoming calls carry some risk. The telnet call that
was authenticated via a strong mechanism could be the product of a booby-trapped command.
Consider, for example, a version that, after a few hundred bytes, displays “Destination

Tunnels Good and Bad 79

Net 1

Net 2

Net 3

Net 5

Net 6

Net 4

Net 7

B

A

Figure 3.15: Tunneling past a firewall.

Unreachable” on the console and exits—but before doing that, forks, and retains the open
session to your inside machine. Similarly, a legitimate user who connects for the purpose of
reading mail takes the risk that some of those messages contain sensitive information, information
that can now be read by anyone monitoring the unprotected, untrustworthy outside network.

3.7 Tunnels Good and Bad

Although firewalls offer strong protection, tunnels (Figure 3.15) can be used to bypass them. As
with most technologies, tunnels can be used in good or bad ways.

Tunneling refers to the practice of encapsulating a message from one protocol in another,
and using the facilities of the second protocol to traverse some number of network hops. At the
destination point, the encapsulation is stripped off, and the original message is reinjected into the
network. In a sense, the packet burrows under the intervening network nodes, and never actually
sees them. There are many uses for such a facility, such as encrypting links and supporting mobile
hosts. More are described in [Bellovin, 1990].

80 Firewall Gateways

In some cases, a protocol may be encapsulated within itself. That is, IP may be buried within
either IP or some part of its own protocol suite, such as TCP or UDP. That is the situation we are
concerned about here. If a firewall permits user packets to be sent, a tunnel can be used to bypass
the firewall. The implications of this are profound.

Suppose that an internal user with a friend on the outside dislikes the firewall, and wishes to
bypass it. The two of them can construct (dig?) a tunnel between an inside host and an outside
host, thereby allowing the free flow of packets. This is far worse than a simple outgoing call, since
incoming calls are permitted as well.

33

Almost any sort of mechanism can be used to build a tunnel. At least one vendor of a
Point-to-Point Protocol (PPP) package [Simpson, 1992] supports TCP tunneling. There
are reports of telnet connections and even DNS messages being used to carry IP packets.

Almost any gateway that supports anything more powerful than mail relays can be abused in this
fashion (but see RFC 1149 [Waitzman, 1990]). Even pairs of FTP file transfer connections can
provide a bidirectional data path.

The extent of the damage done by a tunnel depends on how routing information is propagated.
As noted earlier, denial of routing information is almost as effective as full isolation. If the tunnel
does not leak your routes to the outside, the damage is less than might be feared at first glance. On
the other hand, routing filters are difficult to deploy in complex topologies; if the moles choose
to pass connectivity information, it is hard to block them. In the Internet, the backbone routers
do, in fact, perform filtering. Thus, if your internal networks are not administratively authorized
for connection to the Internet, routes to them will not propagate past that point. Even so, you are
exposed to anyone using the same network provider as the tunnel exit.

Often, such a situation can be detected. If you are using an application- or a circuit-level
gateway, and an external router knows a path to any internal network except the gateway’s,
something is leaking. This argues strongly that a gateway net should not be a subnet of an internal
net. Rather, it should have its own, separate, Class C address. Standard network management tools
may be able to hunt down the source, at which time standard people management tools should be
able to deal with the root cause. Unauthorized tunnels are, in the final analysis, a management
problem, not a technical one. If insiders will not accept the need for information security, firewalls
and gateways are likely to be futile. (Of course, it is worth asking if your protective measures are
too stringent. Certainly, that happens as well.) Once suspected or spotted, the gateway logging
tools should be able to pick out the tunnels.

Tunnels have their good side as well. When properly employed, they can be used to bypass the
limitations of a topology. For example, a tunnel could link two separate sites that are connected
only via a commercial network provider. Firewalls at each location would provide protection
from the outside, while the tunnel provides connectivity. If the tunnel traffic is encrypted (see
Section 13.4), the risks are low and the benefits high.

3.8 Joint Ventures

A principal disadvantage of firewalls is that they are “all or nothing” devices. Often, though, the
real world is more complex. Companies often wish to let support personnel from vendors connect

Joint Ventures 81

in order to diagnose problems. Or they may be engaged in limited joint venture agreements with
other companies. The two situations are quite similar, though less special-purpose setup can be
done for the former.

In a typical joint venture agreement, two or more companies agree to work together on some
specific project. Often, they are competitors in other fields. Naturally, they will require access to
shared computer resources. The problem is how to set this up in a secure fashion, with respect to
several criteria.

First, of course, the shared machines still require protection from outsiders. Indeed, that need
may be greater; often, the very existence of a partnership may be confidential. Thus, some sort of
firewall is mandatory.

Second, one must assume that the two partners do not fully trust each other. It thus may be
necessary to isolate the shared machines from the internal networks of the partners.

Third—and this is the catch—it is desirable that users have high-quality access to both the
shared machines and to their own company’s home machines.

Finally, of course, there is the question of whether or not the other party’s machines have been
compromised. For this reason, we focus on solutions that are workable even if both parties use
firewalls.

Much rides on the precise definition of “high quality.” Often, it means editing with one’s
standard editing tools, compiling the same way, etc. To the extent that will suffice, the problem
can be solved by using some sort of shared file system.

The ideal shared file system would be a connection-based TCP-level technology. The (possibly
encrypted) TCP circuit could be tunneled out one gateway and into another domain, where a user-
level server could operate in a chroot environment in the shared file system. We know of three
such network file systems: Peter Weinberger’s research UNIX Netb file system [Rago, 1990], the
Remote File System (RFS), and NFS Version 3. None is generally available. NFS Version 2 is the
only answer.

Since plain NFS is not sufficiently secure, and would not easily pass through a firewall in any
event, we have developed a proxy NFS scheme using TCP. Because it uses TCP, it is compatible
with our other proxy services. Because we wrote our own initialization functions, we were able
to provide strong authentication and optional encryption. Finally, we can both import and export
file systems, with a high degree of safety. Details are given in Chapter 4.

The Truffles project [Cook et al., 1993; Reiher et al., 1993; Cook and Crocker, 1993a, 1993b]
is another possible solution. It extends NFS to permit shared network directories. PEM-based
cryptography (see Section 13.5.3) is used for authentication and confidentiality. Both sides may
have copies of shared files; if an update conflict occurs, it is resolved manually.

Another solution to the joint venture problem uses an isolated subnet within one company’s
network. A firewall prevents any outgoing calls from it. Both companies use tunnels to connect
to machines on that network. Since these are incoming calls, they can pass through the firewall.
But no outgoing calls can, thus protecting the rest of the host company’s machines.

A third solution is not practical today in most environments, but may be in the future. It relies
on the use of so-called multilevel secure hosts and routers [Amoroso, 1994], i.e., machines that
support security labels for processes and network packets. The outside users tunnel through the
firewall to the shared machine. On that machine, their processes are given a special label, one that

82 Firewall Gateways

lacks a category present on all nonshared files on the machine and on the network interface. As a
result, they can neither read any of those files, nor establish any network connections. If the joint
venture involves more than one machine, then the network connecting the entire set of machines
can be labeled to permit communication; however, the router port feeding that network would not
be. Their messages would thus be confined to the designated area.

This solution, unlike the previous two, is suitable for casual visitors as well. Unfortunately,
very few networked multilevel secure systems are available today.

3.9 What Firewalls Can’t Do

“Thought-screens interfered so seriously with my methods of procedure,” the Palain-
ian explained, “that I was forced to develop a means of puncturing them without
upsetting their generators. The device is not generally known, you understand.”

Nadreck of Palain VII in Second Stage Lensman
—E.E. “DOC” SMITH

Firewalls are a powerful tool for network security. However, there are things they cannot do. It is
important to understand their limitations as well as their benefits.

Consider the usual network protocol layer cake. By its nature, a firewall is a very strong defense
against attacks at a lower level of the protocol stack. For example, hosts behind a circuit-level
relay are more or less immune to network-level attacks, such as IP address-spoofing. The forged
packets cannot reach them; the gateway will only pass particular TCP connections that have been
properly set up.

34

In contrast, firewalls provide almost no protection against problems with higher level
protocols, except by peeking. The best TCP relay in the world is no protection if the
code that uses it is buggy and insecure. You only get protection at this level if your

gateway refuses to connect you to certain services (i.e., X11), and even that decision is applying
application-layer knowledge to make that decision. (If you think of the standard protocol stack as
an onion rather than as a layer cake, peering up through the layers may be referred to as “looking
through a glass onion.”)

The most interesting question is what degree of protection a firewall can provide against
threats at its own level. The answer turns entirely on how carefully the gateway code—the
permissive part—is written. Thus, a mail gateway, which runs at the application level, must be
exceedingly careful to implement all of the mail protocols, and all of the other mail delivery
functions, absolutely correctly. To the extent that it is insecurely written—sendmail comes to
mind—it cannot serve as an adequate firewall component.

The problems, however, do not stop there. Any information that passes inside can trigger
problems, if a sensitive component should lay hands (or silicon) on it. We have seen files that,
when transferred over a communications link, effectively brought down that link, because of bit
pattern sensitivity in some network elements. Were that deliberate, we would label it a denial-of-
service attack.

What Firewalls Can’t Do 83

A recent sendmail bug2 provides a sterling example. Problems with certain mail header lines
could tickle bugs in delivery agents. Our firewall, and many others, paid almost no attention to
headers, believing that they were strictly a matter for mail readers and composers (known as user
agents in the e-mail biz). But that meant that the firewalls provided no protection against this
problem, because under certain circumstances, sendmail—which is run on many internal machines
here—does look at the headers, and certain entries made it do evil things.

Furthermore, even if we had implemented defenses against the known flaws, we would still be
vulnerable to next year’s. If someone invented a new header line that was implemented poorly—
and this particular problem did involve a nonstandard header—we would still be vulnerable. We
could have protected ourselves if and only if we had refused to pass anything but the minimal
subset of headers we did know of, and even then there might have been danger if some aspect of
processing a legitimate, syntactically correct header was implemented poorly. At best, a firewall
provides a convenient single place to apply a corrective filter.

2See CERT Advisories CA-93:15, October 21, 1993; CA-93:16, November 4, 1993; and CA-93:16a, January 7, 1994.

