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Abstract. Linear cryptanalysis against cryptographic primitives C is known to
rely on some LPCmax term. But most of studies so far are purely heuristic and only
provide an argument on why linear cryptanalysis works. Other works provide an
asymptotic bound without any clue where it is applicable for practical parameters.
So there is still some doubt for the designer on whether making a low LPmax term
is enough or not.
In this paper we formally demonstrate that the efficiency of linear cryptanalysis is
uniformly bounded, on average, by MAXELP(C) which is the maximum of the
expected value of the linear probability LPC . We further discuss on how pairwise
independent random primitives can provably resist to these attacks.
This result provides insurance for the designer that making a primitive pairwise
independent, or with a low MAXELP measure is enough to protect against linear
cryptanalysis. It also provides a quantitative evaluation tool for security evalua-
tion.

1 Introduction

Cryptographic primitives, such as symmetric encryption of message authentica-
tion codes, are cheap algorithms which are used in order to protect the confi-
dentiality or the authenticity of digital information. They are initially set up by
a secret key which is selected at random by authorized parties.

Some greedy schemes which use one key per operation, like the one-time
pad (which is due to Vernam [35]) or the Wegman-Carter authentication code [36]
provide a provable perfect security, but at an unreasonable cost in terms of key
distribution. Since Shannon [28] proved that perfect secrecy is not possible in
a cheaper way in an information theoretic sense, the only alternative is to base
security on the ability limits for complexity: a scheme is secure if no attacker
is able to mount an attack. Unfortunately, complexity lower bounds lead to too
hard problems like the P vs NP problem. So security of cryptographic primitives
seems to be bound to heuristic approaches.

Releasing the Data Encryption Standard (DES) [1] in the late 70’s moti-
vated researchers to work on cryptographic analysis. Real advances on the attack
strategies on block ciphers have been made in the early 90’s when Biham and
Shamir invented the differential cryptanalysis and applied it against DES [3,4].
They later prove that DES developers actually knew this technique and designed



DES in order to resist to it. Matsui later developed the linear cryptanalysis
which was more successful on DES [18,19]. This heuristic attack, which has
been implemented, can recover the key with a 243-known plaintext attack. Since
then, many researchers tried to generalize and to improve these attacks (see for
instance [9,10,11,12,13,16,17,21,30,31]).

The basic idea of linear cryptanalysis is to use the probability Pr[a · X =
b · C(X)] for two given constants a and b where · denotes the Boolean inner
product (i.e. the parity of the bitwise AND). This probability should be close
to 1/2 if C were perfect. Linear cryptanalysis exploits the distance between
this probability and 1/2 when it is large enough. Indeed we define LP(a, b) =
(2 Pr[a · X = b · C(X)] − 1)2. More precisely, linear cryptanalysis is an in-
cremental one-known plaintext attack where we simply measure the correlation
between the bits a ·X and b · C(X). The complexity of this attack was heuris-
tically proven to be Ω(1/LP(a, b)).

Inspired by the Nyberg [22] notion of resistance to differential cryptanal-
ysis, Chabaud and Vaudenay formalized the notion of strength against linear
cryptanalysis [5] by using LPmax defined to be the maximum of LP(a, b) over
all possible choices for a and b. However the link between the resistance and
this quantity was always heuristic, so that it was not formally proven that hav-
ing a successful attack and a very low LPmax measure is impossible. In [33],
Vaudenay proves an asymptotic bound, but it was only asymptotic and there was
no clue how high the parameter had to be so that the bound was realistic.

We solve this problem in this paper. We define MAXELP as the maxi-
mum, over all a and b, of the expected value, over the distribution of the random
key, of LP(a, b). We prove that the complexity of attacks are lower bounded
by a function of 1/MAXELP. This demonstrates that if one wish to design a
new cryptographic primitive which provably resists to linear cryptanalysis, it is
enough to make sure that MAXELP is low. We further show that such a low
MAXELP measure comes for free when we use pairwise independent random
functions [6].

1.1 Related Work

Several researchers concentrated on the positive side of cryptanalysis: security
arguments. Usually block cipher designers try to upper bound the probability
of the best differential or linear characteristics in ad-hoc ways. Some results
apply to multi-path characteristics like Nyberg-Knudsen [23,24], Aoki-Ohta [2],
Keliher et al. [14,15], Park et al. [25,26].
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1.2 Notations

In what follows we use the following notations:

Md: set of all sequences which consist of d elements of a setM,
AdvA: advantage of a distinguisher A (see Section 2.1),
1P : variable which is set to 1 if the predicate P is satisfied or to 0 otherwise,
LPc(a, b): linear probability of a function c with characteristic (a, b) (see Sec-

tion 2).
MAXELP(C): maximum expected linear probability of a random function C

(see Section 3.1).

We represent all random variables by capital letters. They are associated to
a probability distribution which will be clear from the context. For instance, X
may denote a random variable and Pr[X = x] may represent the probability
that it takes a given value x.

Random functions or permutations will be considered. They will be repre-
sented by random variables, e.g. F or C .

2 Linear Cryptanalysis

2.1 Full Linear Cryptanalysis

Linear cryptanalysis has been invented by Matsui [18,19] based on the notion of
statistical attacks which are due to Gilbert et al. [7,8,29]. Full linear cryptanal-
ysis against an encryption process Enc rely on some distinguished property for
an internal permutation C , following the idea of 1R, 2R or 3R attack of Biham
and Shamir [3,4]. More precisely, the encryption can be written

Enc = Cpost ◦ C ◦ Cpre

where Cpre and Cpost are some simple pre and post processing. It usually con-
sists of a few rounds of encryption for which we can mount a dedicated attack
as it will be discussed below. Note that the three components of the encryption
here are random permutations defined by random (sub)keys.

Then, we use a distinguisher between the random permutation C and a per-
fect random permutation C∗. The distinguisher is an algorithm which sends
queries to an oracle and eventually outputs either 0 or 1. We compute the prob-
ability p (resp. p∗) that the algorithm outputs 1 when the oracle implements
C (resp. C∗). The power of the distinguisher is quantified by the advantage
Adv = p−p∗. Good distinguishers are characterized by a high values of |Adv|.

In order to make the attack practical, the distinguisher needs to use a piece
of information on the inputs and outputs of C which can be computed from
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the plaintext and the ciphertext of Enc, and some small piece of information
on the secret key through the pre and post encryption. (This is what we meant
by “a few rounds of encryption for which we can mount a dedicated attack”.)
For linear cryptanalysis, we use linear distinguishers which relies on some sta-
tistical properties of the Boolean a · Cpre(X) ⊕ b · C−1

post(Enc(X)) for random
known plaintext X and we compute a · Cpre(X) and b · C−1

post(Enc(X)) from
X , Enc(X), and a piece of information h(K) on the key K .

As explained in Matsui [18,19], the attack proceeds as follows. We exhaus-
tively look for the value of h(K). For every candidate, we make statistics on
the Boolean information. We then sort all candidate according to the statistics.
The attack works if the statistical behavior for wrong candidates looks like the
statistical behavior of the perfect random permutation so that the distinguisher
can isolate the right candidate from the others.

Therefore, the linear cryptanalysis cannot work for Enc if linear distinguish-
ers have limited advantage against the internal permutation C . In the next sec-
tions we focus on linear distinguishers for C .

2.2 Linear Distinguishers

In this section we assume that M = {0, 1}m . The inner dot product a · b in
{0, 1}m is the parity of the bitwise AND of a and b.

We call “basic linear distinguisher” the distinguisher characterized by a pair
(a, b) ∈ M2 with b 6= 0 which is depicted on Fig. 1. We notice here that the
attack depends on the way it accepts or rejects based on the final counter u value.

Parameters: a complexity n, a characteristic (a, b), a set A
Oracle: a permutation c
1: initialize the counter value u to zero
2: for i from 1 to n do
3: pick a random X with a uniform distribution and query for c(X)
4: if X · a = c(X) · b, increment the counter u
5: end for
6: if u ∈ A, output 1, otherwise output 0

Fig. 1. Linear Distinguisher.

As pointed out by Chabaud and Vaudenay [5], linear cryptanalysis against c
is based on the quantity

LPc(a, b) =

(
2 Pr
X

[X · a = c(X) · b]− 1

)2

.
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(Here we use Matsui’s notations taken from [20].)

2.3 Heuristic Analysis of Linear Distinguishers

When one wish to mount an attack against a cipher by using linear cryptanal-
ysis techniques, one need to have a rough idea on how efficient it will be. For
this a heuristic analysis is enough. Originally, Matsui [18,19] provided such an
complexity estimate by using the Large Number Theorem. Indeed, if Ni is a
Boolean random variable which is set to 1 if and only if the counter u is incre-
mented in the distinguisher of Fig. 1, we notice that allNi’s are independent and
with the same distribution defined by z = Pr[Ni = 1]. The final value U of the
counter is a random variable which can be approximated to a random variable
with normal distribution of expected value µ = nz and standard deviation

√
n×

√
1

4
−
(
z − 1

2

)2

.

When z is close to 1
2 we can neglect terms of second order and approximate the

variance to σ =
√
n

2 . Hence we have

Pr[U ≤ x] ≈ 1

σ
√

2π

∫ x

−∞
e−

(t−nz)2
2σ2 dt.

As this is the case in all concrete examples, let us assume that C is a random
cipher such that z = PrX [X ·a = C(X)·b] = 1

2 +(−1)κεwhere ε is constant, κ
only depends onC and its parity is uniformly distributed. Note that LPC(a, b) =
4ε2 is constant. When we use a uniformly distributed cipher C ∗ we can just do
the same approximation with ε ≈ 0. Hence, considering A as a continuous set,
the advantage is

p− p∗ ≈ 1

σ
√

2π

∫

t∈A



e−

(t−n2−nε)
2

2σ2 + e−
(t−n2 +nε)

2

2σ2

2
− e−

(t−n2 )
2

2σ2


 dt

=
1

σ
√

2π

∫

t∈A
e−

(t−n2 )
2

2σ2

(
e−

α2

2 ch
t− n

2

σ
α− 1

)
dt

where
α =

√
n.LPC(a, b) = 2ε

√
n

from which we deduce that the advantage is optimal when A is the complement

of [n2 − τσ, n2 + τσ] where τ is such that ch(ατ) = e
α2

2 , i.e.

τ =
α

2
+

1

α
log

(
1 +

√
1− e−α2

)
.

5



Note that the u ∈ A test is equivalent to
∣∣u− n

2

∣∣ > τσ. Let us take the variable
x =

(
t− n

2

)
/σ. We obtain

p− p∗ ≈ 1√
2π

∫ +τ

−τ

(
e−

x2

2 − 1

2
e−

(x−α)2

2 − 1

2
e−

(x+α)2

2

)
dx

which is independent from n and ε. So with n = Θ
(
1/LPC(a, b)

)
we obtain a

constant maximal advantage. As an illustration, here are a few values for α, τ ,
and p− p∗.

α 2−4 2−3 2−2 1
2 1 2 4 23

τ 1.000 1.001 1.005 1.021 1.085 1.344 2.173 4.087
p− p∗ 0.000945 0.00377 0.0150 0.0581 0.207 0.566 0.936 0.9999

Note that when α = o(1) we have τ ≈ 1 and p − p∗ = O(α2). So, in this
situation, the best advantage is bounded by O

(
n.E

(
LPC(a, b)

))
.

2.4 Analysis of Linear Distinguishers

In this section we concentrate on a fixed permutation c on {0, 1}m . Here is our
main lemma.

Lemma 1. For the distinguisher of Fig. 1 we let pc be the probability that the
output is 1 given an oracle c. We let p0 be the probability that it outputs 1
when the counter is incremented with probability 1

2 in every iteration instead of
querying the oracle. We have

|pc − p0| ≤ 2
√
n.LPc(a, b).

Furthermore, when n increases but LPc(a, b) = o( 1
n), the maximum for |pc−p0|

is asymptotically equivalent to 1√
2π

√
n.LPc(a, b).

Proof. We first express the probability pc that the distinguisher accepts c. Let
Ni be the random variable defined as being 1 or 0 depending on whether or not
we have X · a = c(X) · b in the ith iteration. All Ni’s are independent and
with the same 0-or-1 distribution. Let z be the probability that Ni = 1. We also
define θ = 2z−1 =

√
LPc(a, b). We thus want to prove that |pc−p0| ≤ 2θ

√
n.

We have
pc =

∑

u∈A

(
n

u

)
zu(1− z)n−u

thus
pc − p0 =

∑

u∈A

(
n

u

)(
zu(1− z)n−u − 1

2n

)
.
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We would like to upper bound |pc − p0| over all possible A depending on z.
Since z and 1 − z play a symmetric role we assume w.l.o.g. that z ≥ 1

2 . For
z = 1

2 , the result is trivially true, so from now on we assume that z > 1
2 . Since

zu(1− z)n−u is an increasing function in terms of u we have

max
A
|pc − p0| =

n∑

u=k

(
n

u

)(
zu(1− z)n−u − 1

2n

)

where k is the least integer u such that the difference in parenthesis is non neg-
ative, i.e.

k = 1 +

⌊
n

log 1
2 − log(1− z)

log z − log(1− z)

⌋
.

Replacing u by n
2 in the parenthesis we obtain a negative difference. Hence k ≥

n+1
2 . Similarly, replacing u by n.z, the parenthesis turns out to be an increasing

function in terms of z which is 0 for z = 1
2 . Since z > 1

2 we obtain that
k ≤ dn.ze. Therefore n−1

2 ≤ k − 1 ≤ (n− 1)z + z.
If n = 1, we have k = 1 thus maxA |pc − p0| = z − 1

2 so the result holds.
If n = 2, we have k ≥ 3

2 thus k = 2 and

max
A
|pc − p0| =

(
z − 1

2

)(
z +

1

2

)
≤ 3

2

(
z − 1

2

)

so the result holds as well. We now concentrate on n ≥ 3.
We use the following identity taken from [27].1

n∑

u=k

(
n

u

)
zu(1− z)n−u = k

(
n

k

)∫ z

0
tk−1(1− t)n−kdt. (1)

We obtain

max
A
|pc − p0| = k

(
n

k

)∫ z

1
2

tk−1(1 − t)n−kdt (2)

thus

|pc − p0| ≤ k
(
n

k

)(
z − 1

2

)
max
t∈[0,1]

(
tk−1(1− t)n−k

)
.

The maximum is obtained for t = k−1
n−1 hence

|pc − p0| ≤ k
(
n

k

)(
z − 1

2

)
(k − 1)k−1(n− k)n−k

(n− 1)n−1
.

1 We can easily prove it by derivating it in terms of z.
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Let x = 2 k−1
n−1 − 1. We have k− 1 = n−1

2 (1 + x) and n− k = n−1
2 (1− x). We

have 0 ≤ x ≤ 1 and

|pc − p0| ≤ k
(
n

k

)(
z − 1

2

)
1

2n−1

(
(1 + x)1+x(1− x)1−x

)n−1
2
.

By using k
(n
k

)
= n

(
n−1
k−1

)
and the Stirling approximation we obtain that this

bound is asymptotically equal to θ
√
n√

2π
so the bound we want to prove is note so

loose.
We can easily prove that (1 + x)1+x(1− x)1−x ≤ 22x2

. Hence

|pc − p0| ≤ k
(
n

k

)(
z − 1

2

)
1

2n−1
2(n−1)x2

.

Since k − 1 ≤ (n− 1)z + z we have x ≤ θ + θ
n−1 + 1

n−1 = nθ+1
n−1 . Thus

|pc − p0| ≤ θ ×
[
k

(
n

k

)
1

2n

]
× 2

(nθ+1)2

n−1 .

For n = 3 we have k
(n
k

)
1

2n ≤ 3
4 thus

|pc − p0| ≤ 2θ
√
n× 1

2
√

3
× 3

4
× 2

(3θ+1)2

n−1 .

For θ ≤ 1
2
√

3
we obtain |pc − p0| ≤ 2θ

√
n and this remains true even for

θ > 1
2
√

3
. Let us now concentrate on n ≥ 4.

The
(n
k

)
term is upper bounded by

(n
r

)
with r =

⌈
n
2

⌉
. Furthermore we have

(
n

r

)
1

2n
≤

r∏

i=1

(
1− 1

2i

)

with equality when n is even. Then

log

((
n

r

)
1

2n

)
≤

r∑

i=1

log

(
1− 1

2i

)

≤ −1

2

r∑

i=1

1

i

≤ −1

2

∫ r+1

1

dt

t

≤ −1

2
log(r + 1)

≤ −1

2
log

n

2
+ 1
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therefore (
n

k

)
1

2n
≤
√

2

n+ 2
.

Now we have

k

(
n

k

)
1

2n
= n

(
n− 1

k − 1

)
1

2n
≤ n

2

√
2

n+ 1
≤
√
n

2
.

We deduce

|pc − p0| ≤ 2θ
√
n× 2

(nθ+1)2

n−1
− 3

2 .

When θ
√
n < 1

2 and n ≥ 4 we have (nθ+1)2

n−1 − 3
2 < 0 so we obtain |pc − p0| ≤

2θ
√
n. When θ

√
n ≥ 1

2 this also holds since the right hand side of the inequality
is greater than 1 and the left hand side is a difference between two probabilities.
This proves the upper bound.

By definition of k we have zk−1(1 − z)n−k ≥ 1
z2n , so we have tk−1(1 −

t)n−k ≥ 1
2n−1(1+θ)

for any t ∈ [ 1
2 , z]. From Equation (2) we deduce

max
A
|pc − p0| ≥

θ

1 + θ
×
[
k

(
n

k

)
1

2n

]
.

If θ = o( 1√
n

), we have k = n
2 +o(

√
n) thus

(n
k

) ∼ 2n+1√
2πn

from Stirling Formula.

Hence maxA |pc−p0| is asymptotically larger than θ
√
n√

2π
. Since it is also smaller,

this is indeed an equivalent. ut

3 Cipher Resistance to Linear Cryptanalysis

We now concentrate on a cipher C on {0, 1}m which is defined by a secret key
which is selected at random. We can thus consider C as a random permutation.
We compare it to an ideal cipher C∗ which is another random permutation with
a uniform distribution. We call it the perfect cipher.

3.1 The MAXELP Measure

We focus on the expected value E
(
LPC(a, b)

)
over the distribution of C and

we define
MAXELP(C) = max

b6=0,a
E
(
LPC(a, b)

)
.

There is a linear expression of this mean value in terms of the pairwise distribu-
tion as expressed by the following result.
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Lemma 2. Given a random permutation C over {0, 1}m , for any a and b ,we
have

E(LPC(a, b)) = 2−2m
∑
x1,x2
y1,y2

(−1)(x1⊕x2)·a+(y1⊕y2)·b Pr
[
(x1, x2)

C7→ (y1, y2)
]

= 1− 22−2m
∑

x1 6=x2
y1 6=y2

1x1·a=y1·b
x2·a6=y2·b

Pr
[
(x1, x2)

C7→ (y1, y2)
]
.

If C has a uniform distribution, a 6= 0 and b 6= 0, we have E(LPC(a, b)) =
1

2m−1 . Note that E(LPC(0, b)) = 0 for b 6= 0.

Proof. In order to prove it, we first notice that 2 PrX [X · a = C(X) · b]− 1 =

E
(
(−1)X·a+C(X)·b)

)
, and we express LPC(a, b) as

LPC(a, b) = E
(
(−1)(X1⊕X2)·a+(C(X1)⊕C(X2))·b

)

where X1 and X2 are independent uniformly distributed random variables. We
have

E(LPC(a, b)) = 2−2m
∑
x1,x2
y1,y2

(−1)(x1⊕x2)·a+(y1⊕y2)·b Pr
[
(x1, x2)

C7→ (y1, y2)
]
.

The contribution of terms for which x1 = x2 is equal to 2−m. Considering that
C is a permutation we can concentrate on x1 6= x2 and y1 6= y2. Then we split
the remaining sum into four groups depending on the two bits (x1 ·a⊕y1 ·b, x2 ·
a⊕ y2 · b). Let Σb1,b2 be the sum of all probabilities for which the two bits are
(b1, b2), x1 6= x2, and y1 6= y2. We have

E(LPC(a, b)) = 2−m + 2−2mΣ0,0 − 2−2mΣ0,1 − 2−2mΣ1,0 + 2−2mΣ1,1.

Due to symmetry we have Σ0,1 = Σ1,0. Furthermore, the sum of the four sums
is 2m(2m − 1). Hence

E(LPC(a, b)) = 2−m + 2−2m × 2m(2m − 1)− 4× 2−2mΣ0,1

which leads to our second result. Computations when C is uniformly distributed
are straightforward. ut

3.2 Resistance to Linear Distinguishers

Theorem 3. Let C be a cipher onM = {0, 1}m . For any linear distinguisher
(as depicted on Fig. 1) between C and the ideal cipher C ∗ we have

AdvFig. 1 ≤ 3 3

√
n.MAXELP(C) + 3 3

√
n

2m − 1
.
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Proof. We first notice that the advantage is zero when a = 0 or b = 0 so the
bound holds. Let us now assume that a 6= 0 and b 6= 0.

We now take a random permutation C with the corresponding Z and pC as
in Lemma 1. Let δ = E((2Z − 1)2). (Note that δ = E(LPC(a, b)).) When
|2Z − 1| ≤ α, Lemma 1 says that

|pC − p0| ≤ 2× α√n.
Since (2Z−1)2 is positive, the probability that |2Z−1| is greater than α is less
than δ

α2 . Hence

|p− p0| ≤ 2× α√n+
δ

α2

for any α.

Let us now fix α =
(

δ√
n

) 1
3 . We obtain |p− p0| ≤ 3× 3

√
δn.

We recall that δ = E
(
LPC(a, b)

)
. We finally note that E

(
LPC

∗
(a, b)

)
=

1
2m−1 from Lemma 2 so we can have

|p∗ − p0| ≤ 3 3

√
n

2m − 1
.

We finally use that |p− p∗| ≤ |p− p0|+ |p∗ − p0|. ut

3.3 Using Pairwise Independent Permutations

We recall the following definition.

Definition 4 (Carter-Wegman [6], Wegman-Carter [36]). LetM be a finite
sets. Let C be a random permutation over M. We say that C is a (perfect)
pairwise independent permutation if for any x1, x2, y1, y2 ∈M such that x1 6=
x2, and y1 6= y2, we have

Pr[C(x1) = y1, C(x2) = y2] =
1

#M(#M− 1)
.

Due to Lemma 2, if C is a pairwise independent permutation, we have

E(LPC(a, b)) = E(LPC
∗
(a, b))

for any a and b. Hence MAXELP(C) = 1
2m−1 . We deduce the following result.

Theorem 5. Let C be a cipher on M = {0, 1}m which is a perfect pairwise
independent permutation. For any linear distinguisher (as depicted on Fig. 1)
between C and the ideal cipher C∗ we have

AdvFig. 1 ≤ 6 3

√
n

2m − 1
.
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The notion of pairwise independent permutation extends as follows.

Definition 6. LetM be a finite sets. Let C be a random permutation overM.
LetM2 be the set of all functions fromM4 to the field R of real numbers. Let
d be a distance overM2. We define We define [C]2 ∈M2 by

[C]2(x1, x2, y1, y2) = Pr[C(x1) = y1, C(x2) = y2].

We similarly define [C∗]2 for a uniformly distributed random permutation C ∗.
We say that C is an ε-d-almost pairwise independent permutation if we have
d([C]2, [C∗]2) ≤ ε.
Several distances are quite significant in cryptography, including the metric in-
duced by the |||.|||∞ norm as defined in [32,34] by

|||f |||∞ = max
(x1,x2)∈M2

∑

(y1,y2)∈M2

|f(x1, x2, y1, y2)|

We can also use the L2 norm defined by

||f ||2 =
√ ∑

(x1,x2)∈M2

∑

(y1,y2)∈M2

f(x1, x2, y1, y2)2

We can thus conclude with the following result.

Theorem 7. Let C be a cipher onM = {0, 1}m which is either an ε-|||.|||∞-
almost pairwise independent permutation, or an ε-L2-almost pairwise indepen-
dent permutation. For any linear distinguisher (as depicted on Fig. 1) between
C and the ideal cipher C∗ of complexity n we have

AdvFig. 1 ≤ 3 3

√
n.ε+

n

2m − 1
+ 3 3

√
n

2m − 1
.

Proof. For a 6= 0 and b 6= 0, from Lemma 2 we have

E
(
LPC(a, b)

)
− 1

2m − 1
=

2−2m
∑
x1,x2
y1,y2

(−1)fa,b(x,y)
(
[C]2(x1, x2, y1, y2)− [C∗]2(x1, x2, y1, y2)

)

for some function fa,b(x, y). We can thus deduce

MAXELP(C) ≤ 1

2m − 1
+ |||[C]2 − [C∗]2|||∞

MAXELP(C) ≤ 1

2m − 1
+ ||[C]2 − [C∗]2||2.

We conclude by using Theorem 3. ut
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4 Discussion and Conclusion

We demonstrated that the advantage of any linear distinguisher is uniformly
bounded by a function of the number of samples nmultiplied by the MAXELP
measure. It is further itself bounded by the pairwise independence according to
several metrics. This shows that linear distinguishers cannot lead to significant
attacks unless n = Ω(1/MAXELP), which corresponds to heuristic arguments
that were given so far.

The practical consequence, for the designer of new cryptographic primitives,
is that we need to make sure that MAXELP is small for a given number of
rounds, either by using pairwise independence, or by any other construction.
Then, the designer only needs to add a few rounds which could play the role
of the pre and post processing in linear cryptanalysis. (These additional rounds
are usually referred to as the “safety margin”.) Our result formally demonstrates
that no linear distinguisher will manage to distinguish the core rounds from an
ideal primitive by linear cryptanalysis techniques.

We can also use our result for security evaluation purposes. If we can es-
timate the MAXELP measure of core rounds, we can have a fair idea on a
security upper limit.
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