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Abstract
In this paper we review some possible attacks to cryptosystems based
on the problem of multivariate quadratic equations (MQ). After intro-
ducing the MQ problem and sketching schemes to generate private and
public keys for these cryptosystems, we present well-known attacks based
attacks based on the Gröbner bases computation to solve multivariate
systems.

The MQ problem

The MQ problem consists in solving multivariate quadratic equations over
finite fields Fq . Let

f1, . . . , fm ∈ Fq[x1, . . . , xn]

be m multivariate quadratic polynomials, that is

fi(x1, . . . , xn) =
∑

1≤j≤k≤n

γi,j,kxjxk +
∑

1≤j≤n

βi,jxj + αi ,

with i = 1, . . . ,m and αi, βi,j, γi,j,k ∈ Fq, the problem is to find (a1, . . . , an) ∈
(Fq)

n which solves the system

A :


f1(x1, . . . , xn) = 0

...
fm(x1, . . . , xn) = 0

In the generic case, this problem is NP-complete.
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MQ cryptosystems

Cryptosystems based on the MQ problem have the same structure in the
generation of the keys.

Generation of the key

Private key. Its a triple
(S,A′, T ) ,

where S and T are two affine transformations over (Fq)
n and (Fq)

m respec-
tively, and A′ is a multivariate quadratic system generated by (f ′1, . . . , f

′
m) .

Public key. Its computed as composition function of the affine transforma-
tions

S : (Fq)
n → (Fq)

n and T : (Fq)
m → (Fq)

m ,

and the central equation

A : (Fq)
n → (Fq)

m ,

i.e., we have
A = T ◦ A′ ◦ S ,

which is a multivariate quadratic system. The main difference between MQ
schemes lies in their special construction of the central equations A′ . The
security of MQ cryptosystems lies in the fact that the system obtained by
the public key has to be apparently indistinguishable from a random system.

Encryption

Let X = (x1, . . . , xn) ∈ (Fq)
n be the plaintext. The encryption step is the

same for all MQ schemes: we evaluate the polynomials of the public key
A = (f1, . . . , fm) in X .

Decryption

Let Y ∈ (Fq)
m the ciphertext, the receiver can obtain the original message

X ∈ (Fq)
n because he knows the private key (S,A′, T ). Indeed S and T are

two bijections, which can be written as matrices. So the receiver is able to
compute S?1 and T ?1 inverting the matrices which represent them. Hence,
the difficulty lies in inverting A′, and the method to do this depends on the
used scheme.
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Some MQ cryptosystems

• The Imai-Matsumoto scheme C∗ [MI88];

• Two variants of C∗ , introduced by Patarin, C∗−− [PCG98] and HFE
[Pat96]. On these schemes are based two digital signature schemes:
Sflash [PCG01a] and Quartz [PCG01b];

• The Moh scheme TTM [Moh99].

Attacks

We analyse attacks to MQ cryptosistems based on algorithms to solve the
multivariate quadratic system generated by A.

XL algorithm

The XL algorithm, introduced by Courtois [CKPS00] as an alternative to
Gröbner bases computation to solve multivariate quadratic systems, is based
on the idea of relinearization of the problem.
Let A be the system generated by quadratic polynomials fi over the field Fq

, the idea is to multiply the polynomials for all monomials, until we obtain
polynomials of degree dmax at most, where dmax is a positive integer to give as
input, to build the Macaulays matrix of degree dmax and to perform Gaussian
elimination on this matrix.
Let tk be a monomial of degree k. We denote

tkf = {tkfi | i = 1, . . . ,m} .
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Algorithm 1: XL

Input: Let A be the system generated by quadratic polynomials
f1, . . . , fm, let > be a monomial ordering and let dmax be a
positive integer

Output: Solution of the system A
1. For i = 1, . . . ,m compute all products tkfi ∈ Idmax with

0 ≤ k ≤ d− 2.

2. Store polynomial coefficients in a matrix, in which the columns
represent monomial.

3. Perform Gaussian elimination on the matrix obtained at the
step 2.

4. Solve the univariate equation, corresponding to the last row of the
matrix obtained at the step 3.

5. Simplify the equations and repeat the process to find the values
of the other variables.

The monomial ordering which we use has to be such that in the Gaussian
elimination, a variable xi is the last eliminated. Its possible extend XL
algorithm to systems of any degree: its sufficient to replace dmax − 2 with
dmax − 1 .

F4 algorithm

Its an algorithm to compute Gröbner basis, due to Faugère [Fau99], which is
based on the choice of a suitable subset of the polynomials to reduce in the
Buchberger algorithm [Buc65].

Let T be the monomial set. A critical pair of two polynomials fi, fj ∈ Sn =
Fq[x1, . . . , xn] is an element of T 2 × Sn × T × Sn ,

pair(fi, fj) := (ti,j, ti, fi, tj, fj)

such that ti,j is the least common multiple between leading terms of fi and
fj . Therefore

ti,j = LT(tifi) = LT(tjfj) .

The degree of the critical pair pi,j = pair(fi, fj) is the degree of ti,j .
We define the two projections:

Left(pi,j) = (ti, fi) Right(pi,j) = (tj, fj) .
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We give a basic version of the algorithm, which uses the normal strategy: it
chooses, in the set of all critical pairs, the subset formed by minimal degree
critical pairs.

Algorithm 2: F4

Input: Let F = {f1, . . . , fm} be a set of generators for the ideal
I ⊂ Sn and let > be a monomial ordering

Output: A Gröbner basis G = {g1, . . . , gt} for I with respect the
ordering >, with F ⊂ G

G := F
F̃0 := F
d := 0
P := {Pair(fi, fj) | i, j = 1, . . . ,m, i 6= j}
while P 6= ∅ do

d := d + 1
Pd := {pi,j ∈ P | deg(pi,j) = min(deg(pr,s) | pr,s ∈ P )}
P := P − Pd

Ld := Left(Pd) ∪Right(Pd)
E := {t · f | (t, f) ∈ Ld}
Store the polynomials of E in the matrixM.
Perform Gaussian elimination to obtain M̃.
F̃d := {polynomials corresponding to the rows of M̃ such that

the leading terms are different from those ofM}
for h ∈ F̃d do

P := P ∪ {Pair(h, f) | f ∈ G}
G := G ∪ {h}

return G

We can describe XL algorithm as F4 algorithm, where the choice of critical
pairs that we consider is trivial: we choose all critical pairs. Differently from
the original description of XL, the idea is to begin with dmax = 1 and to
iterate the XL algorithm until we obtain the solution, increasing dmax of one
at every iteration. At each step, the system A is replaced by the system
obtained at the previous iterate.

Matrix-F5 algorithm

The idea of the F5 algorithm, introduced by Faugère [Fau02], is to construct
a submatrix Md,m of the Macaulays matrix Md,m incrementally in d, elim-
inating rows which are reduced to zero by the relations fifj = fjfi . Rows
are labelled and ordered, therefore that the row (t, fj) is linear combination
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of the previous rows if t is the leading term of an element in 〈f1, . . . , fm〉 .
To apply this criteria, we build the matrix M̃d,m, performing Gaussian elim-
ination on Md,m, and the only operation we can do on the i-th row is:

rowi ← c× rowi + c′ × rowi−j with 0 < j < i, c, c′ ∈ Fq and c 6= 0 .

Algorithm 3: Matrix-F5

Input: Let F = {f1, . . . , fm} be a set of homogeneous polynomials in
Sn with degree d1 ≤ d2 . . . ≤ dm ≤ dmax, with dmax fixed.

Output: Gdmax a dmax-Gröbner basis for 〈f1, . . . , fm〉.
for d from d1 to dmax do

Md,0 := matrix with 0 rows
for i from 1 to m do

build Md,i adding to Md,i−1 the rows:
if di = d then

add the row (1, fi)
else

for any row (e, fi) of M̃d−1,i such that xλ is the biggest
variable of e, add the n− λ + 1 rows
(xλe, fi), (xλ+1e, fi), . . . , (xne, fi), except rows such that
xλ+ke is a leading term in M̃d−di,i−1

perform Gaussian elimination (without pivots) on Md,m to
obtain M̃d,m

Give Gd =
{polynomials corresponding to the rows of M̃d,m, such that
the leading coefficients are different from those of Md,m}

return Gdmax :=
⋃

d≤dmax
Gd.

If f1, . . . , fm is a semi-regular sequence with degree of regularity Dreg

, there arent any reductions to zero during the F5 algorithm until degree
d = Dreg − 1 [Bar01].
The whole complexity is dominated by the cost of linear algebra on the
matrix of biggest degree, that is the matrix of degree Dreg if the sequence is
semi-regular. So its important to have an evaluation of Dreg to be able to
estimate the computational cost of F5.

Table of comparison

We give some results of the computational cost of F5, in the case the input
is a semi-regular sequence of m polynomials with n variables over the field
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F2 [M.B03]:

Number of equations Degree of regularity Size of Global
m(n) Dreg matrix complexity

∼ Nn ∼ D0n ∼ 2(D1/ log 2)n
exponential

N ≥ 1/4 0 < D0 ≤ 1/4 0 < D1 ≤ log 23

4√
33

n� m� n2 ∼ n2/8m ∼ n
8

log m/n
m/n

sub-

exponential

∼ Nn2 ∼ 1/8N ∼ n1/8N polynomial
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