
E-COMMERCE AUTHENTICATION
An Effective Countermeasures Design Model

Victor D. Sawma, Robert L. Probert
School of Information Technology and Engineering, University of Ottawa, 800 King Edward, Ottawa, Ontario, Canada

Email: vsawma@site.uottawa.ca, bob@site.uottawa.ca

Keywords: requirements analysis, electronic commerce, security, authentication, Secure Electronic Transactions (SET)

Abstract: Existing authentication models for e-commerce systems take into account satisfying legitimate user
requirements described in security standards. Yet, the process of introducing countermeasures to block
malicious user requirements is ad hoc and relies completely on the security designer expertise. This leads to
expensive implementation life cycles if defects related to the design model were discovered during the
system-testing phase. In this paper, we describe an authentication countermeasures design model for e-
commerce systems. This model includes effective countermeasures against all known malicious user
requirements and attacks. The described model is preventive in nature and can be used with other
authentication models or can be implemented as a stand-alone module for e-commerce systems.

1 INTRODUCTION

The use of e-commerce (EC) has grown
exponentially in recent years [Hobley, 2001] and
this growth requires a comparable growth in security
presence. The Common Criteria (CC) Redbook [CC,
1999] was one of the first attempts to standardize
security assessment requirements for Information
Technology (IT) systems. Security requirements, in
this context, can be divided into two subsets. The
first set includes legitimate user requirements and,
thus, must be satisfied. The second set is the set of
malicious user requirements. These requirements
might allow malicious users to breach system
security and must not be satisfied via proper security
countermeasures. This requires EC systems, a subset
of IT systems, to include proper countermeasures
against all types of known security attacks in order
to satisfy standard security evaluation requirements
described in [CC, 1999].

At the time of writing this paper, the process of
introducing countermeasures in an EC system design
phase relied primarily on security designer expertise.
Moreover, the countermeasure selection process is
ad hoc and, thus, a prescribed countermeasure at
system design time might prove inadequate during
the system-testing phase. This might result in
expensive rework for fixing defects related to the
design model. [Treese, 1998]

In this paper, we will describe a countermeasures
design model for authentication in e-commerce

systems. This model was the result of applying a
new methodology for deriving effective
countermeasures design models for e-commerce
systems (illustrated in Figure 1). For details, refer to
[Probert, 2003]

The contribution of our design model is outlined
as follows:
- It satisfies authentication security requirements

and blocks malicious user requirements at
system design time

- It is effective against all known security attacks
related to e-commerce authentication

- It can be directly integrated into high-level
design documents of e-commerce systems

- It can be used with security-aware technologies
such as SET or can be implemented as a stand-
alone module for EC systems

In addition, in this paper we provide an overview

of all known security attacks related to e-commerce
authentication.

The remainder of this paper is organized as

follows. In Section 2, we define authentication along
with a set of related security attacks. Section 3
describes each security attack, derives attack
enablers (properties of a security feature which are
useful for enabling a security attack), and prescribes
proper countermeasures. Section 4 shows the
derived countermeasures design model and discusses
its effectiveness. Section 5 is a case study on a SET-

integrated e-commerce system. Section 6 concludes
and provides a summary. Finally, we describe future
work in Section 7.

2 AUTHENTICATION AND
RELATED SECURITY ATTACKS

Authentication is the process of verifying the
identity of a user, process, or device, often as a
prerequisite to allowing access to resources in a
system. [NIST, 2001] The identity of a certain user
or process is challenged by the system and proper
steps must be taken to prove the claimed identity.

While lots of research described authentication
models that satisfy legitimate user requirements,
little has been done, at the system design level, to
prevent malicious user requirements from occurring.
In this paper, we will address this gap by describing
a countermeasures design model that incorporates all
proper countermeasures into the high-level system
design during the design phase.

Security attacks related to authentication were
identified from the literature and from personal
experience. In this research, we have projected the
identified security attacks onto different types of EC
authentication models described in [Wilson, 1997],
[Ford, 1997], [Agnew, 2000], [Bellare, 1998],
[Hawkins, 2000] and [Chang, 2002]. The result was
a set of six attacks applicable to authentication in the
domain of EC systems. These attacks are:
1. Sniffing attacks
2. ID spoofing attacks
3. Brute-force attacks
4. Dictionary attacks
5. Credential decryption attacks
6. Replay attacks

It is important to note that the main focus of this
paper is on attacks directly related to e-commerce
systems. Attacks related to network components,
third-party software components, and attacks against
the operating system that is supporting the e-
commerce system will not be discussed.

3 ATTACK ENABLERS AND
COUNTERMEASURES

This section provides a description of the above
authentication-related security attacks. For each
attack, enablers are then derived, and proper
countermeasures are prescribed.

3.1 Sniffing attacks

Sniffing attacks ([Herzog, 2001], [Viega, 2002],
[Nguyen, 2001], and [Schneier, 2000]) (also known
as the man-in-the-middle attacks) are the digital
analogues to phone tapping or eavesdropping. This

Phase 1: Select features and derive design
models

1. Select security features.
2. For each security feature, derive a

countermeasures design model:
2.1. Identify and abstract all attacks related to

the security feature.
2.2. For each security attack:

2.2.1. Derive all attack enablers.
2.2.2. For each attack enabler

2.2.2.1. Prescribe appropriate security
countermeasures.

2.2.2.2. For each countermeasure:
2.2.2.2.1. Analyze

countermeasure for
residual
 vulnerabilities.

2.2.2.2.2. Add corrective
measures to overcome
 vulnerabilities.

2.3. Derive the complete security-oriented
countermeasures design model.

2.3.1. Group all prescribed
countermeasures

2.3.2. Separate countermeasures into
action countermeasures and
 underlying countermeasures.

2.3.3. Divide countermeasures design
model into an action-box and
underlying planes.

2.3.3.1. Put action countermeasures
inside box [group into
 flowcharts]

2.3.3.2. Add underlying
countermeasures

2.4. Verify attack coverage via traceability
matrix.

Phase 2: Instantiate and Integrate the derived

models into an e-commerce system
design

3. Instantiate the Countermeasures Design
Models for Each Security Feature

4. Integrate the Instantiated Models into an
Existing Design

Figure 1. Authentication security attacks, attack enablers,

and countermeasures.

type of attacks captures information as it flows
between a client and a server. Usually, a malicious
user attempts to capture TCP/IP transmissions,
because they may contain information such as
usernames and passwords. A sniffing attack is often
classified as a man-in-the-middle attack because in
order to capture packets from a user, the machine
capturing packets must lie in between the two
systems that are communicating. The attack enabler
in this case is the process of sending data across
communication channels in clear text format.

Preventing access to the communication channel
is not a valid countermeasure in this case due to the
open nature of the Internet. By encrypting the
communication channel between the user/process
and the system, sniffing attacks can be defeated, i.e.,
sniffing cannot retrieve any useful information.

3.2 ID spoofing attacks

ID spoofing attacks ([Herzog, 2001], [Viega, 2002],
[Nguyen, 2001], [Schneier, 2000], and [Anderson,
2001]) occur when a malicious user or process
claims to be a different user or process. This attack
allows an intruder on the Internet to effectively
impersonate a local system's IP address. If other
local systems perform session authentication based
on the IP address of a connection, they will believe
incoming connections from the intruder actually
originate from a local "trusted host" and will not
require a password. The attack enabler is when
authentication relies on static information such as IP
addresses, host names, etc. This means trusting

certain hosts or processes through some pre-defined
static information. The system will authenticate the
user or process by checking the given static
information. In such a case, the attacker will attempt,
through complex attack tools, to “spoof” the system
by claiming that he is the trusted host or process.
Since no challenge is required in this case, the attack
has a great chance of succeeding. The
countermeasure for this attack is to use challenge-
based authentication which includes the use of
certificates, user/password combinations, etc.

If challenge-based authentication is inapplicable
for a certain specific case, then least privilege static
authentication must be taken into consideration.
Least privilege static authentication means giving
the least possible access privilege to the least
possible number of users, processes or hosts after
successful authentication.

3.3 Brute-force attacks

A Brute-force attack ([Herzog, 2001], [Viega, 2002],
and [Anderson, 2001]) is any form of attack against
a credential information file that attempts to find a
valid username and password in succession. This
type of attack is enabled by gaining access to the
credentials’ (user names and passwords) storage
medium. The attacker retrieves a copy of the
database system or system file preserving credential
information. If the credential information is
encrypted, a brute-force attack tool will try all
possible combinations of user names and passwords.
For each combination, the user name and password

Sniffing ID
Spoofing

Dictionary
Attacks

Credential
Decryption

Weak
Credential

Policy

Encrypted
Communication

Channels

Brute-force
attacks

Weak
Cryptography

Incorrect
Implementation
of Cryptography

Clear Text
Communication

Channels

Static
Authentication

Access to
credential
resources

Unlimited
Authentication

attempts

Non-static
authentication

Enforce file
access

permissions

Account
timeout /
Auto-lock

Strong
Credential

Policy
Strong

Cryptography

Cryptography
Implementation

Check

Authentication

Replay
attacks

Clear text
communication

channels

Encrypt and
time-stamp

authentication
information

(a)

(b)

(c)

Primary
Supplementary

Related model
Design
Implementation

Figure 2. (a) Authentication security attacks, (b) attack enablers, and (c) countermeasures.

are encrypted using the same encryption algorithm
that was originally used to encrypt the credential
information. Then, the encrypted credential data are
compared to the retrieved copy of original credential
data. Different types of encryption algorithms are
used and the attack proceeds until both credentials
(user name and password) match. The
countermeasure for this type of attacks is to enforce
access permissions through a strong access control
policy at the operating system level.

3.4 Dictionary attacks

A dictionary attack ([Viega, 2002], and [Anderson,
2001]) is the “smart” version of brute-force attacks
and is also executed using automated attack tools.
Yet, these tools are capable of working on web
interfaces without access to credential information
storage mediums. These tools only require the prior
knowledge of a valid system user name. Once given
a user name, the attack tool will try all possible
combinations of that user name with a huge database
(such as a dictionary) of possible passwords. This
attack has a high probability of succeeding since we,
as humans, tend to use passwords that are easy to
remember. The attack enabler is a “high” number of
allowed consecutive unsuccessful authentication
attempts. The countermeasure, in this case, is to
prevent the attack automation by setting an upper
limit to the allowed number of unsuccessful
authentication attempts. This can be done through an
account auto-lock or timeout procedure. In other
words, when a certain number of consecutive
unsuccessful authentication attempts is reached, the
system will automatically lock or disable the account
and will alarm the system administrator. Enabling or
unlocking the account can either be done by the user
or can be done automatically by the system after a
certain period of time.

A residual vulnerability for account auto-locks or
timeouts is when malicious users target them as
means for denial of service attacks ([Herzog, 2001],
[Viega, 2002], [Nguyen, 2001], and [Treese, 1998]).
The residual vulnerability is when these
countermeasures prevent legitimate users from using
the EC system because their account has been
disabled. This contradicts with an essential security
objective: availability [NIST, 2001] The
countermeasure for this residual vulnerability is to
allow legitimate users to unlock their account
through an easy-to-perform process that can be done
at any time. A discussion of a similar case is
provided later in our case study.

3.5 Replay attacks

A replay attack means that the malicious user
trapped the authentication sequence that was
transmitted by an authorized user through the
network, and then replayed the same sequence to the
server to get himself authenticated. [Anderson,
2001] The attack enabler in this case is, again,
access to the communication channel and data sent
in clear text format. The proper countermeasure is to
encrypt and time-stamp all sensitive data sent across
the communication channel. By doing so, this type
of attacks can be defeated.

3.6 Credential decryption attacks

Credential decryption is a basic supplementary
attack for sniffing attacks, brute-force attacks, and
dictionary attacks. A tool, whose aim is to break the
encryption algorithm that was used to encrypt
credential information, usually performs these
attacks. [SecuriTeam] Attack enablers for this attack
might be a weak credential policy, a weak
cryptographic algorithm, or an incorrect
implementation of the cryptographic algorithm. A
weak credential policy increases the probability of a
dictionary attack's success and its countermeasure is
to have a strong credential policy. Weak
cryptography, on the other hand, increases the
probability of a brute-force attack or a sniffing
attack to succeed and its countermeasure is to use a
strong cryptographic algorithm. The
countermeasure to an incorrect implementation of
cryptography is to check the cryptographic
algorithm after implementation and, thus, cannot be
done at design time.

Although not included at system design time,
“checking the cryptographic algorithm after
implementation” is now a system requirement. In
other words, the system design specification must
satisfy this countermeasure and provide guidelines
for implementation.

3.7 Side-Channel Attacks

In cryptographic devices such as smart cards, data
other than input data and output data may ‘leak out’
during cryptographic procedures. Computation
timing is one kind and so is power consumption.
This is simply because the smart card uses an
external power source. [Kocher] developed the side
channel attack in which an attacker infers stored
secret information in a cryptographic device by
using such leaked data. This type of attack, which
includes timing attack, Simple Power Analysis

(SPA) attack, and differential power analysis (DPA)
attack, render smart cards particularly vulnerable.

For the purpose of our discussion, smart cards
might be used for authentication purposes but only
at the client side. In our case, the card and the
external power source are both assumed to be secure
since the system client is responsible for protecting
them. The main emphasis of our research is on
securing the EC system itself; accordingly, we do
not treat this type of attack in this paper. Yet, it is
important that security designers be aware of the
existence of this type of attacks.

3.8 Summary

Figure 2 shows a summary of security attacks
related to authentication along with the attack
enablers and prescribed countermeasures.

Access to credential resources and weak
cryptography are two attack enablers for brute-force
attacks. The first provides access to the medium in
order to retrieve credential information and the
second allows for a low-cost security attack.

Weak credential policy, weak cryptography, and
incorrect implementation of cryptography are three
attack enablers for credential decryption attacks. A
weak credential policy allows system users to select
easy-to-guess passwords. Weak cryptography, on the
other hand, allows for a low-cost security attack.

An incorrect implementation of the
cryptographic algorithm can be seen as an
implementation defect and can only be checked after
the system is implemented. Yet, it is incorporated
into the system design as a security requirement.

Weak cryptography is a supplementary attack
enabler for sniffing attacks. Sniffing and replay
attacks both rely on a clear text communication
channel. [Herzog, 2001]

4 AUTHENTICATION
COUNTERMEASURES DESIGN
MODEL

After identifying the attacks, attack enablers, and
countermeasures for authentication, the prescribed
countermeasures are grouped and ordered in a
countermeasure design model.

Figure 3 shows the countermeasures design
model derived by our methodology [Probert, 2003]
for e-commerce authentication. This model is
detailed enough to be incorporated into high-level
design documents of EC systems. Furthermore, a
faithful implementation of the model will lead to an
e-commerce system that is resistant to all known
authentication security attacks.

The validation trace-ability matrix in Figure 4

Enforce file-access permissions
Least Privilege Trust Policy

Encrypted
Channel

Strong Password Policy
Strong Cryptography

User
Or

Process

User
Or

Process

Challenge
information

Valid
Challenge

Info

Yes

No

Valid
Challenge

Info

Yes

No

“n”
consecutive

failures

Yes

No

“n”
consecutive

failures

Yes

No

Lock
Account

X

Locked
Account?

No

Yes

Locked
Account?

No

Yes

Unlock
information Valid info? Yes

No

Valid info? Yes

No

Unlock
Account

Alarm
Administrator

Figure 3. The e-commerce authentication countermeasures design model

shows the security coverage and effectiveness of our
authentication countermeasures design model in
relation to the relevant authentication security
attacks. A “D” implies a countermeasure is related to
the system design. An “I” implies a countermeasure
is related to the system implementation. Yet, in both
cases, the countermeasure is introduced at system
design time.

Sniffing attacks, ID spoofing attacks, brute-force
attacks, dictionary attacks, weak cryptography, and
weak credential policy attacks required design
countermeasures. The only countermeasure to be
introduced after system implementation is
“cryptography implementation check.”

5 CASE STUDY: APPLYING THE
DERIVED AUTHENTICATION
COUNTERMEASURES DESIGN
MODEL

In this section, we will apply the derived
authentication countermeasures design model to an
e-commerce system application. The system we
describe is a SET-integrated e-commerce system
that allows its users to select products from a
catalog, place orders, submit orders, and pay online.

Secure Electronic Transactions (SET) is an open
technical standard for the commerce industry
developed by Visa and MasterCard, in conjunction
with leading computer vendors such as IBM, as a
way to facilitate secure payment card transactions
over the Internet. SET is an open standard for

protecting the privacy, and ensuring the authenticity,
of electronic transactions. [SET, 1997]

Our e-commerce system, whose collaboration
diagram is shown in Figure 5, is a virtual store
system that involves four parties: merchant EC
system, client, system administrator, and payment
gateway. In this case study, we will apply our
countermeasures design model to the merchant e-
commerce system only. Every party requiring a SET
implementation will have its own SET module. This
SET module is assumed to be compliant to the SET
specification of that entity.

5.1 Need for additional security

SET secures the transaction while in progress, but
does not take into consideration the security of data
on cardholder, merchant, and payment gateway
systems including protection from viruses, trojan
horse programs, and hackers. [SET, 1997]

Additional security is also required to address
possible SET conflicts. [Treese, 1998] This includes,
but is not limited to the following:
- Protecting card numbers from malicious use

when card numbers are revealed to the merchant
- Ensure proper client authentication since

cardholder certificates are optional
- Secure the transmission of transaction order

information
- Provide non-repudiation

The conflicts discussed above suggest that SET

security is indirectly dependent on the EC system
security. For example, if a malicious user
successfully penetrates the SET-integrated e-
commerce system by breaching the system

 AUTHENTICATION SECURITY ATTACK TYPE
 Snif-

fing
ID

Spoof.
Brute-
force

Dicti-
onary

Replay Cred.
Dec.

Encrypted
comm.

Channels

D

 D

Non-static
auth.

 D

Enforce file-
access

permissions

D

Account
timeout /
Auto-lock

D

Strong crypt. D
Strong

credential
policy

D

C
O
U
N
T
E
R
M
E
A
S
U
R
E
S
 Cryptography

impl. Check

I
D = design countermeasure, I = implementation countermeasure

Figure 4. Effectiveness of the authentication

countermeasures design model.

Client

SET Module /
Wallet

SET Certificate
(Optional)

Client Browser

System
Admin

Web Browser

Payment
Gateway

SET Module

Merchant

SET Module

SET Certificate

Store Module

Admin Module

EC Backend
DBMS

Order capture tokens

Receipts

Credit Card Numbers

User account info.

User trade history

. .

.

User marketing info.

1- User login/logout

2- Select catalog product(s)

3- View / Prepare order

4- Checkout

5- Payment request6- Payment request

7- Order token 8- Receipt

9- Admin login/logout
10- Manage store

11- Manage DBMS

Figure 5. Our SET-integrated e-commerce system.

authentication, this user might be able to capture
credit card numbers of legitimate system users
provided through SET. This contradicts an important
security objective for both SET and the e-commerce
system: confidentiality [NIST, 2001].

5.2 Applying authentication

In order to apply our countermeasures design model,
we must instantiate its features. This means that
every feature of the model must be specified for
system implementation.

A description of how we instantiated each
feature of our authentication countermeasures design
model for the SET-integrated e-commerce system is
provided below and shown in Figure 6.

5.2.1 Encrypted channel

The “encrypted channel” feature is instantiated to
SSL (Secure Sockets Layer) [Freier, 1996]. SSL is a
protocol developed by Netscape Communications
Corporation to provide security and privacy over the
Internet. This protocol supports server and client
authentication, is application independent, and
allows HTTP (HyperText Transfer Protocol) to be
layered on top of it transparently. Furthermore, SSL
is optimized for HTTP and is able to negotiate
encryption keys as well as authenticate the server
before the web browser exchanges data. The SSL
protocol maintains the security and integrity of the
transmission channel by using encryption,
authentication and message authentication codes. In
our case, SSL is selected because it provides an
encrypted channel of communication with no
requirements at the client side. The only client
requirement is to have an SSL enabled web browser.
The majority of existing web browsers, and all major
web browsers such as Internet Explorer™ , Netscape
Communicator™ , and Mozilla™ , have built-in SSL
support.

5.2.2 Challenge information

The “challenge information” feature is instantiated
to become “user name and password”. The reason
for our selection is to avoid client setup
complications inherited by requiring system users to
have a client certificate or a smart card. A user name
and a password with a strong password policy are
enough to provide the required security presence
from this feature.

5.2.3 Consecutive failures

The number of allowed consecutive failures before
locking a client user account is instantiated to 10

(ten) consecutive attempts. The reason for this
selection is to have a number that is enough for
legitimate users to fix normal mistakes such as
typing mistakes or having the keyboard CAPS
LOCK key on. On the other hand, this number is
also appropriate for preventing malicious users from
performing dictionary attacks.

5.2.4 Unlocking an account

In order to unlock a locked account, the e-commerce
system will send an e-mail message to the system
client user external mailbox once the account is
locked. This message will contain a URL with a
randomly generated hashed string related to the user
account. The system user will have to visit the
provided URL either by clicking on the link or by a
copy/paste action into the web browser. The URL
will point to a program script at the e-commerce
system side. The system will then check if the
provided link contains valid information for both the
user account and the hashed string. If so, the account
is unlocked and the user will be allowed to log into
the system again. Otherwise, the system will keep
the account locked and the system administrator is
alarmed.

The reason for having this process to unlock an
account is because legitimate users can perform it at
any time. Other unlocking processes, such as calling
customer service, might contradict with system
availability. An example is when a client user does
not call within customer service hours. In this case, a
legitimate user might be blocked from using the
system until a customer service representative is
available to unlock his account and, thus, the system
availability requirement is violated.

One can argue that sending an e-mail message to
unlock the account would rely on the security of the
user mailbox. In other words, a malicious user might
be able to unlock a locked account by breaking the
e-mail system security. In this case, the worst case is
that the malicious user will be able to have another
10 (ten) attempts before the system locks the
account again and alarm the system administrator.
Even in this worst-case scenario, the risk of having a
malicious user successfully breaking into the system
is very low. Furthermore, by having a strong
password policy, a lock/unlock feature, and an
administrator alarm, breaching system authentication
in this case is very hard and almost impossible.

5.2.5 Strong cryptography

The “strong cryptography” feature is instantiated to
use the RSA cryptosystem with 1024 bits keys. The
reason for selecting RSA is because it is a standard
for secure cryptography. Furthermore, several recent

standards specify a 1024-bit minimum for corporate
use. Less valuable information may well be
encrypted using a 768-bit key; as such a key is still
beyond the reach of all known key-breaking
algorithms. [Rivest, 1978]

5.2.6 Strong password policy

The “strong password policy” feature is instantiated
to obey the SANS standard [SANS] for strong
password policies. This includes but is not limited
to:
- Changing all system-level passwords (e.g., root,

NT admin, application administration accounts,
etc.) at least on a quarterly basis

- Changing all user-level passwords (e.g., email,
web, desktop computer, etc.) at least every six
months. The recommended change interval is
every four months

- Passwords must contain both upper and lower
case characters (e.g., a-z, A-Z)

- Passwords must have digits and punctuation
characters as well as letters e.g., 0-9,
!@#$%^&*()_+|~-=\`{}[]:";'<>?,./)

- Passwords must be at least eight alphanumeric
characters long

- Passwords are not a word in any language,
slang, dialect, jargon, etc.

6 SUMMARY

Satisfying security requirements is one of the most
important goals for e-commerce system security
designers. Yet, the process of introducing
countermeasures to EC system design models is ad
hoc in nature and relies primarily on the security

designer expertise. Thus, a countermeasure that is
prescribed at system design time might prove
inadequate during the system-testing phase and
might result in expensive fixing cycles. [Treese,
1998] In this paper, we described an authentication
countermeasures design model for e-commerce
systems. We also demonstrated its effectiveness and
provided a case study by applying it to a SET-
integrated e-commerce system.

As a result, we conclude that our authentication
countermeasures design model and methodology for
e-commerce systems:
- Capture and satisfy authentication security

requirements at system design time
- Block malicious user requirements at system

design time
- Can be directly incorporated into high-level

design documents of e-commerce systems
- Contain effective countermeasures against the

set of all known security attacks related to
authentication

- Provide countermeasures in a chronological
order. Thus, converting the model into a flow
chart for implementation purposes is
straightforward and can be easily done

- Provide guidelines for avoiding security pitfalls
during system implementation

- Can be used with security-aware technologies
such as CORBA™ or can be implemented as a
stand-alone module for EC systems

Furthermore, in this paper we provided an

overview of all known security attacks related to e-
commerce authentication

7 FUTURE WORK

Our future work includes deriving countermeasures
design models for other security properties and
processes such as authorization, access control,
transaction privacy, etc. The purpose of this
research, in general, is to be able to provide
complete e-commerce security design models that
satisfy all legitimate user requirements and block all
malicious user requirements. These models, at the
same time, must satisfy enterprise security standards
requirements.

REFERENCES

Agnew, G. 2000. “Cryptography, Data Security, and
Applications to E-commerce.” Electronic

Enforce file-access permissions
Least Privilege Trust Policy

HTTPS/SSL

SANS Password Policy
RSA (1024 bits keys)

User
Or

Process

User
Or

Process

User name
/ password

Valid User
name &

password

Yes

No

Valid User
name &

password

Yes

No

“15”
consecutive

failures

Yes

No

“15”
consecutive

failures

Yes

No

Lock
Account

X

Locked
Account?

No

Yes

Locked
Account?

No

Yes

Unlock URL Valid Hash
& account?

Yes

No

Valid Hash
& account?

Yes

No

Unlock
Account

Alarm
Administrator

Figure 6. The SET-integrated system authentication
countermeasure design model.

Commerce Technology Trends Challenges and
Opportunities. 69-85. IBM Press.

Anderson, R. 2001. “Security Engineering: A Guide
to Building Dependable Distributed Systems”,
John Wiley & Sons. ISBN: 0-471-38922-6

Bellare, M., Canetti, R. and Krawczyk, H. 1998. “A
Modular Approach to the Design and Analysis of
Authentication and Key Exchange Protocols.”

CC Common Criteria for Information Technology
Security Evaluation (1999). Retrieved October 9,
2001 from http://commoncriteria.org/

Chang, K. Lee, B. and Kim, T. 2002. “Open
Authentication Model Supporting Electronic
Commerce in Distributed Computing”,
Electronic Commerce Research, Vol. 2, 135-149,
Kluwer Academic Publishers

Ford W. and Baum, M. 1997 “Secure Electronic
Commerce”, Prentice Hall. ISBN 0-13-476342-4

Freier, A. Karlton, P., and Kocher, P. 1996 “The
SSL Protocol Version 3.0”. Retrieved from
http://wp.netscape.com/eng/ssl3/draft302.txt

Hawkins, S., Yen, D., and Chou, D. 2000.
“Awareness and Challenges of Internet
Security”, Information Management & Computer
Security, Vol. 8(3), MCB University Press.

Herzog, P. 2001. “The Open Source Security
Testing Methodology Manual”, version 1.5.
Retrieved from http://ideahamster.org/

Hobley, C. 2001. Just Numbers: Numbers on
Internet use, electronic commerce, IT and related
figures for the European Community. Retrieved
from http://europa.eu.int/

Kocher, C. (n.d.) “Cryptanalysis of Diffie-Hellman,
RSA, DSS, and Other Systems Using Timing
Attacks” Retrieved from
http://www.cryptography.com/

NIST, National Institute of Standards and
Technology, 2001. “Underlying Technical
Models for Information Technology Security”,
2001. Special Publication 800-33. Retrieved
from: http://csrc.nist.gov/publications/

Nguyen, H. 2001. “Testing Applications on the
Web”, 285-310, John Wiley & Sons.

SANS, “Password Policy”, Retrieved from
http://www.sans.org/newlook/resources/policies/

Probert, R., Sawma, V., 2003. E-Commerce
Security: A New Methodology for Deriving
Effective Countermeasures Design Models. To
appear in the proceedings of the 16th Annual
Federal Information Systems Security Educator’s
Association (FISSEA) conference. Website:
http://csrc.nist.gov/organizations/fissea/

Rivest, R., Shamir, A. and Adleman, L. 1978. "A
Method for Obtaining Digital Signatures and

Public-Key Cryptosystems," Communications of
the ACM, 21(2), 120-126.

Schneier, B. 2000. “Secrets and Lies: Digital
Security in a Networked World”, John Wiley &
Sons

SecuriTeam Security Tools Archive. (n.d.) Retrieved
from http://www.securiteam.com/

SET Secure Electronic Transaction Specification.
1997. Book 1: Business Description, Version 1.0.
Retrieved from http://www.setco.org/

Treese, G. and Stewart, L. 1998. Designing Systems
for Internet Commerce. Addison-Wesley.

Viega, J. and McGraw, G. 2002. “Building Secure
Software”, Addison-Wesley.

Wilson, S. 1997. “Certificates and trust in electronic
commerce”, Information Management &
Computer Security, Vol. 5(5), 175-181, MCB
University Press.

