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Foreword

These lecture notes were translated from the Finnish lecture notes for the TUT course ”Mate-
maattinen kryptologia”. The laborious bulk translation was taken care of by the students Jussi
Kangas (visiting from the University of Tampere) and Paul Coughlan (visiting from the Univer-
sity of Dublin, Trinity College). I want to thank the translation team for their effort.

The notes form the base text for the course ”MAT-52606 Mathematical Cryptology”. They
contain the central mathematical background needed for understanding modern data encryption
methods, and introduce applications in cryptography and various protocols.

Though the union of mathematics and cryptology is old, it really came to the fore in con-
nection with the powerful encrypting methods used during the Second World War and their
subsequent breaking. Being generally interesting, the story is told in several (partly) fictive
books meant for the general audience1

The area got a whole new speed in the 1970’s when the completely open, fast and strong
computerized cryptosystem DES went live, and the revolutionary public-key paradigm was
introduced.2 After this, development of cryptology and also the mathematics needed by it

1An example is Neal Stephenson’s splendid Cryptonomicon.
2Steven Levy’s book Crypto. Secrecy and Privacy in the New Code War gives a bit romanticized description of

the birth of public-key cryptography.
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—mostly certain fields of number theory and algebra—has been remarkably fast. It is no exag-
geration to say that the recent popularity of number theory and algebra is expressly because of
cryptology. The theory of computational complexity, which belongs to the field of theoretical
computer science, is often mentioned in this context, but in all fairness it must be said that it
really has no such big importance in cryptology. Indeed, suitable mathematical problems for
use in cryptography are those that have been studied by top mathematicians for so long that only
results that are extremely hard to prove still remain open. Breaking the encryption then requires
some huge theoretical breakthrough. Such problems can be found in abundance especially in
number theory and discrete algebra.

Results of number theory and algebra, and the related algorithms, are presented in their own
chapters, suitably divided into parts. Classifying problems of number theory and algebra into
computationally ”easy” and ”hard” is essential here. The former are needed in encrypting and
decrypting and also in setting up cryptosystems, the latter guarantee strength of encryption. The
fledgling quantum cryptography is briefly introduced together with its backgrounds.

Only few classical cryptosystem—in which also DES and the newer AES must be included
according to their description—are introduced, much more information about these can be
found e.g. in the references BAUER, MOLLIN and SALOMAA. The main concern here is in
modern public-key methods. This really is not an indication of the old-type systems not being
useful. Although the relevance of old classical methods vanished quite rapidly3, newer methods
of classical type are widely used and have a very important role in fast mass-encryption. Also
stream encrypting, so important in many applications, is not treated here. The time available for
a single course is limited. A whole different chapter would be correct implementation and use
of cryptosystems, which in a mathematics course such as this cannot really be touched upon.
Even very powerful cryptosystem can be made inefficient with bad implementation and careless
use.4

Keijo Ruohonen

3As an example of this it may be mentioned that the US Army field manual FM 34-40-2: Basic Cryptanalysis is
publicly available in the web. The book BAUER also contains material quite recently (and possibly still!) classified
as secret.

4A great book on this topic is Bruce Schneier’s Secrets and Lies. Digital Security in a Networked World.



Chapter 1

Introduction

”Cryptography involves one genius trying to
work out what another genius has done.”

(MAI JIA: Decoded)

Encryption of a message means the information in it is hidden so that anyone who’s reading
(or listening to) the message, can’t understand any of it unless he/she can break the encryption.
An original plain message is called plaintext and an encrypted one cryptotext. When encrypting
you need to have a so-called key, a usually quite complicated parameter that you can use to
change the encryption. If the encrypting procedure remains unchanged for a long time, the
probability of breaking the encryption will in practise increase substantially. Naturally different
users need to have their own keys, too.

The receiver of the message decrypts it, for which he/she needs to have his/her own key.
Both the encrypting key and decrypting key are very valuable for an eavesdropper, using the
encrypting key he/she can send encrypted fake messages and using the decrypting key he/she
can decrypt messages not meant to him/her. In symmetric cryptosystems both the encrypting
key and the decrypting key are usually the same.

An encrypting procedure can encrypt a continuous stream of symbols (stream encryption)
or divide it into blocks (block encryption). Sometimes in block encryption the sizes of blocks
can vary, but a certain maximum size of block must not be exceeded. However, usually blocks
are of the same size. In what follows we shall only examine block encryption, in which case it’s
sufficient to consider encrypting and decrypting of an arbitrary message block, and one arbitrary
message block may be considered as the plaintext and its encrypted version as the cryptotext.

An encryption procedure is symmetric, if the encrypting and decrypting keys are the same
or it’s easy to derive one from the other. In nonsymmetric encryption the decrypting key can’t
be derived from the encrypting key with any small amount of work. In that case the encrypting
key can be public while the decrypting key stays classified. This kind of encryption procedure
is known as public-key cryptography, correspondingly symmetric encrypting is called secret-

key cryptography. The problem with symmetric encrypting is the secret key distribution to all
parties, as keys must also be updated every now and then.

Symmetric encryption can be characterized as a so called cryptosystem which is an ordered
quintet (P,C,K,E,D), where

• P is the finite message space (plaintexts).

• C is the finite cryptotext space (cryptotexts).

• K is the finite key space.

• for every key k ∈ K there is an encrypting function ek ∈ E and a decrypting function dk ∈
D. E is called the encrypting function space which includes every possible encrypting
function and D is called the decrypting function space which includes every possible
decrypting function.

1



CHAPTER 1. INTRODUCTION 2

• dk(ek(w)) = w holds for every message (block) w and key k.

It would seem that an encrypting function must be injective, so that it won’t encrypt two different
plaintexts to the same cryptotext. Encryption can still be random, and an encrypting function
can encrypt the same plaintext to several different cryptotexts, so an encrypting function is not
actually a mathematical function. On the other hand, encrypting functions don’t always have
to be injective functions, if there’s a limited amount of plaintexts which correspond to the same
cryptotext and it’s easy to find the right one of them.
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Almost all widely used encryption procedures are based on results in number theory or
algebra (group theory, finite fields, commutative algebra). We shall introduce these theories as
we need them.



Chapter 2

NUMBER THEORY. PART 1

”So in order to remove the contingent and subjective elements from
cryptography there have been concerted efforts in recent years to

transform the field into a branch of mathematics, or at least a branch
of the exact sciences. In my view, this hope is misguided, because in

its essence cryptography is as much an art as a science.”

(N. KOBLITZ, 2010)

2.1 Divisibility. Factors. Primes

Certain concepts and results of number theory1 come up often in cryptology, even though the
procedure itself doesn’t have anything to do with number theory. The set of all integers is
denoted by Z. The set of nonnegative integers {0, 1, 2, . . .} is called the set of natural numbers

and it’s denoted by N.
Addition and multiplication of integers are familiar commutative and associative operations,

with identity elements 0 and 1 respectively. Also recall the distributive law x(y+ z) = xy+ xz
and the definitions of opposite number −x = (−1)x and subtraction x − y = x + (−1)y.
Division of integers means the following operation: When dividing an integer x (dividend) by
an integer y 6= 0 (divisor), x is to be given in the form

x = qy + r

where the integer r is called remainder and fulfills the condition 0 ≤ r < |y|. The integer q
is called quotient. Adding repeatedly −y or y to x we see that it’s possible to write x in the
desired form. If it’s possible to give x in the form

x = qy,

where q is an integer then it’s said that x is divisible by y or that y divides x or that y is a factor

of x or that x is a multiple of y, and this is denoted by y | x. The so-called trivial factors of an
integer x are ±1 and ±x. Possible other factors are nontrivial.

The following properties of divisibility are quite obvious:

(1) 0 is divisible by any integer, but divides only itself.

(2) 1 and −1 divide all integers, but are divisible only by themselves and by one another.

(3) If y | x and x 6= 0 then |y| ≤ |x|.

(4) If x | y and y | z then also x | z (in other words, divisibility is transitive).

1Number theory is basically just the theory of integers. There are however different extensions of number
theory. For example, we can include algebraic numbers—roots of polynomials with integral coefficients—which
leads us to algebraic number theory, very useful in cryptology, see e.g. KOBLITZ. On the other hand, number
theory can be studied using other mathematical formalisms. For example, analytic number theory studies integers
using procedures of mathematical analysis—integrals, series and so on—and this too is usable in cryptology, see
SHPARLINSKI.

3



CHAPTER 2. NUMBER THEORY. PART 1 4

(5) If x | y and x | z then also x | y ± z.

(6) If x | y and z is an integer then x | yz.

The result of division is unique since, if

x = q1y + r1 = q2y + r2,

where q1, q2, r1, r2 are integers and 0 ≤ r1, r2 < |y|, then y divides r1 − r2. From the fact that
|r1 − r2| < |y| it then follows that r1 = r2 and further that q1 = q2.

An integer that has only trivial factors is called indivisible. An indivisible integer is a prime

number or just a prime2, if it is ≥ 2. The first few primes are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, . . .

2 is the only even prime. One basic task is to test whether or not a natural number is a prime.
An integer, which is ≥ 2 and is not a prime, is called composite.

Theorem 2.1. If the absolute value of an integer is ≥ 2 then it has a prime factor.

Proof. If |x| ≥ 2 then a prime factor p of x can be found by the following algorithm:

1. Set z ← x.

2. If z is indivisible then p = |z|.

3. If z is divisible, we take its nontrivial factor u. Then set z ← u and move back to #2.

The procedure stops because in the third step |z| gets smaller and smaller, so ultimately z will
be a prime.

Corollary. The number of primes is infinite.

Proof. An infinite list of primes can be obtained by the following procedure, known already to
ancient Greeks. (It is not believed to produce all primes, however, but this is an open problem.)

1. Set P ← 2. Here P is a sequence variable.

2. If P = p1, . . . , pn then compute x = p1 · · · pn + 1. Notice that none of the primes in the
sequence P divide x (remember uniqueness of division).

3. By Theorem 2.1, x has a prime factor p, which is not any of the primes in the sequence
P . Find some such p, and set P ← P, p and return to #2.

The first few primes produced by the procedure are 3, 7, 43, 13, 53, 5, 6 221 671, . . .

Basic tasks concerning primes are for example the following:

(1) Compute the nth prime in order of magnitude.

(2) Compute the n first primes in order of magnitude.

(3) Compute the largest (resp. smallest) prime, which is ≤ x (resp. ≥ x).

(4) Compute primes, which are ≤ x.

2The set of all primes is sometimes denoted by P.
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Theorem 2.2. An integer x 6= 0 can be written as a product of primes (disregarding the sign),

this is the so-called factorization. In particular, it is agreed that the number 1 is the so-called

empty product, that is, a product which has no factors.

Proof. The algorithm below produces a sequence of primes, whose product is = ±x:

1. Set T ← NULL (the empty sequence).

2. If x = ±1 then we return T , and stop. Remember that the empty product is = 1.

3. If x 6= 1 then we find some prime factor p of x (Theorem 2.1). Now x = py. Set
T ← T , p and x← y and go back to #2.

This procedure stops because in the third step |x| gets smaller, and is eventually = 1 whereafter
we halt at #2. In particular, the empty sequence is returned if x = ±1.

Later we will show that this factorization is in fact unique when we disregard permutations
of factors, see Section 2.3. Naturally, one basic task is to find the factorization of a given integer.
This is computationally very hard, see Section 7.5.

2.2 Representations of Integers in Different Bases

The most common way to represent an integer is to use the familiar decimal representation or
in other words base-10 representation. Base-2 representation, called the binary representation,

is also often used and so is base-8 octal representation and base-16 hexadecimal representation.

The general base representation is given by

Theorem 2.3. If k ≥ 2 then every positive integer x can be represented uniquely in the form

x = ank
n + an−1k

n−1 + · · ·+ a1k + a0

where 0 ≤ a0, a1, . . . , an ≤ k − 1 and an > 0. This is called base-k representation of x, where

k is the base (number) or radix and n+ 1 is the length of the representation.

Proof. The representation, i.e. the sequence an, an−1, . . . , a0, is obtained by the following al-
gorithm:

1. Set K ← NULL (the empty sequence).

2. Divide x by the radix k:

x = qk + r (quotient q, remainder r).

Set K ← r,K and x← q.

3. If x = 0 then return K and quit. Else repeat #2.

x gets smaller and smaller in #2 with each iteration and so the procedure stops eventually in #3.
The base-k representation is unique because if

x = ank
n + an−1k

n−1 + · · ·+ a1k + a0 = bmk
m + bm−1k

m−1 + · · ·+ b1k + b0,
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where 0 ≤ a0, a1, . . . , an, b0, b1, . . . , bm ≤ k − 1 and an, bm > 0 and n ≥ m, then we first
conclude that n = m. Indeed, if n > m then we also have

bmk
m + bm−1k

m−1 + · · ·+ b1k + b0 ≤ (k − 1)km + (k − 1)km−1 + · · ·+ (k − 1)k + k − 1

= km+1 − 1

< km+1 ≤ kn ≤ ank
n + an−1k

n−1 + · · ·+ a1k + a0,

which is a contradiction. So n = m, that is, the length of the representation must be unique.
Similarly we can conclude that an = bn, because if an > bn then

bnk
n + bn−1k

n−1 + · · ·+ b1k + b0 ≤ (an − 1)kn + (k − 1)kn−1 + · · ·+ (k − 1)k + k − 1

= ank
n − 1

< ank
n + an−1k

n−1 + · · ·+ a1k + a0,

which is also a contradiction. Again in the same way we can conclude that an−1 = bn−1 and so
on.

Representation of the number 0 is basically an empty sequence in every base. This of course
creates problems and so we agree on the convention that the representation of 0 is 0. Conversion
between base representations, the so-called change of base or radix transformation, is a basic
task concerning integers.

Theorem 2.4. The length of the base-k representation of a positive integer x is

⌊logk x⌋ + 1 = ⌈logk(x+ 1)⌉

where logk is the base-k logarithm.3

Proof. If the base-k representation of x is x = ank
n+an−1k

n−1+ · · ·+a1k+a0 then its length
is s = n+ 1. It is apparent that x ≥ kn, and on the other hand that

x ≤ (k − 1)kn + (k − 1)kn−1 + · · ·+ (k − 1)k + k − 1 = kn+1 − 1 < kn+1.

Since ks−1 ≤ x < ks, then s− 1 ≤ logk x < s and so

s = ⌊logk x⌋ + 1.

Then again ks−1 < x+ 1 ≤ ks, whence s− 1 < logk(x+ 1) ≤ s and so

s = ⌈logk(x+ 1)⌉.

2.3 Greatest Common Divisor and Least Common Multiple

The greatest common divisor (g.c.d.) of the integers x and y is the largest integer d which divides
both integers, denoted

d = gcd(x, y).

The g.c.d. exists if at least one of the integers x and y is 6= 0. Note that the g.c.d. is positive.
(It’s often agreed, however, that gcd(0, 0) = 0.) If gcd(x, y) = 1 then we say that x and y have

no common divisors or that they are coprime.

3Remember that change of base of logarithms is done by the formula logk x = lnx/ ln k. Here ⌊x⌋ denotes the
so-called floor of x, i.e. the largest integer which is ≤ x. Correspondingly ⌈x⌉ denotes the so-called ceiling of x,
i.e. the smallest integer which is ≥ x. These floor and ceiling functions crop up all over number theory!
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Theorem 2.5. (Bézout’s theorem) The g.c.d. d of the integers x and y, at least one of which is

6= 0, can be written in the form

d = c1x+ c2y (the so-called Bézout form)

where c1 and c2 are integers, the so-called Bézout coefficients. Also, if x, y 6= 0, then we may

assume that |c1| ≤ |y| and |c2| ≤ |x|.

Proof. Bézout’s form and the g.c.d. d are produced by the following so-called (Generalized)

Euclidean algorithm. Here we may assume that 0 ≤ x ≤ y, without loss of generality. Denote
GCD(x, y) = (d, c1, c2).

(Generalized) Euclidean algorithm:

1. If x = 0 then we come out of the algorithm with GCD(x, y) = (y, 0, 1) and quit.

2. If x > 0 then first we divide y with x: y = qx + r, where 0 ≤ r < x. Next we find
GCD(r, x) = (d, e1, e2). Now

d = e1r + e2x = e1(y − qx) + e2x = (e2 − e1q)x+ e1y.

We end the algorithm by returning GCD(x, y) = (d, e2 − e1q, e1) and quit.

Since r = y − qx, gcd(x, y) divides r and hence gcd(x, y) ≤ gcd(x, r). Similarly gcd(x, r)
divides y and thus gcd(x, r) ≤ gcd(x, y), so gcd(x, r) = gcd(x, y). Hence #2 produces the cor-
rect result. The recursion ends after a finite number of iterations because min(r, x) < min(x, y),
and so every time we call GCD (iterate) the minimum value gets smaller and is eventually = 0.

If x, y 6= 0 then apparently right before stopping in #1 in the recursion we have y = qx and
r = 0 and d = x, whence at that point c1 = 1 ≤ y and c2 = 0 ≤ x. On the other hand, every
time when in #2 we have y = qx + r and d = e1r + e2x, where |e1| ≤ x and |e2| ≤ r, then
e1 and e2 have opposite signs and thus |e2 − e1q| = |e2| + |e1|q ≤ r + xq = y. So, the new
coefficients c1 = e2 − e2q and c2 = e1 will then also satisfy the claimed conditions.

Example. As a simple example, let’s compute gcd(15, 42) and its Bézout form. We use inden-

tation to indicate recursion level:

gcd(15, 42) =?

42 = 2 · 15 + 12 , q = 2

gcd(12, 15) =?

15 = 1 · 12 + 3 , q = 1

gcd(3, 12) =?

12 = 4 · 3 + 0 , q = 4

gcd(0, 3) =?

GCD(0, 3) = (3, 0, 1)
GCD(3, 12) = (3, 1− 0 · 4, 0) = (3, 1, 0)

GCD(12, 15) = (3, 0− 1 · 1, 1) = (3,−1, 1)
GCD(15, 42) = (3, 1− (−1) · 2,−1) = (3, 3,−1)

So, the g.c.d. is 3 and the Bézout form is 3 = 3 · 15 + (−1) · 42.

You can get the next result straight from Bézout’s theorem:

Corollary. If the integer z divides the integers x and y, at least one of which is 6= 0, then it also

divides gcd(x, y).
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NB. Due to this corollary gcd(x, y) is often defined as the common divisor of x and y, which

is divisible by every common divisor of these integers. This leads to the same concept of g.c.d.

Such a definition is also suitable for the situation x = y = 0 and gives the formula gcd(0, 0) = 0

(mentioned above).

Another corollary of Bézout’s theorem is uniqueness of factorization of integers, see Theo-
rem 2.2.

Theorem 2.6. Factorization of an integer x 6= 0 is unique.

Proof. Assume the contrary: There exists an integer x, which has (at least) two different fac-
torizations. We may assume that x is positive and that x is the smallest positive integer that has
this property. Thus x ≥ 2, since the only factorization of 1 is the empty product. Now we can
write x as a product of primes with respect to two different factorizations:

x = pi11 p
i2
2 · · · p

in
n = qj11 qj22 · · · q

jm
m

where p1, . . . , pn are different primes and likewise q1, . . . , qm are different primes and i1, . . . , in
as well as j1, . . . , jm are positive integers. In fact, we also know that the primes p1, . . . , pn
differ from the primes q1, . . . , qm. If, for example, p1 = q1, then the integer x/p1 would have
two different factorizations and x/p1 < x, a contradiction. So we know that gcd(p1, q1) = 1, in
Bézout’s form

1 = c1p1 + c2q1.

But it follows from this that

qj1−1
1 qj22 · · · q

jm
m = (c1p1 + c2q1)q

j1−1
1 qj22 · · · q

jm
m = c1p1q

j1−1
1 qj22 · · · q

jm
m + c2x,

from which we see further that p1 divides the product qj1−1
1 qj22 · · · q

jm
m , in other words,

qj1−1
1 qj22 · · · q

jm
m = p1z.

Because z and qj1−1
1 qj22 · · · q

jm
m have unique factorizations (they are both smaller than x), it

follows from this that p1 is one of the primes q1, . . . , qm which is a contradiction. So the contrary
is false and factorization is unique.

When giving a rational number in the form x/y, it is usually assumed that gcd(x, y) = 1, in
other words, that the number is with the smallest terms. This is very important when calculating
with large numbers, to prevent numerators and denominators from growing too large. Such
reduced form is naturally obtained by dividing x and y by gcd(x, y), so in long calculations the
g.c.d. must be determined repeatedly.

It’s important to notice that the bounds of the coefficients mentioned in Bézout’s theorem,
i.e. |c1| ≤ |y| and |c2| ≤ |x|, are valid in every step of the Euclidean algorithm. This way
intermediate results won’t get too large. On the other hand, the Euclidean algorithm does not
even take too many steps:

Theorem 2.7. When computing gcd(x, y), where 0 ≤ x ≤ y, the Euclidean algorithm needs no

more than ⌊2 log2 y + 1⌋ divisions.

Proof. If x = 0 (no divisions) or x = y (one division) there’s nothing to prove, so we can
concentrate on the case 0 < x < y. The proof is based on the following simple observation
concerning division: Every time we divide integers a and b, where 0 < a < b, and write
b = qa+ r (quotient q, remainder r), we have

b = qa+ r ≥ a+ r > 2r.
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When computing gcd(x, y) using the Euclidean algorithm we get a sequence

y = q1x+ r1 (0 < r1 < x),

x = q2r1 + r2 (0 < r2 < r1),

r1 = q3r2 + r3 (0 < r3 < r2),
...

rl−2 = qlrl−1 + rl (0 < rl < rl−1),

rl−1 = ql+1rl

with l + 1 divisions. If l = 2k + 1 is odd then by our observation above

1 ≤ rl < 2−1rl−2 < 2−2rl−4 < · · · < 2−irl−2i < · · · < 2−kr1 < 2−k−1y = 2−
l+1

2 y < 2−
l
2y,

and if l = 2k is even then

1 ≤ rl < 2−1rl−2 < 2−2rl−4 < · · · < 2−k+1r2 < 2−kx < 2−
l
2y.

So, in any case y > 2
l
2 which means that (taking base-2 logarithms) 2 log2 y > l, and the result

follows.

Thus we see that applying the Euclidean algorithm is not very laborious, ⌊2 log2 y + 1⌋ is
proportional to the length of the binary representation of y (Theorem 2.4). If you want to know
more about the computational efficiency of the Euclidean algorithm, see e.g. KNUTH.

The greatest common divisor of more than two integers x1, x2, . . . , xN

d = gcd(x1, x2, . . . , xN)

is defined in same way as for two integers, so it’s the largest integer which divides all the
numbers in the sequence x1, x2, . . . , xN . Again we require that at least one of the numbers is
6= 0. We may agree that xN 6= 0. This kind of g.c.d. can be computed by applying the Euclidean
algorithm N − 1 times, since

Theorem 2.8. gcd(x1, x2, . . . , xN) = gcd(x1, gcd(x2, . . . , xN))

= gcd(x1, gcd(x2, gcd(x3, . . . , gcd(xN−1, xN) · · · )))

and furthermore the g.c.d. can be written in Bézout’s form

gcd(x1, x2, . . . , xN ) = c1x1 + c2x2 + · · ·+ cNxN .

Proof. For a more concise notation we denote

d = gcd(x1, x2, . . . , xN ) and d′ = gcd(x1, gcd(x2, gcd(x3, . . . , gcd(xN−1, xN ) · · · ))).

By Bézout’s theorem
gcd(xN−1, xN) = e1xN−1 + e2xN

and further

gcd(xN−2, gcd(xN−1, xN )) = e3xN−2 + e4 gcd(xN−1, xN) = e3xN−2 + e4e1xN−1 + e4e2xN

and so on, so eventually we see that for some integers c1, . . . , cN

d′ = c1x1 + c2x2 + · · ·+ cNxN .
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From here it follows, that d | d′ and so d ≤ d′. On the other hand, d′ divides both x1 and the
g.c.d.

gcd(x2, gcd(x3, . . . , gcd(xN−1, xN ) · · · )).

The g.c.d. above divides both x2 and gcd(x3, . . . , gcd(xN−1, xN ) · · · ). Continuing in this way
we see that d′ divides each number x1, x2, . . . , xN and therefore d′ ≤ d. We can thus conclude
that d = d′.

If the numbers x1, x2, . . . , xN are 6= 0 then they have factorizations

xi = ±p
ji1
1 pji22 · · · p

jiM
M (i = 1, 2, . . . , N),

where we agree that jik = 0 whenever the prime pk is not a factor of xi. It then becomes
apparent that

gcd(x1, x2, . . . , xN ) = p
min(j11,...,jN1)
1 p

min(j12,...,jN2)
2 · · · pmin(j1M ,...,jNM )

M .

The trouble when using this result is that factorizations are not generally known and finding
them can be very laborious.

The least common multiple (l.c.m.) of the integers x1, x2, . . . , xN is the smallest positive
integer that is divisible by every number x1, x2, . . . , xN , we denote it by lcm(x1, x2, . . . , xN ).
For the l.c.m. to exist we must have x1, x2, . . . , xN 6= 0. Remembering the factorizations above,
we can see that

lcm(x1, x2, . . . , xN ) = p
max(j11,...,jN1)
1 p

max(j12,...,jN2)
2 · · · pmax(j1M ,...,jNM )

M .

The l.c.m. is also obtained recursively using the Euclidean algorithm, without knowledge of
factors, since

Theorem 2.9. lcm(x1, x2, . . . , xN) = lcm(x1, lcm(x2, . . . , xN))

= lcm(x1, lcm(x2, lcm(x3, . . . , lcm(xN−1, xN ) · · · )))

and

lcm(x1, x2) =
|x1x2|

gcd(x1, x2)
.

Proof. The first formula of the theorem follows from the factorization formula, since the expo-
nent of pk in lcm(x1, lcm(x2, . . . , xN)) is max(j1k,max(j2k, . . . , jNk)) and on the other hand

max(j1k,max(j2k, . . . , jNk)) = max(j1k, j2k, . . . , jNk) (k = 1, 2, . . . ,M).

The second formula follows from the factorization formula as well, since the exponent of the
prime factor pk in x1x2 is j1k + j2k and on the other hand

max(j1k, j2k) = j1k + j2k −min(j1k, j2k).

NB. We see from the factorization formula that the g.c.d. of more than two numbers is also the

(positive) common divisor of these numbers that is divisible by every other common divisor and

this property is often used as the definition. Correspondingly we can see that the l.c.m. is the

(positive) common multiple of these numbers that divides every other common multiple of the

numbers and this property is also often used as its definition. By these alternative definitions it

is usually agreed that gcd(0, 0, . . . , 0) = 0 and lcm(0, x2, . . . , xN) = 0.
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2.4 Congruence Calculus or Modular Arithmetic

The idea of congruence calculus is that you compute only with the remainders of integers using
a fixed divisor (or several of them), the so-called modulus m ≥ 1. Congruence calculus is also
often called modular arithmetic.

We say that integers x and y are congruent modulo m, denoted

x ≡ y mod m (a so-called congruence),

if x−y is divisible by m. This might be read as ”x is congruent to y modulo m” or just ”x equals
y modulo m”. Then again, if x − y is indivisible by m, it’s said that x and y are incongruent

modulo m and this is denoted by x 6≡ y mod m. Note that x ≡ 0 mod m exactly when x is
divisible by m, and that every number is congruent to every other number modulo 1.

The congruence x ≡ y mod m says that when dividing x and y by m the remainder is the
same, or in other words, x and y belong to the same residue class modulo m. Every integer
always belongs to one residue class modulo m and only in one. There are exactly m residue
classes modulo m, as there are m different remainders.

Obviously x is always congruent to itself modulo m and if x ≡ y mod m, then also y ≡ x
mod m and −x ≡ −y mod m. Furthermore, if x ≡ y mod m and y ≡ z mod m then also
x ≡ z mod m, in this case we may write

x ≡ y ≡ z mod m.

(Congruence of integers is thus an example of an equivalence relation.) For basic computing of
congruences we have the rules

Theorem 2.10. (i) If x ≡ y mod m and u ≡ v mod m then x+ u ≡ y + v mod m.

(ii) If c is an integer and x ≡ y mod m then cx ≡ cy mod m.

(iii) If x ≡ y mod m and u ≡ v mod m then xu ≡ yv mod m.

(iv) If x ≡ y mod m and n is a positive integer then xn ≡ yn mod m.

Proof. (i) If x− y = km and u− v = lm then (x+ u)− (y + v) = (k + l)m.
(ii) If x− y = km then cx− cy = ckm.
(iii) This follows from (ii), since xu ≡ yu ≡ yv mod m.
(iv) This follows from (iii).

You can compute with congruences pretty much in the same way as with normal equations,
except that division and reduction are not generally allowed (we get back to this soon).

If you think about remainders, in calculations you can use any integer that has the same
remainder when divided by the modulus, results will still be the same, in other words, the result
is independent of the choice of the representative of the residue class. For simplicity certain sets
of representatives, so-called residue systems, are however often used:

• positive residue system 0, 1, . . . , m− 1 (that is, the usual remainders);

• symmetric residue system −(m− 1)/2, . . . , 0, 1, . . . , (m− 1)/2 for odd m;

• symmetric residue system −(m− 2)/2, . . . , 0, 1, . . . , m/2 for even m;

• negative residue system −(m− 1), . . . ,−1, 0.
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The positive residue system is the usual choice. In general, any set of m integers, which are not
congruent modulo m, form a residue system modulo m. From now on the residue of a number
x modulo m in the positive residue system—in other words, the remainder of x when divided
by the module m—is denoted by (x,mod m).

Division (or reduction) of each side of a congruence is not generally allowed and can only
be done under the following circumstances.

Theorem 2.11. xu ≡ yu mod m is the same as x ≡ y mod m/ gcd(u,m), so you can divide

an integer out of a congruence if you divide the modulus by the g.c.d. of the modulus and the

integer that’s being divided out. (Note that if m is a factor of u then m/ gcd(u,m) = 1.)

Proof. We first start from the assumption xu ≡ yu mod m or (x−y)u = km. Then we denote
d = gcd(u,m), u = du′ and m = dm′. We have that gcd(u′, m′) = 1 and m′ = m/ gcd(u,m)

and further that (x− y)u′ = km′. By Bézout’s theorem 1 = c1u
′ + c2m

′, from which it follows
that

x− y = c1u
′(x− y) + c2m

′(x− y) = (c1k + c2(x− y))m′,

or in other words that x ≡ y mod m/ gcd(u,m), as claimed.
Next we start from the assumption that x ≡ y mod m/d or that x− y = km/d. From this

it follows that (x− y)d = km and furthermore (x− y)u = u′km. So xu ≡ yu mod m.

In particular, you can divide an integer that has no common factors with the modulus out of
the congruence without dividing the modulus.

Corollary. If gcd(x,m) = 1 then the numbers y + kx (k = 0, 1, . . . , m − 1) form a residue

system modulo m, no matter what integer y is.

Proof. Now we have m numbers. If y + ix ≡ y + jx mod m, where 0 ≤ i, j ≤ m− 1, then
ix ≡ jx mod m and by Theorem 2.11 we know that i ≡ j mod m. So i − j = km, but
because 0 ≤ i, j ≤ m − 1 this is possible only when k = 0, i.e. when i = j. So different
numbers are not congruent.

Using the same kind of technique we see immediately that if gcd(x,m) = 1, then x has an
inverse modulo m, in other words, there exists an integer y such that

xy ≡ 1 mod m.

In this case we also write x−1 ≡ y mod m or 1/x ≡ y mod m.4 This kind of inverse is
obtained using the Euclidean algorithm, since by Bézout’s theorem 1 = c1x + c2m and so
x−1 ≡ c1 mod m. On the other hand, if gcd(x,m) 6= 1 then x can’t have an inverse modulo
m, as we can easily see. Note that if x−1 ≡ y mod m then y−1 ≡ x mod m or (x−1)−1 ≡ x
mod m. Inverses modulo m (when they exist) satisfy the usual rules of calculus of powers. For
example,

(xy)−1 ≡ x−1y−1 mod m and x−n ≡ (x−1)n ≡ (xn)−1 mod m (n = 1, 2 . . . ).

Those numbers x of a residue system for which gcd(x,m) = 1 form the so-called reduced

residue system. The respective residue classes are called reduced residue classes modulo m.
We can easily see that if x ≡ y mod m then gcd(x,m) = gcd(y,m). This means there is
exactly the same amount of numbers in two reduced residue systems modulo m (they are the
numbers coprime to m) and that the numbers of two reduced residue systems can be paired

4This inverse must not be confused with the rational number 1/x.



CHAPTER 2. NUMBER THEORY. PART 1 13

off by their being congruent modulo m. That is, there is a bijection between any two reduced
residue systems modulo m. The amount of numbers in a reduced residue system modulo m is
called Euler’s (totient) function, denoted φ(m). It’s needed for example in RSA cryptosystem.
The most common reduced residue system is the one that is formed out of the positive residue
system. Also note that if p is a prime then 1, 2, . . . , p−1 form a reduced residue system modulo
p and φ(p) = p− 1.

2.5 Residue Class Rings and Prime Fields

Integers are divided into m residue classes, according to which number 0, . . . , m − 1 they are
congruent to modulo m. The class that the integer x belongs to is denoted by x. Note that
x = x+ km, no matter what integer k is. We can define basic arithmetic operations on residue
classes using their ”representatives” as follows:

x± y = x± y , x · y = x · y and xn = xn (n = 0, 1, . . . ).

The result of the operation is independent of the choice of the representatives, which is easy to
confirm. The operation is thus well-defined. The basic properties of computing with integers
will transfer to residue classes:

(1) + and · are associative and commutative.

(2) Distributivity holds.

(3) Every class a has an opposite class −a, i.e. a class −a such that a+ (−a) = 0. If a = x,
then obviously−a = −x.

(4) 0 and 1 ”behave” as they should, i.e. a+ 0 = a and a · 1 = a. Also 0 6= 1, if m > 1.

In the algebraic sense residue classes modulo m form a so-called ring, see Chapter 4 and
the course Algebra 1. This residue class ring modulo m is denoted by Zm. Z1 is singularly
uninteresting—and some do not think of it as a ring at all.

If gcd(x,m) = 1 then the residue class x has an inverse class x−1 for which x · x−1 = 1.
Naturally, if x−1 ≡ y mod m then x−1 = y. If gcd(x,m) 6= 1 then there does not exist such
an inverse class. We have that every residue class other than 0 has an inverse class exactly when
the modulus m is a prime. In this case the residue class ring is also called a prime field. So
in prime fields division, meaning multiplication by the inverse class, is available. The smallest
and most common prime field is the binary field Z2, whose members are the elements 0 and 1

(called bits, and mostly written without the overlining as 0 and 1).
Arithmetical operations in residue class rings can be transferred in a natural way to arith-

metical operations of matrices and vectors formed of residue classes. This way we get to use
the familiar addition, subtraction, multiplication, powers and transposition of matrices. Deter-
minants of square matrices also satisfy the basic calculation rules. Just as in basic courses, we
note that a square matrix has an inverse matrix, if its determinant (which is a residue class in
Zm) has an inverse class. Note that it is not enough for the determinant to be 6= 0, because when
using Cramer’s rule to form the inverse matrix we need division modulo m by the determinant.
In prime fields it is of course enough for the determinant to be 6= 0.
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2.6 Basic Arithmetic Operations for Large Integers

Operation of modern cryptosystems is based on arithmetical computations of large integers.
They must be executable quickly and efficiently. Efficiencies of algorithms are often compared
using numbers of basic steps needed to execute the algorithm versus the maximum length N
of the input numbers. A basic step could be for example addition, subtraction or multiplication
of the decimals 0, 1, . . . , 9. The most common of these comparison notations is the so-called
O-notation. In this case O(f(N)) denotes collectively any function g(N) such that starting
from some lower limit N ≥ N0 we have |g(N)| ≤ Cf(N) where C is a constant. Actual
computational complexity is discussed in Section 6.1.

The customary functions ⌊x⌋ (floor of x, i.e. the largest integer which is ≤ x) and ⌈x⌉
(ceiling of x, i.e. smallest integer which is ≥ x) are used for rounding when needed.

Addition and subtraction

The common methods of addition and subtraction by hand that we learn in school can be pro-
grammed more or less as they are. Addition and subtraction of numbers of length N and M
requires O(max(N,M)) steps, which is easy to confirm.

Multiplication

The usual method of integer multiplication by hand is also suitable for a computer, but it is not
nearly the fastest method. In this method multiplication of numbers of lenght N and M requires
O(NM) steps, which can be lot.

Karatsuba’s algorithm is faster than the traditional algorithm. The algorithm is a kind of
”divide and conquer” procedure. For multiplication of positive numbers n and m in decimal
representation we first write them in the form

n = a10k + b and m = c10k + d

where a, b, c, d < 10k and the maximum length of the numbers is 2k or 2k − 1. One of the
numbers a and c can be zero, but not both of them. In other words, at least one of these numbers
is written in base-10k representation. Then

nm = (a10k + b)(c10k + d) = y102k + (x− y − z)10k + z,

where
x = (a+ b)(c + d) , y = ac and z = bd,

so we need just three individual ”long” multiplications of integers (and not four as you may
originally think). When these three multiplications

(a+ b)(c+ d) , ac and bd

are performed in the same way by dividing each of them into three shorter multiplications and
so on, whereby we eventually end up using a simple multiplication table, we get Karatsuba’s
algorithm (where we denote PROD(n,m) = nm):

Karatsuba’s multiplication algorithm:

1. If n = 0 or m = 0, we return 0 and quit.

2. We reduce the case to one in which both the multiplier and the multiplicand are positive:
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(2.1) If n < 0 and m > 0, or n > 0 and m < 0, we compute t = PROD(|n|, |m|), return
−t and quit.

(2.2) If n < 0 and m < 0, we compute t = PROD(−n,−m), return t and quit.

3. If n,m < 10, we look up PROD(n,m) in the multiplication table, and quit.

4. If n ≥ 10 or m ≥ 10, we write n and m in the form n = a10k + b and m = c10k + d
where a, b, c, d < 10k, as above. In decimal representation this is easy.

5. We compute PROD(a + b, c + d), PROD(a, c) and PROD(b, d), return (the easily ob-
tained)

PROD(n,m) = 102kPROD(a, c) + 10k(PROD(a + b, c+ d)

− PROD(a, c)− PROD(b, d)) + PROD(b, d)

and quit.

The procedure ends since the maximum length of the numbers being multiplied is reduced to
about half in every iteration.

If we multiply two numbers of length N and denote by K(N) an approximate upper bound
on the number of basic arithmetical operations on the numbers 0, 1, . . . , 9 needed, then it is
apparent that K(N) is obtained using a recursion formula

K(N) =

{

αN + 3K(N/2) if N is even

αN + 3K((N + 1)/2) if N is odd
, K(1) = 1,

where the coefficient α is obtained from the number of required additions and subtractions,
depending on the algorithm used. A certain approximate bound for the number of required
basic operations is given by

Theorem 2.12. If N = 2l then K(N) = (2α+ 1)3l − α2l+1 = (2α + 1)N log2 3 − 2αN .

Proof. The value is correct, when N = 1. If the value is correct when N = 2l then it is also
correct when N = 2l+1, since

K(2l+1) = α2l+1 + 3K(2l) = α2l+1 + 3(2α+ 1)3l − 3α2l+1 = (2α+ 1)3l+1 − α2l+2.

Naturally the number of basic operations for very large N obtained by the theorem, that is

(2α+ 1)N log2 3 − 2αN = O(N log2 3) = O(N1.585),

is substantially smaller than O(N2). For example, if N = 212 = 4 096 then N2/N log2 3 ∼= 32.
There are even faster variants of Karatsuba’s procedure where numbers are divided into more
than two parts, see for example MIGNOTTE.

The fastest multiplication algorithms use the so-called fast Fourier transformation (FFT),
see for example LIPSON or CRANDALL & POMERANCE. In this case the number of basic
operations is O(N lnN ln(lnN)). See also the course Fourier Methods.
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Division

Common ”long division” that is taught in schools can be transferred to a computer, although
the guessing phase in it is somewhat hard to execute efficiently if the base number is large, see
KNUTH. The number of basic operations is O(N2) where N is the length of the dividend. Also
a division algorithm similar to Karatsuba’s algorithm is possible and quite fast.5

Division based on Newton’s method, familiar from basic courses, is very efficient. First we
assume that both the divisor m and the dividend n are positive, and denote the length of the
dividend by N and the length of the divisor by M . Since the cases N < M and N = M are
easy, we assume that N > M . We denote the result of the division n = qm+ r (quotient q and
remainder r) by DIV(n,m) = (q, r). Note that then q = ⌊n/m⌋.

We start by finding the inverse of the divisor. To find the root of the function f(x) =

m− 1/x, i.e. 1/m, we use the Newton iteration

xi+1 = xi −
f(xi)

f ′(xi)
= 2xi −mx2

i .

However, since we can only use multiplication of integers, we compute l = 10N/m, i.e. the
root of the function g(x) = m − 10N/x, for which we correspondingly get the exact Newton
iteration

xi+1 = 2xi −
mx2

i

10N
= 2xi −

x2
i

l
.

To be able to stay purely among integers, we use a version of this iteration that is rounded to
integers:

yi+1 = 2yi −

⌊
m

10M

⌊
y2i

10N−M

⌋⌋

.

Divisions by powers of 10 are trivial in the decimal system. The purpose of using this is to
calculate ⌊l⌋, by taking the floor ⌊n10−N⌊l⌋⌋ we then obtain the quotient by some trial and
error, and finally get the remainder using the quotient.

The following properties are easy to confirm:

• 2y − ⌊m10−M⌊y210M−N⌋⌋ ≥ 2y − y2/l, in other words, rounding to integers does not
reduce values of iterants.

• If x 6= l then 2x − x2/l < l. So the exact iteration approaches l from below. Because
m/10M < 1, for the rounded iteration we correspondingly get

2y −

⌊
m

10M

⌊
y2

10N−M

⌋⌋

≤ 2y −

⌊
m

10M

(
y2

10N−M
− 1

)⌋

≤ 2y −

⌊
1

l
y2 − 1

⌋

< 2y −

(
1

l
y2 − 2

)

≤ l + 2.

• If x < l then 2x− x2/l > x. So the exact iteration is strictly growing as long as iterants
are < l. The same applies for the rounded iteration also.

5Such an algorithm is described for example in the book MIGNOTTE and in the old Finnish lecture notes RUO-
HONEN, K.: Kryptologia, and is very well analyzed in the report BURNIKEL, C. & ZIEGLER, J.: Fast Recursive
Division. Max Planck Institut für Informatik. Forschungsbericht MPI-I-98-1-022 (1998).
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We denote
l = yi + ǫi

where ǫi is the error. Newton’s methods are quadratic, i.e. they double the amount of the correct
numbers in every step, and so it is here too: If yi < l then

|ǫi| = l − yi ≤ l − 2yi−1 +
1

l
y2i−1 =

1

l
ǫ2i−1.

By repeating this and noting that l > 10N−M we get (assuming again that yi < l)

|ǫi| ≤
1

l
ǫ2i−1 ≤

1

l

(
1

l
ǫ2i−2

)2

≤ · · · ≤ l−(1+2+22+···+2i−1)ǫ2
i

0 = l1−2iǫ2
i

0 < 10(1−2i)(N−M)ǫ2
i

0 .

Now it is required that 10(1−2i)(N−M)ǫ2
i

0 ≤ 1. Assuming that |ǫ0| < 10N−M this is equivalent to

i ≥

⌈

log2
N −M

N −M − log10 |ǫ0|

⌉

(confirm!). We choose then

y0 = 10N−M

⌊
10M

m

⌋

or y0 = 10N−M

⌈
10M

m

⌉

,

depending on which is nearer the number 10M/m, the floor or the ceiling, whence |ǫ0| ≤
10N−M/2. So it suffices to choose

I =

⌈

log2
N −M

log10 2

⌉

= ⌈log2(N −M)− log2(log10 2)⌉

as the number of iterations.
Using the iteration rounded to integers produces a strictly growing sequence of integers,

until we obtain a value that is in the interval [l, l+2). Then we can stop and check whether it is
the obtained value or some preceding value that is the correct ⌊l⌋. The whole procedure is the
following (the output is DIV(n,m)):

Division using Newton’s method:

1. If n = 0, we return (0, 0) and quit.

2. If m = 1, we return (n, 0) and quit.

3. If m < 0, we compute DIV(n,−m) = (q, r), return (−q, r) and quit.

4. If n < 0, we compute DIV(−n,m) = (q, r), return (−q− 1, m− r), if r > 0, or (−q, 0),
if r = 0, and quit.

5. Set N ← length of dividend n and M ← length of divisor m.

6. If N < M , we return (0, n) and quit.

7. If N = M , we compute the quotient q. This is easy, since now 0 ≤ q ≤ 9. (By trying
out, if not in some other way.) We return (q, n−mq) and quit.
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8. If N > M , we compute ⌊10M/m⌋. Again this is easy, since 1 ≤ ⌊10M/m⌋ ≤ 10. (By
trying out or in some other way.)

9. If 10M/m − ⌊10M/m⌋ ≤ 1/2, that is, 2 · 10M − 2m⌊10M/m⌋ ≤ m, we set
y0 ← 10N−M⌊10M/m⌋. Otherwise we set y0 ← 10N−M(⌊10M/m⌋ + 1). Note that
in the latter case y0 > l and at least one iteration must be performed.

10. We iterate the recursion formula

yi+1 = 2yi −

⌊
m

10M

⌊
y2i

10N−M

⌋⌋

starting from the value y0 until i ≥ 1 and yi+1 ≤ yi.

11. We check by multiplications which one of the numbers yi, yi − 1, . . . is the correct ⌊l⌋
and set k ← ⌊l⌋.

12. We set t ← ⌊nk/10N⌋ (essentially just a multiplication) and check by multiplications
again which number t or t+1 is the correct quotient q in the division DIV(n,m) = (q, r).
We then return (q, n−mq) and quit.

The procedure in #12 produces the correct quotient because first of all r < m and

q =
n− r

m
≤

n

m
<

10N

m
.

Further, if DIV(10N , m) = (k, r′) then r′ < m and

nk

10N
=

(qm+ r)(10N − r′)

m10N
= q −

qr′

10N
+

r(10N − r′)

m10N
.

The middle term on the right hand side is in the interval (−1, 0] and the last term is in the
interval [0, 1). So q is either t or t+ 1.

Because the maximum number I of iterations is very small—about the logarithm of the dif-
ference of the length N of the dividend and the length M of the divisor—and in an iteration step
there always are three multiplications and one subtraction of integers of maximum length 2M
(some of which remain constant), division is not essentially more laborious than multiplication.
Trying out numbers in #7 and #8 does not take that many steps either.

NB. There are many different variants of this kind of division. CRANDALL & POMERANCE

handles the topic with a wider scope and gives more references.

Powers

Raising the number a to the nth power an takes too much time if you just repeatedly multiply by
a, since you need then |n| − 1 multiplications, while it in fact suffices to use at most 2⌊log2 |n|⌋
multiplications:

Method of Russian peasants:

1. If n = 0 then we return the power 1 and quit.

2. If n < 0, we set a← a−1 and n← −n.
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3. If n ≥ 1, we compute the binary representation bjbj−1 · · · b0 of n where j = ⌊log2 n⌋ (the
length of n as binary number minus one, see Theorem 2.4).

4. Set i← 0 and x← 1 and y ← a.

5. If i = j then we return the power xy and quit.

6. If i < j and

6.1 bi = 0 then we set y ← y2 and i← i+ 1 and go to #5.

6.2 bi = 1 then we set x← xy and y ← y2 and i← i+ 1 and go to #5.

Correctness of the algorithm is a straightforward consequence of binary representation:

|n| = bj2
j + bj−12

j−1 + · · ·+ b12 + b0

and
a|n| = abj2

j

abj−12
j−1

· · · ab12ab0 .

It’s convenient to compute bits of the binary representation of n one by one when they are
needed, and not all at once. Now, if i = 0, only one multiplication is needed in #6 since then
x = 1. Similarly, when i = j, only one multiplication is needed in #5. For other values of
i two multiplications may be needed, so the maximum overall number of multiplications is
1 + 1 + 2(j − 1) = 2j, as claimed.

Actually this procedure works for every kind of power and also when multiplication is not
commutative, for example for powers of polynomials and matrices. When calculating powers
modulo m products must be reduced to the (positive) residue system modulo m, so that the
numbers needed in calculations won’t get too large. This way you can quickly compute very
high modular powers.

The procedure takes its name from the fact that Russian peasants used this method for
multiplication when calculating with an abacus and you can think of a · n as the nth power
of a with respect to addition. Apparently the algorithm is very old.

Integral root

The integral lth root 6 of a nonnegative integer n is ⌊n1/l⌋. The most common of these roots is
of course the integral square root (l = 2). Denote the length of n in binary representation by
N .

We can use the same kind of Newton method for computing an integral root as we used for
division.7 For calculating the root of the function xl − n, i.e. n1/l, we get the Newton iteration

xi+1 =
l − 1

l
xi +

n

lxl−1
i

.

However, because we want to compute using integers, we take an iteration rounded to integers:

yi+1 =

⌊
1

l

(

(l − 1)yi +

⌊
n

yl−1
i

⌋)⌋

,

and use addition, multiplication and division of integers.
The following properties are easy to confirm (e.g. by finding extremal values):

6In some texts it’s ⌈n1/l⌉, and in some texts n1/l rounded to the nearest integer.
7It may be noted that the procedure that used to be taught in schools for calculating square roots by hand is also

similar to long division.
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•

⌊
1

l

(

(l − 1)y +

⌊
n

yl−1

⌋)⌋

≤
l − 1

l
y +

n

lyl−1
, so rounding to integers does not increase

iterant values.

• If x 6= n1/l and x > 0 then
l − 1

l
x+

n

lxl−1
> n1/l.

So the exact iteration approaches the root from ”above”. For the rounded version we get
correspondingly

⌊
1

l

(

(l − 1)y +

⌊
n

yl−1

⌋)⌋

≥

⌊
1

l

(

(l − 1)y +
n

yl−1
− 1

)⌋

>
l − 1

l
y +

n

lyl−1
− 2 ≥ n1/l − 2.

• If x > n1/l then
l − 1

l
x+

n

lxl−1
< x.

The exact iteration is strictly decreasing. The same is true for the rounded version.

Denote
n1/l = yi − ǫi

and choose y0 = 2⌈N/l⌉ as the starting value. This can be quickly computed using the algorithm
of Russian peasants. Since n < 2N then y0 > n1/l. First we estimate the obtained ǫ0 as follows:

ǫ0 = y0 − n1/l = 2⌈N/l⌉ − n1/l ≤ 2N/l+1−1/l − n1/l = 2 · 2(N−1)/l − n1/l ≤ n1/l.

This Newton’s method is also quadratic. We only confirm the case l = 2. (The general case is
more complicated but similar.) If yi−1, yi > n1/l then

0 < ǫi = yi − n1/l ≤
l − 1

l
yi−1 +

n

lyl−1
i−1

− n1/l =
1

lyi−1

(

y2i−1 +
n

yl−2
i−1

− ln1/lyi−1

)

<
1

ln1/l

(

y2i−1 +
n

n(l−2)/l
− 2n1/lyi−1

)

=
1

ln1/l
(yi−1 − n1/l)2 =

1

ln1/l
ǫ2i−1.

Repeating this estimation we get (denoting a =
1

ln1/l
for brevity)

ǫi < aǫ2i−1 < a · a2ǫ2
2

i−2 < · · · < a1+2+22+···+2i−1

ǫ2
i

0

= a2
i−1ǫ2

i

0 = a−1(aǫ0)
2i = ln1/l

( ǫ0
ln1/l

)2i

≤ n1/ll1−2i .

If we now want to have ǫi < 1 then it’s sufficient to take n1/ll1−2i ≤ 1, so (confirm!) a
maximum of

I =

⌈

log2

(

1 +
log2 n

l log2 l

)⌉

iterations is needed. Hence the sufficient number of iterations is proportional to log2N , which
is very little. So, calculation of an integral root is about as demanding as division.

NB. Because n1/ log2 n = 2, we are only interested in values of l which are at most as large as

the length of n, others can be dealt with with little effort.
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Iteration rounded to integers produces a strictly decreasing sequence of integers, until we
hit a value in the interval (n1/l − 2, n1/l].

Newton’s method for computing integral lth root

1. If n = 0 or n = 1 then we return n and quit.

2. Set y0 ← 2⌈N/l⌉ where N is the length of n in binary representation.

3. Repeat the iteration

yi+1 =

⌊
1

l

(

(l − 1)yi +

⌊
n

yl−1
i

⌋)⌋

starting from y0 until yi+1 ≥ yi.

4. Check which one of the numbers yi, yi+1, . . . is the correct integral root ⌊n1/l⌋, and quit.

Generating a random integer

Random bit sequences are commonly generated using a shift register 8 of pth order modulo 2:

ri ≡ a1ri−1 + a2ri−2 + · · ·+ apri−p mod 2

where a1, a2, . . . , ap are constant bits (0 or 1, ap = 1). First we need the initial ”seed” bits
r0, r1, . . . , rp−1. Here we calculate using the positive residue system modulo 2 in other words,
using bits. Of course the obtained sequence rp, rp+1, . . . is not random in any way, indeed, it is
obtained using a fully deterministic procedure and is periodic (length of period is at most 2p).
When we choose the coefficients a1, a2, . . . , ap−1 conveniently, we get the sequence to behave
”randomly” in many senses, the period is long and so on, see for example KNUTH. In the
simplest cases almost every coefficient is zero.

Shift registers of the type
ri ≡ ri−q + ri−p mod 2,

where p is a prime and q is chosen conveniently, often produce very good random bits. Some
choices, where the number q can be replaced by the number p− q, are listed in the table below.

p q (p− q works also) p q (p− q works also)
2 1 1279 216, 418
3 1 2281 715, 915, 1029
5 2 3217 67, 576
7 1, 3 4423 271, 369, 370, 649, 1393, 1419, 2098
17 3, 5, 6 9689 84, 471, 1836, 2444, 4187
31 3, 6, 7, 13 19937 881, 7083, 9842
89 38 23209 1530, 6619, 9739
127 1, 7, 15, 30, 63 44497 8575, 21034
521 32, 48, 158, 168 110503 25230, 53719
607 105, 147, 273 132049 7000, 33912, 41469, 52549, 54454

These values were found via a computer search.9 Small values of p of course are not very useful.

8A classic reference is GOLOMB, S.W.: Shift Register Sequences. Aegean Park Press (1982)
9The original articles are ZIERLER, N.: On Primitive Trinomials Whose Degree is a Mersenne Exponent.

Information and Control 15 (1969), 67–69 and HERINGA, J.R. & BLÖTE, H.W.J. & COMPAGNER, A.: New
Primitive Trinomials of Mersenne-Exponent Degrees for Random Number Generation. International Journal of

Modern Physics C3 (1992), 561–564.
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In matrix form in the binary field Z2, see the previous section, the shift register is the fol-
lowing. Denote

ri =








ri+p−1

ri+p−2
...
ri








and A =










a1 a2 · · · ap−1 ap
1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0










.

A is the so-called companion matrix of the shift register. Then

ri+1 ≡ Ari mod 2

and hence
ri ≡ Air0 mod 2 (i = 0, 1, . . . ).

The matrix power Ai can be quickly computed modulo 2 using the method of Russian peasants.
So, perhaps a bit surprisingly, we can quite quickly compute terms of the sequence rp, rp+1, . . .
”ahead of time” without computing that many intermediate terms. Note that for the bitstream to
be ”random”, the matrix Ri = (ri, . . . , ri+p−1) obtained from p consecutive vectors ri should
be invertible, i.e. det(Ri) 6≡ 0 mod 2, at some stage. Then you can solve the equation ARi ≡
Ri+1 mod 2 for the matrix A. For large values of p all these calculations naturally tend to
become difficult.

Random integers are obtained from random bit sequences using binary representation. Ran-
dom integers s0, s1, . . . of maximum binary length n are obtained by dividing the sequence into
consecutive blocks of n bits and interpreting the blocks as binary numbers.

NB. Generating random bits and numbers needed in encryption is quite demanding. ”Badly”

generated random bits assist in breaking the encryption a lot. One may say with good reason

that generation of random numbers has lately progressed significantly largely due to the needs

of encryption.

The shift register generator above is quite sufficient for ”usual” purposes, even for light

encrypting, especially for larger values of p. For a shift register generator to be cryptologically

strong, it should not be too predictable and for this p must be large, too large for practice. There

are better methods, for example the so called Blum–Blum–Shub generator, which we discuss in

Section 7.7. See also GOLDREICH.

Another common random number generator is the so-called linear congruence generator. It
generates a sequence x0, x1, . . . of random integers in the interval 0, 1, . . . , m using the recur-
sion congruence

xi+1 ≡ axi + b mod m

where a and b are given numbers—also the ”seed” input x0 is given. By choosing the numbers
a and b conveniently we get good and fast random number generators which are suitable for
many purposes. (See for example KNUTH.) The rand-operation in Maple used to be based on
a linear congruence generator where m = 999 999 999 989 (a prime), a = 427 419 669 081 and
b = 0.

Since (
xi

1

)

≡

(
a b
0 1

)(
xi−1

1

)

≡ · · · ≡

(
a b
0 1

)i(
x0

1

)

mod m,

the sequence x0, x1, . . . can also be calculated very quickly ”in advance” using the method of
Russian peasants, even for large numbers m and a. On the other hand, if gcd(xi−xi−1, m) = 1,
as it sooner or later will be, we can solve the congruence xi+1 − xi ≡ a(xi − xi−1) mod m
for a, and then get b ≡ xi+1 − axi mod m. For pretty much the same reasons as for the shift
register generator, the linear congruence generator is cryptologically very weak.



Chapter 3

SOME CLASSICAL CRYPTOSYSTEMS
AND CRYPTANALYSES

3.1 AFFINE. CAESAR

To be able to use the results of number theory from the preceding chapter, symbols of plaintext
must be encoded as numbers and residue classes. If there are M symbols to be encoded, we
can use residue classes modulo M . In fact, we may think the message to be written using these
residue classes or numbers of the positive residue system.

In the affine cryptosystem AFFINE a message symbol i (a residue class modulo m repre-
sented in the positive residue system) is encrypted in the following way:

ek1(i) = (ai+ b, mod M).

Here a and b are integers and a has an inverse class c modulo M , in other words gcd(a,M) = 1.
The encrypting key k1 is formed by the pair (a, b) and the decrypting key k2 by the pair (c, b)
(usually represented in the positive residue system). The decrypting function is

dk2(j) = (c(j − b), mod M).

So the length of the message block is one. Hence affine encrypting is also suitable for stream
encryption. When choosing a and b from the positive residue system the number of possible
values of a is φ(M), see Section 2.4, and all in all there are φ(M)M different encrypting keys.
The number of encrypting keys is thus quite small. Some values:

φ(10) = 4 , φ(26) = 12 , φ(29) = 28 , φ(40) = 16.

The special case where a = 1 is known as the Caesar cryptosystem CAESAR. A more
general cryptosystem, where

ek1(i) = (p(i), mod M)

and p is a polynomial with integral coefficients, isn’t really much more useful as there are still
very few keys (why?).

NB. AFFINE resembles the linear congruence generator discussed before. The cryptosystem

HILL, to be introduced next, resembles the shift register generator. This is not totally coinciden-

tal, random number generators and cryptosystems do have a connection: often you can obtain

a strong random number generator from a strong cryptosystem, possibly a not too useful such,

though.

23
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3.2 HILL. PERMUTATION. AFFINE-HILL. VIGENÈRE

In Hill’s1 cryptosystem HILL we use the same encoding of symbols as residue classes modulo
M as in AFFINE. However, now the block is formed of d residue classes considered as a
d-vector. Hill’s original d was 2. The encrypting key is a d × d matrix H that has an inverse
matrix modulo M , see Section 2.5. This inverse matrix H−1 = K modulo M is the decrypting
key.

A message block
i = (i1, . . . , id)

is encrypted as
eH(i) = (iH, mod M),

and decrypted similarly as
eK(j) = (jK, mod M).

Here we calculate modulo M in the positive residue system.
There are as many encrypting keys as there are invertible d × d matrices modulo M . This

number is quite hard to compute. However, usually there is a relatively large number of keys if
d is large.

A special case of HILL is PERMUTATION or the so-called permutation encryption. Here
H is a permutation matrix, in other words, a matrix that has exactly one element equal to one in
every row and in every column all other elements being zeros. Note that in this case H−1 = HT,
or that H is an orthogonal matrix. In permutation encrypting the symbols of the message block
are permutated using the constant permutation given by H.

A more general cryptosystem is AFFINE-HILL or the affine Hill cryptosystem. Comparing
with HILL, now the encrypting key k1 is a pair (H,b), where b is a fixed d-vector modulo M ,
and the decrypting key k2 is the corresponding pair (K,b). In this case

ek1(i) = (iH+ b, mod M)

and
ek2(j) = ((j− b)K, mod M).

From this we obtain a special case, the so-called Vigenère2 encryption VIGENÈRE by choosing
H = Id (d × d identity matrix). (This choice of H isn’t suitable for HILL!) In Vigenère’s
encryption we add in the message block symbol by symbol a keyword of length d modulo M .

Other generalizations of HILL are the so-called rotor cryptosystems, that are realized using
mechanical and electro-mechanical devices. The most familiar example is the famous ENIGMA
machine used by Germans in the Second World War. See SALOMAA or BAUER.

3.3 ONE-TIME-PAD

Message symbols are often encoded binary numbers of a certain maximum length, for example
ASCII encoding or UNICODE encoding. Hence we may assume that the message is a bit
vector of length M . If the maximum length of the message is known in advance and encrypting
is needed just once then we may choose a random bit vector b (or vector modulo 2) of length
M as the key, the so-called one-time-pad, which we add to the message modulo 2 during the

1Lester S. Hill (1929)
2Blaise de Vigenère (1523–1596)
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encryption. The encrypted message vector obtained as result is also random (why?) and a
possible eavesdropper won’t get anything out of it without the key. During the decrypting we
correspondingly add the same vector b to the encrypted message, since 2b ≡ 0 mod 2. In this
way we get the so-called one-time-pad cryptosystem ONE-TIME-PAD.

3.4 Cryptanalysis

The purpose of cryptanalysis is to break the cryptosystem, in other words, to find the decrypting
key or encrypting key, or to at least produce a method which will let us get some information
out of encrypted messages. In this case it is usually assumed that the cryptanalyzer is an eaves-
dropper or some other hostile party and that the cryptanalyzer knows which cryptosystem is
being used but does not know the key being used.

A cryptanalyzer may have different information available:

(CO) just some, maybe random, cryptotext (cryptotext only),

(KP) some, maybe random, plaintext and the corresponding cryptotext (known plaintext),

(CP) a chosen plaintext and the corresponding cryptotext (chosen plaintext),

(CC) a chosen cryptotext and the corresponding plaintext (chosen cryptotext).

Classical attack methods are often based on frequency analysis, that is, knowledge of the
fact that in long cryptotexts certain symbols, symbol pairs, symbol triplets and so on, occur at
certain frequencies. Frequency tables have been prepared for the ordinary English language,
American English and so on.

NB. If a message is compressed before encrypting, it will lose some of its frequency information,

see the course Information Theory.

We now take as examples cryptanalyses of the cryptosystems discussed above.

AFFINE

In affine encryption the number of the possible keys is usually small, so they can all be checked
one by one in a CO attack in order to find the probable plaintext. Apparently this won’t work
if there is no recognizable structure in the message. On the other hand, we can search for a
structure in the cryptotext, in accordance with frequency tables, and in this way find KP data,
for example the most common symbol might be recognized.

In a KP attack it is sufficient to find two message-symbol-cryptosymbol pairs (i1, j1) and
(i2, j2) such that gcd(i1 − i2,M) = 1. Such a pair is usually found in a long cryptotext. Then
the matrix (

i1 1

i2 1

)

is invertible modulo M and the key is easily obtained:
(
j1
j2

)

≡

(
i1 1

i2 1

)(
a
b

)

mod M

or (
a
b

)

≡ (i1 − i2)
−1

(
1 −1
−i2 i1

)(
j1
j2

)

mod M.
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In a CP attack the symbol pairs (i1, j1) and (i2, j2) can actually be chosen. In a CC attack it is
sufficient to choose a long cryptotext. Because it is quite easy to break, AFFINE is only suitable
for a light covering of information from casual readers.

HILL and AFFINE-HILL

The number of keys in Hill’s cryptosystem is usually large, especially if d is large. A CO attack
does not work well as such. By applying frequency analysis some KP data can in principle be
found, especially if d is relatively small. In a KP attack it is sufficient to find message-block-
cryptoblock pairs (i1, j1), . . . , (id, jd) such that the matrices

S =






i1
...
id




 and R =






j1
...
jd






are invertible modulo M . Note that in fact it is sufficient to know one of these matrices is
invertible, the other will then also be invertible. Of course S can be directly chosen in a CP
attack and R in a CC attack. If S and R are known, the key H is easily obtained:

R ≡ SH mod M or H ≡ S−1R mod M.

HILL is difficult to break, if one doesn’t at least have some KP data available, especially if
d is large and/or the cryptanalyzer does not know the value of d. On the other hand, a KP attack
and especially a CP or a CC attack is easy—very little data is needed—so HILL is not suitable
for high-end encryption.

AFFINE-HILL is a little harder to break than HILL. In a KP attack you need message-
block-cryptoblock pairs (i1, j1), . . . , (id+1, jd+1) such that the matrices

S =






i1 − id+1
...

id − id+1




 and R =






j1 − jd+1
...

jd − jd+1






are invertible modulo M . Note again, that it is actually sufficient to know that one of these
matrices is invertible. In a CP attack S can be directly chosen, as can R in a CC attack. If S
and R are known, H is easily obtained in the same manner as above. When H is known, b is
easily obtained.

VIGENÈRE

VIGENÈRE was a widely used cryptosystem in its heydays. Its breaking was improved on with
time, reaching a quite respectable level of ingenuity. The first step is to find d. There are specific
methods for this, and d in VIGENÈRE is usually quite large. After this we can apply frequency
analysis. See STINSON or SALOMAA or BAUER.

ONE-TIME-PAD

If the key is not available to the cryptanalyzer, ONE-TIME-PAD is impossible to break in a
CO attack. However, if the same key is used many times, we basically come to a VIGENÈRE-
encrypting.
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ALGEBRA: RINGS AND FIELDS

4.1 Rings and Fields

An algebraic structure is formed of a set A. There must be one or more computing operations
defined on this set’s elements and these operations must follow some calculation rules. Also
usually a special role is given to some element(s) of A.

A ring is a structure R = (A,⊕,⊙, 0, 1) where ⊕ is the ring’s addition operation, ⊙ is the
ring’s multiplication operation, 0 is the ring’s zero element, and 1 is the ring’s identity element

(and 0 6= 1). If ⊕,⊙, 0 and 1 are obvious within the context then the ring is often simply
denoted by A. It is also required that the following conditions hold true:

(1) ⊕ and ⊙ are commutative operations, in other words, always

a⊕ b = b⊕ a and a⊙ b = b⊙ a.

(2) ⊕ and ⊙ are associative operations, in other words, always

(a⊕ b)⊕ c = a⊕ (b⊕ c) and (a⊙ b)⊙ c = a⊙ (b⊙ c).

It follows from associativity that long sum and product chains can be written using paren-
theses in any (allowed) way you like without changing the result. Often they are written
completely without parentheses, for example a1 ⊕ a2 ⊕ · · · ⊕ ak or a1 ⊙ a2 ⊙ · · · ⊙ ak.
Especially we get in this way multiples and powers, that is, expressions

ka = a⊕ · · · ⊕ a
︸ ︷︷ ︸

k times

and ak = a⊙ · · · ⊙ a
︸ ︷︷ ︸

k times

and, as special cases, 0a = 0, 1a = a, a0 = 1 and a1 = a.

(3) 0⊕ a = a and 1⊙ a = a (note how these are compatible with multiples and powers).

(4) a⊙ (b⊕ c) = (a⊙ b)⊕ (a⊙ c) (distributivity).

(5) For every element a there is an additive inverse or opposite element −a, which satisfies
(−a) ⊕ a = 0. Using additive inverses we obtain subtraction a ⊖ b = a ⊕ (−b) and
negative multiples (−k)a = k(−a).

NB. To be more precise, this kind of ring R is a so-called commutative ring with identity, a

proper ring is an even more general concept in the algebraic sense. See the course Algebra 1.

In future what we mean by a ring is this kind of commutative ring with identity.

27
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If the following condition (6) is also valid in addition to the above ones, then R is a so-called
field:

(6) For every element a 6= 0 there is a (multiplicative) inverse a−1, for which a ⊙ a−1 = 1.
Using inverses we obtain division a/b = a⊙ b−1 and negative powers a−k = (a−1)k.

It is usually agreed that multiplication and division must be performed before addition and
subtraction, which allows us to leave out a lot of parentheses. From these conditions we can
derive many ”familiar” calculation rules, for example

−(a⊙ b) = (−a)⊙ b and
a⊙ b

c⊙ d
=

a

c
⊙

b

d
.

So, every field is also a ring. Familiar rings which are not fields are for example the ring of
integers Z and various polynomial rings, e.g. polynomial rings with rational, real, complex or
integral coefficients, denoted by Q[x], R[x], C[x] and Z[x]. Computational operations in these
rings are the common + and ·, the zero element is 0, and the identity element is 1. Also Zm

(residue classes modulo m) forms a ring, so a residue class ring is truly a ring, see Section 2.5.
Familiar fields are number fields, the field of real numbers (R,+, ·, 0, 1), the field of rational

numbers (Q,+, ·, 0, 1) and the field of complex numbers (C,+, ·, 0, 1), and e.g. the field of
rational functions with real coefficients (R(x),+, ·, 0, 1) and the prime fields (Zp,+, ·, 0, 1) (see
Section 2.5). These are usually denoted briefly by R, Q, C, R(x) and Zp.

4.2 Polynomial Rings

Polynomials defined formally using the elements of a field F as coefficients, form the so-called
polynomial ring of F , denoted by F [x]. A polynomial is written as the familiar sum expression
using a dummy variable (here x):

p(x) = a0 ⊕ a1x⊕ a2x
2 ⊕ · · · ⊕ anx

n , where a0, a1, . . . , an ∈ F and an 6= 0.

The zero polynomial is the empty sum. In the usual way the zero polynomial of F [x] is identified
with the zero element 0 of F and constant polynomials with the corresponding elements of F .
Further, the degree of a polynomial p(x), denoted deg(p(x)), is defined in the usual way as the
exponent of the highest power of x in the polynomial (the degree above is n). It is agreed that
the degree of the zero polynomial is −1 (just for the sake of completeness). The coefficient
of the highest power of x in the polynomial is called the leading coefficient (above an). If the
leading coefficient is = 1, then the polynomial is a so-called monic polynomial. Conventionally
the term 1xi can be replaced by xi and the term (−1)xi by ⊖xi, and a term 0xi can be left out
altogether.

Addition, subtraction and multiplication of polynomials are defined in the usual way us-
ing coefficients and the corresponding computational operations of the field. Let’s study these
operations on the generic polynomials

p1(x) = a0 ⊕ a1x⊕ a2x
2 ⊕ · · · ⊕ anx

n and p2(x) = b0 ⊕ b1x⊕ b2x
2 ⊕ · · · ⊕ bmx

m

where an, bm 6= 0. (So we assume here that p1(x), p2(x) 6= 0.) Then

p1(x)⊕ p2(x) = c0 ⊕ c1x⊕ c2x
2 ⊕ · · · ⊕ ckx

k
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where k = max(n,m) and

ci =







ai ⊕ bi, if i ≤ n,m

ai, if m < i ≤ n

bi, if n < i ≤ m.

Note that if n = m then ck can be = 0, in other words, the degree of the sum can be < k.
Further, the opposite polynomial of p2(x) is

−p2(x) = (−b0)⊕ (−b1)x⊕ (−b2)x
2 ⊕ · · · ⊕ (−bm)x

m

and we get the subtraction in the form

p1(x)⊖ p2(x) = p1(x)⊕ (−p2(x)).

Multiplication is defined as follows:

p1(x)⊙ p2(x) = c0 ⊕ c1x⊕ c2x
2 ⊕ · · · ⊕ cn+mx

n+m

where
ci =

⊕

t+s=i

at ⊙ bs.

Hence
deg(p1(x)⊙ p2(x)) = deg(p1(x)) + deg(p2(x)).

It is easy, although a bit tedious, to confirm that the (F [x],⊕,⊙, 0, 1) obtained in this way is
indeed a ring.

Furthermore, division is defined for polynomials a(x) and m(x) 6= 0 in the form

a(x) = q(x)⊙m(x)⊕ r(x) , deg(r(x)) < deg(m(x))

(quotient q(x) and remainder r(x)). Remember it was agreed that the degree of the zero poly-
nomial is −1. The result of the division is unambiquous, because if

a(x) = q1(x)⊙m(x)⊕ r1(x) = q2(x)⊙m(x)⊕ r2(x)

where deg(r1(x)), deg(r2(x)) < deg(m(x)) then

r1(x)⊖ r2(x) = (q2(x)⊖ q1(x))⊙m(x).

But deg(r1(x) ⊖ r2(x)) < deg(m(x)), so the only possibility is that q2(x) ⊖ q1(x) is the zero
polynomial. i.e. q1(x) = q2(x), and further that r1(x) = r2(x).

Division can be performed by the following algorithm, which then also shows that division
is possible (the output is denoted by DIV(a(x), m(x)) = (q(x), r(x))):

Division of polynomials:

1. Set q(x) ← 0 and n ← deg(a(x)) and k ← deg(m(x)). Denote the leading coefficient
of m(x) by mk.

2. If n < k, return (q(x), a(x)), and quit.

3. Find the leading coefficient an of a(x).
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4. Set
a(x)← a(x)⊖ (an ⊙m−1

k )⊙ xn−k ⊙m(x)

and
q(x)← q(x)⊕ (an ⊙m−1

k )⊙ xn−k

and n← deg(a(x)) and go to #2.

Each time we repeat #4 the degree n gets smaller and so eventually we come out at #2.
Further, we can define factors and divisibility as in Section 2.1. If a(x) = q(x)⊙m(x), we

say that a(x) is divisible by m(x) or that m(x) is a factor of a(x). A polynomial which has no
factors of lower degree other than constant polynomials is called irreducible.

When dividing a(x) by m(x) the remainder r(x) is said to be a residue of a(x) modulo
m(x), compare the corresponding concept for integers in Section 2.4. m(x) acts as a modulus.

Here it is assumed that the modulus is at least of degree 1. The same kind of notation is also
used as for integers: If the residues of a(x) and b(x) modulo m(x) are equal, we denote

a(x) ≡ b(x) mod m(x)

and say that a(x) is congruent to b(x) modulo m(x). The same calculation rules apply to
polynomial congruences as for integers.

The residue class a(x) = r(x) corresponding to the residue r(x) is formed by all those
polynomials a(x) whose residue modulo m(x) is r(x). All residue classes modulo m(x) form
the so-called residue class ring or factor ring or quotient ring F [x]/m(x).1 It is easy to see, in
the same way as for integers, that residue classes modulo m(x) can be given and be calculated
with by ”using representatives”, in other words,

a1(x)⊕ a2(x) = a1(x)⊕ a2(x) , −a(x) = −a(x) ,

a1(x)⊖ a2(x) = a1(x)⊖ a2(x) , ka(x) = ka(x) ,

a1(x)⊙ a2(x) = a1(x)⊙ a2(x) and a(x)
k
= a(x)k,

and the result does not depend on the choice of the representatives. (The operations are thus
well-defined.) The most common representative system is the set formed by all possible re-
mainders, or polynomials of at most degree deg(m(x))− 1. Hence F [x]/m(x) is truly a ring.

Furthermore, just as we showed that every element of Zp other than the zero element 0 has
an inverse, we can show that every element of F [x]/p(x) other than the zero element 0 has an
inverse, assuming that the modulus p(x) is an irreducible polynomial. For this purpose we need
the greatest common divisor of two or more polynomials in F [x] and the Euclidean algorithm
for polynomials.

The greatest common divisor (g.c.d.) of the polynomials a(x) and b(x) of F [x] (not both
the zero polynomial) is a polynomial d(x) of the highest degree that divides both a(x) and
b(x), denoted d(x) = gcd(a(x), b(x)). Note that such greatest common divisor is not unique,
since if d(x) = gcd(a(x), b(x)) then also c ⊙ d(x), where c 6= 0 is constant polynomial, is
gcd(a(x), b(x)). It is therefore often required that d(x) is a monic polynomial.

Theorem 4.1. (Bézout’s theorem) If at least one of the polynomials a(x) and b(x) is nonzero

then any g.c.d. of theirs can be written in the form

d(x) = c1(x)⊙ a(x)⊕ c2(x)⊙ b(x) (Bézout’s form).

In addition, if a(x), b(x) 6= 0, it may be assumed that deg(c1(x)) ≤ deg(b(x)) and deg(c2(x)) ≤
deg(a(x)).

1A similar notation is often used for integers: Zm = Z/m.
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Proof. The proof is quite similar to the proof of Theorem 2.5. We denote GCD(a(x), b(x)) =
(d(x), c1(x), c2(x)) and assume that deg(a(x)) ≤ deg(b(x)). The (Generalized) Euclidean

algorithm needed in the proof is the following recursion:

The (Generalized) Euclidean algorithm for polynomials:

1. If a(x) = 0 then we return GCD(a(x), b(x)) = (b(x), 0, 1), and quit.

2. If a(x) 6= 0 is a constant polynomial, we return GCD(a(x), b(x)) = (a(x), 1, 0), and
quit.

3. If deg(a(x)) ≥ 1 then we find the residue r(x) of b(x) modulo a(x), in other words,
we write b(x) = q(x) ⊙ a(x) ⊕ r(x) where deg(r(x)) < deg(a(x)). Then we find
GCD(r(x), a(x)) = (d(x), e1(x), e2(x)). Because d(x) = e1(x)⊙ r(x)⊕ e2(x) ⊙ a(x),
then d(x) = gcd(a(x), b(x)) and

d(x) = (e2(x)⊖ e1(x)⊙ q(x))⊙ a(x)⊕ e1(x)⊙ b(x).

We return GCD(a(x), b(x)) = (d(x), e2(x)⊖ e1(x)⊙ q(x), e1(x)), and quit.

The process ends since min(deg(r(x)), deg(a(x))) < min(deg(a(x), deg(b(x))), in other words,
each time we call GCD the minimum degree gets lower.

If gcd(a(x), m(x)) is a constant f 6= 0 then by multiplying both sides of Bézout’s form by
f−1 we obtain

1 = e1(x)⊙ a(x)⊕ e2(x)⊙m(x).

Hence in this case a(x) has an inverse e1(x) modulo m(x), i.e. a(x) has an inverse e1(x) in
F [x]/m(x). (Assuming that deg(m(x)) ≥ 1.) At the same time we have a method for finding
the inverse.

In the special case where p(x) is an irreducible polynomial of F [x] and its degree is at least
1 the factor ring F [x]/p(x) is a field. Elements of this field are usually written in the residue
form

c0 ⊕ c1x⊕ c2x
2 ⊕ · · · ⊕ cn−1x

n−1

where n = deg(p(x)) and the coefficients c0, c1, . . . , cn−1 are elements of F , that is, essentially
as n-vectors whose components are in F . Note that in this form cn−1 can be = 0. If p(x) is of
the first degree then F [x]/p(x) = F , that is, we return to the original field.

Example. Irreducible polynomials of R[x] are, except for the constants, either of the first or the

second degree. (This statement is equivalent to the Fundamental theorem of algebra, see the

course Complex Analysis.) We obtain from the former R and from the latter C. So for example

C = R[x]/(x2 + 1). On the other hand, irreducible polynomials of C[x] are constants or of the

first degree, so that doesn’t lead us anywhere.

A polynomial ring R[x] can also be formed using the elements of the ring R as coefficients,
in this way we obtain for example the polynomial ring with integer coefficients Z[x]. In such
polynomial rings addition, subtraction and multiplication are defined as usual, but division is not
generally possible. By studying the division algorithm it becomes clear that division is defined

if the leading coefficient of the dividing polynomial has an inverse in R. In the special case
where the divisor is a monic polynomial division is defined in any polynomial ring. Hence the
residue class ring R[x]/m(x) is defined only if the leading coefficient of m(x) has an inverse in
R, and always if m(x) is a monic polynomial.

This kind of division is needed for example in the NTRU cryptosystem, see Chapter 11.
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4.3 Finite Fields

Prime fields were denoted by Zp in Section 2.5 or as residue classes modulo a prime number p.
A prime field is one example of a finite field, but there are others. To obtain these we choose
an irreducible polynomial P (x) from the polynomial ring Zp[x] of the prime field Zp. Residues
modulo P (x) form the field Zp[x]/P (x) the elements of which are usually expressed in the
form

c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1

where n = deg(P (x)) and c0, . . . , cn−1 ∈ Zp, or essentially as vectors (c0, c1, . . . , cn−1). This
field is finite, it has as many elements as there are residues modulo P (x) (that is, pn).

It can be shown (passed here), that every possible finite field can be obtained in this way—
including the prime field Zp itself. So the number of elements in a finite field is always a
power of a prime number. There are many ways to construct finite fields, in particular, there
are usually more than one irreducible polynomial to choose from in Zp[x], but all finite fields
with pn elements are structurally the same, that is, they are isomorphic to any field Zp[x]/P (x)
where deg(P (x)) = n. Hence there is essentially only one finite field with pn elements, and it’s
denoted by Fpn or by GF(pn).2 For each power pn there exists an Fpn , in other words, you can
find irreducible polynomials of all degrees n ≥ 1 in the polynomial ring Zp[x].

NB. If we take an irreducible polynomial P (x) of degree m with coefficients in the finite field

Fpn , i.e. an irreducible element of the polynomial ring Fpn[x], then—as noted—the factor ring

Fpn/P (x) of residues modulo P (x) is a field that has (pn)m = pnm elements. This field must

be Fpnm , and it is isomorphic to some Zp[x]/Q(x) where Q(x) is an irreducible polynomial of

degree nm in Zp[x].

In practice calculating in a finite field Fpn is done by expressing the elements as residue
classes modulo some irreducible polynomial P (x) ∈ Zp[x] of degree n. The operations are
carried out by using representatives of degree no higher than n−1, or residues, to which results
are also reduced modulo P (x) by division. If p and/or n is large, these operations are obviously
very laborious by hand. There are other representations for finite fields. Representation as
powers of primitive elements is used a lot in some cryptosystems (see Chapter 10).

Example. To construct F28 we may choose the irreducible polynomial P (x) = 1+x+x3+x4+

x8 in Z2[x] of degree 8. Let’s check that P (x) is indeed irreducible using the Maple program:

> Irreduc(1+x+x^3+x^4+x^8) mod 2;

true

Elements of F28 are in the residue form

b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7

where b0, . . . , b7 are bits, essentially as bit vectors (b0, b1, b2, b3, b4, b5, b6, b7). Using the GF

library of Maple we can calculate in finite fields, although it’s a bit clumsy. Let’s try the library

on F28:

> GF256:=GF(2,8,1+x+x^3+x^4+x^8):

> a:=GF256[ConvertIn](x);

2”GF” = ”Galois’ field”. Of course Zp = Fp = GF(p).



CHAPTER 4. ALGEBRA: RINGS AND FIELDS 33

a := x mod 2

> GF256[‘^‘](a,1200);

(x7 + x6 + x5 + x3 + x2 + x+ 1) mod 2

> c:=GF256[inverse](a);

c := (x7 + x3 + x2 + 1) mod 2

> GF256[‘+‘](a,GF256[‘^‘](c,39));

(x7 + x5 + x3 + 1) mod 2

So here we calculated in residue form the elements x1 200, x−1 and x + x39. The command

ConvertIn converts a polynomial to Maple’s inner representation.

If you don’t know any suitable irreducible polynomial of Zp[x], Maple will find one for you:

> GF81:=GF(3,4):

> GF81[extension];

(T 4 + T 3 + 2T + 1) mod 3

The choice can be found by using the extension command. So here we got as a result the

irreducible polynomial 1 + 2x+ x3 + x4 of Z3[x].

Matrix and vector operations in finite fields are defined as usual by the operations of their
elements. In this way we can apply addition, subtraction, multiplication, powers and transposes
of matrices, familiar from basic courses. Also determinants of square matrices follow the fa-
miliar calculation rules. Just as in basic courses, we note that a square matrix has an inverse
matrix if and only if its determinant is not the zero element of the field.

Besides cryptology, finite fields are very important for error-correcting codes. They are dis-
cussed more in the courses Finite Fields and Coding Theory. Good references are MCELIECE

and LIDL & NIEDERREITER and also GARRETT. The mass encryption system AES, which is
in general use nowadays, is based on the finite field F28 , see the next chapter.



Chapter 5

AES

5.1 Background

AES (Advanced Encryption Standard) is a fast symmetric cryptosystem for mass encryption. It
was developed through competition, and is based on the RIJNDAEL system, published in 1999
by Joan Daemen and Vincent Rijmen from Belgium, see DAEMEN & RIJMEN. AES replaced
the old DES system (Data Encryption Standard, see Appendix) published in 1975.

AES works on bit symbols, so the residue classes (bits) 0 and 1 of Z2 can be considered
as plaintext and cryptotext symbols. The workings of RIJNDAEL can be described using the
field F28 and its polynomial ring F28 [z]. To avoid confusion we use z as the dummy variable in
the polynomial ring and x as the dummy variable for polynomials in Z2 needed in defining and
representing the field F28 . Furthermore, we denote addition and multiplication in F28 by ⊕ and
⊙, the identity element is denoted by 1 and the zero element by 0. Note that because 1 = −1
in Z2, the additional inverse of an element in Z2[x], F28 and in F28 [z] is the element itself. So
subtraction ⊖ is the same as addition⊕, in this case.

5.2 RIJNDAEL

In the RIJNDAEL system the length lB of the plaintext block and the length lK of the key are
independently either 128, 192 or 256 bits. Dividing by 32 we get the numbers

NB =
lB
32

and NK =
lK
32

.

Bits are handled as bytes of 8 bits. An 8-bit byte b7b6 · · · b0 can be considered as an element of
the finite field F28 , which has the residue representation b0+ b1x+ b2x

2 + b3x
3+ b4x

4+ b5x
5 +

b6x
6 + b7x

7, see the example in Section 4.3 and note the order of terms.
The key is usually expressed as a 4 × NK matrix whose elements are bytes. If the key is,

byte by byte,
k = k00k10k20k30k01k11k21 · · · k3,NK−1

then the corresponding matrix is

K =







k00 k01 k02 · · · k0,NK−1

k10 k11 k12 · · · k1,NK−1

k20 k21 k22 · · · k2,NK−1

k30 k31 k32 · · · k3,NK−1







.

34
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Note how the elements of the matrix are indexed starting from zero. Similarly, if the input block
(plaintext block) is, byte by byte,

a = a00a10a20a30a01a11a21 · · · a3,NB−1

then the corresponding matrix is

A =







a00 a01 a02 · · · a0,NB−1

a10 a11 a12 · · · a1,NB−1

a20 a21 a22 · · · a2,NB−1

a30 a31 a32 · · · a3,NB−1







.

During encryption we are dealing with a bit sequence of length lB, the so-called state. Like the
block, it is also expressed byte by byte in the form of a 4×NB matrix:

S =







s00 s01 s02 · · · s0,NB−1

s10 s11 s12 · · · s1,NB−1

s20 s21 s22 · · · s2,NB−1

s30 s31 s32 · · · s3,NB−1







.

Elements of the matrices K,A and S are bytes of 8 bits, which can be interpreted as ele-
ments of the field F28 . In this way these matrices are matrices over this field. Another way to
interpret the matrices is to consider their columns as sequences of elements of the field F28 of
length 4. These can be interpreted further, from top to bottom, as coefficients of polynomials
with maximum degree 3 from the polynomial ring F28 [z]. So, the state S mentioned above
would thus correspond to the polynomial sequence

s00 ⊕ s10z ⊕ s20z
2 ⊕ s30z

3 , s01 ⊕ s11z ⊕ s21z
2 ⊕ s31z

3 , . . . ,

s0,NB−1
⊕ s1,NB−1

z ⊕ s2,NB−1
z2 ⊕ s3,NB−1

z3.

For the representation to be unique, a given fixed irreducible polynomial of degree 8 from Z2[x]
must be used in the construction of F28 . In RIJNDAEL it is the so-called RIJNDAEL polynomial

p(x) = 1 + x+ x3 + x4 + x8

which, by the way, is the same as in the example in Section 4.3.

5.2.1 Rounds

There is a certain number NR of so-called rounds in RIJNDAEL. The number of rounds is given
by the following table:

NR NB = 4 NB = 6 NB = 8

NK = 4 10 12 14

NK = 6 12 12 14

NK = 8 14 14 14

The ith round receives as its input the current state S and its own so-called round key Ri. In
particular, we need the initial round key R0. In each round, except for the last one, we go
through the following sequence of operations:

S← SubBytes(S)

S← ShiftRows(S)

S← MixColumns(S)

S← AddRoundKey(S,Ri)
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The last round is the same except that we drop MixColumns.
The encrypting key is expanded first and then used to distribute round keys to all rounds.

This and the different operations in rounds are discussed one by one in the following sections.
Encrypting itself then consists of the following steps:

• Initialize the state: S← AddRoundKey(A,R0).

• NR − 1 ”usual” rounds.

• The last round.

When decrypting we go through the inverse steps in reverse order.

5.2.2 Transforming Bytes (SubBytes)

In this operation each byte sij of the state is transformed in the following way:

1. Interpret sij as an element of the field F28 and compute its inverse s−1
ij . It is agreed here

that the inverse of the zero element is the element itself.

2. Expand s−1
ij in eight bits b7b6b5b4b3b2b1b0, denote

b(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 (a polynomial in Z2[x])

and compute

b′(x) ≡ b(x)(1 + x+ x2 + x3 + x4) + (1 + x+ x5 + x6) mod 1 + x8.

The result

b′(x) = b′0 + b′1x+ b′2x
2 + b′3x

3 + b′4x
4 + b′5x

5 + b′6x
6 + b′7x

7

is interpreted as a byte b′7b
′
6b

′
5b

′
4b

′
3b

′
2b

′
1b

′
0 or as an element of F28 . By the way, division by

1 + x8 in Z2[x] is easy since

xk ≡ x(k,mod 8) mod 1 + x8.

The operation in #2 may also be done by using matrices. We then apply an affine transformation
in Z2: 













b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7















=















1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1





























b0
b1
b2
b3
b4
b5
b6
b7















+















1

1

0

0

0

1

1

0















.

Byte transformation is done in reverse order during the decryption. Because in Z2[x]

1 = gcd(1 + x+ x2 + x3 + x4, 1 + x8)

(easy to verify using the Euclidean algorithm), the polynomial 1 + x + x2 + x3 + x4 has an
inverse modulo 1 + x8 and the occuring 8 × 8 matrix is invertible modulo 2. This inverse is
x+ x3 + x6.

Transforming the byte is in all a nonlinear transformation, which can be given in one table,
the so-called RIJNDAEL S-box. This table can be found for example in MOLLIN and STINSON.
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5.2.3 Shifting Rows (ShiftRows)

In this operation the elements of the rows of the matrix representation of the state are shifted
left cyclically in the following way:

shift row 0 row 1 row 2 row 3
NB = 4 no shift 1 element 2 elements 3 elements
NB = 6 no shift 1 element 2 elements 3 elements
NB = 8 no shift 1 element 3 elements 4 elements

While decrypting rows are correspondingly shifted right cyclically.

5.2.4 Mixing Columns (MixColumns)

In this transformation columns of the state matrix are interpreted as polynomials of maximum
degree 3 in the polynomial ring F28 [z]. Each column (polynomial) is multiplied by the fixed
polynomial

c(z) = c0 ⊕ c1z ⊕ c2z
2 ⊕ c3z

3 ∈ F28 [z]

modulo 1⊕ z4 where

c0 = x , c1 = c2 = 1 and c3 = 1 + x.

Dividing by the polynomial 1⊕ z4 in F28 [z] is especially easy since

zk ≡ z(k,mod 4) mod 1⊕ z4.

Alternatively the operation can be considered as a linear transformation of F28 :






s′0i
s′1i
s′2i
s′3i







=







c0 c3 c2 c1
c1 c0 c3 c2
c2 c1 c0 c3
c3 c2 c1 c0













s0i
s1i
s2i
s3i







.

When decrypting we divide by the polynomial c(z) modulo 1⊕ z4. Although 1⊕ z4 is not
an irreducible polynomial of F28 [z]

1, c(z) has an inverse modulo 1⊕ z4, because

1 = gcd(c(z), 1⊕ z4).

The inverse is obtained using the Euclidean algorithm (hard to compute!) and it is

d(z) = d0 ⊕ d1z ⊕ d2z
2 ⊕ d3z

3

where

d0 = x+ x2 + x3 , d1 = 1 + x3 , d2 = 1 + x2 + x3 and d3 = 1 + x+ x3.

So, when decrypting the column (polynomial) is multiplied by d(z) modulo 1 ⊕ z4 and the
operation is thus no more complicated than when encrypting. In matrix form in F28







s0i
s1i
s2i
s3i







=







d0 d3 d2 d1
d1 d0 d3 d2
d2 d1 d0 d3
d3 d2 d1 d0













s′0i
s′1i
s′2i
s′3i







.

1It happens to be = (1⊕ z)4.
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5.2.5 Adding Round Keys (AddRoundKey)

The round key is as long as the state. In this operation the round key is added to the state byte
by byte modulo 2. The inverse operation is the same.

5.2.6 Expanding the Key

The round keys R0,R1, . . . ,RNR
are obtained from the encrypting key by expanding it and then

choosing from the expanded key certain parts for different rounds. The length of the expanded
key in bits is lB(NR + 1). Divided into bytes it can be expressed as a 4 ×NB(NR + 1) matrix,
which has NB(NR + 1) columns of length 4:

w0,w1, . . . ,wNB(NR+1)−1.

Denote the columns of the key (matrix K) correspondingly:

k0,k1, . . . ,kNK−1.

The expanded key is computed using the following method:

1. Set wi ← ki (i = 0, . . . , NK − 1).

2. Define the remaining wi’s recursively by the following rules where addition of vectors in
F28 is done elementwise in the usual fashion:

2.1 If i ≡ 0 mod NK then compute u = xi/NK in the field F28 and set

wi ← wi−NK
⊕ SubByte(RotByte(wi−1))⊕







u
0

0

0







.

Here the operation SubByte means transforming every element (byte) of the col-
umn. Operation RotByte does a cyclic shift of one element up in a column.

2.2 If NB = 8 and i ≡ 4 mod NK, set

wi ← wi−NK
⊕ SubByte(wi−1)

where the operation SubByte is the same as in #2.1.

2.3 Otherwise simply set
wi ← wi−NK

⊕wi−1.

Now the round key Ri of the ith round is obtained from the columns wiNB
, . . . ,w(i+1)NB−1

(i = 0, 1, . . . , NR). In particular, from the first NB columns we get the initial round key R0.

NB. Expansion of the key can be made in advance, as long as the encrypting key is known.

Anyway, the xi/NK’s can be computed beforehand in the field F28 .
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5.2.7 A Variant of Decryption

A straightforward procedure for decrypting follows the following chain of operations—they are
the inverse operations of the encrypting operations that were introduced before:

S← AddRoundKey(S,RNR
)

S← ShiftRows−1(S)

S← SubBytes−1(S)

S← AddRoundKey(S,RNR−1)

S← MixColumns−1(S)

S← ShiftRows−1(S)

S← SubBytes−1(S)

...

S← AddRoundKey(S,R1)

S← MixColumns−1(S)

S← ShiftRows−1(S)

S← SubBytes−1(S)

S← AddRoundKey(S,R0)

The order of the operations can, however, also be inverted. First, the order of row shifting and
transforming bytes does not matter, the former operates on rows and the latter on bytes. The
same goes for the inverted operations. Second, the operations

S← AddRoundKey(S,Ri)

S← MixColumns−1(S)

can be replaced by the operations

S← MixColumns−1(S)

S← AddRoundKey(S,MixColumns−1(Ri))

In this way decrypting can also follow the chain

S← AddRoundKey(S,RNR
)

S← SubBytes−1(S)

S← ShiftRows−1(S)

S← MixColumns−1(S)

S← AddRoundKey(S,MixColumns−1(RNR−1))
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S← SubBytes−1(S)

S← ShiftRows−1(S)

S← MixColumns−1(S)

S← AddRoundKey(S,MixColumns−1(RNR−2))

...

S← SubBytes−1(S)

S← ShiftRows−1(S)

S← MixColumns−1(S)

S← AddRoundKey(S,MixColumns−1(R1))

S← SubBytes−1(S)

S← ShiftRows−1(S)

S← AddRoundKey(S,R0)

which reminds us very much of the encrypting process. Hence RIJNDAEL encrypting and
decrypting are very similar operations.

5.3 RIJNDAEL’s Cryptanalysis

RIJNDAEL is built to withstand just about every known attack on this kind of cryptosystem.2 Its
designers Joan Daemen and Vincent Rijmen gave an extensive description of the construction
principles in a public document DAEMEN, J. & RIJMEN, V.: AES Proposal: Rijndael (1999),
which they later expanded to the book DAEMEN & RIJMEN. It should be mentioned that linear
cryptanalysis and differential cryptanalysis, that were much investigated in connection with
DES, are efficiently prevented in RIJNDAEL in their various forms. These cryptanalyses are
explained e.g. in STINSON (see also Appendix).

On the other hand, RIJNDAEL is actually the only ”better” cryptosystem where the (single)
S-box can be written in a comparatively simple algebraic form in F28 :

S(b) = s0 ⊕
8⊕

i=1

(si ⊙ b255−2i−1

)

for suitable elements s0, s1, s2, s3, s4, s5, s6, s7, s8 of F28 . Continuing from here it is relatively
easy to derive an explicit algebraic formula for the whole encryption process! This has raised
the question whether such formulas can be inverted efficiently. If the answer is yes, it would
seem that RIJNDAEL can be broken after all. This is a matter of lively investigation, so far no
weaknesses have been found.3

2Here among other things ideas of the Finnish mathematician Kaisa Nyberg were used. See NYBERG, K.:
Differentially Uniform Mappings for Cryptography. Proceedings of EuroCrypt ’93. Lecture Notes in Computer

Science 765. Springer–Verlag (1994), 55–64.
3See for example FERGUSON, N. & SCHROEPPEL, R. & WHITING, D.: A Simple Algebraic Representation

of Rijndael. Proceedings of SAC ’01. Lecture Notes in Computer Science 2259. Springer–Verlag (2001), 103–111
and MURPHY, S. & ROBSHAW, M.J.B.: Essential Algebraic Structure Within the AES. Proceedings of Crypto

’02. Lecture Notes in Computer Science 2442. Springer–Verlag (2002), 1–16 and COURTOIS, N. & PIEPRZYK,
J.: Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. Proceedings of AsiaCrypt ’02. Lecture

Notes in Computer Science 2501. Springer–Verlag (2002), 267–287.
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5.4 Operating Modes of AES

The usual way of using AES is to encrypt one long message block at a time with the same key,
the so-called ECB mode (electronic codebook).

Another way, the so-called CBC mode (cipher block chaining), is to always form a sum of
a message block wi and the preceding cryptoblock ci−1 bit by bit modulo 2, i.e. wi ⊕ ci−1, and
encrypt it, using the same key k all the time. In the beginning we need an initial (crypto)block.
Schematically CBC mode is the following operation:

AES

c1

AES

c2

w2

k

w1

k

c0

c
n 1

AES c
n

w
n

k

A change in a message block causes changes in the following cryptoblocks in CBC mode. This
way CBC mode can be used for authentication or the so-called MAC (message authentication
code) in the following way. The initial block can e.g. be formed of just 0-bits. The sender
has a message that is formed of message blocks w1, . . . , wn and he/she computes, using CBC
mode, the corresponding cryptoblocks c1, . . . , cn applying a secret key k. The sender sends the
message blocks and cn to the receiver. The receiver also has the key k and he/she can check
whether the cn is valid by using the key.

In the so-called OFB mode (output feedback) AES is used to transform the key in a proce-
dure similar to ONE-TIME-PAD encrypting. Starting from a certain ”initial key” κ0 we get a
key stream κ1, . . . , κn by encrypting this key over and over using AES, κ1 is obtained by en-
crypting κ0. Again, when encrypting we use the same secret key k all the time. Schematically:

AES

c2

w2

k

κ2

c1

w1

κ1

κ0 AES

k

AES

c
n

w
n

k

κ
n

c
n 1

w
n 1

κ
n 1

OFB mode gives rise to a variant, the so-called CFB mode (cipher feedback), where the key
κi of the key stream is formed by encrypting the preceding cryptoblock. Again κ1 is obtained
by encrypting the initial block c0.

AES

c1

w1

AES

kk

c0

c
n 1

w
n

AES c
n

k

This variant can be used for authentication much as the CBC-mode, which it also otherwise
resembles.

There are also other modes, for example the so-called CTR mode (counter mode).



Chapter 6

PUBLIC-KEY ENCRYPTION

6.1 Complexity Theory of Algorithms

Computational complexity is about the resources needed for computational solving of a problem
versus the size of the problem. Size of the problem is measured by the length N of the input,
resources are usually time, that is, the number of computational steps required, and space, that
is, the maximum memory capacity needed for the computation. Many problems are so-called
recognition problems where the solution is a yes-answer. A nice reference concerning classical
complexity theory is HOPCROFT & ULLMAN, later results are discussed e.g. in DU & KO.

To make complexity commensurable, we must agree on a mathemathical model for algo-
rithms, for example computing with Turing machines, see the course Theory of Automata,
Formal Languages or Mathematical Logic. There is a deterministic version of the algorithm
model, where the algorithm does not have the possibility to choose, and a nondeterministic ver-
sion, where the next step of the algorithm may be chosen from finitely many possible steps.
To be able to say that a nondeterministic algorithm does solve a problem we must make the
following assumptions:

• The algorithm stops, no matter what steps are chosen.

• The algorithm can stop in a state, where it has not solved the problem.

• When the algorithm stops in a state where it has solved the problem, then the solution
must be correct. The solution is not necessarily unique.

• In recognition problems, a situation where the algorithm does not give any yes-answers
is interpreted as a no-answer.

• In problems other than the recognition problems, every input of a nondeterministic algo-
rithm must lead to a solution (output) by some choice of steps.

It is often a good idea to consider a nondeterministic algortihm as a verifying method for a
solution, not a method for producing it.

Complexity is mostly examined as asymptotic, in other words, considering sufficiently large
problems, and not separating time/space complexities that differ only by a constant multiplier.
After all, linear acceleration and space compression are easy in any algorithm model. Although
choice of the algorithm model has a clear effect on complexity, it does not have any essential
meaning, in other words, it does not change the complexity classes into which problems are di-
vided according to their complexity. Complexity is often given using the O-notation O(f(N)),

42
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see Section 2.6. Without going any further into algorithm models, we define a few important
complexity classes.

The time complexity class P (deterministic-polynomial-time problems) is composed of the
problems, where using a deterministic algorithm solving the problem with input of length N
takes a maximum of p(N) steps, and p is a polynomial which depends on the problem. For
example, basic computational operations on integers and computing g.c.d. are in P , see Chapter
2.

The time complexity class NP (nondeterministic-polynomial-time problems) is composed
of the problems, where using a nondeterministic algorithm solving the problem with input of
the length N takes a maximum of p(N) steps, and again p is a polynomial depending on the
problem. For example compositeness of integers is in NP: Just guess (nondeterminism!) two
factors (6= 1) and check by multiplication whether the guess was correct.

The time complexity class co–NP (complementary-nondeterministic-polynomial-time prob-

lems) is formed of those recognition problems that have their complement in NP . The com-

plement of a problem is obtained when the yes- and no-answers are interchanged. For example,
recognition of primes is in co–NP , since its complement is testing compositeness, which is in
NP . It is not very hard to show that primality testing is in NP , but it is much more difficult to
show that it is in P , see Section 7.4.

Apparently P ⊆ NP and for recognition problems also P ⊆ co–NP . Is either of these a
proper inclusion? This is an open problem and a very famous one! It is commonly believed that
both inclusions are proper. Neither is it known whether either of the equations NP = co–NP
and P = NP ∩ co–NP holds for recognition problems. The prevalent belief is that they do
not.

The space complexity classPSPACE (deterministic-polynomial-space problems) is formed
of those problems, where using a deterministic algorithm solving the problem with input of
length of N takes a maximum of p(N) memory units, and p is a polynomial depending on the
problem. For example, basic computational operations of integers and computing g.c.d. are in
PSPACE .

The space complexity class NPSPACE (nondeterministic-polynomial-space problems)
comprises those problems, where using a nondeterministic algorithm solving the problem with
input of length N takes a maximum of p(N) memory units, and p is a polynomial, again de-
pending on the problem. It is not very difficult to conclude that

NP ⊆ PSPACE = NPSPACE ,

but it is not known whether or not the inclusion is proper.
An algorithm may contain generation of ideal random numbers, which makes it probabilistic

or stochastic. A stochastic algorithm may fail from time to time, in other words, it may not
produce a result at all and gives up on solving the problem. Such algorithms are called Las Vegas

algorithms. On the other hand, a stochastic algorithm may sometimes produce a wrong answer.
These algorithms are called Monte Carlo algorithms. Note that every Las Vegas algorithm is
easily transformed into a Monte Carlo algorithm (how?).

The polynomial time complexity class corresponding to Monte Carlo algorithms is BPP
(bounded-probability-polynomial-time problems). In this case the algorithm must produce a
correct result with probability at least p, where p > 1/2 is a fixed number not depending on the
input. The relationship between classes BPP and NP is pretty much open—for example it is
not known whether one is a subset of the other.

Thinking about the future quantum computers we may define the polynomial time complex-
ity class BQP (bounded-error-quantum-polynomial-time problems). Considering applications
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to encrypting, it is interesting to notice that factorization of numbers and computing discrete
logarithms belong to this class (the so-called Shor algorithms, see Section 15.3).

The function of the algorithm may sometimes be just to convert one problem to another, in
this case we are talking about reduction. If problem A can be reduced to another problem B
using reduction operating in deterministic polynomial time, we get a deterministic polynomial-
time algorithm for A from a deterministic polynomial-time algorithm for B.1 A problem is said
to beNP-hard, if every problem inNP can be reduced to it using a deterministic polynomial-
time algorithm. AnNP-hard problem isNP-complete, if it is itself inNP . AnNP-complete
problem is the ”worst kind” of problem in the sense that if it could be shown to be in deter-
ministic polynomial time then every problem in NP would be in P and NP = P . Nowadays
over a thousand NP-complete problems are known, and, depending on how they are counted,
maybe even more.

Theorem 6.1. If some NP-complete recognition problem is in NP ∩ co–NP then for recog-

nition problemsNP = co–NP .

Proof. Assume that some NP-complete recognition problem C is in NP ∩ co–NP . Now
we shall examine an arbitrary recognition problem A in NP . Since C is NP-complete, A
can be reduced to C in deterministic polynomial time. Hence the complement of A can be
reduced to the complement of C, which is also in NP , in deterministic polynomial time. So
A is in co–NP . A was arbitrary and so NP ⊆ co–NP . As an immediate consequence also
co–NP ⊆ NP , and thusNP = co–NP .

Because it is commonly believed that NP 6= co–NP , no NP-complete recognition problem
would thus be inNP ∩ co–NP .

The old division of problems based on computing time is into the practically possible ones
(tractable problems) and to ones that take too much computing time (intractable problems).
Problems in P are tractable and the others are intractable. Since it is a common belief that
NP 6= P ,NP-complete problems should be intractable. In practice even problems in the class
BPP are possible to solve: just apply the algorithm on the problem so many times that the
probability of half of these producing wrong results is negligible. Hence it is natural to demand
in cryptology that encrypting and decrypting functions are in P . It is, however, important to
remember that encrypting may include stochastic elements.

6.2 Public-Key Cryptosystems

There are at least two keys in a public-key cryptosystem or nonsymmetric cryptosystem: the
public key and the secret key, or several of them. For the secret key to remain a secret it
must be computationally very challenging to calculate the secret key starting from the public
key. The public key can be left in a ”place” where anyone who wants to can take it and use
it to send encrypted messages to the owner of the secret key. This seemingly simple idea was
first announced by Whitfield Diffie and Martin Hellman and independently by Ralph Merkle in
1976.2

1Note that even if the output of the polynomial-time reduction is longer than its input, the length of the output is
still polynomially bounded by the length of the input, and that composition of two polynomials is a polynomial. A
similar phenomenon hardly ever occurs in other function classes. For example, the composition of two exponential
functions is not an exponential function.

2The original reference is DIFFIE, W. & HELLMAN, M.: New Directions in Cryptography. IEEE Transactions

on Information Theory IT–22 (1976), 644–654. It became known later that James Ellis, Clifford Cocks and Mal-
colm Williamson came up with the same idea a bit earlier, but they worked for the British intelligence organization
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It might seem a good idea to arrange the keys so that cryptanalysis using CO data and the
public key would be computationally very demanding, e.g. NP-complete. Quite obviously
such cryptanalysis is in NP: Just guess the plaintext and encrypt it using the public key. Even
if there are stochastic elements in the encrypting this works since the random choices can be
guessed, too.

This cryptanalysis problem may also be considered as a recognition problem, the so-called
cryptorecognition: ”Is w the plaintext corresponding to the cryptotext c in the triple (w, k, c)
where k is the public key?” Cryptorecognition is in P if encrypting is deterministic, so making
it more complex requires stochastic encrypting. We won’t however get very far this way either,
because

Theorem 6.2. If for some cryptosystem cryptorecognition is NP-complete, then NP =

co–NP .

Proof. The cryptorecognition problem is obviously in NP since the stochastic parts can be
guessed. On the other hand, it is also in co–NP because if c is a cryptotext then there is just
one plaintext corresponding to it, otherwise decrypting won’t succeed. Now let’s guess some
plaintext w′ and encrypt it using the public key k. If the result is c then compare w with w′,
and accept the triple (w, k, c) if w 6= w′. If the encrypting of w′ does not give c or w = w′, the
procedure will end without giving a result. So cryptorecognition is in NP ∩ co–NP and the
result follows from Theorem 6.1.

Hence it would seem that cryptorecognition cannot beNP-complete in practice. The result
also shows that stochastic cryptosystems are not that much better than deterministic ones.

Usually when we speak about public-key systems we also mention so-called one-way func-

tions: A function y = f(x) is one-way if computing y from x is tractable but computing x from
y is intractable, possibly evenNP-complete. If the encrypting function of a public-key system
is ek then the function (c, k) = (ek(w), k) = f(w, k) is ideally one-way. Note that because
the public key k is always available, it is included in the value of the function. On the other
hand, for a fixed public key k the corresponding secret key gives a so called trap door which
can be used to compute w from c very fast. Existence of the trap door of course means that the
encrypting function is not really one-way for a fixed k.

NB. Connecting trap doors to NP-complete problems has proved to be difficult. In practice

having the trap door restricts an otherwise NP-complete problem to a subproblem that is

not NP-complete, and usually not even very demanding. In fact, it has not been proved of

any cryptosystem-related function, that should ideally be one-way, that it is really one-way.

There is the P = NP problem haunting in background, of course. Problems on which good

cryptosystems can be based are ones with open complexity statuses. In this case breaking

the system would also mean a theoretical breakthrough in complexity theory and algorithm

development. All this, and also Theorem 6.2, means that complexity theory does not quite have

such an important role in cryptology as it is often given, viz. cryptography is often mentioned

as the practical application of complexity theory ’par excellence’.

Protocols which cannot be executed by secret-key systems are often possible when public-
key cryptosystems are used. As examples we take verification and signature. If B wants to
verify that a message is sent by A, the message must contain information that sufficiently un-
ambiguously specifies A as its sender. In this case the following requirements are natural:

GCHQ (Government Communications Headquarters) which is why their ideas remained classified and were not
published until 1997.
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(i) Both A and B must be able to protect themselves against fake messages. An outside agent
C must not be able to pose as A.

(ii) A must be able to protect herself against B’s fake messages, which he claims to be sent
and signed by A.

(iii) A must not be able to deny sending a message she in fact did send.

Denote by eA and eB the public-key encrypting functions of A and B, and by dA and dB the
corresponding decrypting functions. Here it is assumed that encrypting is deterministic. The
procedure is the following:

1. A sends the message w to B in the form c = eB(dA(w)).

2. B computes eA(dB(c)) = eA(dA(w)) = w. Note that eA and dA are inverse functions.

Conditions (i) and (iii) are satisfied since only A knows dA. There must be some recognizable
content of correct type in the message, otherwise the message might be totally meaningless.
Condition (ii) is also valid since it would be practically impossible for B to generate the right
kind of message because he does not know dA. If the signature is all that matters and not keeping
the message safe, it is enough for A to send B the pair (w, dA(w)). This simplest version of
verification/signature is vulnerable and there are better protocols, see Chapter 13.

6.3 Rise and Fall of Knapsack Cryptosystems

An example of the effects of the preceding section’s complexity considerations is the fate of the
well-known public-key system KNAPSACK3 or the knapsack system.

The knapsack system is based on the so-called knapsack problem. Its input is (a, m) where
a = (a1, a2, . . . , an) is a vector of positive integers and m is a positive integer, represented in
some base. The problem is to write m as a sum of (some of) the components of a, or then state
that this is not possible. In other words, the problem is to choose bits c1, c2, . . . , cn such that

n∑

i=1

ciai = m,

or then state that this is not possible at all. In the corresponding recognition problem it is
sufficient just to state whether or not the choice is possible. The knapsack problem is clearly
in NP: Just guess c1, c2, . . . , cn and test whether the guess is correct. It is in fact known to be
NP-complete.

KNAPSACK-encrypting is done in the following way. The message symbols are bits and the
length of the message block is n. A message block w = b1b2 · · · bn (bit sequence) is encrypted
as the number

c = ek(w) =

n∑

i=1

biai.

The public key k is a. Apparently this kind of encrypting is in P . Cryptanalysis starting from c
and a is NP-complete.

3KNAPSACK is ”historically” remarkable as it is one of the first public-key crypto systems, the original ref-
erence is MERKLE, R. & HELLMAN, M.: Hiding Information and Signatures in Trapdoor Knapsacks. IEEE

Transactions in Information Theory IT–24 (1978), 525–530.



CHAPTER 6. PUBLIC-KEY ENCRYPTION 47

Without any help KNAPSACK decrypting would also be NP-complete. The trap door is
gotten by starting from some simple knapsack problem which can be solved in P , and then
disguising it as an ordinary arbitrary knapsack problem. The a of the latter knapsack problem is
then published as the public key. Using the trap door information the knapsack problem (a, c)
can be restored to its original easily solved form, and in this way the encrypted message can
be decrypted. But this does not lead to a strong cryptosystem, in other words, by using the
trap door we don’t obtain a disguised knapsack system, whose cryptanalysis would be NP-
complete, or even very difficult. In fact different variants of KNAPSACK have been noticed
to be dangerously weak and so they are not used anymore. A well-known attack against basic
KNAPSACK is the so-called Shamir attack, see e.g. SALOMAA.

6.4 Problems Suitable for Public-Key Encryption

As the knapsack problem, the types of problems found useful in public-key encryption are
usually problems of number theory or algebra, often originally of merely theoretical interest
and quite abstract. This has brought many problems that earlier were considered to be purely
mathematical to serve as bases of practical cryptosystems. In particular, results of algebraic
number theory and theory of algebraic curves have become concretely and widely used, to
the amazement of mathematicians who believed they were working in a very theoretical and
”useless” field.

Some examples:

Cryptosystem Problem type
RSA, RABIN Factoring the product of two large primes.
ELGAMAL, DIFFIE–HELLMAN, XTR Computing discrete logarithm in a cyclic group
MENEZES–VANSTONE, CRANDALL Computing logarithm in a cyclic group deter-

mined by an elliptic curve
ARITHMETICA Conjugate problem in a group
NTRU Finding the smallest vector of a number lattice
MCELIECE, NIEDERREITER Decoding an algebraic-geometric linear code

(Goppa’s code)

The exact complexity of the first four of these is not known, however the problems are in NP .
Finding the smallest vector of a number lattice and decoding a linear code (see the course
Coding Theory) are known to be NP-complete problems, so considering NTRU, MCELIECE
and NIEDERREITER the situation should be similar to KNAPSACK, which for that matter
they distantly resemble. Indeed, some weaknesses are found in these systems.4 The large size
of keys needed in MCELIECE has seriously limited its use. NTRU is however in use, to some
extent. The drawback of ARITHMETICA is in the difficulty of finding a suitable group—all
choices so far have turned out to be bad in one way or in another.

In the sequel we will discuss the systems RSA, ELGAMAL, DIFFIE–HELLMAN, XTR,
MENEZES–VANSTONE and NTRU. A good general presentation can be found e.g. in the
book GARRETT.

4See for example CANTEAUT, A. & SENDRIER, N.: Cryptanalysis of the Original McEliece Cryptosystem.
Proceedings of AsiaCrypt ’98. Lecture Notes in Computer Science 1514. Springer–Verlag (2000).



Chapter 7

NUMBER THEORY. PART 2

7.1 Euler’s Function and Euler’s Theorem

We return to Euler’s function φ(m), already mentioned in Section 2.4, which gives the count of
those numbers x in the interval 1 ≤ x ≤ m, for which gcd(x,m) = 1, or the number of reduced
residue classes modulo m. Note that φ(1) = 1.

Theorem 7.1. (i) If p is a prime and k ≥ 1 then

φ(pk) = pk−1(p− 1).

In particular, φ(p) = p− 1.

(ii) If gcd(m,n) = 1 then

φ(mn) = φ(m)φ(n)

(multiplicativity of φ).

Proof. (i) Every pth of the numbers 1, 2, . . . , pk is divisible by p. Hence there are pk − pk/p =

pk−1(p− 1) numbers that are coprime to p.
(ii) Write the numbers 1, 2, . . . , mn in an array as follows:

1 2 3 · · · n
n+ 1 n+ 2 n+ 3 · · · 2n
2n+ 1 2n+ 2 2n + 3 · · · 3n

...
...

...
...

(m− 1)n+ 1 (m− 1)n+ 2 (m− 1)n+ 3 · · · mn

The cases n = 1 and m = 1 are trivial so we may assume that n,m ≥ 2. Numbers in any
column are mutually congruent modulo n. On the other hand, by the Corollary of Theorem
2.11 numbers in any column form a residue system modulo m. There are φ(n) columns with
numbers coprime to n. (Remember that if x ≡ y mod n then gcd(x, n) = gcd(y, n).) Each
of these columns has φ(m) numbers coprime to m. These are the numbers coprime to mn, and
there are φ(m)φ(n) of them.

Using the factorization
x = pi11 p

i2
2 · · · p

iN
N

(see Theorems 2.2 and 2.6) we obtain, using the theorem,

φ(x) = φ(pi11 )φ(p
i2
2 ) · · ·φ(p

iN
N ) = pi1−1

1 pi2−1
2 · · · piN−1

N (p1 − 1)(p2 − 1) · · · (pN − 1).

48
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Because factorization is a computationally demanding operation, φ(x) is not practically com-
putable in this way unless the factorization is given beforehand. However, we can see from this
fairly easily that if x is a composite number, then φ(x) < x − 1, and that φ(x) ≥

√
x when

x > 6.
An essential result e.g. in defining the cryptosystem RSA is

Theorem 7.2. (Euler’s theorem) If gcd(x,m) = 1 then

xφ(m) ≡ 1 mod m.

Proof. Choose the reduced residue system j1, j2, . . . , jφ(m) from the positive residue system
modulo m. Then the numbers xj1, xj2, . . . , xjφ(m) also form a reduced residue system since by
the Corollary of Theorem 2.11 they are not congruent and are all coprime to m. So, the numbers
xj1, xj2, . . . , xjφ(m) and j1, j2, . . . , jφ(m) are pairwise congruent in some order:

xjk ≡ jik mod m (k = 1, 2, . . . , φ(m)).

By multiplying both sides of these congruences we obtain

xφ(m)j1j2 · · · jφ(m) ≡ j1j2 · · · jφ(m) mod m

and since gcd(j1j2 · · · jφ(m), m) = 1, by dividing out j1j2 · · · jφ(m), further xφ(m) ≡ 1 mod m.

As an immediate consequence we get

Theorem 7.3. (Fermat’s little theorem) If p is a prime and x is not divisible by p then

xp−1 ≡ 1 mod p.

Euler’s theorem is often useful when we compute powers modulo m. In addition to using
the algorithm of Russian peasants, we first reduce the exponent modulo φ(m). If k = qφ(m)+r
(division) then

xk = xqφ(m)+r = (xφ(m))qxr ≡ 1q · xr = xr mod m.

Furthermore, it is immediately noticed that

x−1 ≡ xφ(m)−1 mod m

and that if k ≡ l mod φ(m) then xk ≡ xl mod m. (Assuming of course all the time that
gcd(x,m) = 1.) Fermat’s little theorem is especially useful when computing powers modulo a
prime. For instance, if p is prime then always

xp ≡ x mod p.

7.2 Order and Discrete Logarithm

The smallest number i ≥ 1 (if one exists) such that xi ≡ 1 mod m, is called the order of x
modulo m. Basic properties of order are the following:

Theorem 7.4. (i) The order exists exactly when gcd(x,m) = 1.

(ii) If xj ≡ 1 mod m and the order of x modulo m is i then i divides j. In particular, as a

consequence of Euler’s theorem, i divides φ(m).
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(iii) If the order of x modulo m is i then the order of xj modulo m is

lcm(i, j)

j
=

i

gcd(i, j)

(see Theorem 2.9).

(iv) If the order of x modulo m is i and the order of y modulo m is j and gcd(i, j) = 1 then

the order of xy modulo m is ij.

Proof. (i) When gcd(x,m) = 1 then at least xφ(m) ≡ 1 mod m (Euler’s theorem). On the
other hand, if gcd(x,m) 6= 1 then obviously also gcd(xi, m) 6= 1, and hence xi 6≡ 1

mod m when i ≥ 1.

(ii) If xj ≡ 1 mod m but the order i of x does not divide j then j = qi+ r where 1 ≤ r < i
(division) and

xr = xr · 1q ≡ xr(xi)q = xqi+r = xj ≡ 1 mod m,

and i would not be the smallest possible.

(iii) If the order of x modulo m is i and the order of xj modulom is l then first of all i | jl (item
(ii)) and j | jl, so lcm(i, j) | jl, i.e. lcm(i, j)/j is a factor of l. Secondly, (xj)lcm(i,j)/j ≡ 1

mod m, so l divides lcm(i, j)/j (item (ii) again). Therefore l = lcm(i, j)/j.

(iv) If the order of x modulo m is i and the order y modulo m is j and gcd(i, j) = 1 then first
of all

(xy)i = xiyi ≡ yi mod m,

so the order of (xy)i modulo m is the same as the order of yi, which is j (item (iii)). But
if the order of xy modulo m is k then the order of (xy)i modulo m is k/ gcd(i, k) (item
(iii) again). Hence j | k. It is shown similarly that i | k. Because gcd(i, j) = 1, it must
be that ij | k. On the other hand,

(xy)ij = (xi)j(yj)i ≡ 1 mod m,

whence it follows that k | ij (item (ii)). Therefore k = ij.

If the order of g modulo m is the largest possible, i.e. φ(m), and 1 ≤ g < m then g is a
so-called primitive root of m or a primitive root modulo m. Of course, in this case necessarily
gcd(g,m) = 1. Since then the powers

1, g, g2, . . . , gφ(m)−1

are not congruent—otherwise the smaller power could be divided out from the congruence and a
lower order for g would be obtained—and there are φ(m) of them, they actually form a reduced
residue system. The following property of primitive roots is given without proof.1.

Theorem 7.5. A number m ≥ 2 has primitive roots if and only if it is either 2 or 4 or of the

form pk or 2pk where p is an odd prime. In particular, every prime has primitive roots.

1The proof is not very difficult but quite long—the cases m = 2 and m = 4 are of course trivial. It can be found
in almost every elementary number theory book, see for example SIERPINSKI. Some cryptology books contain
this proof as well, see for example KRANAKIS or GARRETT.



CHAPTER 7. NUMBER THEORY. PART 2 51

On the other hand, it is easy to deduce the number of different primitive roots, when they exist:

Theorem 7.6. If there are primitive roots modulo m then there are φ(φ(m)) of them.2 In

particular, a prime p has φ(p− 1) primitive roots.

Proof. If g is a primitive root of m then those numbers

(gi, mod m) (i = 1, 2, . . . , φ(m)− 1)

for which gcd(i, φ(m)) = 1 are primitive roots of m, and in fact exactly all of them (Theorem
7.4 (iii)). Hence, if the number m has primitive roots at all, there are φ(φ(m)) of them.

The following well-known characterization of primes is obtained immediately from the
above.

Theorem 7.7. (Lucas’ criterion for primality) A number p ≥ 2 is a prime if and only if there

exists a number whose order modulo p is p− 1.

Proof. If p is prime, it has a primitive root of order p− 1.
Then again, if there exists a number x of order p − 1 modulo p then p must be prime.

Otherwise φ(p) < p − 1 and hence the order of x cannot be p − 1 because p − 1 | φ(p)
(Theorem 7.4 (ii)).

It might be mentioned that no powerful general algorithms are known for finding primitive
roots, not even for primes. On the other hand, if the factors of φ(m) are known then the fol-
lowing result gives a useful test for a primitive root of m. Such a test is needed e.g. in setting
up certain cryptosystems, see Section 10.1. In the general case even computing φ(m) is a very
demanding task for large values of m, not to mention its factorization.

Theorem 7.8. (Lucas’s criterion for primitive root) A number 1 ≤ g < m is a primitive root

of m if and only if gcd(g,m) = 1 and gφ(m)/q 6≡ 1 mod m for every prime factor q of φ(m).

Proof. If g is a primitive root of m then apparently gcd(g,m) = 1 and gφ(m)/q 6≡ 1 mod m for
every prime factor q of φ(m), since the order of g is φ(m).

Then again, if gcd(g,m) = 1 and gφ(m)/q 6≡ 1 mod m for every prime factor q of φ(m),
the order i of g divides φ(m) (Theorem 7.4 (ii)), in other words, φ(m) = il. If l = 1 then
i = φ(m) and g is a primitive root. Anything else is out of the question, since if l > 1 then l
would have a prime factor q′ and l = q′t and

gφ(m)/q′ = gil/q
′

= git = (gi)t ≡ 1t = 1 mod m.

Furthermore, combining these two Lucas’ criteria we obtain

Theorem 7.9. (Lucas–Lehmer criterion for primality) A number p ≥ 2 is a prime if and only

if there exists a number g such that gp−1 ≡ 1 mod p and g(p−1)/q 6≡ 1 mod p for every prime

factor q of p− 1.

Proof. If p is a prime then we take a primitive root modulo m as g.
Now let’s assume that for a number g we have gp−1 ≡ 1 mod p and g(p−1)/q 6≡ 1 mod p

for every prime factor q of p− 1. Then p | gp−1 − 1, so gcd(g, p) = 1. Further, if j is the order
of g modulo p then j | p − 1 (Theorem 7.4. (ii)). Now we conclude, just as in the preceding
proof, that j = p− 1 and further, by Lucas’ criterion, that p is a prime.

2This is the reason why the odd-looking expression φ(φ(m)) appears in cryptography here and there.
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Because, for a primitive root g of m, the numbers 1, g, g2, . . . , gφ(m)−1 form a reduced
residue system modulo m, then for every number x coprime to m there exists exactly one
exponent in the interval 0 ≤ y < φ(m) for which gy ≡ x mod m. This exponent is called the
discrete logarithm or the index of x modulo m in base g. No efficient algorithms for calculating
discrete logarithms are known, e.g. the cryptosystem ELGAMAL is based on this. We get back
to this later. There is of course a nondeterministic polynomial-time algorithm starting from the
input (m, g, x): First just guess an index y and then check whether it is correct. Exponentiation
using the algorithm of Russian peasants and reducing the result modulo m is in polynomial
time.

7.3 Chinese Remainder Theorem

If factors of the modulus m are known, i.e. we can write

m = m1m2 · · ·mk,

the congruences x ≡ y mod mi (i = 1, 2, . . . , k) naturally follow from x ≡ y mod m. If the
modulus is a large number, it may often be easier to compute using these smaller moduli. This
can be done very generally, if the factors m1, m2, . . . , mk are pairwise coprime, in other words,
if gcd(mi, mj) = 1 when i 6= j:

Theorem 7.10. (Chinese remainder theorem3) If the numbers y1, y2, . . . , yk are given and

the moduli m1, m2, . . . , mk are pairwise coprime then there is a unique integer x modulo

m1m2 · · ·mk that satisfies the k congruences

x ≡ yi mod mi (i = 1, 2, . . . , k).

Proof. Denote M = m1m2 · · ·mk and Mi = M/mi (i = 1, 2, . . . , k). Since the mi’s are
pairwise coprime, gcd(M1, M2, . . . ,Mk) = 1 and gcd(mi,Mi) = 1 (i = 1, 2, . . . , k). The
following procedure produces a solution x (if there is one!), and also shows that the solution is
unique modulo M :

1. CRT algorithm:

1. Using the Euclidean algorithm we write gcd(M1,M2, . . . ,Mk) = 1 in Bézout’s form (see
Theorem 2.8)

1 = c1M1 + c2M2 + · · ·+ ckMk.

2. Return x ≡ c1M1y1 + c2M2y2 + · · · + ckMkyk mod M , e.g. in the positive residue
system.

The procedure works if a solution exists, because it follows immediately from the congruences
x ≡ yi mod mi that ciMix ≡ ciMiyi mod M (i = 1, 2, . . . , k), and by addition we obtain
further

x = 1 · x = (c1M1 + c2M2 + · · ·+ ckMk)x ≡ c1M1y1 + c2M2y2 + · · ·+ ckMkyk mod M.

3The name ”Chinese remainder theorem” (CRT) comes from the fact that Chinese mathematicians knew this
result a long time ago, at least in the case k = 2.
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It still must be shown that a solution exists. Because apparently Mi ≡ 0 mod mj if i 6= j,
and on the other hand 1 = c1M1 + c2M2 + · · · + ckMk, we have ciMi ≡ 1 mod mi (i =

1, 2, . . . , k). Therefore

x ≡ c1M1y1 + c2M2y2 + · · ·+ ckMkyk ≡ yi mod mi (i = 1, 2, . . . , k).

Because now ci ≡ M−1
i mod mi, we can moreover conclude that the solution can also be

obtained in another way:

2. CRT algorithm:

1. Compute Ni ≡M−1
i mod mi (i = 1, 2, . . . , k) by the Euclidean algorithm.

2. Return x ≡ y1M1N1+y2M2N2+· · ·+ykMkNk mod M (in the positive residue system).

The proof gives an algorithm (actually two of them) for finding the number x mentioned
in the theorem. Apparently this algorithm is polynomial-time when the input consists of the
numbers y1, y2, . . . , yk and m1, m2, . . . , mk. Other algorithms are known, for example the so-
called Garner algorithm which is even faster, see e.g. CRANDALL & POMERANCE.

NB. In a way the Chinese remainder theorem gives a fitting (interpolation) of functions of the

form

y = fx(m) = (x, mod m)

through the ”points” (mi, yi), something that can be used in certain cryptoprotocols. The

Chinese remainder theorem is very useful in many contexts. A good reference is DING & PEI

& SALOMAA.

7.4 Testing and Generating Primes

It took a long time before the first nondeterministic polynomial-time algorithm for primality
testing was found. It is the so-called Pratt algorithm.4 The algorithm is based on Lucas’
criteria. The input is a number n ≥ 2 whose binary length is N . Denote the number of the steps
of the algorithm by T (n) and

PRATT(n) =

{

YES if n is prime

FAIL if the test does not produce a result with the choices made.

From Section 6.1 we recall that if the algorithm works then the input n is a composite number
if and only if PRATT(n) = FAIL for every possible choice.

Pratt’s algorithm:

1. If n = 2 or n = 3, return YES and quit (0 test steps).

2. If n is > 3 and even (division by 2), the algorithm gives up and PRATT(n) = FAIL

(0 test steps).

4The original reference is PRATT, V.R.: Every Prime has a Succint Certificate. SIAM Journal on Computing 4
(1976), 198–221.
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3. Guess (nondeterminism) an integer x in the interval 1 ≤ x ≤ n− 1.

4. Check whether xn−1 ≡ 1 mod n using the algorithm of Russian peasants and reducing
modulo n by divisions (1 test step). If this is not so then the algorithm gives up and
PRATT(n) = FAIL.

5. Guess (nondeterminism) prime factors p1, . . . , pk of n − 1, where each assumed prime
factor may occur several times (0 test steps). Lengths of these numbers in the binary
representation are P1, . . . , Pk. Note that P1+ · · ·+Pk ≤ N + k− 1 and that 2 ≤ k ≤ N .

6. Check by multiplication whether p1 · · ·pk = n − 1 (1 test step). If this is not so, the
algorithm gives up and PRATT(n) = FAIL.

7. Check, by calling Pratt’s algorithm recursively, whether the numbers p1, . . . , pk are truly
primes (a maximum of T (p1) + · · · + T (pk) test steps). If some PRATT(pi) = FAIL

then the algorithm gives up and PRATT(n) = FAIL.

8. Check whether x(n−1)/pi 6≡ 1 mod n (i = 1, . . . , k) by the algorithm of Russian peasants
and divisions (a maximum of k test steps). If this is true, return YES, otherwise the
algorithm gives up and PRATT(n) = FAIL.

Now we get following recursion inequality for T (n):

T (n) ≤ 2 + k +

k∑

i=1

T (pi) , T (2) = 0 , T (3) = 0.

Using this we can find an upper bound for T (n). It is easy to see recursively that for example
L(n) = 4 log2 n− 4 is such an upper bound, since L(2) = 0 and L(3) > 0 and

T (n) ≤ 2 + k +

k∑

i=1

L(pi) = 2 + k +

k∑

i=1

(4 log2 pi − 4)

= 2 + k + 4 log2(p1 · · ·pk)− 4k = 2− 3k + 4 log2(n− 1)

< −4 + 4 log2 n = L(n).

On the other hand, it takes O(N3) steps to perform each test step (there are better estimates)
and L(n) is proportional to N (Theorem 2.4). So, the overall time is O(N4).

In the ”old aristocracy” of primality testing are the Adleman–Pomerance–Rumely test 5 and
its variants. The test is based on some quite advanced algebraic number theory, it is determinis-
tic and fast. Testing a number n for primality takes at most

O((lnn)c ln(ln(lnn)))

steps where c is (small) constant, and hence it is not quite inP—but almost, since the ln(ln(lnn))
does grow very slowly. On the other hand, both theoretically and considering implementation,
it is hard to handle. See for example KRANAKIS.

A recent celebrated result in number theory is the fact that primality testing is in P . This
was proved by the Indians Manindra Agrawal, Neeraj Kayal and Nitin Saxena in 2002.6 The
proved complexity of the algorithm is O((lnn)8) but heuristically a complexity O((lnn)6) is
obtained. However, as of yet there are no very fast implementations, although the algorithm is
quite short to present (the input is n ≥ 2):

5The original reference is ADLEMAN, L. & POMERANCE, C. & RUMELY, R.: On Distinguishing Prime Num-
bers from Composite Numbers. Annals of Mathematics 117 (1983), 173–206.

6The article reference is AGRAWAL, M. & KAYAL, N. & SAXENA, N.: PRIMES is in P. Annals of Mathematics

160 (2004), 781–793.
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Agrawal–Kayal–Saxena algorithm:

1. Find out whether n is a higher power of an integer r, in other words, whether it can be
expressed as n = rl where l ≥ 2. (Because then l = log2 n/ log2 r ≤ log2 n, the number
of possible values of l we must try out is proportional to the length of n. After finding
these we compute the integral lth root of n for every candidate l using Newton’s algorithm
from Section 2.6 and see if its lth power is = n.) If n is such a power, return ”NO” and
quit.

2. Find an integer m such that the order of n modulo m is > (log2 n)
2. (This can be done

by trying out numbers. A much more difficult thing is to show that such an m need not
be too large.)

3. Check whether n has a prime factor in the interval 2, 3, . . . , m (perhaps by trying out
numbers and using the Euclidean algorithm). If it has, return ”NO” and quit.

4. Examine whether the congruences

(x+ i )n ≡ xn + i mod xm − 1 (i = 1, 2, . . . , ⌊
√
m log2 n⌋)

hold in the polynomial ring Zn[x]. (For this we need the algorithm of Russian peasants
and divisions. Note that regardless of the value of n division by the monic polynomial
xm− 1 is defined in Zn[x]. See Section 4.2.) If they do not all hold true, return ”NO” and
quit.

5. Return ”YES” and quit.

A nice exposition of the algorithm and its working is in the article GRANVILLE, A.: It Is Easy
to Determine Whether a Given Integer Is Prime. Bulletin of the American Mathematical Society

42 (New Series) (2004), 3–38.
Some very useful primality tests are probabilistic, in other words, they produce the correct

result with high probability. For example the so-called Miller–Rabin test 7 is such a test. The
test is based on Fermat’s little theorem, according to which, if n is a prime and x is an integer
such that gcd(x, n) = 1 then xn−1 ≡ 1 mod n. Let’s write n in the form

n = 1 + 2lm,

where m is odd. If n is odd then l ≥ 1 and

0 ≡ xn−1 − 1 = x2lm − 1 = (x2l−1m − 1)(x2l−1m + 1) mod n,

and because n is a prime it divides either x2l−1m−1 or x2l−1m+1, but not both of them (why?).
If n divides x2l−1m − 1 then we can go through the same operation again. And so on. From this
we conclude that either for some number i = 0, 1, . . . , l − 1 we have

x2im ≡ −1 mod n,

or if this is not true, eventually
xm ≡ 1 mod n.

7The original references are MILLER, G.L.: Riemann’s Hypothesis and Tests for Primality. Journal of Com-

puter and System Sciences 13 (1976), 300–317 and RABIN, M.O.: Probability Algorithms. Algorithms and Com-

plexity (J.F. TRAUB, Ed.). Academic Press (1976), 35–36. The algorithm is sometimes also known as Selfridge’s

test.
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If it now happens for an integer x such that gcd(x, n) = 1 and xm 6≡ ±1 mod n, that for all
numbers i = 1, 2, . . . , l − 1

x2im ≡ 1 mod n

then we can only conclude that n is not a prime after all. Similarly if we run into an i > 0 such
that x2im 6≡ ±1 mod n. On the other hand, when we try out several numbers, for example
certain ”small” primes x = 2, 3, 5, 7, 11, . . . , we obtain evidence of a kind for the primality
of n. As a matter of fact, this evidence can be made very strong by using several well-chosen
numbers x. This is so also in a probabilistic sense, with a random choice of the number x in the
interval 1 < x < n− 1.

In the following it is assumed that given or randomly chosen test numbers x1, x2, . . . , xk are
available.

Miller–Rabin primality test:

1. If n is even, the case is clear, return the result and quit.

2. If n is odd, set l ← 0 and m← n− 1.

3. Set l ← l + 1 and m← m/2.

4. If m is even, go to #3. (The maximum number of these rounds is ⌊log2 n⌋.)

5. Set j ← 0.

6. If j < k, set j ← j + 1 and x← xj . Otherwise return ”PRIME” (supposed information)
and quit.

7. If xm ≡ 1 mod n or gcd(x, n) = n then go to #6. Then again, if 1 < gcd(x, n)
< n, return ”COMPOSITE” (certain information) and quit. (Compute powers using the
algorithm of Russian peasants, the g.c.d. using the Euclidean algorithm.)

8. Set i← 0.

9. If x2im ≡ 1 mod n, return ”COMPOSITE” (certain information) and quit. (Compute
powers by repeated squarings starting from the power in #7, be sure to keep the interme-
diate results!)

10. If x2im ≡ −1 mod n, go to #6.

11. If i = l−1, return ”COMPOSITE” (certain information) and quit. Otherwise set i← i+1

and go to #9.

NB. This is the so-called ”bottom-up” version of the test. There is also a ”top-down” version,

where i is decreased, see e.g. the lecture notes RUOHONEN, K.: Symbolinen analyysi. There

appears to be no significant difference in speed between these two versions.

So, the test is not ”rock-solid”. There are composite numbers that it returns as primes, these
are called strong pseudoprimes for the test numbers x1, x2, . . . , xk. For example, 25 326 001
= 2 251 · 11 251 is a strong pseudoprime for the test numbers 3 and 5. For a fixed value of k
the time complexity of the test is O(N3), as it is easy to see (again N is the length of n). As a
probabilistic algorithm the Miller–Rabin test is of the Monte Carlo type. It can be shown that for
a single randomly chosen x from the interval 1 < x < n− 1 the test produces the wrong result
with a probability no higher than 1/4, see the original reference RABIN or e.g. CRANDALL &
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POMERANCE or KRANAKIS or GARRETT. By repeating the test we get a certainty as good as
we want.8

Besides primality testing, generating primes of a given length is an essential task. A prime
of length N can be chosen randomly by first choosing a random integer of length N , see Section
2.6, and then testing it for primality by the Miller–Rabin test. This prime generation is quite
fast. If we denote by π(x) the number of the primes less than or equal to x, we get a famous
asymptotic estimate:

Theorem 7.11. (Prime number theorem) lim
x→∞

π(x)

x/ lnx
= 1

The proof is difficult! Hence, of the numbers of magnitude n approximately one in every lnn
is a prime. This is enough for random search of primes to go quickly. The random number
generators of Section 2.6 are good enough for this purpose. An older result

Theorem 7.12. (Chebychev’s theorem)
7

8
<

π(x)

x/ lnx
<

9

8
when x ≥ 5.

gives rough quantitative bounds. It guarantees that there are at least
⌈

7n

8 lnn

⌉

primes among the numbers 1, 2, . . . , n, and that in the interval (m,n] there are at least
⌈

7n

8 lnn

⌉

−

⌊
9m

8 lnm

⌋

primes. For example, in the interval (10150, 10151] there are thus at least something like

7 · 10151

1 208 ln 10
−

9 · 10150

1 200 ln 10
∼= 2.19 · 10148

primes, much more actually. Primes also occur fairly uniformly:

Theorem 7.13. (Bertrand’s postulate9) When n ≥ 2, there is at least one prime p in the

interval n < p < 2n.

Theorem 7.14. (Dirichlet–de la Vallée-Poussin theorem) If m ≥ 2 then primes are distributed

asymptotically equally among the reduced residue classes modulo m.

Primes and primality testing are widely discussed in CRANDALL & POMERANCE.

7.5 Factorization of Integers

From the fact that primality testing is in P it follows immediately that factorization of integers
is in NP: just guess the prime factors and test their primality. Although primality testing is
in P and also quite fast in practice, factorization appears to be a highly demanding task. It is
enough to give a method that finds a nontrivial factor d of an integer n ≥ 2, or then confirms

8There are other Monte Carlo type primality tests, for example the so-called Solovay–Strassen algorithm, see
e.g. SALOMAA or KRANAKIS.

9The postulate was actually proved by Chebychev.
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that n itself is a prime. After that we can continue recursively from the numbers d and n/d. Of
course, we should start with primality testing, after which we may assume that n is not a prime.

The following well-known algorithm often finds a factor for an odd composite number n,
assuming that for some prime factor p of n there are no prime powers dividing p− 1 larger than
b. From this condition it follows that p− 1 is a factor of b! (doesn’t it?).

Pollard’s p − 1-algorithm10:

1. Set a← 2.

2. Iterate setting a← (aj ,mod n) for j = 2, . . . , b.

3. Compute d = gcd(a− 1, n).

4. If 1 < d < n, return the factor d, otherwise give up.

Assume that p is a prime factor of n which satisfies the given condition. After #2 apparently
a ≡ 2b! mod n and thus also a ≡ 2b! mod p. By Fermat’s little theorem 2p−1 ≡ 1 mod p.
As was noted, p− 1 | b! whence a ≡ 1 mod p. So, p | a− 1 and thus p | d. It is possible that
a = 1, though, in which case a factor cannot be found.

The time complexity of the algorithm is

O(bBN2 +N3)

where N and B are the binary lengths of the numbers n and b, respectively. From this it is seen
that b should be kept as small as possible compared with n, for the algorithm to work fast. On
the other hand, if b is too small, too many prime factors are precluded and the algorithm does
not produce a result.

More exact presentation and analysis of Pollard’s p−1-algorithm and many other algorithms
can be found in the references RIESEL and CRANDALL & POMERANCE. Pollard’s p − 1-
algorithm has been generalized in many ways, for example to the so-called method of elliptic

curves and to Williams’ p+ 1-algorithm.

A very classical algorithm for finding factors is the so-called test division algorithm. In this
algorithm we first try out factors 2 and 3 and after that factors of form 6k ± 1 up to ⌊

√
n⌋.

Integral square root can be computed fast, as was noted. Of course this procedure is rather
time-consuming. Test division is a so-called sieve method. There are much more powerful
sieve methods, for instance the quadratic sieve and the number field sieve. The estimated time
complexities for the fastest algorithms at the moment are given in the following table. Shor’s
algorithm, see Section 15.3, is not included, since quantum computers do not really exist yet.

Algorithm Time complexity *

Quadratic sieve O
(

e(1+o(1))
√

lnn ln(lnn)
)

Method of elliptic curves O
(

e(1+o(1))
√

2 ln p ln(ln p)
)

(p is the smallest prime factor of n)

Number field sieve O
(

e(1.92+o(1))(ln n)1/3(ln(lnn))2/3
)

* The notation f(n) = o(1) means that lim
n→∞

f(n) = 0. More generally, the notation f(n) = o(g(n)) means
that lim

n→∞

f(n)/g(n) = 0.

10The original reference is POLLARD, J.M.: Theorems on Factorization and Primality Testing. Proceedings of

the Cambridge Philosophical Society 76 (1975), 521–528. The algorithm can be varied in a number ways in order
to make it more powerful, this is just a basic version.
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7.6 Modular Square Root

The number x is called a square root of y modulo m or a so-called modular square root if

x2 ≡ y mod m.

Usually this square root is represented in the positive residue system. We see immediately that
if x is a square root of y modulo m then so is (−x,mod m). Thus there are usually at least two
modular square roots, often many more.

There does not necessarily have to be any square root modulo m. A number y that has
square root(s) modulo m is called a quadratic residue modulo m, and a number y that has no
square roots modulo m is called a quadratic nonresidue modulo m. Apparently at least the
numbers 0 and 1 are quadratic residues. In the general case testing quadratic residuosity or
quadratic nonresiduosity modulo m is a difficult computational task.

If the number y is a quadratic residue modulo m and the factorization of m is

m = pi11 p
i2
2 · · · p

iM
M

and some square root xj of y modulo p
ij
j (j = 1, 2, . . . ,M) is known, then we can obtain more

square roots of y modulo m using the Chinese remainder theorem. Note that if y is a quadratic
residue modulo m then it is also quadratic residue modulo every p

ij
j , since every square root x

of y modulo m is also its square root modulo p
ij
j . Solve for x modulo m the congruence system







x ≡ ±x1 mod pi11
x ≡ ±x2 mod pi22

...

x ≡ ±xM mod piMM

by using the CRT algorithm. The solution is uniquely determined modulo m = pi11 p
i2
2 · · · p

iM
M .

Any of the 2M combinations of the signs ± may be chosen. Then

x2 ≡ (±xj)
2 ≡ y mod p

ij
j

and so p
ij
j | x

2− y (j = 1, 2, . . . ,M). Since the pijj are coprime we have m | x2− y, i.e. x2 ≡ y
mod m. By going through all choices for the square roots xj—there may well be several of
them—and all ±-sign combinations we actually obtain every square root of y modulo m.

So, the situation is reduced to computing square roots modulo primes or prime powers.
Computing square roots modulo higher powers of primes is a bit more difficult and it is not
discussed here.11 On the other hand, square roots modulo a prime p can be computed fast by the
so-called Shanks algorithm. There are always exactly two square roots of y modulo p, unless
y ≡ 0 mod p, since if x is a square root and x′ is another then

x2 ≡ y ≡ x′2 mod p or (x− x′)(x+ x′) ≡ 0 mod p

and either p | x − x′, i.e. x ≡ x′ mod p, or p | x + x′, i.e. x′ ≡ −x mod p. And if y ≡ 0

mod p, then the only square root is 0, as it is easy to see.
If p > 2 then apparently all quadratic residues modulo p are obtained when we take the

squares of the numbers 0, 1, . . . , (p− 1)/2 modulo p. These squares are not congruent modulo
p (why?), so there is one more of the quadratic residues than the quadratic nonresidues, and this
one quadratic residue is 0. Whether y is a quadratic residue or a quadratic nonresidue modulo p
can be decided quickly, the cases p = 2 and y ≡ 0 mod p being of course trivial.

11A so-called Hensel lifting, much as the one in Section 11.3, is needed there, see e.g. GARRETT.
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Theorem 7.15. (Euler’s criterion) If p is an odd prime and y 6≡ 0 mod p then y is a quadratic

residue modulo p if and only if

y
p−1

2 ≡ 1 mod p.

(Modular powers are computed quickly using the algorithm of Russian peasants.)

Proof. If y is a quadratic residue, that is, for some x we have y ≡ x2 mod p, then by Fermat’s
little theorem xp−1 ≡ 1 mod p (note that gcd(x, p) = 1 since y 6≡ 0 mod p). So

y
p−1

2 ≡ xp−1 ≡ 1 mod p.

Conversely, if y(p−1)/2 ≡ 1 mod p then we take a primitive root g modulo p. In this case
we have y ≡ gi mod p for some i because gcd(y, p) = 1, and

g
p−1

2
i ≡ y

p−1

2 ≡ 1 mod p.

But since the order of g is p− 1, (p− 1)i/2 must be divisible by p − 1. Hence i is even and y
has the square roots (±gi/2,mod p) modulo p.

If p is of the form p = 4l − 1, i.e. p ≡ 3 mod 4, then by using Euler’s criterion we
immediately get those two square roots of y—assuming of course that y 6≡ 0 mod p. They are
(±y(p+1)/4,mod p), since

(

±y
p+1

4

)2

= y
p+1

2 = y
p−1

2 y ≡ y mod p.

One of these two modular square roots is actually a quadratic residue itself, this is the so-called
principal square root, and the other is a quadratic nonresidue. To see this, first of all, if x is
both a square root of y and a quadratic residue modulo p then−x cannot be a quadratic residue.
Otherwise x ≡ z21 ≡ −z

2
2 mod p for some numbers z1 and z2, and −1 ≡ (z1z

−1
2 )2 mod p,

i.e. −1 is a quadratic residue modulo p. However this is not possible by Euler’s criterion since
(−1)(p−1)/2 = (−1)2l−1 = −1. On the other hand these modular square roots cannot both be
quadratic nonresidues, otherwise there will be too many of them.

The case p = 4l + 1 is much more complicated, oddly enough, and we need Shanks’
algorithm to deal with it.

Before we go to Shanks’ algorithm, we can now state that if m does not have higher powers
of primes as factors—in other words, m is square-free—and the factorization

m = p1p2 · · · pM

is known then the situation concerning quadratic residues and square roots modulo m is quite
simple:

• y is a quadratic residue modulo m if and only if it is a quadratic residue modulo each pj
(j = 1, 2, . . . ,M), and this is very quickly decided using Euler’s criterion.

• After computing the square roots xj of y modulo pj using Shanks’ algorithm, we obtain
all 2M square roots of y modulo m applying the CRT algorithm as above.

Furthermore we obtain

Theorem 7.16. If m is odd and square-free, gcd(y,m) = 1, i.e. y is not divisible by any of the

primes pj , and y is a quadratic residue modulo m then there are exactly 2M square roots of y
modulo m where M is the number of prime factors of m.



CHAPTER 7. NUMBER THEORY. PART 2 61

Proof. Otherwise for some pj we have xj ≡ −xj mod pj , i.e. 2xj ≡ 0 mod pj . Thus,
because pj is odd, xj ≡ 0 mod pj and further y ≡ x2

j ≡ 0 mod pj .

If the primes pj are all ≡ 3 mod 4 then exactly one of these 2M square roots of y modulo m
in the theorem is obtained by the CRT algorithm choosing principal square roots of y modulo
each pj . This square root is the principal square root of y modulo m.

Corollary. If m is odd and square-free, y is a quadratic residue modulo m, and x is a square

root of y modulo m then the square roots of y modulo m are exactly (xωi,mod m) (i = 1, 2, . . . ,
2M ) where M is the number of prime factors of m and ω1, ω2, . . . , ω2M are the square roots of

1 modulo m.

NB. All this depends very much on the factorization of m being available. Already in the

case where M = 2 and the factors are not known deciding whether y is quadratic residue

modulo m or not, and in the positive case finding its square roots modulo m, is very laborious.

Even knowing one of the square root pairs does not help. As a matter of fact, if we know

square roots x1 and x2 of y modulo m = p1p2 such that x1 6≡ ±x2 mod m then the numbers

gcd(m, x1 ± x2) are the primes p1 and p2. Many cryptosystems and protocols, e.g. RSA, are

based on these observations.

And then the Shanks algorithm:

Shanks’ algorithm:

1. If p = 2, return (y,mod 2) and quit. If y ≡ 0 mod p, return 0 and quit.

2. If y(p−1)/2 6≡ 1 mod p then y does not have square roots modulo p by Euler’s criterion.
Return this information and quit.

3. If p ≡ 3 mod 4, return (±y(p+1)/4,mod p) and quit.

4. Then again if p ≡ 1 mod 4, write p − 1 = 2st where t is odd and s ≥ 2. This is
accomplished by repeated divisions by 2, and no more than ⌊log2(p − 1)⌋ of them are
needed.

5. Randomly choose a number u from the interval 1 ≤ u < p. Now if u(p−1)/2 ≡ 1 mod p,
give up and quit. By Euler’s criterion u is in this case a quadratic residue modulo p and
for the sequel a quadratic nonresidue will be needed. Hence the choice of u succeeds with
a probability of 50%.

6. Set v ← (ut,mod p). Then the order of v modulo p is 2s. This is because if i is this order,
then it | 2st and so i | 2s. On the other hand, ut2k 6≡ 1 mod p for k < s, otherwise
u(p−1)/2 ≡ 1 mod p.

7. Set z ← (y(t+1)/2,mod p). Then z2 ≡ yty mod p. In a sense z is an ”approximate”
square root of y modulo p, and using it we can find the correct square root in the form
x = (zv−l,mod p).

8. Find the said correct square root, in other words, a number l such that

x2 ≡ (zv−l)2 ≡ y mod p , i.e. v2l ≡ z2y−1 ≡ yt mod p.
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Such a number exists because the modular equation w2s−1

≡ 1 mod p has 2s−1 roots12

(solving for w) and they are (v2j,mod p) (j = 0, 1, . . . , 2s−1 − 1). Since (yt,mod p) is
one of the roots, the number l can be found recursively in the binary form

l = bs−22
s−2 + bs−32

s−3 + · · ·+ b12 + b0

as follows:

8.1 The bit b0 is found when both sides of the congruence v2l ≡ yt mod p are raised to
the (2s−2)th power since

b0 =

{

0 if (yt2
s−2

, mod p) = 1

1 otherwise.

8.2 The bit b1 is found, when both sides of the congruence v2l ≡ yt mod p are raised
to the (2s−3)th power since

b1 =

{

0 if (yt2
s−3

v−b02s−2

, mod p) = 1

1 otherwise.

Note that here we need the already obtained b0.

8.3 Using the obtained bits b0 and b1 we similarly find the following bit b2, and so on.

9. Return (±zv−l,mod p) and quit.

It is quite easy to see that the algorithm is polynomial-time and produces the correct result with
an approximate probability of 50%. It is a Las Vegas type stochastic algorithm.

7.7 Strong Random Numbers

Cryptologically strong random numbers are needed for example in probabilistic cryptosystems
where random numbers are used in the encryption. Encrypting one and the same message can
then produce different results at different times. Many protocols also use random numbers.

Many otherwise quite good traditional random number generators, such as the shift register
generator introduced in Section 2.6, have proved to be dangerously weak in cryptography. The
specific needs of cryptology started an extensive research of pseudorandom numbers, theoreti-
cally as well as in practice.

The Blum–Blum–Shub generator 13 is a simple random number generator, whose strength
is in its connections to quadratic residuosity testing. Since, as of now, no fast algorithms are
known for the testing, even probabilistic ones not to mention deterministic, the BBS generator
is thought to be strong in the cryptological sense, see e.g. GARRETT or STINSON.

Squaring a quadratic residue x modulo n produces a new quadratic residue y. Now if y has
a principal square root, it must be x, and so in this case we are actually talking about permuting
quadratic residues. This permutation is so powerfully randomizing that it can be used as a
random number generator.

12Here we need from polynomial algebra the result that an algebraic equation of dth degree has at most d different
roots. See for example the course Algebra 1 or Symbolic Computing or some elementary algebra book.

13The original reference is BLUM, L. & BLUM, M. & SHUB, M.: A Simple Unpredictable Random Number
Generator. SIAM Journal on Computing 15 (1986), 364–383.
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The BBS generator produces a sequence of random bits. The generator needs two primes
p and q, kept secret, of approximately same length. The condition p ≡ q ≡ 3 mod 4 must be
satisfied, too, for the principal square roots to exist. Denote n = pq. If the goal is to produce l
random bits, the procedure is the following:

Blum–Blum–Shub generator:

1. Choose a random number s0 from the interval 1 ≤ s0 < n. Randomness is very impor-
tant here, and for that the random number generators introduced in Section 2.6 are quite
sufficient. Indeed, some choices lead to very short sequences, and the random number
generator starts repeating itself quite soon, which is of course a serious deficiency. This
is discussed thoroughly in the original article.

2. Repeat the recursion
si = (s2i−1, mod n)

l times and compute the bits

bi = (si, mod 2) (i = 1, 2, . . . , l).

3. Return (b1, b2, . . . , bl) and quit.

NB. Cryptologically strong random number generators and good cryptosystems have a lot in

common, as a matter of fact, many cryptosystems can be transformed to cryptologically strong

random number generators, see e.g. GOLDREICH and SHPARLINSKI and the article AIELLO,
W. & RAJAGOPALAN, S.R. & VENKATESAN, R.: Design of Practical and Provably Good
Random Number Generators. Journal of Algorithms 29 (1998), 358–389.

7.8 Lattices. LLL Algorithm

If v1, . . . ,vk are linearly independent vectors of Rk then the lattice14 generated by them is the
set of the points

〈v1, . . . ,vk〉 = {c1v1 + · · ·+ ckvk | c1, . . . , ck ∈ Z}

of Rk. The vectors v1, . . . ,vk are called the base vectors or the basis of the lattice, and k is
the dimension of the lattice. A lattice has infinitely many bases if k > 1. So, a central task
considering lattices is to find a ”good” basis which includes at least one short vector and whose
vectors do not meet at very sharp angles. Such a basis resembles the natural basis of Rk.

The discriminant of the lattice is D = | det(V)| where V is the matrix whose columns are
v1, . . . ,vk. D is the volume of the k-dimensional parallelepiped spanned by the base vectors,
and does not depend on the choice of the basis of the lattice. This is because a matrix C, used
for changing the basis, and its inverse C

−1 must have integral elements, in which case both
det(C) and det(C−1) = det(C)−1 are also integers and hence det(C) = ±1. After the change
of basis the discriminant is | det(CV)| = | det(C) det(V)| = D. The discriminant offers a
measure to which other quantities of the lattice can be compared.

The celebrated Lenstra–Lenstra–Lovász algorithm 15 (LLL algorithm) gives a procedure for
constructing a good basis for a lattice, in the above mentioned sense, starting from a given basis.
The resulting basis is a so-called LLL reduced base. After getting the base vectors v1, . . . ,vk as
an input, the algorithm produces a new basis u1, . . . ,uk for the lattice 〈v1, . . . , vk〉, for which

14Research of lattices belongs to the so-called geometric number theory or Minkowski’s geometry.
15The original reference is LENSTRA, A.K. & LENSTRA JR., H.W. & LOVÁSZ, L: Factoring Polynomials with

Rational Coefficients. Mathematische Annalen 261 (1982), 515–534.
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1. ‖u1‖ ≤ 2
k−1

4 D
1

k ,

2. ‖u1‖ ≤ 2
k−1

2 λ where λ is the length of the shortest nonzero vector of the lattice, and

3. ‖u1‖ · · · ‖uk‖ ≤ 2
k(k−1)

4 D.

Items 1. and 2. guarantee that the new base vector u1 is short both compared with the discrimi-
nant and with the shortest nonzero vector of lattice. Item 3. guarantees that the angles spanned
by the new vectors are not too small. A measure of approximate orthogonality of the basis
u1, . . . ,uk is how close ‖u1‖ · · · ‖uk‖ is to D, since ‖u1‖ · · · ‖uk‖ = D for orthogonal vectors
u1, . . . ,uk.

For the time complexity of the LLL algorithm there is the estimate

O(k6(lnmax(‖v1‖, . . . , ‖vk‖))
3),

but usually it is a lot faster in practice. However, note that time is polynomial only in the size
of the vectors, not in the size of the dimension. Performance of the algorithm depends also on
how the vectors v1, . . . ,vk are given and how you compute with them. Naturally, an easy case
is when the vectors have integral elements.

The LLL algorithm won’t be discussed any further here, it is treated in much more detail for
example in COHEN. Suffice it to say that it is extremely useful in a number of contexts.



Chapter 8

RSA

8.1 Defining RSA

RSA’s1 secret key k2 consists of two large primes p and q of approximately equal length, and a
number b (the so-called decrypting exponent) such that

gcd(b, φ(pq)) = gcd(b, (p− 1)(q − 1)) = 1.

The public key k1 is formed of the number n = pq (multiplied out), and the number a (the
so-called encrypting exponent) such that

ab ≡ 1 mod φ(n).

Note that b does have an inverse modulo φ(n). The encrypting function is

ek1(w) = (wa, mod n),

and the decrypting function is
ek2(c) = (cb, mod n).

For encrypting to work, a message block must be coded as an integer in the interval 0 ≤ w ≤
n−1. Both encrypting and decrypting are done quickly using the algorithm of Russian peasants.
The following small special case of the Chinese remainder theorem will be very useful:

Lemma. x ≡ y mod n if and only if both x ≡ y mod p and x ≡ y mod q.

When setting up an RSA cryptosystem, we go through the following steps:

1. Generate random primes p and q of desired length, see Section 7.4.

2. Multiply p and q to get the number n = pq, and compute φ(n) = (p− 1)(q − 1) as well.

3. Find a random number b from the interval 1 ≤ b ≤ φ(n)− 1 such that gcd(b, φ(n)) = 1,
by generating numbers randomly from this interval and computing the g.c.d.

4. Compute the inverse a of b modulo φ(n) using the Euclidean algorithm.

5. Publish the pair k1 = (n, a).

1The original reference is RIVEST, R.L. & SHAMIR, A. & ADLEMAN, L.: A Method for Obtaining Digi-
tal Signatures and Public Key Cryptosystems. Communications of the Association for Computing Machinery 21
(1978), 120–126.
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Now let’s verify that decrypting works. First of all, if gcd(w, n) = 1 then by Euler’s theorem
for some number l we have

cb ≡ (wa)b = wab = w1+lφ(n) = w(wφ(n))l ≡ w · 1 = w mod n.

Then again, if gcd(w, n) 6= 1, we have three cases:

• w = 0. Now apparently
cb ≡ (wa)b = 0b = 0 mod n.

• p | w but w 6= 0. Now w = pt where gcd(q, t) = 1. Clearly

cb ≡ wab ≡ w mod p.

On the other hand, by Fermat’s little theorem for some number l we have

wab = w1+lφ(n) = w(wφ(n))l = w(w(p−1)(q−1))l = w(wq−1)l(p−1) ≡ w · 1 = w mod q.

By the lemma cb ≡ wab ≡ w mod n.

• q | w but w 6= 0. We handle this just as we did the previous case.

NB. The above mentioned condition gcd(w, n) 6= 1 does not bode well: Either the message

is directly readable or it has p or q as a factor, in which case using the Euclidean algorithm

gcd(w, n) can be obtained and thus the whole system can be broken. Of course, this also

happens if gcd(c, n) 6= 1, but because n does not have higher powers of primes as factors and

c ≡ wa mod n, in fact

gcd(c, n) = gcd(wa, n) = gcd(w, n).

8.2 Attacks and Defences

RSA can be made very safe but this requires that certain dangerous choices are avoided. Note
that KP data is always available in public-key systems. One case to be avoided was already
indicated in the note above, but it is very rare. Other things that should be kept in mind are the
following:

(A) The absolute value of the difference p−q must not be small! Namely, if p−q > 0 is small
then (p − q)/2 is small too, and (p + q)/2 is just a bit larger than

√
pq =

√
n (check!).

On the other hand,

n =

(
p+ q

2

)2

−

(
p− q

2

)2

.

To find the factors p and q of n we try out integers one by one starting from ⌈
√
n ⌉ until we

hit a number x such that x2 − n = y2 is a square. When this x is found, we immediately
obtain p = x + y and q = x − y. Because n itself is not square, ⌈

√
n ⌉ = ⌊

√
n⌋ + 1.

Computing the integral square root is quite fast, see Section 2.6.

(B) We must keep an eye on the factor structure of φ(n) when choosing the primes p and q.
If gcd(p− 1, q − 1) is large then

u = lcm(p− 1, q − 1) =
(p− 1)(q − 1)

gcd(p− 1, q − 1)
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is small (see Theorem 2.9). On the other hand, gcd(a, u) = 1 (why?) and a has an inverse
b′ modulo u. This b′ will also work as a decrypting exponent because we can now write
ab′ = 1 + lu and u = t(p− 1) = s(q − 1) for some numbers l, t and s, and by Fermat’s
little theorem

cb
′

≡ wab′ = w1+lu = w(wu)l = w(wp−1)lt ≡ w · 1 = w mod p.

(Here of course c ≡ wa mod p.) Similarly cb
′

≡ w mod q and by the lemma also
cb

′

≡ w mod n. If u is much smaller than φ(n) then b′ can be found by trying out
numbers. The conclusion is that p− 1 and q− 1 should not have a large common divisor.

(C) A situation where φ(n) has only small prime factors must be avoided, too. Except that in
this situation we can try to factor n by Pollard’s p− 1-algorithm and similar algorithms,
it may also be possible to go through all candidates f for φ(n), for which gcd(f, a) = 1,
compute the inverse of a modulo f , decrypt some cryptotext, and in this way find φ(n) by
trial and error. Note that if φ(n) = (p− 1)(q − 1) and n are known we can easily obtain
p and q as the roots of the second degree equation

(x− p)(x− q) = x2 + (φ(n)− n− 1)x+ n = 0.

The roots

x1,2 =
−φ(n) + n + 1±

√

(φ(n)− n− 1)2 − 4n

2

can be computed quite quickly using integral square root.

(D) Using iterated encrypting we can either factor n or find the plaintext w, when the corre-
sponding cryptotext c is available. Compute the sequence

ci = (cai−1, mod n) = (ca
i

, mod n) = (wai+1

, mod n) , c0 = c,

recursively until gcd(ci − c, n) 6= 1. If this succeeds, there are two possibilities:

• gcd(ci − c, n) = p or gcd(ci − c, n) = q: In this case p and q are found and the
system is broken.

• gcd(ci− c, n) = n: In this case necessarily w = ci−1 and the plaintext is found. If w
has a recognizable content, it will be found already in the preceding iteration round!

Does the procedure succeed every time? By Euler’s theorem

aφ(φ(n)) ≡ 1 mod φ(n),

i.e. we can write aφ(φ(n)) − 1 = lφ(n), and further

cφ(φ(n))−1 ≡ waφ(φ(n))

= w1+lφ(n) = w(wφ(n))l ≡ w · 1 = w mod n,

so at least i = φ(φ(n)) suffices. On the other hand, φ(φ(n)) ≥ 4
√
n, so that this bound for

the number of iterations is not very interesting.

(E) Apparently very small decrypting exponents must be avoided, since they can be found by
trying out numbers. As a matter of fact, certain methods make it possible to find even
fairly large decrypting exponents. For example, if b < n0.292, it can be found using the
LLL algorithm.2

2See BONEH, D. & DURFEE, G.: Cryptanalysis of RSA with Private Key d Less Than n0.292. Proceedings of

EuroCrypt ’99. Lecture Notes in Computer Science 1592. Springer–Verlag (1999), 1–11.
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A small encrypting exponent can also do harm, even if the decrypting exponent is large.
If for example wa < n then w can be easily obtained from c by taking the integral ath

root. See also Section 8.5.

(F) It goes without saying that if there is such a small number of possible messages that
they can be checked out one by one then the encrypting can be broken. If all messages
are ”small” then this can be done quite conveniently by the so-called meet-in-the-middle

procedure. Here we assume that w < 2l, in other words, that the length of the message
in binary representation is ≤ l. Because by the Prime number theorem there are only few
possible large prime factors of w, it is fairly likely that w will be of form

w = w1w2 where w1, w2 ≤ ⌈2
l/2⌉

(at least for large enough l), in which case the corresponding encrypted message is

c ≡ wa
1w

a
2 mod n.

⌈2l/2⌉ is obtained by the algorithm of Russian peasants and by extracting the integral
square root if needed. The procedure is the following:

1. Sort the numbers (ia,mod n) (i = 1, 2, 3, . . . , ⌈2l/2⌉) according to magnitude, in-
cluding the i’s in the list L obtained. Computing the numbers (ia,mod n) by the
algorithm of Russian peasants takes time O(2l/2N3) where N is the length of n, and
sorting with quicksort takes O(l2l/2) time steps.

2. Go through the numbers (cj−a,mod n) (j = 1, 2, 3, . . . , ⌈2l/2⌉) checking them
against the list L—this is easy, since the list is in order of magnitude. If we find
a j such that

cj−a ≡ ia mod n

then we have found w = ij (meeting in the middle). Using binary search and
computing powers by the algorithm of Russian peasants takes time O(2l/2(l+N3)).
If it so happens that j−1 mod n does not exist then gcd(j, n) 6= 1 and a factor of n
is found.

The overall time is O(2l/2(l + N3)), which is a lot less than 2l, assuming of course that
the list L can be stored in a quickly accessible form.

The problem of small messages can be solved using padding, in other words by adding
random decimals (or bits) in the beginning of the decimal (or binary) representation of the
message, so that the message becomes sufficiently long. Of course a new padding needs
to be taken every time. In this way even single bits can be messages and safely encrypted.

NB. In items (B) and (C) safety can be increased by confining to the so-called safe primes or

Germain’s numbers p and q, i.e. to primes p and q such that (p−1)/2 and (q−1)/2 are primes.

Unfortunately finding such primes is difficult—and it is not even known whether or not there

infinitely many of them. Some cryptologists even think there are so few Germain numbers it is

not actually safe to use them!

A particularly unfortunate possibility in item (D) is that the iteration succeeds right away.
Then it can happen that p | c or q | c, but what is much more likely is that the message is a
so-called fixed-point message, in other words, a message w such that

c = ek1(w) = w.

Apparently 0, 1 and n− 1 are such messages. But there are usually many more of them!
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Theorem 8.1. There are exactly

(1 + gcd(a− 1, p− 1))(1 + gcd(a− 1, q − 1))

fixed-point messages.

Proof. Denote l = gcd(a− 1, p− 1) and k = gcd(a− 1, q − 1) and take some primitive roots
g1 and g2 modulo p and q, respectively. Then the order of ga−1

1 modulo p is (p − 1)/l and the
order of ga−1

2 modulo q is (q − 1)/k, see Theorem 7.4 (iii). Hence the only numbers i in the
interval 0 ≤ i < p− 1 such that

(ga−1
1 )i ≡ 1 mod p or (gi1)

a ≡ gi1 mod p,

are the numbers

ij = j
p− 1

l
(j = 0, 1, . . . , l − 1).

Similarly the only numbers i in the interval 0 ≤ i < q − 1 such that (gi2)
a ≡ gi2 mod q, are the

numbers

hm = m
q − 1

k
(m = 0, 1, . . . , k − 1).

Apparently every fixed-point message w satisfies the congruences wa ≡ w mod p, q, and vice
versa. Hence exactly all fixed-point messages are obtained by the Chinese remainder theorem
from the (l + 1)(k + 1) congruence pairs

{

x ≡ 0 mod p

x ≡ 0 mod q
,

{

x ≡ 0 mod p

x ≡ ghm
2 mod q

,

{

x ≡ g
ij
1 mod p

x ≡ 0 mod q
,

{

x ≡ g
ij
1 mod p

x ≡ ghm
2 mod q

(j = 0, 1, . . . , l − 1 and m = 0, 1, . . . , k − 1).

Of course, there should not be many fixed-point messages. Because in practice a and both p
and q are odd, generally there are at least (1 + 2)(1 + 2) = 9 fixed-point messages. Especially
difficult is the situation where p − 1 | a − 1 and q − 1 | a − 1. In this case there are (1 + p −
1)(1 + q − 1) = n fixed-point messages, that is, all messages are fixed-point messages. If g1
and g2 are known and the number of fixed-point messages is relatively small, they can be found
in advance and avoided later.

Some much more complicated ideas have been invented for breaking RSA. These are intro-
duced for example in MOLLIN. None of these has turned out to be a real threat so far.

8.3 Cryptanalysis and Factorization

Breaking RSA is hard because the factors of n cannot be computed in any easy way. In the
public key there is also the encrypting exponent a. The following result shows that there is
no easy way to obtain additional information out of a, either. In other words, an algorithm A,
which computes b from n and a, can be transformed to a probabilistic algorithm, which can be
used to quickly factor n.

If a square root ω of 1 modulo n is known somehow and ω 6≡ ±1 mod n, then the factors
of n can be quickly computed using this square root, because then (ω− 1)(ω+1) ≡ 0 mod n
and one of the numbers gcd(ω ± 1, n) equals p. The following algorithm uses this idea and
the assumed algorithm A trying to factor n. In a way the algorithm resembles the Miller–Rabin
algorithm.
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Exponent algorithm:

1. Choose a random message w, 1 ≤ w < n.

2. Compute d = gcd(w, n) using the Euclidean algorithm.

3. If 1 < d < n, return d and n/d and quit.

4. Compute b using the algorithm A and set y ← ab− 1.

5. If y is now odd go to #7.

6. If y is even, set y ← y/2 and go to #5. If ab− 1 = 2sr where r is odd, we cycle this loop
s times. Note that in this case s ≤ log2(ab − 1) < 2 log2 n, i.e. s is comparable to the
length of n.

7. Compute ω = (wy,mod n) by the algorithm of Russian peasants.

8. If ω ≡ 1 mod n, we give up and quit.

9. If ω 6≡ 1 mod n, set ω′ ← ω and ω ← (ω2,mod n) and go to #9. This loop will be
cycled no more than s times, since ab − 1 = 2sr is divisible by φ(n) and on the other
hand by Euler’s theorem wφ(n) ≡ 1 mod n.

10. Eventually we obtain a square root ω′ of 1 modulo n such that ω′ 6≡ 1 mod n. Now if
ω′ ≡ −1 mod n, we give up and quit. Otherwise we compute t = gcd(ω′− 1, n), return
t and n/t, and quit.

The procedure is a probabilistic Las Vegas type algorithm where #1 is random. It may be
shown that it produces the correct result at least with probability 1/2, see for example STINSON

or SALOMAA.
Despite the above results it has not been shown that breaking RSA would necessarily lead

to factorization of n. On the other hand, this would make RSA vulnerable to attacks using CC
data, indeed CC data may be thought of as random broken cryptotexts.

8.4 Obtaining Partial Information about Bits

Even if finding the message itself would seem to be difficult, could it be possible to find some
partial information about the message, such as whether the message is even or odd, or in which
of the intervals 0 ≤ w < n/2 or n/2 < w < n it is? Here we assume of course that n is odd.
If for example we encrypt a single bit by adding a random padding to the binary representation,
parity of the message would give away the bit immediately.

In this way we obtain two problems:

(1) Compute the parity of w
par(c) = (w, mod 2)

starting from the cryptotext c = ek1(w).

(2) Compute the half of w

half(c) =

⌊
2w

n

⌋

starting from the cryptotext c = ek1(w).
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These two problems are not independent:

Lemma. The functions par and half are connected by the equations

half(c) = par((2ac, mod n)) and par(c) = half((2−ac, mod n)).

Proof. First we denote
c′ = (2ac, mod n) = ((2w)a, mod n).

If now half(c) = 0 then 0 ≤ 2w < n, i.e. 2w is the plaintext corresponding to c′, and par(c′) =
0. Again, if half(c) = 1 then n/2 < w < n, i.e. 0 < 2w − n < n. Thus in this case 2w − n is
the plaintext corresponding to c′ and it is odd so par(c′) = 1.

The latter equality follows from the former. If we denote c′′ = (2−ac,mod n) then by the
above

half(c′′) = par((2ac′′, mod n)) = par((2a2−awa, mod n)) = par(c).

Hence it suffices to consider the function half. Now let’s compute the numbers

ci = half(((2iw)a, mod n)) (0 ≤ i ≤ ⌊log2 n⌋).

Here of course 2iw can be replaced by the ”correct” message (2iw,mod n) if needed. Hence
ci = 0 exactly when dividing 2iw by n the remainder is in the interval [0, n/2), in other words,
exactly when w is in one of the intervals

jn

2i
≤ w <

jn

2i
+

n

2i+1
(j = 0, 1, . . . , 2i − 1).

Because n is odd, the following logical equivalences hold:

c0 = 0⇐⇒ 0 ≤ w <
n

2

c1 = 0⇐⇒ 0 ≤ w <
n

4
or

n

2
< w <

3n

4

c2 = 0⇐⇒ 0 ≤ w <
n

8
or

n

4
< w <

3n

8
or

n

2
< w <

5n

8
or

3n

4
< w <

7n

8
...

Thus w can be found in ⌊log2 n⌋+ 1 steps by binary search.
All in all we can conclude by this that an algorithm, which computes one of the functions par

or half, can be transformed to an algorithm for decrypting an arbitrary message in polynomial
time. So, the information about a message carried by these functions cannot be found in any
easy way.

NB. On the other hand, if we know some number of decimals/bits of the decrypting key or of the

primes p or q, we can compute the rest of them quickly, see COPPERSMITH, D.: Small Solutions
to Polynomial Equations, and Low Exponent RSA Vulnerabilities. Journal of Cryptology 10
(1997), 233–260.
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8.5 Attack by LLL Algorithm

Very often the beginning of a plaintext is fixed and the variable extension is short. In such
situations one should not use a very small encrypting exponent a. In this case the plaintext is of
form

w = x+ y

where x remains always the same and y is the small variable part. Let’s agree that |y| ≤ Y .
The choice of Y is revealed later, of course Y is an integer. A negative y is also possible here,
whatever that might mean! The corresponding cryptotext is

c = ((x+ y)a, mod n).

A hostile outside party now knows the public key (n, a), c, x and Y and wants to find y. For
this the polynomial

P (t) = (x+ t)a − c =
a∑

i=0

dit
i

of Zn[t] is used, where the coefficients di are represented in the positive residue system and
da = 1. So, we are seeking a number y such that |y| ≤ Y and P (y) ≡ 0 mod n.

Consider then the a+ 1-dimensional lattice 〈v1, . . . ,va+1〉 where

v1 = (n, 0, . . . , 0) , v2 = (0, nY, 0, . . . , 0) , v3 = (0, 0, nY 2, 0, . . . , 0) , . . . ,

va = (0, . . . , 0, nY a−1, 0) , va+1 = (d0, d1Y, d2Y
2, . . . , da−1Y

a−1, Y a).

See Section 7.8. When the LLL algorithm is applied to this we obtain a new basis u1, . . . ,ua+1,
from which we only need u1. Now the discriminant of the lattice is

D =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

n 0 0 · · · 0 0

0 nY 0 · · · 0 0

0 0 nY 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · nY a−1 0

d0 d1Y d2Y
2 · · · da−1Y

a−1 Y a

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= naY 1+2+···+a = naY
a(a+1)

2 ,

so
‖u1‖ ≤ 2

a
4D

1

a+1 = 2
a
4n

a
a+1Y

a
2 .

u1 can naturally be written as a linear combination of the original base vectors with integer
coefficients:

u1 = e1v1 + · · ·+ ea+1va+1 = (f0, f1Y, f2Y
2, . . . , faY

a)

where
fi = ei+1n+ ea+1di (i = 0, 1, . . . , a− 1) and fa = ea+1.

Hence
fi ≡ ea+1di mod n (i = 0, 1, . . . , a).

Now we take the polynomial

Q(t) =
a∑

i=0

fit
i.
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Because P (y) ≡ 0 mod n, we have also

Q(y) =

a∑

i=0

fiy
i ≡

a∑

i=0

ea+1diy
i = ea+1

a∑

i=0

diy
i = ea+1P (y) ≡ 0 mod n.

Furthermore, by the triangle inequality, the estimate |y| ≤ Y and the Cauchy–Schwarz inequal-
ity,

|Q(y)| ≤
a∑

i=0

|fiy
i| ≤

a∑

i=0

|fi|Y
i =

a∑

i=0

1 · |fi|Y
i ≤ (a+ 1)

1

2‖u1‖.

At this point we can give an estimate for Y . Choose a Y such that

(a+ 1)
1

22
a
4n

a
a+1Y

a
2 < n , i.e. (check!) Y < 2−

1

2 (a + 1)−
1

an
2

a(a+1) .

Hence |Q(y)| < n. Because, on the other hand, Q(y) ≡ 0 mod n it must be that Q(y) = 0.
So, the desired y can also be found by any numerical algorithm for finding the roots of the
polynomial equation Q(y) = 0 with integral coefficients. There may be several alternatives,
hopefully one of them will turn out to be the correct one.

The method is fast if a is small enough. The maximum length of the vectors v1, . . . ,va+1 is
proportional to the length of Y a and the LLL algorithm is polynomial-time in this length. On the
other hand, the LLL algorithm is slow for large values of a—remember it wasn’t polynomial-
time in the length of the dimension—and the numerical search of roots is then laborious also.

On the other hand, for large values of a, a rather small Y and hence y must be chosen, which
further limits usefulness. If n is of order 10300, we obtain the following connection between the
decimal length of y and a using the choice of Y above:
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Chapter 9

ALGEBRA: GROUPS

9.1 Groups

A group is an algebraic structure G = (A,⊙, 1) where ⊙ is a binary computational operation,
the so-called group operation, and 1 is the so-called identity element of the group. In addition
it is required that the following conditions hold:

(1) (a⊙ b)⊙ c = a⊙ (b⊙ c) (⊙ is associative).

(2) a⊙ 1 = 1⊙ a = a.

(3) For every element a there exists a unique element a−1, the so-called inverse of a, for
which a⊙ a−1 = a−1 ⊙ a = 1.

Furthermore, it is naturally assumed that a ⊙ b is defined for all elements a and b, and that the
result is unique. The group operation is often read ”times” and called product. If in addition

(4) a⊙ b = b⊙ a (⊙ is commutative)

then we say that G is a commutative group.1

Because of the associativity we can write

a1 ⊙ a2 ⊙ · · · ⊙ an

without parentheses, the result does not depend on how the parentheses are set. Furthermore we
denote, as in Section 4.1,

an = a⊙ · · · ⊙ a
︸ ︷︷ ︸

n copies

, a−n = a−1 ⊙ · · · ⊙ a−1

︸ ︷︷ ︸

n copies

and a0 = 1

and the usual rules of power calculus hold. Powers can also be computed using the algorithm
of Russian peasants.

NB. Commutative groups are also often called additive groups. In this case the following

additive notation and nomenclature is commonly used: The group operation is denoted by⊕ or

+ etc. and called sum. It is often read ”plus”. The identity element is called zero element and

denoted by 0 or 0 etc. The inverse a−1 is called opposite element and denoted by −a. A power

an is called multiple and denoted by na. Compare with the notations in Section 4.1.

1A commutative group is also called Abelian group.

74
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The simplest group is of course the trivial group where there is only one element (the iden-
tity element). Other examples of groups are:

• The familiar group (Z,+, 0) (integers and addition) is usually denoted briefly just by Z.
Inverses are opposite numbers and the group is commutative.

• (Zm,+, 0) (residue classes modulo m and addition) is also a commutative group, inverses
are opposite residue classes. This is a called the residue class group modulo m, and
denoted briefly by Zm.

• Nonsingular n× n matrices with real elements form the group (Rn×n, ·, In) with respect
to matrix multiplication. This group is not commutative (unless n = 1). The identity
element is the n× n identity matrix In and inverses are inverse matrices.

• If we denote reduced residue classes modulo m by Z∗
m, see Section 2.4, then (Z∗

m, ·, 1) is
a commutative group, inverses are inverse classes. Note that the product of two reduced
residue classes is also a reduced residue class. This is called the group of units of Zm,
denoted briefly by just Z∗

m, and it has φ(m) elements (reduced residue classes).

• From every ring R = (A,⊕,⊙, 0, 1), see Section 4.1, its additive group R+ = (A,⊕, 0)
can be extracted. Moreover, from every field F = (A,⊕,⊙, 0, 1) also its multiplicative

group F ∗ = (A− {0},⊙, 1) can be extracted, it is also called group of units of F .

For an element a of a group (A,⊙, 1) the smallest number i ≥ 1 (if one exists) such that
ai = 1 is called the order of a. Basic properties of order are same as for the order of a number
modulo m in Section 7.2, and the proofs are also the same (indeed, order modulo m is the same
as order in the group Z∗

m):

• If aj = 1 then the order of a divides j.

• If the order of a is i then the order of aj is

i

gcd(i, j)
=

lcm(i, j)

j
.

• If the order of a is i then a−1 = ai−1.

• If, in a commutative group, the order of a is i and the order of b is j and gcd(i, j) = 1

then the order of a⊙ b is ij.

• Elements of finite groups always have orders.

If the size of a finite group G = (A,⊙, 1) is N and for some element g

A = {1, g, g2, . . . , gN−1},

in other words, all elements of the group are powers of g then the group is called a cyclic group

and g is called its generator. In this case we often write G = 〈g〉. Note that the order of g then
must be N (why?). An infinite group can also be cyclic, we then require that

A = {1, g±1, g±2, . . . }.

A cyclic group is naturally always commutative.
Apparently for instance Z and Zm are cyclic with 1 and 1 as their generators. If there exists

a primitive root modulo m then Z∗
m is cyclic with the primitive root as its generator.
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NB. A finite cyclic group 〈g〉 with N elements has a structure equal (or isomorphic) to that of

ZN :

gi ⊙ gj = g(i+j,mod N) and (gi)−1 = g(−i,mod N).

Computing in ZN is easy and fast, as we have seen. On the other hand, computing in 〈g〉 is not

necessarily easy at all if the connection between gi and i is not easy to compute. This is used

in numerous cryptosystems, see the next chapter. We get back to this when considering discrete

logarithms.

The multiplicative group F∗
pn of the finite field Fpn is always cyclic. Its generators are

called primitive elements. This was already stated in Theorem 6.4 for the prime field Zp, whose
generators are also called primitive roots modulo p. If G = (A,⊙, 1) is a group and H =

(B,⊙, 1), where B is subset of A, is also group then H is a so-called subgroup of G. For
example, (2Z,+, 0), where 2Z is the set of even integers, is a subgroup of Z. Cyclic subgroups,

that is, subgroups generated by single elements, are important subgroups: If the order of a is i
then in the subgroup 〈a〉 generated by a we take

B = {1, a, a2, . . . , ai−1}.

And if a does not have an order then

B = {1, a±1, a±2, . . . }.

It is easy to see that this is a subgroup. A basic property of subgroups of finite groups is the
following divisibility property. Denote the cardinality of a set C by |C|.

Theorem 9.1. (Lagrange’s theorem) If G = (A,⊙, 1) is a finite group and H = (B,⊙, 1) is

its subgroup then |B| divides |A|. In particular, the order of every element of G divides |A|.

Proof. Consider the sets
a⊙H = {a⊙ b | b ∈ B},

the so-called left cosets. If c is in the left coset a ⊙ H then c = a ⊙ b and a = c ⊙ b−1 where
b ∈ B. Hence c⊙H ⊆ a⊙H and a ⊙H ⊆ c⊙H , so a ⊙H = c⊙H . Thus two left cosets
are always either exactly the same or completely disjoint. So A is partitioned into a number of
mutually disjoint left cosets, each of which has |B| elements. Note that B itself is the left coset
1⊙H .

If G1 = (A1,⊙1, 11) and G2 = (A2,⊙2, 12) are groups then their direct product is the group

G1 ×G2 = (C,⊗, (11, 12))

where the set of elements is the Cartesian product

C = A1 × A2 = {(a1, a2) | a1 ∈ A1 ja a2 ∈ A2}

and the operation ⊗ and inverses are defined by

(a1, a2)⊗ (b1, b2) = (a1 ⊙1 b1, a2 ⊙2 b2) and (a1, a2)
−1 = (a−1

1 , a−1
2 ).

It is easy to see that the G1 × G2 defined in this way is truly a group. The idea can extended,
direct products G1×G2×G3 of three groups can be defined, and so on. Without proofs we now
present the following classical result, which shows that the groups Zm can be used to essentially
chacterize every finite commutative group using direct products:
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Theorem 9.2. (Kronecker’s decomposition) Every commutative finite group is structurally

identical (or isomorphic) to some direct product

Z
p
i1
1

× Z
p
i2
2

× · · · × Z
p
ik
k

where p1, . . . , pk are different primes and i1, . . . , ik ≥ 1. Here we may agree that the empty

direct product corresponds to the trivial group {1}, so that it is included, too.

9.2 Discrete Logarithm

In a cyclic goup 〈g〉 we define the discrete logarithm in the base g by

logg a = j exactly when a = gj.

Furthermore we will assume that in a finite cyclic group with N elements, 0 ≤ logg a ≤ N − 1.
For example in Z the logarithm is trivial: The only bases are ±1 and log±1 a = ±a. It

is also quite easy in the group Zm: The base is some i where gcd(i,m) = 1, and logi j
= (ji−1,mod m). But already discrete logarithms in Z∗

p are anything but trivial for a large
prime p, and have proved to be very laborious to compute. Also discrete logarithms in many
other groups are difficult to compute. Even if the group G itself is not cyclic, and discrete
logarithm is not defined in G itself, in any case discrete logarithms are defined in its cyclic
subgroups.

Now let’s take a closer look at the logarithm in Z∗
p, also often called index. The problem is

to find a number j in the interval 0 ≤ j ≤ p− 2 such that gj ≡ b mod p, when the generator
(primitive root) g and b are given e.g. as decimal numbers in the positive residue system. Clearly
this problem is in NP: Guess j and test its correctness by exponentiation using the algorithm
of Russian peasants. On the other hand, deterministically j can be computed by simple search
and the algorithm of Russian peasants in estimated time O(p(ln p)3) and in polynomial space.
By computing in advance as preprocessing the so-called index table, in other words, the pairs

(i, (gi, mod p)) (i = 0, 1, . . . , p− 2)

sorted by the second component, the problem can be solved in polynomial time and space,
excluding the index table, but then there is an overhead of superpolynomial time and space. A
sort of intermediate form is given by

Shanks’s baby-step-giant-step algorithm:

1. Set m← ⌈
√
p− 1 ⌉. The integral square root ⌊

√
p− 1⌋ is quick to compute and

⌈
√
p− 1 ⌉ =







⌊
√
p− 1⌋ if p− 1 is a square, i.e. p− 1 = ⌊

√
p− 1⌋2

⌊
√
p− 1⌋ + 1 otherwise.

2. Compute the pairs

(i, (gmi, mod p)) (i = 0, 1, . . . , m− 1) (the giant steps)

and sort them by the second component. As a result we have the list L1. In this we need
the algorithm of Russian peasants and a fast sorting algorithm, for example quicksort.
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3. Compute the pairs

(k, (bg−k, mod p)) (k = 0, 1, . . . , m− 1) (the baby steps)

and sort them by the second component, as well. In this way we obtain the list L2.

4. Find a pair (i, y) from the list L1 and a pair (k, z) from the list L2 such that y = z.

5. Return (mi+ k,mod p− 1) and quit.

If these pairs can be found, the obtained number j = (mi+k,mod p−1) is the correct logarithm,
since in this case we can write mi+ k = t(p− 1) + j and

gmi ≡ bg−k mod p , i.e. b ≡ gmi+k = (gp−1)tgj ≡ 1 · gj ≡ gj mod p.

On the other hand, the algorithm always returns a result, since if b ≡ gj mod p and 0 ≤ j ≤
p−2 then using division j can be expressed in the form j = mi+k where 0 ≤ k < m, whence
also

i =
j − k

m
≤

j

m
<

p− 1

m
≤

p− 1
√
p− 1

=
√

p− 1 ≤ m.

The baby-step-giant-step algorithm can be implemented in time O(m) and space O(m).
Other algorithms for computing discrete logarithm in Z∗

p are for example Pollard’s kanga-
roo algorithm, see Section 12.2, the Pohlig–Hellman algorithm and the so-called index calculus

method, see for example STINSON and SALOMAA. The Pohlig–Hellman algorithm is reason-
ably fast if p − 1 has only small prime factors. All these algorithms can be generalized to
computing discrete logarithms of F∗

pn , also a very laborious task.

9.3 Elliptic Curves

Geometrically an elliptic2 curve means a curve of third degree, satisfying the implicit equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Note the special indexing of coefficients, which is traditional. An additional requirement is that
the curve is smooth, in other words, that the equations

a1y = 3x2 + 2a2x+ a4

2y + a1x+ a3 = 0

obtained by differentiating both sides, are not both simultaneously satisfied in the curve. Geo-
metrically this guarantees that the curve has a tangent in every point. Using implicit derivation,
familiar from basic courses,

dy

dx
=

3x2 + 2a2x+ a4 − a1y

2y + a1x+ a3
and

dx

dy
=

2y + a1x+ a3
3x2 + 2a2x+ a4 − a1y

.

When both horizontal and vertical tangents are allowed, the only situation where a tangent may
not exist is when the numerator and the denominator both vanish.

2The name comes from the fact that certain algebraic functions y = f(x), related to computing lengths of arcs
of ellipses by integration, satisfy such third degree equation.
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Originally an elliptic curve was of course real, or in R2. The curve can be considered in
any field F (the so-called field of constants), which the coefficients come from, however. In this
case the curve is the set of all pairs (x, y), which satisfy the defining equation. Although the
smoothness condition does not necessarily have any ”geometric” meaning in this case, it turns
out to be very important.

Quite generally we can confine ourselves to simpler elliptic curves of the form

y2 = x3 ⊕ ax⊕ b

(the so-called Weierstraß short form) where the equations

0 = 3x2 ⊕ a

2y = 0

are not simultaneously satisfied (the smoothness condition). Here the notations 2 = 21 and
3 = 31 are used. Assuming that 2 6= 0 and 3 6= 0, eliminating x and y from the equations

y2 = x3 ⊕ ax⊕ b

0 = 3x2 ⊕ a

2y = 0

(which is not very difficult, try it) we see that this corresponds to the condition

4a3 ⊕ 27b2 6= 0.

A special property of this simpler type of curves is that they are symmetric with respect to the
x-axis, in other words, if a point (x, y) is in the curve then so is the point (x,−y).

So, exceptions will be fields where 2 = 0 (for example the fields F2n) or where 3 = 0 (for
example F3n). In the former the equations are of the form

y2 ⊕ ay = x3 ⊕ bx⊕ c (the supersingular case)

and
y2 ⊕ xy = x3 ⊕ ax2 ⊕ b (the nonsupersingular case),

and in the latter
y2 = x3 ⊕ ax2 ⊕ bx⊕ c.

In addition, the corresponding smoothness conditions will be needed, too. Even though for
instance the fields F2n are very important in cryptography, in what follows we will for simplicity
confine ourselves only to fields for which the above-mentioned short form y2 = x3 ⊕ ax ⊕ b,
where 4a3 ⊕ 27b2 6= 0, is possible. Other forms are considered e.g. by WASHINGTON and
BLAKE & SEROUSSI & SMART.

For geometric reasons it has been known for a long time that for a real elliptic curve, or
rather for its points, a computational operation can be defined, which makes it a commutative
group. The corresponding definition can also be made in other fields, in which case we also
obtain a commutative group. These groups are simply called just elliptic curves. Because there
are a lot of elliptic curves, we obtain in this way abundant cyclic subgroups, convenient for
cryptosystems based on discrete logarithms.

Now let’s first consider the group operation in R2 for the sake of illustration. The identity
element of the group is somewhat artificial, it is a ”point” O in infinity in the direction of the
y-axis. Positive and negative infinities are identified. It is agreed that all lines parallel to the
y-axis intersect at this point O. Geometrically the group operation ⊞ for the points P and Q
produces the point R = P ⊞Q, and the opposite point −P by the following rule:
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1. Draw a line through the points P and Q. If P = Q, this line is the tangent line at the point
P . Smoothness guarantees that a tangent exists.

2. If the drawn line is parallel to the y-axis then R = O.

3. Otherwise R is the reflection of the point of intersection of the line and the curve, with
respect to the x-axis. It is possible that the line is tangent to the curve in P (when the
point of intersection and P merge), in which case R is the reflection of P , or in Q (the
point of intersection and Q merge), in which case R is the reflection of Q.

4. −P is the reflection of P with respect to the x-axis. In particular, −O = O.

Apparently the operation ⊞ is commutative. Interpreting this rule suitably we see immediately
that P ⊞O = O⊞ P = P (in particular, O⊞O = O) and that P ⊞−P = −P ⊞ P = O, as in
a group it should be.

Example. On the right there is the elliptic curve

y2 = x3 − 5x+ 1

in R2 drawn by the Maple program. Also shown is the group opera-

tion of the points

P = ((1−
√
29)/2, (3−

√
29)/2) and Q = (0, 1)

of the curve. The result is

R = ((1 +
√
29/2,−(3 +

√
29)/2).

Note how the curve has two separate parts, of which one is closed

and the other infinite. Not all elliptic curves are bipartite in this way.
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We will now compute the result of the operation P ⊞ Q = R in general. The cases P = O
and/or Q = O are easy. If the points are P = (x1, y1) and Q = (x2, y2), P 6= Q and x1 = x2

then apparently y1 = −y2, so R = O or P = −Q. Hence we move on to cases in which either
x1 6= x2 or P = Q. First let’s deal with the former case. A parametric representation of the line
through P and Q is then

{

x = x1 + (x2 − x1)t

y = y1 + (y2 − y1)t.

Let’s substitute these into equation y2 − x3 − ax− b = 0 of the elliptic curve:

(y1 + (y2 − y1)t)
2 − (x1 + (x2 − x1)t)

3 − a(x1 + (x2 − x1)t)− b = 0.

The left side is a third-degree polynomial p(t) in the variable t. Since the point P is in the
curve (corresponding to t = 0) and so is the point Q (corresponding to t = 1), the polynomial
p(t) is divisible by t(t − 1), i.e. p(t) = q(t)t(t − 1) for some first-degree polynomial q(t).
Furthermore we obtain from the equation q(t) = 0 the parameter value t3 corresponding to the
third intersection point (x3, y3). A division shows that

q(t) = (y2 − y1)
2 − 3x1(x2 − x1)

2 − (x2 − x1)
3(t + 1)

and so

t3 =
(y2 − y1)

2

(x2 − x1)3
−

2x1 + x2

x2 − x1

.
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Substituting these to the parametric representation of the line we obtain
{

x3 = λ2 − x1 − x2

y3 = λ(x3 − x1) + y1

where
λ =

y2 − y1
x2 − x1

(slope of the line), and finally
P ⊞Q = R = (x3,−y3).

Here it may be that (x3, y3) = P or (x3, y3) = Q. Note that (x3, y3) is always defined.
We still need to consider the case P = Q = (x1, y1), and compute

P ⊞ P = 2P = R.

If y1 = 0, the tangent of the curve is apparently parallel to the y-axis and R = O or −P = P .
Thus we move on to the case y1 6= 0. The slope of the tangent is

dy

dx
=

3x2 + a

2y
.

Hence a parametric representation of tangent line drawn in the point P is
{

x = x1 + 2y1t

y = y1 + (3x2
1 + a)t.

Substituting these into the equation of the curve as before we obtain the polynomial

p(x) = (y1 + (3x2
1 + a)t)2 − (x1 + 2y1t)

3 − a(x1 + 2y1t)− b.

Since the point P is in the curve (corresponding to t = 0), p(t) is divisible by t, in other words,
p(t) = q(t)t. By division we obtain

q(t) = ((3x2
1 + a)2 − 12x1y

2
1)t− 8y31t

2.

One root of the equation q(t) = 0 is t = 0 and the other is

t2 =
(3x2

1 + a)2

8y31
−

3x1

2y1
.

The intersection point (x2, y2) is obtained by substituting this into the parametric representation:
{

x2 = λ2 − 2x1

y2 = λ(x2 − x1) + y1

where

λ =
3x2

1 + a

2y1

(slope of the line). Finally we obtain

2P = R = (x2,−y2).
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Again it can be that P = (x2, y2). Also in this case (x2, y2) is always defined.
These computational formulas can be used in any field in which the elliptic curve can be

written in the short form y2 = x3 ⊕ ax ⊕ b where 4a3 ⊕ 27b2 6= 0. In other fields some-
what different formulas are needed, see KOBLITZ or WASHINGTON or BLAKE & SEROUSSI &
SMART.

All in all we conclude that forming the opposite element is easy (reflection), the group op-
eration is commutative and quite easy to compute. However, associativity of the operation is
difficult to prove starting from the formulas above. The correct world, thinking about proper-
ties of elliptic curves, is the so-called projective geometry, in which the group operation itself
occurs naturally. Associativity in R2 follows fairly directly from classical results of projective
geometry for curves of the third degree. The following result (translated) can be found in an old
Finnish classic3 of projective geometry, from which associativity follows easily:

”If two lines a and b intersect a third-degree curve in the points A1, A2, A3;B1, B2, B3,

respectively, the third intersection pointsC1, C2, C3 of the linesA1B1, A2B2, A3B3 and

the curve are collinear.”

In other fields associativity must be proved separately and it is quite an elaborate task, see for
example WASHINGTON. Note that in other fields also commutativity must be proved separately,
but this is fairly easy. Both laws are symbolic identities, so they can be verified symbolically.
Let’s do it by using the Maple program. Apparently cases in which at least one of the elements
is O are trivial, so they can be ignored.

Let’s begin with commutativity. First we define the group operation by

> eco:=proc(u,v)

local lambda,xx,yy;

lambda:=(v[2]-u[2])/(v[1]-u[1]);

xx:=lambda^2-u[1]-v[1];

yy:=lambda*(xx-u[1])+u[2];

[xx,-yy];

end:

and then check the commutative law:

> A:=eco([x[1],y[1]],[x[2],y[2]]);

[
(y2 − y1)

2

(x2 − x1)
2
− x1 − x2,− (y2 − y1)

(

(y2 − y1)
2

(x2 − x1)
2
− 2x1 − x2

)

(x2 − x1)
−1 − y1]

> B:=eco([x[2],y[2]],[x[1],y[1]]);

[
(y1 − y2)

2

(x1 − x2)
2
− x2 − x1,− (y1 − y2)

(

(y1 − y2)
2

(x1 − x2)
2
− 2x2 − x1

)

(x1 − x2)
−1 − y2]

> normal(A-B);

[0, 0]

Let’s then verify associativity in the case of no doublings.

> A:=eco([x[1],y[1]],eco([x[2],y[2]],[x[3],y[3]])):

> B:=eco(eco([x[1],y[1]],[x[2],y[2]]),[x[3],y[3]]):

> C:=numer(normal(A-B)):

> max(degree(C[1],y[1]),degree(C[1],y[2]),degree(C[1],y[3]),

degree(C[2],y[1]),degree(C[2],y[2]),degree(C[2],y[3]));

11

We need to substitute the equation of the curve raised to higher powers:

3NYSTRÖM, E.J.: Korkeamman geometrian alkeet sovellutuksineen. Otava (1948).



CHAPTER 9. ALGEBRA: GROUPS 83

> yhtalot:={seq(y[1]^(2*i)=(x[1]^3+a*x[1]+b)^i,i=1..5),

seq(y[2]^(2*i)=(x[2]^3+a*x[2]+b)^i,i=1..5),

seq(y[3]^(2*i)=(x[3]^3+a*x[3]+b)^i,i=1..5),

seq(y[1]^(2*i+1)=y[1]*(x[1]^3+a*x[1]+b)^i,i=1..5),

seq(y[2]^(2*i+1)=y[2]*(x[2]^3+a*x[2]+b)^i,i=1..5),

seq(y[3]^(2*i+1)=y[3]*(x[3]^3+a*x[3]+b)^i,i=1..5)}:

> normal(subs(yhtalot,C));

[0, 0]

Numbers of terms are pretty large:

> nops(C[1]),nops(C[2]);

1082, 6448

Verification by hand would thus be quite tedious, but associativity can also be proved mathe-
matically using some ingenuity. Let’s then check associativity in a remaining case which has
one doubling:

P ⊞ (Q⊞Q) = (P ⊞Q)⊞Q.

(The other cases are checked similarly.) First we define the doubling by

> ecs:=proc(u)

local lambda,xx,yy;

lambda:=(3*u[1]^2+a)/2/u[2];

xx:=lambda^2-2*u[1];

yy:=lambda*(xx-u[1])+u[2];

[xx,-yy];

end:

> A:=eco([x[1],y[1]],ecs([x[2],y[2]])):

> B:=eco(eco([x[1],y[1]],[x[2],y[2]]),[x[2],y[2]]):

> C:=numer(normal(A-B)):

> max(degree(C[1],y[1]),degree(C[1],y[2]),

degree(C[2],y[1]),degree(C[2],y[2]));

15

Again we need to substitute the equation of the curve raised to higher powers:

> yhtalot:={seq(y[1]^(2*i)=(x[1]^3+a*x[1]+b)^i,i=1..7),

seq(y[2]^(2*i)=(x[2]^3+a*x[2]+b)^i,i=1..7),

seq(y[1]^(2*i+1)=y[1]*(x[1]^3+a*x[1]+b)^i,i=1..7),

seq(y[2]^(2*i+1)=y[2]*(x[2]^3+a*x[2]+b)^i,i=1..7)}:

> normal(subs(yhtalot,C));

[0, 0]

Elliptic curves are very variable as groups. However, Kronecker’s decomposition tells us
that finite elliptic curves are direct products of residue class groups. In fact, we get an even
more accurate result:

Theorem 9.3. (Cassels’ theorem) An elliptic curve over the finite field Fq is either cyclic or

structurally identical (i.e. isomorphic) to a direct product Zn1
×Zn2

of two residue class groups

such that n1 | n2, q − 1.

Considering the size of the group we know that

Theorem 9.4. (Hasse’s theorem) If there are N elements in an elliptic curve over the finite

field Fq then

q + 1− 2
√
q ≤ N ≤ q + 1 + 2

√
q.
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Astonishingly enough, if the coefficients of an elliptic curve are in some subfield, it is enough
to know how many of its elements are in this subfield:

Theorem 9.5. Assume that E is an elliptic curve over the field Fq, that there are q + 1 − a
elements in it (cf. Hasse’s theorem), and that the roots of the equation x2 − ax + q = 0 are

α and β. Then, if we consider E as an elliptic curve over the field Fqm , there are exactly

qm + 1 − αm − βm elements in it. Note that because Fq is a subfield of Fqm , E can also be

interpreted as an elliptic curve over Fqm . See Section 4.3.

Proofs of these theorems require some fairly deep algebraic number theory!4 Hence there
are approximately as many elements in an elliptic curve over the field Fq as there are in Fq.
Some quite powerful algorithms are known for computing the exact number of the elements,
the so-called Schoof algorithm 5 and its followers, see WASHINGTON or BLAKE & SEROUSSI

& SMART.
It is not easy to find even one of these many elements. As a matter of fact, we do not

know any polynomial-time deterministic algorithm for generating elements of elliptic curves
over finite fields. If q = pk, one (slow) way is of course to generate random pairs (x, y), where
x, y ∈ Fq, using the representation of the field Fq as residue classes of polynomials in Zp[x]
modulo some kth-degree indivisible polynomial of Zp[x]—see Section 4.3—and test whether
the pair satisfies the equation of the elliptic curve. By Hasse’s theorem, an element is found by
a single guess with an approximate probability of 1/q. The following Las Vegas type algorithm
produces an element of the curve in the positive residue system, in a prime field Zp where p > 3:

1. Choose a random number x from the interval 0 ≤ x < p and set

z ← (x3 + ax+ b, mod p).

By Hasse’s theorem this produces a quadratic residue z with an approximate probability
of 50%, since from each z we obtain two values of y, unless z = 0.

2. If z = 0, return (x, 0) and quit.

3. If z(p−1)/2 6≡ 1 mod p, give up and quit. By Euler’s criterion z is then a quadratic
nonresidue modulo p.

4. Compute the square roots y1 and y2 of z modulo p by Shanks’ algorithm, return (x, y1)
and (x, y2) and quit.

The algorithm is apparently polynomial-time and produces a result with an approximate proba-
bility of 25%. Recall that Shanks’ algorithm produces a result with an approximate probability
of 50%.

NB. By random search we can now find e.g. an element P 6= O of the elliptic curve and a

(large) prime r such that rP = O, whence the order of P is r (the order of P must divide r
anyway). The cyclic subgroup 〈P 〉 is then sufficient for the needs of cryptography. Another

(slow) way is to choose a random element P and test its order, which of course should be large.

For this we can use a version of Shanks’ baby-step-giant-step algorithm. By iterating and using

properties of order—see Section 9.1—elements of even higher order may then be found.

Nevertheless, the issue is quite complicated and use of elliptic curves in cryptography is not

straightforward. See for example ROSING or BLAKE & SEROUSSI & SMART.

Good references are KOBLITZ and WASHINGTON and e.g. SILVERMAN & TATE or COHEN

or CRANDALL & POMERANCE.
4See for example WASHINGTON or CRANDALL & POMERANCE.
5The original reference is SCHOOF, R.: Elliptic Curves over Finite Fields and the Computation of Square Roots

mod p. Mathematics of Computation 44 (1985), 483–494. The algorithm is difficult and also difficult to implement.



Chapter 10

ELGAMAL. DIFFIE–HELLMAN

10.1 Elgamal’s Cryptosystem

Elgamal’s cryptosystem1 ELGAMAL can be based on any finite group G = (A,⊙, 1) in whose
large cyclic subgroups 〈a〉 discrete logarithm loga is difficult to compute. Such groups are for
instance Z∗

p and more generally F∗
pn , in particular F∗

2n , and elliptic curves over finite fields.
The public key is the triple

k1 = (G, a, b)

where b = ay. The secret key is k2 = y. Note that the public key holds the information of the
secret key because y = loga b, but it is not easy to obtain it from the public key. Encrypting is
nondeterministic. For that we randomly choose a number x from the interval 0 ≤ x < l where l
is the order of a. If it is not wished for l to be published, or it is not known, we can alternatively
give some larger upper bound, for example the number of elements G, which has l as a factor,
see Lagrange’s theorem. The encrypting function is

ek1(w, x) = (ax, w ⊙ bx) = (c1, c2).

Thus the message block must be interpreted as an element of G. The decrypting function is

dk2(c1, c2) = c2 ⊙ c−y
1 .

Decrypting works since

dk2(a
x, w ⊙ bx) = w ⊙ bx ⊙ (ax)−y = w ⊙ axy ⊙ a−xy = w.

The idea is to ”mask” w by multiplying it by bx, x is supplied via ax.
For setting up ELGAMAL in the multiplicative group Z∗

p of a prime field we choose both p
and the primitive root a modulo p simultaneously. Moreover, it is to be kept in mind that p− 1

should have a large prime factor so that discrete logarithm cannot be quickly computed (see
Section 7.2) e.g. by the Pohlig–Hellman algorithm. This goes in the following way:

1. Choose a large random prime q, and a smaller random number r which can be factored.

2. If 2qr+1 is a prime, set p← 2qr+1. Note that in this case p−1 has a large prime factor
q. Otherwise we return to #1.

1The system was developed by Taher Elgamal in 1984. The original reference is ELGAMAL, T.: A Public Key
Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Transactions on Information Theory

IT–31 (1985), 469–472. Discrete logarithms in Z∗

p
were used in this cryptosystem.

85
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3. Randomly choose a number a from the interval 1 ≤ a < p.

4. Test by Lucas’ criterion whether a is a primitive root modulo p. The prime factors of p−1
needed here, that is, 2 and q and the known prime factors of r, are now easy to obtain.

5. If a is a primitive root modulo p, choose a random number y from the interval 1 ≤ y < p,
return p, a and y, and quit. Otherwise return to #3.

NB. In a group Z∗
p, using an element b of order much lower than p must be avoided. Otherwise

it is easy to try out candidate values r for the order and compute

cr2 ≡ (wbx)r ≡ wr(br)x ≡ wr · 1 = wr mod p.

If the candidate happens to be the correct order of b, the whole cryptosystem is transformed into

a deterministic system resembling RSA, possibly easily broken by e.g. the meet-in-the-middle

attack, see Section 8.2. An exception is the case where w ≡ bi mod p for some i and cr2 ≡ 1

mod p, but there are very few of these choices if r is small.

10.2 Diffie–Hellman Key-Exchange

ELGAMAL allows many parties to publish their public keys within the same system: Each
party just chooses its own y and publishes the corresponding ay. ELGAMAL is in fact a later
modification of one of the oldest public-key systems, the Diffie-Hellman key-exchange system

DIFFIE–HELLMAN.
The setting here is the same as in ELGAMAL. Each party i again chooses a random number

xi from the interval 0 ≤ xi < l or from some larger interval, and publishes axi . The common
key of the parties i and j is in that case axixj , which they both can compute quickly from the
published information and from their own secret numbes.

Breaking DIFFIE–HELLMAN consists of the following two operations. First, compute xi

from axi . Second, compute (axj )xi = axixj . In this way it is equivalent to solving the following
problem:

DHP: Given (G, a, b, c), compute bloga c.

This problem is the so-called Diffie–Hellman problem. The complexity of the Diffie–Hellman
problem is not known, computing discrete logarithms naturally solves that too. Note that the
order of appearance of b and c does not actually matter since

bloga c = (aloga b)loga c = (aloga c)loga b = cloga b.

ELGAMAL’s decrypting is also equivalent to the Diffie–Hellman problem. If DHP can be
quickly solved, we can first compute

bx = bloga ax = bloga c1

quickly and then
c2 ⊙ b−x = w,

and ELGAMAL is broken. On the other hand, if ELGAMAL is broken, we can quickly compute
w = c2⊙ b−x from the cryptotext (c1, c2) and the public information, in which case we can also
quickly compute

bloga c1 = bx = (c−1
2 ⊙ w)−1.

Because c1 is random element of 〈a〉 this means that DHP can be solved quickly.
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10.3 Cryptosystems Based on Elliptic Curves

A finite cyclic subgroup of an elliptic curve can be used to set up Elgamal’s cryptosystem. Nat-
urally in this cyclic group discrete logarithm must be difficult to compute or the Diffie-Hellman
problem must be difficult to solve. Unfortunately in certain elliptic curves (supersingular elliptic
curves) over finite fields these problems are solved relatively quickly by the so-called Menezes–

Okamoto–Vanstone algorithm, and these must be avoided, see KOBLITZ or WASHINGTON or
BLAKE & SEROUSSI & SMART.2 It might be mentioned that Shanks’ baby-step-giant-step
algorithm is suitable for computing discrete logarithms in elliptic curves, and so is the Pohlig–
Hellman algorithm, but they are not always fast.

One difficulty naturally is that construction of cyclic subgroups of elliptic curves is labo-
rious. Another difficulty is that when ELGAMAL for finite fields approximately doubles the
length of message (the pair construction), ELGAMAL for elliptic curves approximately quadru-
ples it. Recall that, by Hasse’s theorem, there are approximately as many points in an elliptic
curve as there are elements in the field. This is avoided by using a more powerful variant of
ELGAMAL, the so-called Menezes–Vanstone system MENEZES–VANSTONE. The public key
of the system is a triple k1 = (E, α, β) where E is an elliptic curve over a prime field Zp where
p > 3, α is the generating element in a cyclic subgroup of E, and β = aα. The secret key is
k2 = a. A message block is a pair (w1, w2) of elements of Zp represented in the positive residue
system.

The encrypting function is defined in the following way:

ek1((w1, w2), x) = (y0, y1, y2)

where
y0 = xα , y1 = (c1w1, mod p) , y2 = (c2w2, mod p),

x is a random number—compare to ELGAMAL—and the numbers c1 and c2 are obtained by
representing the point xβ = (c1, c2) of the elliptic curve in the positive residue system. x must
be chosen so that c1, c2 6≡ 0 mod p. The decrypting function is

dk2(y0, y1, y2) = ((y1c
−1
2 , mod p), (y2c

−1
2 , mod p)).

Note that c1 and c2 are obtained by a from y0, since

ay0 = a(xα) = (ax)α = x(aα) = xβ = (c1, c2).

The idea is, as in ELGAMAL, to use the elliptic curve to ”mask” the message. Like ELGAMAL
MENEZES-VANSTONE also approximately doubles the length of message, two elements of
Zp are encrypted to four.

NB. Space can also be saved by ”compressing” elements of the elliptic curve into smaller

space. Compressing and decompressing take more time, though. For example, in the prime

field Zp an element (point) (x, y) of an elliptic curve can be compressed into (x, i) where i =
(y,mod 2), since y can be computed from x3+ax+b by Shanks’ algorithm and choice of sign is

determined by i. (If (x, y) is a point of the curve then so is (x, p−y), and p−y ≡ 1−y ≡ 1− i
mod 2.)

2It is also an unfortunate feature that the most convenient bit-based finite fields F2n seem to be worse than the
others. See for example GAUDRY, P. & HESS, F. & SMART, N.P.: Constructive and Destructive Facets of Weil
Descent on Elliptic Curves. Journal of Cryptology 15 (2002), 19–46. The further we get in the mathemathically
quite demanding theory of elliptic curves, the more such weaknesses seem to be revealed.
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A third difficulty in using elliptic curves is in encoding messages to points of the curve. One
way to do this is the following. We confine ourselves to elliptic curves over the prime field Zp

here for simplicity, the procedure generalizes to other finite fields, too.

1. Encode the message block first to a number m such that m+ 1 ≤ p/100.

2. Check in the same way as in the algorithm of Section 9.3 whether the elliptic curve has a
point (x, y) such that 100m ≤ x ≤ 100m+ 99.

3. If such a point (x, y) is found, choose it to serve as the counterpart of the message m.
Otherwise give up. It may be noted that giving up here is very rare, since it has been
shown that the algorithm does it with an approximate probability of 2−100 ∼= 10−30.

Of course this procedure slows the encrypting process a notch. Note that decoding is quite fast,
though: m = ⌊x/100⌋.

NB. An advantage of cryptosystems based on elliptic curves, when compared to RSA, is that

the currently recommended key-size is much smaller. A ”fast” cryptosystem CRANDALL using

elliptic curves, patented by Richard Crandall, might be mentioned here, too. It is based on the

use of special primes, so-called Mersenne numbers.

10.4 XTR

A newer quite fast variant of DIFFIE–HELLMAN or ELGAMAL type cryptosystem is obtained
in the unit groups of certain finite fields, the socalled XTR system.3 In XTR we work in a
cyclic subgroup (of a large size r) of F∗

p6 where p is a large prime and r | p2 − p + 1. In
such subgroups we can represent the elements in a small space and fast implementations of
computing operations are possible. So, the question is mostly just of a suitable choice of the
group, regarding implementation. There are other similar procedures, for example the so-called
CEILIDH system.

3The original reference is LENSTRA, A.K. & VERHEUL, E.R.: The XTR Public Key System. Proceedings of

Crypto ’00. Lecture Notes in Computer Science 1880. Springer–Verlag (2000), 1–19. The name originates from
the words ”Efficient Compact Subgroup Trace Representation”, got it?



Chapter 11

NTRU

11.1 Definition

The NTRU cryptosystem1 is a cryptosystem based on polynomial rings and their residue class
rings, which in a way resembles RIJNDAEL. Like RIJNDAEL, it is mostly inspired by the so-
called cyclic codes in coding theory, see the course Coding Theory. The construction of NTRU
is a bit more technical than that of RSA or ELGAMAL.

In NTRU we first choose positive integers n, p and q where p is much smaller than q and
gcd(p, q) = 1. One example choice is n = 107, p = 3 and q = 64. The system is based on the
polynomial rings Zp[x] and Zq[x], and especially on the residue class rings Zp[x]/(x

n − 1) and
Zq[x]/(x

n− 1). See Section 4.2 and note that xn− 1 is a monic polynomial in both polynomial
rings, so we can divide by it.

So, remainders are important when dividing by xn − 1, that is, polynomials of Zp[x] and
Zq[x] of maximum degree n−1. Computing with these in Zp[x]/(x

n−1) and in Zq[x]/(x
n−1)

is easy since addition is the usual addition of polynomials and in multiplication

xk ≡ x(k,mod n) mod xn − 1.

In the sequel we use the following notation. If P (x) is a polynomial with integral coef-
ficients then the polynomial P(m)(x) of Zm[x] is obtained from P (x) by reducing its coeffi-
cients modulo m. Moreover, such a P(m)(x)—or rather its coefficients—is represented in the

symmetric residue system, see Section 2.4. Considering addition and multiplication of polyno-
mials we see quite easily that if R(x) = P (x) + Q(x) and S(x) = P (x)Q(x) in Z[x] then
R(m)(x) = P(m)(x) + Q(m)(x) and S(m)(x) = P(m)(x)Q(m)(x) in Zm[x]. Furthermore, we see
that if P (x) ∈ Z[x] is of degree no higher than n−1 then so is P(m)(x) ∈ Zm[x]. In this case the
polynomial P(m)(x) can be considered as a polynomial of the residue class ring Zm[x]/(x

n−1).
For setting up the system we choose two secret polynomials f(x) and g(x) of Z[x], of

degree no higher than n − 1. From these we get the polynomials f(p)(x) and g(p)(x) of Zp[x],
and the polynomials f(q)(x) and g(q)(x) of Zq[x]. As noted, f(p)(x) and g(p)(x) can also be
interpreted as polynomials of the residue class ring Zp[x]/(x

n − 1). Similarly the polynomials
f(q)(x) and g(q)(x) can be interpreted as polynomials of the residue class ring Zq[x]/(x

n − 1).
Interpreted this way we also require from the polynomials f(p)(x) and f(q)(x)—or from the
original polynomial f(x)—that there are polynomials Fp(x) ∈ Zp[x] and Fq(x) ∈ Zq[x] of
degree no higher than n− 1 such that

Fp(x)f(p)(x) ≡ 1 mod xn − 1 and Fq(x)f(q)(x) ≡ 1 mod xn − 1.

1The origin of the name is unclear, the original reference is HOFFSTEIN, J. & PIPHER, J. & SILVERMAN, J.H.:
NTRU: A Ring-Based Public Key Cryptosystem. Proceedings of ANTS III. Lecture Notes in Computer Science

1423. Springer–Verlag (1998), 267–288. The idea is a couple of years older.
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In other words, Fp(x) is the inverse of f(p)(x) in Zp[x]/(x
n − 1) and Fq(x) is correspondingly

the inverse of f(q)(x) in Zq[x]/(x
n − 1). Further we compute in Zq[x]

h(x) ≡ Fq(x)g(q)(x) mod xn − 1.

Apparently we may assume that the degree of h(x) is at most n−1, so it can also be interpreted
as a polynomial of the residue class ring Zq[x]/(x

n − 1).
Now, the public key is (n, p, q, h(x)) and the secret key is (f(p)(x), Fp(x)). A message

is encoded as an element of Zp[x]/(x
n − 1), i.e.. the message is a polynomial w(x) of Zp[x]

of degree no higher than n − 1. In particular, w(x) is represented using the symmetric residue

system modulo p. If p = 3 then the coefficients of w(x) are−1, 0 and 1. A w(x) represented this
way can be transformed to a polynomial w(q)(x) of Zq[x], just reduce the coefficients modulo q.
Note that this expressly requires a fixed representation of coefficients!

11.2 Encrypting and Decrypting

For encrypting we choose a random polynomial φ(x) of maximum degree n − 1. From this
we get the polynomial φ(p)(x) in the polynomial ring Zp[x] and the polynomial φ(q)(x) in the
polynomial ring Zp[x], which can be interpreted further as polynomials of the residue class rings
Zp[x]/(x

n − 1) and Zq[x]/(x
n − 1), respectively. Encrypting is performed in Zq[x]/(x

n − 1) in
the following way:

c(x) ≡ pφ(q)(x)h(x) + w(q)(x) mod xn − 1.

In decrypting we first compute

a(x) ≡ f(q)(x)c(x) mod xn − 1

in Zq[x]/(x
n−1), and represent the coefficients of a(x) in the symmetric residue system modulo

q. Again in this representation a(x) can be transformed to the polynomial a(p)(x) of Zp[x]
by reducing the coefficients modulo p. After this the message itself is ideally obtained by
computing

w′(x) ≡ Fp(x)a(p)(x) mod xn − 1

in Zp[x]/(x
n − 1), and by representing the coefficients of w′(x) using the symmetric residue

system modulo p.
But it is not necessarily true that w′(x) = w(x)! Decrypting works only for a suitable

choice of the polynomials used—at least with high probability. First of all, we note that in
Zq[x]/(x

n − 1)

a(x) ≡ f(q)(x)c(x) ≡ f(q)(x)(pφ(q)(x)h(x) + w(q)(x))

≡ pf(q)(x)Fq(x)φ(q)(x)g(q)(x) + f(q)(x)w(q)(x)

≡ pφ(q)(x)g(q)(x) + f(q)(x)w(q)(x) mod xn − 1.

If now p is much smaller than q and the absolute values of the coefficients of the polynomials
φ(x), g(x), f(x) and w(x) are small, it is highly probable that in computing pφ(q)(x)g(q)(x) +
f(q)(x)w(q)(x) mod xn − 1 coefficients need not be reduced modulo q at all when representig
them in the symmetric residue system modulo q. (Recall the ”easy” multiplication above!) From
this it follows that the polynomials φ(p)(x), g(p)(x) and f(p)(x) are also obtained from the poly-
nomials φ(q)(x), g(q)(x) and f(q)(x) by just taking their coefficients modulo p—all coefficients
being again represented in the symmetric residue system—and that

a(p)(x) ≡ pφ(p)(x)g(p)(x) + f(p)(x)w(x) ≡ f(p)(x)w(x) mod xn − 1
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in Zp[x]/(x
n − 1). Hence (again in Zp[x]/(x

n − 1)) it is very probable that

w′(x) ≡ Fp(x)a(p)(x) ≡ Fp(x)f(p)(x)w(x) ≡ w(x) mod xn − 1,

i.e. decrypting succeeds.

11.3 Setting up the System

So, errorless decrypting is not automatic but requires that the parameters and polynomials used
are chosen conveniently, and even then only with high probability. Denote by Pn,i,j the set of
the polynomials of degree no higher than n − 1 such that i coefficients are = 1, j coefficients
are = −1 and the remaining coefficients are all = 0. The following choices are recommended:

n p q f(x) g(x) φ(x)
107 3 64 ∈ P107,15,14 ∈ P107,12,12 ∈ P107,5,5

167 3 128 ∈ P167,61,60 ∈ P167,20,20 ∈ P167,18,18

503 3 256 ∈ P503,216,215 ∈ P503,72,72 ∈ P503,55,55

If—as above— p = ri11 and q = ri22 where r1 and r2 are different primes, the polynomial
f(x) and its inverses Fp(x) and Fq(x) can be found by the following procedure. (Otherwise the
procedure is further complicated by use the Chinese remainder theorem.)

1. Take a random polynomial f(x) with integral coefficients whose degree is at most n− 1

(possibly as indicated in the table above).

2. Check using the Euclidean algorithm that gcd(f(r1)(x), x
n − 1) = 1 in Zr1 [x] and that

gcd(f(r2)(x), x
n − 1) = 1 in Zr2 [x], see Section 4.2. If this is not true, give up.

3. Then by Bézout’s theorem we get, by using the Euclidean algorithm, polynomials h1(x),
k1(x), l1(x) and h2(x), k2(x), l2(x) with integral coefficients such that

1 = h1(x)f(x)+k1(x)(x
n−1)+r1l1(x) and 1 = h2(x)f(x)+k2(x)(x

n−1)+r2l2(x)

where h1(x) are h2(x) of maximum degree k, k1(x), and k2(x) of maximum degree n−1,
and l1(x) and l2(x) of maximum degree 2n − 1. In addition we may apparently assume
that the coefficients of the polynomials h1(x), k1(x) and h2(x), k2(x) are in the symmetric
residue systems modulo r1 and r2, respectively.

4. Denote j1 = ⌈log2 i1⌉ and j2 = ⌈log2 i2⌉, whence 2j1 ≥ i1 and 2j2 ≥ i2.

5. Compute2

Fp(x) ≡ h1(x)

j1−1
∏

m=0

(1 + r2
m

1 l1(x)
2m) mod xn − 1 in Zp[x]/(x

n − 1)

and

Fq(x) ≡ h2(x)

j2−1
∏

m=0

(1 + r2
m

2 l2(x)
2m) mod xn − 1 in Zq[x]/(x

n − 1),

return the results and f(x) and quit.

2This operation is the so-called Hensel lift. The empty products occuring in the cases j1 = 0 and j2 = 0 are
≡ 1.
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The procedure usually produces a result immediately. The result is correct, since (verify!)

Fp(x)f(p)(x) ≡ 1− r2
j1

1 l1(x)
2j1 ≡ 1 mod xn − 1 in Zp[x]/(x

n − 1)

and
Fq(x)f(q)(x) ≡ 1− r2

j2

2 l1(x)
2j2 ≡ 1 mod xn − 1 in Zq[x]/(x

n − 1).

The polynomial g(x) is chosen randomly (say, within the limits allowed by the table).

11.4 Attack Using LLL Algorithm

NTRU uses polynomials of degree no higher than n− 1, which can be interpreted as n vectors
(here column vectors). For these polynomials

f(x) = f0 + f1x+ · · ·+ fn−1x
n−1 ,

g(x) = g0 + g1x+ · · ·+ gn−1x
n−1 and

h(x) = h0 + h1x+ · · ·+ hn−1x
n−1

the vectors are

f = (f0, f1, . . . , fn−1) , g = (g0, g1, . . . , gn−1) and h = (h0, h1, . . . , hn−1).

As above

h(x) ≡ Fq(x)g(q)(x) mod xn − 1 , i.e. f(q)(x)h(x) ≡ g(q)(x) mod xn − 1

in Zq[x]/(x
n − 1). Remember that Fq(x) is the inverse of f(q)(x) in Zq[x]/(x

n − 1). If we take
the matrix

H =







h0 h1 · · · hn−1

hn−1 h0 · · · hn−2
...

...
. . .

...
h1 h2 · · · h0







then the above equation can be written in the form

fH ≡ g mod q.

Note how the structure of the matrix H nicely handles reduction modulo xn − 1.
The vectors above bring to mind lattices. The dimension of a suitable lattice is however 2n.

Now let’s take the 2n× 2n matrix

M =

(
δIn H

On −qIn

)

(in block form) where In is the n×n indentity matrix , On is the n×n zero matrix and δ 6= 0 is
a real number. Clearly M is nonsingular, denote the lattice generated by its rows by 〈M〉. Note
that M is obtained from the public key.

Because f(q)(x)h(x) ≡ g(q)(x) mod xn − 1, then in Z[x]/(xn − 1)

f(x)h(x) ≡ g(x) + qk(x) mod xn − 1

for some polynomial k(x) with integral coefficients of degree at most n − 1. When k(x) is
represented as above as an n−1-dimensional column vector k, this equation can also be written
in the form

fH = g + qk.
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Furthermore in matrix form we get the equation

(
f k

)
M =

(
δf g

)
.

This shows that the 2n-vector
(
δf g

)
is in the lattice 〈M〉. Because the coefficients of f(x)

and g(x) are small, we are talking about a short vector of the lattice. By a convenient choice of
the number δ we can make it even shorter. If

(
δf g

)
is short enough, it can often be found by

the LLL algorithm and used to break the system.

NB. The recommended parameters of NTRU above are chosen precisely to prevent this kind

of attacks by the LLL algorithm. As of now no serious weaknesses in NTRU have been found,

despite some claims to the opposite. It should be mentioned that, unlike RSA and ELGAMAL, it

is not known either that NTRU could be broken using quantum computing, see Chapter 15.



Chapter 12

HASH FUNCTIONS AND HASHES

12.1 Definitions

A hash is a word of fixed length that describes a message ”accurately enough”. The message can
then be quite long. The procedure which gives the hashing is called a hash function. Because
the number of possible hashes is smaller than the number of messages, a hash fucntion is not
one-to-one, in other words, in some cases it gives the same hash for several messages. This is
called collision. For a hash function to be usable it should naturally be quickly computable from
the message, but also such that a hostile party cannot efficiently take advantage of collisions in
any way. Bearing this in mind we define several different concepts:

• A hash function h is weakly collision-free for the message w if it is computationally hard
to find another message w′ such that h(w) = h(w′).

• A hash function h is weakly collision-free if for any given message w it is computationally
hard to find another message w′ such that h(w) = h(w′).

• A hash function h is strongly collision-free if it is computationally hard to find messages
w and w′ such that h(w) = h(w′), in other words, if it is hard to find a message w for
which h is not weakly collision-free.

• A hash function h is one-way if for any given hash t it is hard to find a message w such
that h(w) = t.

These definitions are not quite exact in that we do not consider computational complexity here.
If the message space is finite—as it usually is—complexity, being an asymptotic concept, cannot
really be defined at all.

NB. Other nomenclatures are used too. Weakly collision-free hash functions are also called

second preimage resistant, strongly collision-free hash functions are also called just collision-
free, and one-way hash functions are also called preimage resistant.

There is a connection between one-way and strongly collision-free hashing:

Theorem 12.1. If the message space W is finite and the hash space is T and |W | ≥ 2|T |,
where | · | denotes cardinality of sets, then a strongly collision-free hash function h is one-way.

To put it more exactly, an algorithm A which inverts h can be transformed to a Las Vegas type

probabilistic algorithm which finds a collision with at least probability 1/2.
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Proof. Denote by Mw the set of the messages with the same hash as w, and by D the family of
all these sets. Then

|D| = |T | and
∑

D∈D

|D| = |W |.

The following Las Vegas algorithm finds a collision or gives up.

1. Choose a random message w ∈ W .

2. Compute the hash t = h(w).

3. Find a message w′ such that h(w′) = t using the algorithm A.

4. If w′ 6= w, return w and w′ and quit. Otherwise give up and quit.

We just need to show that the algorithm gives a result with at least probability 1/2:

P(A collision is found.) =
∑

w∈W

|Mw| − 1

|Mw|

1

|W |
=

1

|W |

∑

D∈D

∑

w∈D

|D| − 1

|D|

=
1

|W |

∑

D∈D

(|D| − 1) =
1

|W |

(
∑

D∈D

|D| −
∑

D∈D

1

)

=
|W | − |T |

|W |

≥
|W | − |W |/2

|W |
=

1

2
.

It is obvious that for extensively and continuously used hash functions strong collisions
should not occur essentially at all. Because of this it was quite a surprise, when in 2004 the
Chinese Xiaoyun Wang, Dengguo Feng, Xuejia Lai and Hongbo Yu found collisions in many
commonly used hash functions. In addition to that, Wang, Yiqun Lisa Yin and Yu noted that
collisions can be found relatively easily even in SHA-11, the ”flagship” of hash functions. De-
veloping good hash functions appears to be even more difficult than it was thought.

12.2 Birthday Attack

If the number of possible hashes is small, collisions can be found by trying out: Just choose
k random messages w1, . . . , wk, compute the hashes ti = h(wi), and check whether collisions
occur. This simple procedure is called the birthday attack2. Now let’s estimate probabilities
for the birthday attack to succeed. In this case we may assume that different hashes occur

1This ”Chinese attack” is discussed in many talks in the references Proceedings of Crypto ’05. Lecture Notes

in Computer Science 3621. Springer–Verlag (2005) ja Proceedings of EuroCrypt ’05. Lecture Notes in Computer

Science 3494. Springer–Verlag (2005).
2The name comes from the fact that if we have large enough group of people then the probability of at least two

of them having the same birthday (day of the year) is high. Using approximation and noting that 1.177
√
365 ∼=

22.49 it is seen that it suffices to have at least 23 people in the group for the probability of same birthdays to be at
least 1/2. In this case the exact computation gives

P =

(

1−
1

365

)(

1−
2

365

)

· · ·

(

1−
23− 1

365

)

∼= 0.493.
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with at least approximately equal frequency. Otherwise the probability of finding collisions just
increases. The probability for no collisions to occur is apparently

Pn,k =
n(n− 1)(n− 2) · · · (n− k + 1)

nk
=

(

1−
1

n

)(

1−
2

n

)

· · ·

(

1−
k − 1

n

)

where n is the number of hashes. Since it is well-known that lim
n→∞

(

1 +
a

n

)n

= ea, we obtain
further the estimate

P
1
n
n,k
∼= e−1−2−···−(k−1) = e−

k(k−1)
2 .

(Here n is of course large and much larger than k.) Hence the probability of finding at least one
collision is

Qn,k = 1− Pn,k
∼= 1− e−

k(k−1)
2n .

This way we get an estimate for k when Qn,k = Q is given:

−
k(k − 1)

2n
∼= ln(1−Q)

or
k2 − k + 2n ln(1−Q) ∼= 0

or

k ∼=
1

2

(

1 +
√

1− 8n ln(1−Q)
)

.

By choosing Q = 1/2 we conclude that a collision is found with probability 1/2 if

k ∼=
1

2

(

1 +
√
1 + 8n ln 2

)
∼=
√
2n ln 2 ∼= 1.177

√
n.

Thus for example for a 40-bit hash the birthday attack succeeds with probability 1/2 if k is
slightly larger than 220 = 1 048 576. Consequently, hashes should be significantly longer, for
instance in SHA-1 hash length is 160 bits, and then k should be slightly larger than 280 ∼=
1.2 · 1024 for the birthday attack to succeed. On the other hand, the ”Chinese attack” shows
somewhat amazingly that a k of order 269 ∼= 5.9 · 1020 may already suffice.

Birthday attacks sometimes occur in a bit different form, which goes as follows. We first
choose k1 messages w1, . . . , wk1 randomly, and then independently another k2 random messages
w′

1, . . . , w
′
k2

, and seek collisions of the form h(wi) = h(w′
j), so-called cross-collisions. Denote

the possible cases by the symbols

T1 = ”There is a collision in the messages w1, . . . , wk1 .”

T2 = ”There is a collision in the messages w′
1, . . . , w

′
k2

.”

T12 = ”There is a cross-collision.”

and the complementary cases by overlining as usual. Apparently then for example

P(T1) = Qn,k1 , P(T 2) = Pn,k2 , P(T 1 and T 2) = Pn,k1Pn,k2 etc.

Further, apparently
P(T 1 and T 2 and T 12) = Pn,k1+k2.

By the rules for probabilities, from this we get the conditional probability

P(T 12 | T 1 and T 2) =
Pn,k1+k2

Pn,k1Pn,k2

∼=
e−

(k1+k2)(k1+k2+1)
2n

e−
k1(k1+1)+k2(k2+1)

2n

= e−
k1k2
n .
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On the other hand, it is very unlikely that many collisions occur, and a few collisions really do
not change the probability of a cross-collision by much, as compared to the situation where no
collisions occur. (Remember that n is large and that k1 and k2 are small compared to it.) Hence

P(T 12 | T1 or/and T2) ∼= e−
k1k2
n and so P(T 12) ∼= e−

k1k2
n .

So, if we want the probability of cross-collision to be 1/2 we should choose (verify!)

k1k2 ∼= n ln 2.

Hence it is enough to choose

k1, k2 ∼=
√
n ln 2 ∼= 0.833

√
n.

This latter type birthday attack resembles Shanks’ baby-step-giant-step algorithm in some
ways, see Section 9.2. As a matter of fact, a very similar probabilistic algorithm for computing
discrete logarithms can be derived from it. The baby-step-giant-step algorithm of course has
the advantage of being deterministic, and even somewhat faster. On the other hand, modular
exponentiation is a randomizing operation, so it can be used in the random choices, and we get
a powerful and very space-efficient probabilistic algorithm for computing the discrete logarithm
b = logg a modulo p (a prime):

Pollard’s kangaroo algorithm:

1. Denote J = ⌊log2 p⌋ and N = ⌊
√
p⌋, and choose the numbers c and c′ randomly from

the interval 0, 1, . . . , p− 1. (Note that J and N are quickly computed.)

2. Compute the number tN using the recursion

ti = (ti−1g
2(ti−1,mod J)

, mod p) , t0 = (gc, mod p).

(Because c is known, these recursion steps are called jumps of a tame kangaroo.) If we
denote

d =

N∑

i=0

2(ti,mod J)

then tN = (gc+d,mod p).

3. Compute the numbers

wj = (wj−1g
2(wj−1,mod J)

, mod p) , w0 = (gb+c′, mod p) = (agc
′

, mod p)

one by one using recursion. (Because b is not known, these steps are called jumps of a
wild kangaroo.) Simultaneously we compute the numbers

Dj = Dj−1 + 2(wj ,mod J) , D0 = 0,

recursively, whence wj = (gb+c′+Dj ,mod p).

4. If we find a value l ≤ N such that wl = tN (cross-collision) then

gc+d ≡ gb+c′+Dl mod p , i.e. gc+d−c′−Dl ≡ a mod p.

In this case we return b = (c+ d− c′ −Dl,mod p− 1) and quit. Then again, if we have
computed all the numbers w0, w1, . . . , wN without any cross-collisions occuring, we give
up and quit.
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By the birthday attack principle, a cross-collision is found in this situation with at least probabil-
ity 1/2. Note that if a cross-collision is found already for some ti and wl, where l ≤ i < N , then
it is also found for tN because the recursions are identical. By repeating the algorithm many
times choosing a new random c′ each time, but not a new c, it is very likely that we will eventu-
ally be able to compute b. However, because the number of steps needed is O(

√
p ), this is not a

polynomial-time algorithm, although it is fast. On the other hand, no lists are stored—compare
to the baby-step-giant-step algorithm—so the space needed is very small.

12.3 Chaum–van Heijst–Pfitzmann Hash

As an example of a simple hash function we consider the Chaum–van Heijst–Pfitzmann hash

function hCHP. For this we need a prime p such that q = (p−1)/2 is also a prime, i.e. a Germain
number, see Section 8.2. Furthermore we need two different primitive roots α and β modulo
p. In addition we assume that the discrete logarithm a = logα β cannot be computed easily. A
message (w1, w2) consists of two numbers w1 and w2 in the interval 0, 1, . . . , q − 1, and

hCHP(w1, w2) = (αw1βw2, mod p).

Finding even one collision of hCHP makes it possible to compute the discrete logarithm
logα β fast:

Theorem 12.2. If different messages (w1, w2) and (w′
1, w

′
2) are known such that hCHP(w1, w2) =

hCHP(w
′
1, w

′
2) then the discrete logarithm a can be computed fast.

Proof. The hashes are the same, that is,

αw1βw2 ≡ αw′

1βw′

2 mod p.

Because β ≡ αa mod p, this is equal to

αa(w2−w′

2)−(w′

1−w1) ≡ 1 mod p.

α is a primitive root modulo p, so a(w2 − w′
2) − (w′

1 − w1) is divisible by its order modulo p,
i.e. by p− 1, see Theorem 7.4 (ii). Therefore

a(w2 − w′
2) ≡ w′

1 − w1 mod p− 1.

Now let’s denote d = gcd(w2−w′
2, p− 1). Then, by the above congruence, d is also a factor of

w1 − w′
1. From this it follows that w2 6= w′

2. Namely, if w2 = w′
2 then w1 6= w′

1 and d = p− 1.
This is however impossible since |w1 − w′

1| < q < p− 1.
We denote further

u =
w2 − w′

2

d
, v =

w′
1 − w1

d
and r =

p− 1

d
.

Then gcd(u, r) = 1 and, by Theorem 2.11,

au ≡ v mod r , i.e. a ≡ u−1v mod r.

Thus the possible values of a in the positive residue system modulo p− 1 are

a = (u−1v, mod r) + ir (i = 0, 1, . . . , d− 1).

On the other hand, the possible values of d are 1, 2, q and p − 1. Because w2 6= w′
2 and

|w2 − w′
2| < q < p− 1, either d = 1 or d = 2. So the discrete logarithm a is easy to find, it is

either (u−1v,mod r) or (u−1v,mod r) + r.
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Thus hCHP is strongly collision-free and by Theorem 12.1 it is also one-way.

NB. The CHP hash function is too slow to be very useful, many other hash functions are much

faster to compute. Another problem lies in the difficulty of finding enough Germain’s numbers.

On the other hand, as the ”Chinese attack” shows, more and more weaknesses are found in fast

hash functions.



Chapter 13

SIGNATURE

13.1 Signature System

A signature system is a quintet (P,A,K, S, V ), where

• P is the finite message space.

• A is the finite signature space.

• K is the finite key space. Each key is a pair (ks, kv) where ks is the secret signing key and
kv is the public verifying key.

• For each signing key ks there is a signing function sks ∈ S. For a message w we have
sks(w) = (w, u) where u is the signature of the message w. S is the space of all possible
signing functions.

• For each verifying key kv there is a verifying function vkv ∈ V . V is the space of all
possible verifying functions.

• For each message w and for a key (ks, kv) we have

vkv(w, u) =

{

CORRECT if sks(w) = (w, u)

FALSE otherwise.

The public verifying key is left available for everyone to use, the secret signing key is personal
and only the signer has it. The signed message is sks(w) = (w, u). If a receiver wants he/she can
verify the signature by the verifying function. Usually a suitable hashing h(w) of the message
w is used when signing. This has the advantage of allowing the message to be quite long.

The signature must satisfy the following basic conditions:

• An outside party who does not know the signing key, cannot send a signed message that
can be verified in the name of a real signer, or at least such a message should not contain
any meaningful information. In particular, an outside party cannot detach a signature
from a real signed message and use it as the signature of another message.

• The signer cannot later on deny having signed a correctly signed message.

Many cryptosystems can immediately be transformed to signature systems, and have in fact
originally been signature systems.

100
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13.2 RSA Signature

A signature system is obtained from RSA by defining

ks = (n, b) and kv = (n, a),

and

sks(w) = (w, (wb, mod n)) and vkv(w, u) =

{

CORRECT, if w ≡ ua mod n

FALSE otherwise.

Apparently faking this signature in one way or another is equivalent to breaking RSA. An
outside party can however choose a signature u by taking w = (ua,mod n) as the message.
Such a message does not contain any information, though. Even this does not work if an one-
way hash function h is used. In that case kv = (n, a, h) and

sks(w) = (w, (h(w)b, mod n)) and vkv(w, u) =

{

CORRECT if h(w) ≡ ua mod n

FALSE otherwise.

RSA can also be used to get a so-called blind signature. If A wishes to sign a message w of
B, without knowing its content, the procedure is the following:

1. B chooses a random number l such that gcd(l, n) = 1, computes the number t =

(law,mod n) and sends it to A.

2. A computes the signature u′ = (tb,mod n) as if the message would be t, and sends it to
B.

3. B computes the number u = (l−1u′,mod n).

Because A does not know the number l, he/she does not get any information about the message
w. On the other hand, u is the correct signature of the message w, since

l−1u′ ≡ l−1tb ≡ l−1labwb ≡ l−1lwb ≡ wb mod n.

13.3 Elgamal’s Signature

Elgamal’s cryptosystem can be transformed into a signature system by choosing the group G =

Z∗
p, where p is large prime, a primitive root a modulo p and b = (ay,mod p). The verifying key

is now kv = (p, a, b) and the signing key is ks = (p, a, y). The signing function is sks(w) =

(w, c, d) where

c = (ax, mod p) and d = ((w − yc)x−1, mod p− 1)

and x is a random number, chosen from the interval 1 ≤ x < p−1, such that gcd(x, p−1) = 1.
Now xd = w − yc+ k(p− 1) for some number k. The verifying function is

vkv(w, c, d) =

{

CORRECT if bccd ≡ aw mod p

FALSE otherwise.

Verifying a correct signature will then succeed, since by Fermat’s little theorem

bccd ≡ aycaxd = ayc+w−yc+k(p−1) = aw(ap−1)k ≡ aw · 1 = aw mod p.

To forge a signature one should be able to compute c and d without knowing y and x. We
then note the following:
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• If the forger first chooses some c and then tries to obtain the corresponding d, he/she must
compute logc(a

wb−c) modulo p. This is essentially computing the discrete logarithm in
G. Note that because gcd(x, p− 1) = 1, also c is a primitive root modulo p, see Theorem
7.4 (iii).

• Then again, if the forger chooses first some d and then tries to find the corresponding c,
he/she must solve the equation

bccd ≡ aw mod p.

No fast algorithms are known for solving such equations.

• If the forger tries to send a signed message, even a random one, he/she might try to first
choose c and d and then find some suitable w. But in this case he/she must compute
loga(b

ccd) modulo p.1

NB. DSS (Digital Signature Standard), a modification of Elgamal’s signature, is quite exten-

sively used, see e.g. STINSON or MENEZES & VAN OORSCHOT & VANSTONE.

13.4 Birthday Attack Against Signature

If hashing is used in signing and it is possible to change the message a little bit here and there
without essentially altering its meaning, it is also possible to apply a birthday attack to get
cross-collisions in the following way, see Section 12.2:

1. If the length of the hashes used in signing is B bits, the forger finds, say, B/2 + 2 places
where the message to be signed can be changed without really changing it essentially—
for example adding or removing commas and spaces, making small innocent mistakes
and so on. This way 2B/2+2 versions of the correct message are obtained, the hashes of
which the forger then computes.

2. Correspondingly, the forger finds B/2 + 2 places in the fake message he/she chooses,
where it can be varied without changing the meaning, and computes the 2B/2+2 hashes of
the fake messages obtained this way.

3. The forger seeks a possible cross-collision in these two hash sets by sorting in the same
way as in the baby-step-giant-step algorithm. It can be found very certainly, if the hashes
of the messages may be considered as having been born randomly, since the probability
of success is in this case approximately

1− e−
2B/2+22B/2+2

2B = 1− e−16 =∼= 0.999 999 887.

The condition considering randomness is not very demanding, since a good hash func-
tion is already randomizing and small differences in messages cause large differences in
hashes.

4. The forger leaves the version of the correct message occurring in the cross-collision to
be signed. If the signer does not notice the difference or simply does not care, the forger
now has a version of the fake message he/she chose which has the very same hash, and
gets it signed by the signer as well!

1There are however other ways for obtaining a random signed message! It is also possible to sign some other
random messages by using a single received signature. See STINSON.
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TRANSFERRING SECRET

INFORMATION

14.1 Bit-Flipping and Random Choices

Generating of random bit (”bit-flipping”) is easy, if we have trusted party to perform it. If such
a party is not available, bit-flipping is still possible by a proper method. In what follows in the
bit-flipping procedure1 A flips a random bit for B. At first only B knows the result but if he
chooses to do so, he can tell it to A. Even if B does not tell the result to A, he still can’t change
the bit he got and this way he can’t cheat by telling the wrong bit to A, without it being revealed
to A at some point. This way B is committed to the bit that he got.

The procedure works in the following way, see Section 7.6:

1. A chooses two different large primes p and q and sends the product n = pq to B.

2. B randomly chooses a number u from the interval 1 < u < n/2 and sends the modular
square

z = (u2, mod n)

to A.

3. A computes the four square roots of z modulo n:

(±x, mod n) and (±y, mod n).

This is possible since A knows the factors of n. Denote the smaller of the numbers
(±x,mod n) by x′, and correspondingly the smaller of the numbers (±y,mod n) by y′.
Then u is one of the numbers x′ and y′.

4. A cannot know which of the numbers x′ and y′ is u, so she guesses. It is of no use for A
to send B the number she guessed, because if it happens not to be u then B can factor n.
Instead A finds the first bit on the right in which the binary representations of x′ and y′

differ, and sends this bit to B in the form ”The j th bit of your number is . . . ”.

5. B tells A if the guess was correct (the flipped bit is 1) or incorrect (the flipped bit is 0).
Even if B does not tell the result to A, he is still bound to it and cannot change it.

1The original reference is BLUM, M.: Coin Flipping by Telephone. A Protocol for Solving Impossible Prob-
lems. SIGACT News (1981), 23–27.
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6. Finally B reveals u to A and A reveals the factorization of n. B cannot fool A, since he
only knows one of the square roots x′ and y′, otherwise B would be able to factor n.

NB. As is usual, it is here assumed that when choosing a number u randomly we won’t get a

number such that gcd(u, n) 6= 1. Indeed, this is highly unlikely if n is large.

Generalizing, we can choose a random integer from a given interval by flipping the bits of
its binary representation one by one, and removing initial zeros if needed.

Another random choice situation is when, for both A and B, k numbers from the numbers
1, 2, . . . , N are chosen randomly such that both know their own numbers but not the numbers
of the other. Furthermore, it is required that A and B don’t share any of the numbers. If the
above bit-flipping might be thought of as ”coin tossing” then this could be thought of as ”card
dealing”. The procedure is following:

1. A and B agree on a large prime p.

2. A chooses a secret number a from the interval 1 ≤ a < p−1 such that gcd(a, p−1) = 1,
and computes the number a′ = (a−1,mod p− 1).

3. B chooses a secret number b from the interval 1 ≤ b < p− 1 such that gcd(b, p− 1) = 1,
and computes the number b′ = (b−1,mod p− 1).

4. The numbers i are encoded as the numbers ci = (g2i+1,mod p) (i = 1, 2, . . . , N) where
g is a primitive root modulo p. g and p can be found in the same way as in setting up
ELGAMAL, see Section 10.1. The numbers ci are all quadratic nonresidues modulo p,
since exponents of quadratic residues are even.

5. B computes the numbers βi = (cbi ,mod p) (i = 1, 2, . . . , N), permutes them randomly
and sends them to A. Note that because b is odd, information of a number ci being a
quadratic residue modulo p passes this encoding process by Euler’s criterion, since by
Fermat’s little theorem cp−1

i ≡ 1 mod p and hence c
(p−1)/2
i ≡ ±1 mod p. Because of

this, all ci’s were chosen to be quadratic nonresidues modulo p to start with. On the other
hand, obtaining ci from βi would require computing a discrete logarithm in Zp.

6. A chooses 2k of these numbers, say βi1 , . . . , βi2k , computes the numbers

αj = (βa
ij
, mod p) = (cabij , mod p) (j = 1, 2, . . . , k),

and sends them and the numbers βik+1
, . . . , βi2k to B. Again obtaining βij from αj would

require computing a discrete logarithm.

7. B computes the numbers

γj = (αb′

j , mod p) = (caij , mod p) (j = 1, 2, . . . , k)

and sends them to A. Compare this to decrypting of RSA.

8. A computes her numbers cij = (γa′

j ,mod p) (j = 1, 2, . . . , k).

9. B computes his numbers cij = (βb′

ij
,mod p) (j = k + 1, . . . , 2k).
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14.2 Sharing Secrets

If t and v are positive integers and t ≤ v then a (t, v)-threshold scheme is a procedure which is
used to distribute a secret S to v parties so that any t − 1 parties won’t get anything out of the
secret but any t parties get to know it in full (the threshold).

Threshold schemes are usually carried out by some kind of interpolation. A certain function
fp1,...,pt, the so-called interpolant, is defined fully when its parameters p1, . . . , pt are known. The
parameters themselves are obtained if we know the values of the function in at least t different
points:

fp1,...,pt(xi) = yi (i = 1, 2, . . . , v where v ≥ t).

On the other hand, values in any t− 1 points do not define the parameters unambiguously. The
secret S is the function fp1,...,pt, or its parameters p1, . . . , pt or just some of them. Each party
is given a value of the function, the so-called share. This is done secretly by a trusted outside
party, the so-called distributor D.

One way to get an interpolant is to use a polynomial

p(x) = S ⊕
t−1⊕

j=1

pj+1x
j .

This is called Shamir’s threshold scheme.2 It can be carried out in any field F with more than v
elements. The most common choice is a prime field Zq where q > v. The secret is the constant
term S = p1 of p(x). It is known that a polynomial of degree no higher than t − 1 is fully
determined when its values are known in t different points. On the other hand, a polynomial
won’t be determined unambiguously, if the degree is t − 1 and there are less than t points.
In particular, the polynomial’s constant term is not determined in this way, unless a value is
specifically given in the point x = 0. This is because if the constant term S were uniquely
determined by t − 1 values yi = p(xi) in different points xi 6= 0 (i = 1, 2, . . . , t − 1) then the
remaining parameters p2, . . . , pt would be determined by the equations

x−1
i ⊙ (yi ⊖ S) =

t−1⊕

j=1

pj+1x
j−1
i (i = 1, 2, . . . , t− 1).

As is seen, S can be anything, so no information about S is revealed.
The interpolation itself can be carried out using a linear system of equations—the matrix

of which is a so-called Vandermonde matrix—or for example Lagrange’s interpolation (see the
basic courses):

p(x) =

t⊕

j=1

yj ⊙
t⊙

k=1
k 6=j

(xj ⊖ xk)
−1 ⊙ (x⊖ xk).

In this case

S = p(0) =

t⊕

j=1

yj ⊙
t⊙

k=1
k 6=j

(xk ⊖ xj)
−1 ⊙ xk.

Points where values of p(x) are computed can be public, in which case the shares would be just
these values. Then computation of S is just computation of a linear combination of the shares
with known coefficients, possibly precomputed.

The scheme itself is the following:

2The original reference is SHAMIR, A.: How to Share a Secret. Communications of the Association for Com-

puting Machinery 22 (1979), 612–613.
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Shamir’s threshold schme:

1. D chooses a field F and v different elements u1, u2, . . . , uv 6= 0 of F , and communicates
ui to the ith party (i = 1, 2, . . . , v). The secret S is an element of F .

2. D secretly and randomly chooses t− 1 elements p2, . . . , pt of the field F .

3. D computes the shares

wi = S ⊕
t−1⊕

j=1

pj+1 ⊙ uj
i (i = 1, 2, . . . , v),

and communicates to each party its share, without letting the other parties know anything
about it.

4. When the parties i1, i2, . . . , it want to know the secret, they interpolate and compute S.
For example, using Lagrange’s interpolation

S =

t⊕

j=1

wij ⊙
t⊙

k=1
k 6=j

(uik ⊖ uij)
−1 ⊙ uik .

NB. Sharing secrets must not be confused with a very similar procedure, the so-called dispersal
of information, where you disperse a file into v pieces, any t of which suffice to reconstruct the

file quickly. The difference is that t − 1 pieces can now perfectly well give a lot of information

about the file, possibly not the whole file, however. Dispersal of information has to do with error-

correcting codes (see the course Coding Theory), and the dispersed parts are usually much

smaller than the shares above. The original reference is RABIN, M.O.: Efficient Dispersal of
Information for Security, Load Balancing, and Fault Tolerance. Journal of the Association for

Computing Machinery 36 (1989), 335–348.

There are other ideas for sharing secrets. Many secret sharing schemes are based on coding
theory. The Chinese remainder theorem can be used in the interpolation, too, e.g. in the so-
called Mignotte threshold scheme, see for example DING & PEI & SALOMAA.

14.3 Oblivious Data Transfer

The party A wants to transfer a secret to the party B, but in such a way that the secret may or
may not be transferred. Of course B knows whether the secret was transferred or not, but A
should not know this. In fact, from A’s point of view, the secret is transferred with probability
1/2. A simple procedure for this would be the following. Here, as usual, n is a product of two
different large primes p and q. The secret may be thought to be these two primes, the real secret
could then e.g. be encrypted by RSA using n. So, in the beginning A knows p and q while B
does not.

1. B chooses a number x from the interval 1 ≤ x < n, computes (x2,mod n), and sends it
to A.

2. A computes the four square roots

(±x, mod n) and (±y, mod n)
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of (x2,mod n) modulo n, and sends one of them to B. Because A knows the factors of n,
she can do this quite quickly. A cannot however know which of the square roots x is. See
Section 7.6.

3. B checks whether the square root he got from A is ≡ ±x mod n. In the positive case
B does not get the secret. Otherwise B gets to know numbers x and y such that x2 ≡ y2

mod n and x 6≡ ±y mod n, and is able to factor n and in this way learns the secret. A
cannot know whether or not B got the secret, unless B chooses to tell this to A.

14.4 Zero-Knowledge Proofs

There are two parties in an interactive proof system, the prover P and the verifier V. They send
messages to each other and perform computations based on the messages they receive, including
random number generating if necessary. The goal of P is to convince V that he knows some
property of some object. The object could be e.g. a mathematical result and the property its
truth, but of course it could be something quite different. Another goal of P is not to transmit to
V any other information than that he knows this property. This is called zero-knowledge proof.

The basic requirements of a zero-knowledge proof are the following:

(I) The probability of P successfully fooling V is very small.

If, for example, P does not know the proof of a mathematical result, but claims to do so,
then his chances of fooling V should be minuscule.

(II) If P truly knows the property, he can prove this to V beyond any reasonable doubt.

(III) V won’t get from P any information that he could not obtain himself without P, computing
in polynomial time if needed.

In this case V could actually simulate the proof protocol in polynomial time as if P would
participate in it, but without P. Note that there are no restrictions on the complexity of
computations of P. The simulation must be exact enough to make it impossible to tell it
apart from the ”real” one, computing in polynomial time.

Despite condition (III), V might, after some very long computations, be able to get more infor-
mation, possibly the whole property. So, instead of (III), a stronger condition is required in the
so-called perfect zero-knowledge proof:

(III′) V won’t get from P any information that he could not get by himself without P.

Here too V computes in polynomial time, but the simulation must now be fully identical
to the ”real” one.

Sometimes the zero-knowledge proof defined by the conditions (I)–(III) above is called
computational zero-knowledge proof, to distinguish it from perfect zero-knowledge proof. It
should be noted that the above conditions do not really give exact definitions. These defini-
tions are actually much more complicated, see for example STINSON or GOLDREICH. The
difference between computational and perfect zero-knowledge proofs is in the comparison of
stochastic distributions: In perfect zero-knowledge proofs ”real” and simulated distributions
must be identical, in computational zero-knowledge proofs it is only required that the distribu-
tions cannot be separated by polynomial-time computations.
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The following protocol3 gives a perfect zero-knowledge proof of the fact that x is a quadratic
residue modulo n where n = pq and p and q are two different large primes, assuming that
gcd(x, n) = 1. Here the problem is QUADRATICRESIDUES, and the proof is a square root of x
modulo n.

1. Repeat the following k times:

1.1 P chooses a random number v from the interval 1 ≤ v < n such that gcd(v, n) = 1,
computes the number y = (v2,mod n), and sends it to V.

1.2 V chooses randomly a bit b (0 or 1) and sends it to P.

1.3 P computes the number z = (ubv,mod n) where u is a square root of x modulo n,
and sends it to V.

1.4 V checks that z2 ≡ xby mod n.

2. If the check passes every time for each of the k rounds, V concludes that P really knows
x is a quadratic residue modulo n.

Theorem 14.1. The above protocol gives a perfect zero-knowledge proof for the problem QUAD-
RATICRESIDUES.

Proof. If P does not know a square root of x, he must cheat and send to B the number z = v,
and either the number y = (z2,mod n) (exposed if b = 1) or the number y = (z2x−1,mod n)
(exposed if b = 0). Thus the probability for P to cheat without getting caught is 1/2k, which
can be made as small as wanted. Then again, if P really knows a square root u, he of course
passes the test every time.

V can simulate P’s part perfectly in this protocol. The idea is that V generates triples (y, b, z)
where

y ≡ z2x−b mod n.

Let’s show that if V chooses the bit b and the number z completely randomly, these triples have
a distribution identical to the ”right” one, where P is involved and chooses a random v.

We say that the triple (y, b, z) is feasible, if

• 1 ≤ y < n and gcd(y, n) = 1,

• b is 0 or 1, and

• 1 ≤ z < n and z2 ≡ xby mod n.

There are 2φ(n) feasible triples, because there are φ(n) possible choices of z and b can be
chosen in two different ways, and these choices determine y. Note that since gcd(x, n) = 1 and
gcd(y, n) = 1, then gcd(z, n) = 1 also.

Feasible triples occur in the protocol equally probably when P is involved, since P chooses
v from among φ(n) different alternatives, and four possible square roots v correspond to one y.
When y and b have been chosen, there are four possible choices for z. Also in the simulation
performed by V feasible triples are equiprobable when V chooses z randomly from the interval
1 ≤ z < n and gcd(z, n) = 1, and b is chosen randomly.

3The original reference is GOLDWASSER, S. & MICALI, S. & RACKOFF, C.: The Knowledge Complexity of
Interactive Proof Systems. SIAM Journal on Computing 18 (1989), 186–208.
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Let’s also take an example of a (computational) zero-knowledge proof. The problem is to
prove that there is a so-called Hamiltonian circuit in a graph. A graph consists of vertices and
edges that connect vertices. Usually not all vertices are connected by edges. A Hamiltonian

circuit is a path which forms a circuit through all vertices of the graph visiting each vertex
exactly once and returning to the starting vertex. The path proceeds via the edges. (See the
course Graph Theory.) Finding out whether or not there is a Hamiltonian circuit in a suitably
encoded graph is known to be anNP-complete recognition problem HAMILTONCIRCUIT. The
following protocol4 gives a zero-knowledge proof to this problem.

1. Repeat the following k times. The input is the graph G where the vertices are denoted by
1, 2, . . . , n.

1.1 P arranges the vertices in a random order and sends the list v1, v2, . . . , vn obtained
this way (encoded in bits) encrypted to V. P also sends to V the n × n matrix
D = (dij) (the so-called adjacency matrix) encrypted element by element where
the diagonal elements are = 0 and

dij =

{

1 if there is an edge connecting the vertices vi and vj

0 otherwise,

when i 6= j. Because of the symmetry it is enough to send only the upper triangle.
Each element of the matrix is encrypted by its own key. The encryption must lead
to commitment, that is, P must not be able to change the graph later by changing
keys, compare with bit-flipping. Naturally, the encryption is assumed to be strong
enough, in other words nothing can be got from an encrypted bit in polynomial time.

1.2 V chooces a bit b randomly and sends it to P.

1.3 If b = 0, P decrypts the list v1, v2, . . . , vn and the whole matrix D for V by sending
her the decrypting keys. Then again, if b = 1, P decrypts for V only the n elements
di1i2 , di2i3, . . . , dini1 of the matrix D where the vertices vi1 , vi2, . . . , vin in this order
form a Hamiltonian circuit (in which case the elements are all = 1).

1.4 If b = 0, V checks whether he got the correct graph. The decrypted list v1, v2, . . . , vn
gives the order of the vertices and D gives the edges. Then again, if b = 1, V checks
whether the obtained elements of the matrix are = 1.

2. If the check passes in each of the k rounds, V concludes that P really does know a Hamil-
tonian circuit of G.

The commitment mentioned in #1.1 is obtained for example in the following way. Here the
large prime p and the primitive root g modulo p are made public.

1. In the beginning V chooses and then sends to P a random number r from the interval
1 < r < p. P cannot quickly compute the discrete logarithm logg r modulo p.

2. P randomly chooses a number y from the interval 0 ≤ y < p − 1 (the secret key) and
sends to V the number c = (rbgy,mod p) where b is the bit to be encrypted. Each ele-
ment of Z∗

p is in the positive residue system both of the form (gy,mod p) and of the form

4The original reference seems to be BLUM, M: How to Prove a Theorem So No One Else Can Claim It.
Proceedings of the International Congress of Mathematicians 1986. American Mathematical Society (1988),
1444–1451.
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(rgy,mod p), so c does not reveal anything of the bit b. Whichever the bit is, the distribu-
tion of c remains the same. On the other hand, P cannot change the bit b by changing y to
some y′, otherwise

gy ≡ rgy
′

mod p or rgy ≡ gy
′

mod p,

i.e.
r ≡ g±(y−y′) mod p,

and P would immediately obtain logg r modulo p from this.

Theorem 14.2. The above protocol gives a zero-knowledge proof for the problem HAMILTON-
CIRCUIT.

Proof. If P does not know a Hamiltonian circuit, he is able to cheat if he receives the bit b = 0,
but not if he receives the bit b = 1. Then again, if P knows a Hamiltonian circuit of some other
graph G′ with n vertices, he can cheat if he receives the bit b = 1, but not if he receives the bit
b = 0. So, the probability for P to succesfully cheat all the time is 1/2k, which can be made as
small as we want. Then again, if P knows a Hamiltonian circuit of G, he of course passes the
test every time.

V can simulate the protocol in polynomial time also without P. What V does is the following.
V chooses a random bit b. If b = 0, V orders the vertices randomly and encrypts the list
obtained this way. Further, V gets the adjacency matrix D and encrypts it. Then again, if b = 1,
V encrypts only some random elements di1i2 , di2i3, . . . , dini1 where the indexing is cyclic each
index occurring exactly two times, and each element is = 1. For the sake of completeness, V
can encrypt something else to obtain the right amount of encrypted data. Because the encryption
used is strong, the encrypted element sequences are very ”similar” whether they come from the
correct adjacency matrix or not. In other words, computing in polynomial time the difference
cannot be seen, and the occuring distributions cannot be separated. This does not mean that the
distributions should be exactly the same!

HAMILTONCIRCUIT is an NP-complete problem to which other recognition problems in
NP can be reduced, see Section 6.1. Hence V can always perform such a reduction, if needed,
and we have

Theorem 14.3. Zero-knowledge proofs can be given to all positive solutions of recognition

problems in NP .

A perfect zero-knowledge proof of an NP-complete recognition problem is however thought
to be impossible, in other words, the theorem is expected to be false for perfect zero-knowledge
proofs. Actually, a result much more general than Theorem 14.3 is known:

Theorem 14.4. (Shamir’s theorem5) Recognition problems for whose positive solutions there

are zero-knowledge proofs are exactly the recognition problems in PSPACE .

5The original reference is SHAMIR, A.: IP = PSPACE. Journal of the Association for Computing Machinery

39 (1992), 869–877.



Chapter 15

QUANTUM CRYPTOLOGY

15.1 Quantum Bit

The values 0 and 1 of the classical bit correspond in quantum physics to complex orthonormal
base vectors, denoted traditionally by |0〉 and |1〉. We can think then that we operate in C2

considered as a Hilbert space. A quantum bit or qubit is a linear combination of the form

b = α0|0〉+ α1|1〉

(a so-called superposition) where α0 and α1 are complex numbers and

‖b‖2 = |α0|
2 + |α1|

2 = 1.

In particular, |0〉 and |1〉 themselves are quantum bits, the so-called pure quantum bits. It is
important that physically a quantum bit can be initialized to one of them.

A quantum physical measurement of b results either in |0〉 or in |1〉—denoted briefly just
by 0 and 1. So, the measurement always involves the basis used. According to the probabilistic
interpretation of quantum physics, the result 0 is obtained with probability |α0|2 and the result
1 with probability |α1|2.

A quantum bit is a quantum physical state and it can be transformed to another state in one
time step, provided that the transformation is linear and its matrix U is unitary, i.e. U−1 is the
conjugate transpose U† of U. Hence also

Ub = β0|0〉+ β1|1〉 , where

(
β0

β1

)

= U

(
α0

α1

)

,

is a quantum bit (state). Note in particular that

|β0|
2 + |β1|

2 =
(
β∗
0 β∗

1

)
(
β0

β1

)

=
(
α∗
0 α∗

1

)
U†U

(
α0

α1

)

=
(
α∗
0 α∗

1

)
(
α0

α1

)

= 1.

(Complex conjugation is here denoted by an asterisk.) Now let’s recall some basic properties of
unitary matrices:

1. The identity matrix I2 is unitary. It is not necessary to do anything in a time step.

2. If U1 and U2 are unitary then U1U2is also unitary. This means a quantum bit can be
operated on several times in consecutive time steps, possibly using different operations,
and the result is always a legitimate quantum bit. This is exactly how a quantum computer
handles quantum bits.

111
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3. If U is unitary then U† is also unitary. When a quantum bit is operated on and another
quantum bit is obtained, then the reverse operation is always legitimate, too. A quantum
computer does not lose information, and is thus reversible. It has been known long that
every algorithm can be replaced by a reversible algorithm. This was first proved by the
French mathematician Yves Lecerf in 1962. Later it was shown that this does not even
increase complexity very much.1 Hence reversibility is not a real restriction considering
computation, of course it makes designing quantum algorithms more difficult.

15.2 Quantum Registers and Quantum Algorithms

Quantum bits can be merged into quantum registers of a given length. The mathemathical
operation used to do this is the so-called Kronecker product or tensor product. Kronecker’s
product of the matrices A = (aij) (an n1 ×m1 matrix) and B = (bij) (an n2 ×m2 matrix) is
the n1n2 ×m1m2 matrix

A⊗B =








a11B a12B · · · a1m1B

a21B a22B · · · a2m1B
...

...
. . .

...
an11B an12B · · · an1m2B








(in block form). As a special case we get Kronecker’s product of two vectors (m1 = m2 =

1). The following basic properties of Kronecker’s product are quite easy to prove. Here it is
assumed that the occurring matrix operations are well-defined.

1. Distributivity: (A1 +A2)⊗B = A1 ⊗B+A2 ⊗B

A⊗ (B1 +B2) = A⊗B1 +A⊗B2

2. Associativity: (A⊗B)⊗C = A⊗ (B⊗C)

As a consequence of this a chain of consecutive Kronecker’s products can be written
without parentheses.

3. Multiplication by a scalar: (cA)⊗B = A⊗ (cB) = c(A⊗B)

4. Matrix multiplication of Kronecker’s products (this pretty much follows directly from
multiplication of block matrices):

(A1 ⊗B1)(A2 ⊗B2) = (A1A2)⊗ (B1B2)

5. Matrix inverse of Kronecker’s product (follows from the multiplication law):

(A⊗B)−1 = A−1 ⊗B−1

6. Conjugate transpose of Kronecker’s product (follows directly from conjugate transposi-
tion of block matrices):

(A⊗B)† = A† ⊗B†

1The original references are LECERF, M.Y.: Machines de Turing réversibles. Récursive insolubilité en n ∈ N
de l’équation u = θnu, où θ est un ”isomorphisme de codes”. Comptes Rendus 257 (1963), 2597–2600 and LEVIN,
R.Y. & SHERMAN, A.T.: A Note on Bennett’s Time-Space Tradeoff for Reversible Computation. SIAM Journal

on Computing 19 (1990), 673–677.
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7. Kronecker’s products of unitary matrices are also unitary. (Follows from the above.)

When two quantum bits b1 = α0|0〉+ α1|1〉 and b2 = β0|0〉+ β1|1〉 are to be combined to
a two-qubit register, it is done by taking Kronecker’s product:

b1 ⊗ b2 = α0β0(|0〉 ⊗ |0〉) + α0β1(|0〉 ⊗ |1〉) + α1β0(|1〉 ⊗ |0〉) + α1β1(|1〉 ⊗ |1〉).

(More exactly, it is the register’s contents that is defined here.) A traditional notation convention
here is

|0〉 ⊗ |0〉 = |00〉 , |0〉 ⊗ |1〉 = |01〉 etc.

It is easy to see that |00〉, |01〉, |10〉, |11〉 is an orthonormal basis, in other words, the register’s
dimension is four. If we wish to operate on the register’s first quantum bit by U1 and to second
by U2 (both unitary matrices) then this is done by the unitary matrix U1 ⊗U2, because by the
multiplication law

(U1 ⊗U2)(b1 ⊗ b2) = (U1b1)⊗ (U2b2).

In particular, if we want to operate only on the first quantum bit by the matrix U, it is done by
choosing U1 = U and U2 = I2. In the same way we can operate only on the second quantum
bit. But in a two-qubit register we can operate also by a general unitary 4 × 4 matrix, since
the register is a legitimate quantum physical state. With this kind of operating we can link
the quantum bits of the registers. Quantum physical linking is called entanglement, and it is
a computational resource expressly typical of quantum computation, such a resource does not
exist in classical computation.

In a similar way we can form registers of three or more quantum bits, operate on its quantum
bits, either on all of them or just one, and so on. Generally the dimension of a register of m
quantum bits is 2m. Base vectors can then be thought to correspond, via binary representation,
to integers in the interval 0, . . . , 2m − 1, and we adopt the notation

|k〉 = |bm−1bm−2 · · · b1b0〉

when the binary representation of k is bm−1bm−2 · · · b1b0, possibly after adding initial zeros.
Several registers can be combined to longer registers using Kronecker’s products, and we can
operate on these either all together or only one and so on.

Despite the register’s dimension 2m being possibly very high, many operations on its quan-
tum bits are physically performable, possibly in several steps, and the huge unitary matrices
are not needed in practice. In this case the step sequence is called a quantum algorithm. It is
important that entanglements too are possible and useful in quantum algorithms.

In the the sequel the following operations are central. Showing that they can be performed
by using quantum algorithms is somewhat difficult.2 Here k is as above.

• From the input |k〉 ⊗ |0 · · ·0〉 we compute |k〉 ⊗ |(wk,mod n)〉 where w and n ≤ 2m are
given fixed integers. (Essentially by the Russian peasants’ method.)

• From the input |k〉 we compute its so-called quantum Fourier transformation

FQ(|k〉) =
1
√
n

n−1∑

j=0

e
2πijk

n |j〉

where i is the imaginary unit. Quantum Fourier transformation works much as the ”or-
dinary” discrete Fourier transformation, in other words, it picks periodic parts from the
input sequence, see the course Fourier Methods.

2See for example SHOR, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms
on a Quantum Computer. SIAM Journal on Computing 26 (1997), 1484–1509 or NIELSEN & CHUANG.
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15.3 Shor’s Algorithm

Today’s quantum computers are very small and have no practical meaning. Handling bigger
quantum registers with quantum computers would however mean that procedures central for
the safety of for example RSA and ELGAMAL, such as factorization and computing discrete
logarithms modulo a prime, could be performed in polynomial time. Indeed, these problems
are in the class BQP . This was shown by Peter Shor in 1994. Let’s see Shor’s factorization
algorithm here. See the reference SHOR mentioned in Footnote 2.

Shor’s factorization algorithm is very similar to the exponent algorithm for cryptanalysis
of RSA in Section 8.3. The mysterious algorithm A, that appeared there, is just replaced by a
quantum algorithm. Of course, the number n to be factored can here have many more prime
factors than just two. The ”classical part” of the algorithm is the following when the input is
the integer n ≥ 2:

Shor’s factorization algorithm:

1. Check whether n is a prime. If it is then return n and quit.

2. Check whether n is a higher power of some integer, compare to the Agrawal–Kayal–
Saxena algorithm in Section 7.4. If n = ut, where t ≥ 2, we continue by finding the
prime factors of u from which we then easily obtain the factors of n. This part, as the
previous one, is included only to take care of some ”easy” situations quickly.

3. Choose randomly a number w from the interval 1 ≤ w < n.

4. Compute d = gcd(w, n) by the Euclidean algorithm.

5. If 1 < d < n, continue from d and n/d.

6. If d = 1, compute with the quantum computer a number r > 0 such that wr ≡ 1 mod n.

7. If r is odd, go to #9.

8. If r is even, set r ← r/2 and go to #7.

9. Compute ω = (wr,mod n) by the algorithm of Russian peasants.

10. If ω ≡ 1 mod n, give up and quit.

11. If ω 6≡ 1 mod n, set ω′ ← ω and ω ← (ω2,mod n), and go to #11.

12. Eventually we obtain a square root ω′ of 1 modulo n such that ω′ 6≡ 1 mod n. If now
ω′ ≡ −1 mod n, give up and quit. Otherwise compute t = gcd(ω′ − 1, n) and continue
from t and n/t. Note that because ω′ + 1 6≡ 0 mod n and on the other hand ω′2 − 1 =

(ω′ + 1)(ω′ − 1) ≡ 0 mod n, some prime factor of n is a factor of ω′ − 1.

As in Section 8.3, it can be proved that if n is composite, the algorithm finds a factor with at
least probability 1/2.

So, #6 is left to be performed with the quantum computer. This can be done based on the
fact that (wj,mod n) is periodic with respect to j and a period r can be found by a quantum
Fourier transformation. The procedure itself is the following:
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6.1 Choose a number 2m such that n2 ≤ 2m < 2n2.

6.2 Initialize two registers of length m to zeros: |0 · · ·0〉 ⊗ |0 · · ·0〉.

6.3 Apply the quantum Fourier transformation to the first register:

FQ(|0 · · ·0〉)⊗ |0 · · ·0〉 =

(

1

2m/2

2m−1∑

j=0

e
2πij·0
2m |j〉

)

⊗ |0 · · ·0〉

=
1

2m/2

2m−1∑

j=0

|j〉 ⊗ |0 · · ·0〉.

Now we have a uniform superposition of the integers 0, . . . , 2m − 1 in the first register.
The quantum computer is ready to handle them all simultaneously!

6.4 Compute by a suitable operation (see the previous section) simultaneously

1

2m/2

2m−1∑

j=0

|j〉 ⊗ |(wj, mod n)〉.

The registers are now entangled in the quantum physical sense.

6.5 Measuring the second register we obtain the integer v, and the registers are

γ

2m−1∑

j=0

wj≡v mod n

|j〉 ⊗ |v〉

where γ is a scaling constant and the indices j occur periodically. Scaling is needed
because after the measuring we must have a quantum physical state.

6.6 Apply the quantum Fourier transformation to the first register:

γ

2m/2

2m−1∑

j=0

wj≡v mod n

2m−1∑

l=0

e
2πilj
2m |l〉 ⊗ |v〉.

6.7 Measure the first register. The result l is then obtained with probability |g(l)|2 where

g(l) =
γ

2m/2

2m−1∑

j=0

wj≡v mod n

e
2πilj
2m .

But g(l) is, ignoring the coefficient, a discrete Fourier transformation of a sequence in
which 1 occurs with the same period as j in #6.5, other elements being zeros.

The above-mentioned probability is illustrated below, when m = 8 and r = 10. These
values are of course far too small to be very interesting in practice. r corresponds to the
frequency 28/10 = 25.6, which can be seen very clearly together with its multiples. It is
very likely that the measured l will be near one of these.
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6.8 In this way we obtain a value l, which is an approximate multiple of the frequency 2m/r,
i.e. there is a j such that

j

r
∼=

l

2m
.

Because r ≤ φ(n) < n − 1, r might be found by trying out numbers around the rational
number l/2m. In any case, using the condition for m in #1, we can very probably find the
correct r using so-called Diophantine approximation, see the reference SHOR in Footnote
2.

All in all, we are talking about a kind of probabilistic polynomial-time algorithm using
which we can find periods of quite long sequences. Such an algorithm would have a lot of
applications, e.g. in group theory, if only we had large quantum computers.

15.4 Grover’s Search Algorithm

We now adopt a further feature of the notation already used (often called the bra-ket notation).
The notation |ψ〉 (the ket) is a column vector and 〈ψ| (the bra) is its conjugate transpose (a row
vector). Thus 〈ψ||φ〉 is the inner product of |ψ〉 and |φ〉, usually written as 〈ψ|φ〉. Moreover
then |ψ〉〈ψ| is a self-adjoint operator (matrix).

The task is to find among n register states |j〉 (as above) a state |q〉 satisfying a given condi-
tion. The condition is specified using a black box unitary (check!) operation (matrix) Uq given
by

Uq|j〉 =

{

−|q〉, if j = q

|j〉, if j 6= q,

i.e.
Uq = In − 2|q〉〈q|.

Thus Uq flips the state |q〉 leaving the other states unchanged.
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Using the quantum Fourier transform as above the state

|β〉 =
1
√
n

n∑

k=1

|k〉.

can be initialized. Another unitary operator (matrix) needed in the algorithm is the so-called
Grover diffusion

Uβ = 2|β〉〈β| − In.

Operating with Uq and Uβ takes place in the real 2-dimensional subspace (plane) spanned
by |q〉 and |β〉. Geometrically Uq is a reflection with respect to the coordinate hyperplane
perpendicular to |q〉. As was seen in the basic courses, this operation transforms a vector |ψ〉 to
|ψ〉 minus twice the projection of |ψ〉 on |q〉, i.e., to

|ψ〉 − 2〈q|ψ〉|q〉 = |ψ〉 − 2|q〉〈q||ψ〉 = Uq|ψ〉.

Similarly, Uβ is a reflection with respect to the line given by |β〉. This transforms a vector |ψ〉
to |ψ〉 + twice the difference of the projection of |ψ〉 on |β〉 and |ψ〉, i.e., to

|ψ〉 − 2(〈β|ψ〉|β〉 − |ψ〉) = 2|β〉〈β||ψ〉 − |ψ〉 = Uβ|ψ〉.

The algorithm is simply the following. Starting from the initialized state |β〉 iterate r times
the operation UβUq, for a certain number r. During this the result remains in the real plane
spanned by |q〉 and |β〉. Apparently

〈q|β〉 =
1
√
n

and so cos γ =
1
√
n
,

where γ is the angle spanned by |q〉 and |β〉.
Now UβUq is actually a rotation in the (2-dimensional) plane spanned by |q〉 and |β〉

through the angle

π − 2γ = 2 arcsin
1
√
n
∼=

2
√
n
.

(The approximation is valid for large n.) One only
needs to verify this for |q〉 and |β〉. When we de-
note

|q′〉 = UβUq|q〉 = −Uβ|q〉 and

|β′′〉 = UβUq|β〉 = Uβ|β
′〉,

|q

|β|β

γ

|β

then this is seen for |β〉 in the upper figure on the
right—in an exaggerated fashion because in reality
n is large and γ is very close to π/2—and for |q〉
in the lower figure.

Thus the number r of iterations needed to reach
|q〉 starting from |β〉 is of the order

√
n. The prob-

ability of getting |q〉 as a result of a measurement
is then

cos2(γ − r(π − 2γ)),

which has the maximum value 1 when

|q

|β

|q

γ

γγ|q
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r =
γ

π − 2γ
∼=

π
√
n

4
.

This should be compared with the classical case where in the worst case n steps are needed, and
n/2 even in the average.

Using Grover’s algorithm key spaces can be searched quadratically faster, which reduces
the effective key lengths to one half of what they are classically.

15.5 No-Cloning Theorem

Classically, if nothing else, an eavesdropper may at least be able to make a copy of a cryptotext
for later sinister purposes without being caught at it. This is not possible for quantum states,
because

Theorem 15.1. (No-Cloning Theorem) It is not possible to copy a general quantum state.

Proof. If it is possible to copy an arbitrary quantum state then there is a unitary operation
(matrix) C such that

C(|ψ〉 ⊗ |0 · · ·0〉) = |ψ〉 ⊗ |ψ〉

for all states |ψ〉. For any state |φ〉 then (using the properties of Kronecker’s product)

〈ψ|φ〉 = 〈ψ|φ〉 · 1 = 〈ψ|φ〉〈0 · · ·0|0 · · ·0〉

= 〈ψ||φ〉 ⊗ 〈0 · · ·0||0 · · ·0〉

= (〈ψ| ⊗ 〈0 · · ·0|)(|φ〉 ⊗ |0 · · ·0〉)

= (〈ψ| ⊗ 〈0 · · ·0|)I(|φ〉 ⊗ |0 · · ·0〉)

= (〈ψ| ⊗ 〈0 · · ·0|)C†C(|φ〉 ⊗ |0 · · ·0〉)

= (〈ψ| ⊗ 〈ψ|)(|φ〉 ⊗ |φ〉)

= 〈ψ||φ〉 ⊗ 〈ψ||φ〉 = 〈ψ|φ〉〈ψ|φ〉

= 〈ψ|φ〉2.

Thus either 〈ψ|φ〉 = 0 or 〈ψ|φ〉 = 1 which clearly is not true in general (take e.g. |φ〉 =
−|ψ〉).

Note that it is however possible to initialize two or more copies of a known register state, such
as |0 · · ·0〉, and even some other states, such as the |β〉 in the previous section.

Because of reversibility, a consequence is the No-Deleting Theorem according to which
there is no unitary operator (matrix) D such that

D(|ψ〉 ⊗ |ψ〉) = |ψ〉 ⊗ |0 · · ·0〉

for all states |ψ〉. An eavesdropper cannot destroy (replace by known content) one part of an
entangled state leaving the other part untouched without this being noticed.
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15.6 Quantum Key-Exchange

A quantum bit can be represented in many orthonormal bases. Because measuring is always
connected to an orthonormal basis and results in one of the base vectors, we can measure a
quantum bit, pure in one basis, in another basis and get any one of the latter basis’ vectors.

First let’s take an orthonormal basis |0〉, |1〉, denoted B1, and then another basis |+〉, |−〉,
denoted B2, where

|+〉 =
1
√
2
(|0〉+ |1〉) and |−〉 =

1
√
2
(|0〉 − |1〉).

B2 is then orthonormal too. The measurer can decide in which basis he/she measures. For
example, when measuring the quantum bit

|0〉 =
1
√
2
|+〉+

1
√
2
|−〉

in the basis B2, the measurer gets |+〉 with probability 1/2.
Quantum key-exchange can be done in many ways. One way to get a secret key for two

parties A and B is the following:

1. A sends a sequence of bits to B, interpreting them as pure quantum bits and choosing for
each bit the basis she uses, B1 or B2, and when using B2 identifying, say, 0 with |−〉 and
1 with |+〉. A also remembers her choices of bases.

2. After obtaining the quantum bits sent by A, B measures them choosing randomly a basis,
B1 or B2, for each received quantum bit, and remembers his choices of bases and the
measured results.

3. B sends to A the sequence of bases he chose using a classical channel.

4. A tells B which of their choices of bases were the same using a classical channel.

5. A and B use only those bits for the key, which are obtained from these common choices
of bases. Indeed, these are the bases where B’s measurement gives pure quantum bits
identical to the ones sent by A. About half of the bits sent will thus be used.

If an outside party C tries to interfere in the key-exchange, either by trying to obtain the key
by measuring quantum bits sent by A or by trying to send B quantum bits of his own, he is very
likely caught. (As a consequence of the No-Cloning Theorem, C cannot copy quantum bits for
later use.) First of all, when measuring the quantum bits sent by A, C must choose the basis B1
or B2. This choice is the same as A’s in about half of the cases. C sends these quantum bits to
B, who believes they came from A. Then a lot of the bits chosen by A and B for their secret
key in #5 will be different. This is naturally revealed later, say, by using AES and letting the
first encrypted messages sent be equipped with parity checks or some other test sequences. The
same will be true, of course, if C tries to send B quantum bits of his own choice instead of A’s
quantum bits.

Another key-exchange procedure based on a somewhat different principle is the following:

1. Both A and B initialize a set of registers of length two, each to the state

1
√
2
(|00〉+ |11〉) (a so-called Bell state).
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This can be done (verify!) by first initializing the registers to the state |00〉 = |0〉 ⊗ |0〉
and then applying the unitary matrix

1
√
2







1 0 0 1

0 1 1 0

0 1 −1 0

1 0 0 −1







.

The basis B1 is used in all registers, but also for the basis B2 we have a Bell state, since
computing the Kronecker products it is easy to see that

1
√
2
(|00〉+ |11〉) =

1
√
2
(| −−〉+ |++〉).

In Bell’s state both positions contain the same pure quantum bit, in other words, the
quantum bits are entangled. Physically the quantum bits can be separated and taken very
far from each other without destroying the entanglement. A takes the first quantum bits,
and B the second, remembering their order. Another possibility is that a trusted third
party initializes the Bell states and then distributes their quantum bits to A and B. Ideally
all this happens hidden from outsiders. The ”halves” of the Bell states reside with A and
B, waiting to be taken into use. If A and B can be absolutely sure that they received
their ”halves” of the Bell states without any outside disturbing, they get their secret key-
bits simply by measuring their quantum bits in the same basis (agreed on beforehand).
Because of the entanglement they will get the same bits, even though these are random.
This happens even if A and B do their measurements so closely following each other that
the information cannot be exchanged with the speed of light!3 Otherwise a procedure
similar to the one above should be used as follows.

2. When A and B need the key, A measures her quantum bits (the first quantum bits) and
chooses randomly the basis, B1 or B2, for each quantum bit. After this, B measures his
quantum bits and chooses the basis randomly for each quantum bit. Because the quantum
bits are entangled, they get the same results if they are using the same basis.

3. A tells B her choices of bases using a classical channel, thus announcing that the key-
exchange began. This way the actual key distribution cannot proceed faster than light. B
then tells A which of their choices of bases were the same again using a classical chan-
nel. An outside party cannot use this information, since he does not know the measured
quantum bits. An outside party can however try to mess things up e.g. by sending B faked
choices of bases in A’s name. This will be revealed eventually as pointed out earlier. That
will also happen if an outside party succeeded in meddling with A’s or B’s quantum bits
(the No-Deleting Theorem).

4. A and B choose their key-bits from those quantum bits that they measured in the same
bases. This way they get the same bits. About half of the measured quantum bits are then
included in the key.

NB. Nowadays quantum key-echange is used for some quite long distances, and it is thought to

be absolutely safe. There are other, different protocols, see e.g. NIELSEN & CHUANG.

3This is the so-called Einstein–Podolsky–Rosen paradox. Actual classical information is not transferred with a
speed higher than that of light, since A cannot choose her measurement results and thus she cannot transmit to B
any message she chose in advance. Moreover, A’s quantum bits are already fixed by the first measurement, so she
is not able to try it again either.
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It is interesting to note that a key-exchange procedure similar to the first one above can be
accomplished using ”classical electricity” as well, as the so-called Kish cipher, see the figure
below.

A
U

A,1
B

R1

R2 R2

R1

C

U
B,2

U
B,1

U
A,2

The two parties A and B both have two resistors with (different) resistances R1 and R2 (exactly
the same for each). Resistance Ri is connected in series with noise voltage UA,i or UB,i. The
intensities (power spectral densities) of these noises are of the same form as that of the thermal
noises of the resistors4, i.e., combined these intensities are of the form ERi where E is a con-
stant. Using switches A and B randomly connect one of these resistor + noise generator units.
When both A and B do this, a circuit is closed with current intensity I = E/(RA+RB) (Ohm’s
law) where RA and RB are the resistances chosen by A and B, respectively. A and B measure
the current, so they know both resistances. If A and B choose the same resistance, either R1 or
R2, no bit is determined. This happens approximately half the time. On the other hand, each
time they choose different resistances, a key bit is determined (say, 0 if A chooses R1 and 1

otherwise). An outside party C may then measure the current but this gives no information of
the bit. Similarly C may measure voltage against ground without getting any information, the
intensity of this voltage is ERARB/(RA +RB). And there is not much anything else C can do.

This procedure works perfectly in an ideal situation and if A and B do the switching at
exactly the same time. On the other hand, if e.g. they agree that A switches first and B after
that, it may be possible for C to quickly measure the resistance A chose without her noticing
this. C may then act as a ”man-in-the-middle” posing as A for B and as B for A and finally
get the whole key. This ”man-in-the-middle” attack, as well as other attacks, can be made
considerably more difficult by certain additional arrangements.5

4According to the so-called Johnson–Nyquist formula the intensity of the thermal noise of a resistance R in
temperature T is 4kTR where k is Boltzmann’s constant. This procedure is also called Kirchhoff-Law–Johnson-

Noise encryption or KLJN encryption.
5See the original reference KISH, L.B.: Totally Secure Classical Communication Utilizing Johnson(-like) Noise

and Kirchhoff’s Law. Physics Letters A 352 (2006), 178–182. The procedure has been strongly criticized on
various physical grounds, yet it has been physically implemented as well.
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DES

A.1 General Information

DES (Data Encryption Standard) is a symmetric cryptosystem developed by IBM in the early
1970’s. It is based on the LUCIFER system developed earlier by IBM. DES was published in
1975 and was certified as an encryption standard for ”unclassified” documents in USA in 1977.
After this it has been used a lot in different circumstances, also as the triple system 3-DES.
Many cryptosystems similar to DES are known: SAFER, RC5, BLOWFISH etc.

Mainly because of its far too small keysize DES is now mostly abandoned and replaced by
AES.

A.2 Defining DES

DES operates with bit symbols, so the residue classes (bits) 0 and 1 of Z2 can be considered
as the plaintext and cryptotext symbols. The length of the plaintext block is 64. The key k is
56 bits long. It is used in both encrypting and decrypting. In broad lines DES operates in the
following way:

1. The bit sequence x0 is formed of the plaintext x by permutating the bits of x by a certain
fixed permutation (the so-called initial permutation) πini. Then we write

x0 = πini(x) = L0R0

where L0 contains the first 32 bits of x0 and R0 the rest.

2. Compute the sequence L1R1, L2R2, . . . , L16R16 by iterating the following procedure 16
times:

{

Li = Ri−1

Ri = Li−1 ⊕ f(Ri−1, ki)

where ⊕ is bitwise addition modulo 2 (known also by the
name XOR), f is a function which is given later, and ki is
the key of the ith iteration, obtained from k by permuting
48 of its bits into a certain order. An iteration step is
depicted on the right.

⊕

Li—1 Ri—1

f ki

Li
R

i

3. Apply the inverse permutation π−1
ini (the so-called final permutation) to the bit sequence

R16L16.

122
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We still need to give the permutation πini, define the function f , and give the key sequence
k1, k2, . . . , k16, for encrypting to be defined.

First let’s see the definition of the function f . The first argument R of f is a bit sequence
of length 32 and the second argument K is a bit sequence of length 48. The procedure for
computing f is the following:

1. The first argument R is expanded using the expanding

function E. We take the first 32 bits of R into E(R),
duplicate half of them and then permute them. Bits are
taken according to the table on the right, read from left
to right and from top to bottom.

2. Compute E(R)⊕K = B and write the result as a cate-
nation of eight 6-bit bit sequences:

B = B1B2B3B4B5B6B7B8.

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

3. Next we use eight so-called S-boxes S1, . . . , S8.
Each Si is a fixed 4 × 16 table, formed of the
numbers 0, 1, . . . , 15. When a bit sequence of
length of 6

Bi = b1b2b3b4b5b6

is obtained, Si(Bi) = Ci is computed in the fol-
lowing way. The bits b1b6 give the binary rep-
resentation of the index r (r = 0, 1, 2, 3) of a
certain row. The remaining bits b2b3b4b5 give
the binary representation s (s = 0, 1, . . . , 15) of
a certain column. (The rows and columns of Si

are indexed starting from zero.) Now Si(Bi) is
the binary representation of the number in the
intersection of the rth row and the sth column
of Si, initial zeros added if needed to get four
bits. The bit sequences Ci are catenated to the
bit sequence

C = C1C2C3C4C5C6C7C8.

4. The bit sequence C of length of 32 is permuted
using the fixed permutation π. The bit sequence
π(C) obtained this way is then f(R,K).

⊕

R K

E

E(R)

B1 B2 B3 B4 B5 B6 B7 B8

f(R,K)

π

S1 S2 S3 S4 S5 S6 S7 S8

C1 C2 C3 C4 C5 C6 C7 C8

The operation is illustrated above. We may note that E and π are linear operations, in other
words, they could be replaced by multiplication of a bit vector by a matrix. On the other hand,
S-boxes are highly non-
linear. The definitions of
S-boxes can be found in
the literature (for exam-
ple STINSON). On the
right is S2, given as an

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

example, and below the permutations πini and π (c.f. E):
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πini :

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

π :

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

The key sequence k1, k2, . . . , k16 can be computed iteratively in the following way:

1. The key k is given in an expanded form such that every eigth bit is a parity-check bit.
So there is always an odd number of 1’s in a byte and the length of the key is 64 bits. If
the parity check shows that there are errors in the key, it will not be taken into use. Then
again, if there are no errors in the key, the parity check bits are removed, and we come to
original 56-bit key. First a fixed bit permutation πK1 is applied to the key. Write

πK1(k) = C0D0

where C0 and D0 are bit sequences of length 28.

2. Compute the sequence C1D1, C2D2, . . . , D16D16 by iterating the following procedure 16
times: {

Ci = σi(Ci−1)

Di = σi(Di−1)

where σi is a cyclic shift of the bit sequence by 1 or 2 bits to the left. If i = 1, 2, 9, 16
then the shift is 1 bit, otherwise it is 2 bits.

3. Apply the fixed variation πK2 of 48 bits to CiDi. In this way we obtain ki = πK2(CiDi).

We must still give the permutation πK1 and the variation πK2:

πK1 :

57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

πK2 :

14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

k

C0 D0

σ1

k1

πK1

πK2

σ1

C1 D1

σ2 σ2

σ16 σ16

C16 D16 πK2 k16
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The key generating process is illustrated in the above figure.
Decrypting goes essentially by same system but using the key sequence k1, k2, . . . , k16 in

reverse order and inverting the permutations. Then
{

Li−1 = Ri ⊕ f(Li, ki)

Ri−1 = Li.

The modes of operation of DES are the same as for AES, see Section 5.4.

A.3 DES’ Cryptanalysis

Everything else in DES’ structure is linear—that is, doable by matrix multiplications—except
the S-boxes. If the S-boxes were affine, i.e. if they could be replaced by matrix multiplications
and addition of vectors, DES would essentially be some form of AFFINE-HILL and therefore
easy to break. S-boxes are not however affine. Some of the design principles of DES’ S-boxes
were made public later:

(1) Each row of an S-box is a permutation of the numbers 0, 1, . . . , 15.

(2) An S-box is not an affine function of its inputs (and so not a linear function, either).
Actually it is required that no output bit of an S-box is ”near” a linear function of the
input bits.

(3) Changing one bit in the input of an S-box changes at least two bits in the output.

(4) The outputs of an S-box with inputs x and x⊕001100 differ by at least two bits, no matter
what 6-bit sequence x is.

(5) The outputs of an S-box with inputs x and x ⊕ 11b1b200 differ, no matter what 6-bit
sequence x is and no matter what bits b1 and b2 are.

(6) For each 6-bit sequence B = b1b2b3b4b5b6 6= 000000 there are 32 (= 26/2) different input
pairs x1, x2 such that x1 ⊕ x2 = B. Of the corresponding 32 output pairs y1, y2 no more
than two can have the same sum y1 ⊕ y2.

There are
256 = 72 057 594 037 927 936

keys of DES, a fairly small number by modern standards. This makes it possible to use the
following simple KP attack. If the plaintext w and the corresponding cryptotext c are known,
we go through the keys until we find a key with which this encrypting can be done. There may,
however, be several applicable keys. The procedure does not require anything in addition to
time and fast processors, and it is easily parallelized, the memory requirements are minimal,
too. DES can be installed in very fast hardware, and processors specifically designed to break
DES are possible.

A CP attack is obtained in the following way. Choose a plaintext w and encrypt it using all
possible keys of the key space. Tabulate the results. Now, if by the DES to be broken we can
encrypt w and obtain the corresponding cryptotext, then by a table search we find a key. This
method is of course useful only if it is used for finding several keys, in which case the table can
be used repeatedly. The procedure does not require much additional time (after preparing the
table), but it does require a great deal of memory space.
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There are also procedures where there is a trade-off between time and memory space, sort
of intermediate forms of the procedures above. In AES there are at least

2128 = 340 282 366 920 938 463 463 374 607 431 768 211 456

keys which is thought to prevent the above attacks well enough.
The KP attack on AFFINE-HILL introduced in Section 3.4—and actually on AFFINE

also—used differences of plaintexts and the corresponding cryptotexts modulo M to break the
system, by removing the nonlinearity caused by affinity. Such a procedure is called differential

cryptanalysis. A similar procedure can be applied to DES in KP and CP attacks to remove
some of the effects of nonlinearity of S-boxes. The minus-side of this is the large number of
plaintext-cryptotext pairs needed. Linear cryptanalysis tries to use linear dependences between
some input and output bits, that may appear in certain inputs. These do exist in DES, and it
seems that originally they went totally unnoticed! AES is built to to withstand all these crypt-
analyses.
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