
1

An Introduction to Cryptology

Bart Preneel?

Katholieke Universiteit Leuven, Dept. Electrical Engineering-ESAT
Kardinaal Mercierlaan 94, B–3001 Heverlee, Belgium

bart.preneel@esat.kuleuven.ac.be

Abstract. This paper provides an overview of the state of the art in
the design of cryptographic algorithms. It reviews the different type of
algorithms for encryption and authentication and explains the principles
of stream ciphers, block ciphers, hash functions, public-key encryption
algorithms, and digital signature schemes. Subsequently the design and
evaluation procedures for cryptographic algorithms are discussed.

1 Introduction

In our society, digital information and the systems and networks carrying this
information are abused under many forms: financial transactions are eaves-
dropped or modified, sensitive information of individuals and organizations is
eavesdropped or stolen, electronic services are used without paying for them,
and computer systems and networks are broken into or brought down. The tools
to perform this vary from simple bugs, password sniffers, and password crackers,
over malicious software such as viruses and malicious applets, to complete hacker
workbenches. Traditionally computer networks existed within one organization,
and one tried to defend them against an opponent that came from outside the
system. Now that we move to open and global networks, and that we are entering
an era of electronic commerce, a more complex threat model arises: we cannot
even trust the parties we are dealing with, and the system has to be designed
to fight fraud within the system. For example, in an electronic transaction sys-
tem, sellers can deny having sent an order if it turns out badly, and traders can
deny having received an order when it turns out profitable (in order to keep the
money). The risk for misuse has increased considerably, as potential attackers
can operate from all over the globe. Moreover, if someone gains access to an
electronic information system, the scale and impact of the abuse can be much
larger than in a paper-based system.
These risks create the need for adequate security measures to protect elec-

tronic information systems. It is clear that in an electronic world physical security
or personnel security by itself cannot be sufficient. An essential component of
every secure information system is formed by cryptographic techniques. Other
important building blocks are secure operating systems and procedural aspects

? F.W.O. postdoctoral researcher, sponsored by the Fund for Scientific Research –
Flanders (Belgium).

Appeared in SOFSEM 1998: 25th Conference on Current Trends in Theory and

Practice of Informatics, Lecture Notes in Computer Science 1521, B. Rovan (ed.),
Springer-Verlag, pp. 204–221, 1998.

c©1998 Springer-Verlag



2

such as audit tools and management guidelines. Building secure computer sys-
tems and networks requires a conservative approach which is not always compat-
ible with the current rapid developments in the industry; moreover, that security
has to be kept in mind from the first step of the design.
In this paper we discuss the principles underlying the design of cryptographic

algorithms; we distinguish between confidentiality protection (the protection
against passive eavesdroppers) and authentication (the protection against ac-
tive eavesdroppers, who try to modify information). Then we review the differ-
ent issues that arise when selecting, designing, and evaluating a cryptographic
algorithm. Finally we present some concluding remarks.

2 Encryption for Secrecy Protection

The use of cryptography for protection the secrecy of information is as old as
writing itself (for an excellent historical overview, see D. Kahn [14]). The basic
idea is to apply a ‘complicated’ transformation to the information to be pro-
tected. When the sender (usually called Alice in cryptography) wants to send
a message to the recipient (Bob), she will apply to the plaintext P the math-
ematical transformation E(). This transformation E() is called the encryption
algorithm; the result of this transformation is called the ciphertext or C = E(P ).
Bob will decrypt C by applying the inverse transformation D = E−1; this way
he recovers P or P = D(C). For a secure algorithm E, the ciphertext C does
not make sense to outsiders: Eve, who is tapping the connection, can obtain C,
but she cannot obtain (partial information on) the corresponding plaintext P .
This approach only works when Bob can keep the transformation D secret.

While this is acceptable for a person-to-person exchange, it is not feasible for
large scale use. Bob needs a software or hardware implementation of D: either
he has to program it himself, or he has to trust someone to write the program
for him. Moreover, he will need a different transformation (and program) for
each correspondent, which is not very practical. Bob and Alice always have to
face the risk that somehow Eve will obtain D (or E), for example by bribing
the author of the software or their system manager, or by breaking into their
computer system.
This problem can be solved by introducing into the encryption algorithm

E() a secret parameter, the key K. Typically such a key is a binary string of
40 to a few thousand bits. A corresponding key K∗ is used for the decryption
algorithm D. One has thus C = EK(P ) and P = DK∗(C) (see also Figure 1,
which assumes that K∗ = K). The transformation has to depend strongly (and
in a very complicated way) on the keys: if one uses a wrong key K∗′ 6= K∗, one
does not obtain the plaintext P but a ‘random’ plaintext P ′. Now it is possible
to publish the encryption algorithm E() and the decryption algorithm D(); the
security of the system relies only on the secrecy of two short keys. This implies
that E() and D() can be evaluated publicly and distributed on a commercial
basis. One can think of the analogy with a mechanical lock: everyone knows how
such a lock works, but in order to open a particular lock, one needs to know the

Appeared in SOFSEM 1998: 25th Conference on Current Trends in Theory and

Practice of Informatics, Lecture Notes in Computer Science 1521, B. Rovan (ed.),
Springer-Verlag, pp. 204–221, 1998.

c©1998 Springer-Verlag



3

key or the secret combination. The assumption that the algorithm is known to
the opponent is known in cryptography as “Kerckhoffs’s principle”; Kerckhoffs
was a 19th century Dutch cryptographer who was the first to formulate this
approach.
A simple example of an encryption algorithm is the so-called ‘Caesar cipher,’

after the Roman emperor who used it. The plaintext is encrypted letter by letter;
the ciphertext is obtained by shifting the letters over a fixed number of positions
in the alphabet. The secret key indicates the number of positions. It is claimed
that Caesar always used the value of three, such that “an example” would
be encrypted to “dq hadpsoh”. Another example is the name of the computer
“hal” from S. Kubrick’s “A Space Odyssey (2001)”, which was obtained by
replacing the letters of “ibm” by their predecessor in the alphabet. This corre-
sponds to a shift over 25 positions. It is clear that such a system is completely
insecure.
A problem which has not yet been addressed is how Alice and Bob exchange

the secret key. The easy answer is that cryptography does not solve this problem;
cryptography only makes problems easier. In this case the secrecy of a (large)
plaintext has been reduced to that of two short keys, which can be exchanged
on beforehand. The problem of exchanging keys is studied in more detail in an
area of cryptography that is called ‘key management’. We will not discuss it in
further detail here.

E
£ ¢

D
£ ¢

- - -

-

?

©
ª

®
­

©
ª

?
P PC

K
secure channel

Fig. 1. Model for conventional or symmetric encryption

The branch of science which studies the encryption of information is called
cryptography . A related branch tries to ‘break’ encryption algorithms, by recov-
ering the plaintext without knowing the key or by deriving the key from the
ciphertext and parts of the plaintext; it is called cryptanalysis. The term cryp-

tology covers both aspects. For more extensive introductions to cryptography,
the reader is referred to [2, 15, 19, 20, 25, 26].
Thus far we have assumed that the key for decryption K∗ is equal to the

encryption key K, or that it is easy to derive K∗ from K. This type of algo-
rithms are called conventional or symmetric ciphers. In public-key or asymmetric

ciphers, K∗ and K are always different; moreover, it should be difficult to com-
pute K∗ from K. This has the advantage that one can make K public, which
has important implications to the key management problem. The remainder of
this section discusses conventional algorithms and public-key algorithms.

Appeared in SOFSEM 1998: 25th Conference on Current Trends in Theory and

Practice of Informatics, Lecture Notes in Computer Science 1521, B. Rovan (ed.),
Springer-Verlag, pp. 204–221, 1998.

c©1998 Springer-Verlag



4

2.1 Conventional Encryption

This section introduces the two most common conventional encryption algo-
rithms: additive stream ciphers and block ciphers.

Additive Stream Ciphers. Additive stream ciphers are ciphers for which the
encryption consists of a modulo 2 addition (exclusive or, exor) of a key stream to
the plaintext (see Figure 2). The plaintext and ciphertext are divided into words
ofm bits (m is typically 1, 8, or a multiple of 8), and the ith word of the plaintext,
ciphertext, and key stream is denoted with pi, ci, and ki, respectively. The
encryption operation can then be written as ci = pi⊕ki. Here ⊕ denotes addition
modulo 2. The decryption operation is identical to the encryption (the cipher is
an involution): indeed, pi = ci⊕ki = (pi⊕ki)⊕ki = pi⊕ (ki⊕ki) = pi⊕0 = pi.
It is clear that the m-bit key stream word ki cannot be a constant (in that case
a cryptanalyst can compute the key stream word from a single ciphertext word
and the corresponding plaintext word; also repetitions in the plaintext would be
visible in the ciphertext). One can show that for a strong cipher the sequence of
ki has to consist of randomly looking strings (see also Sect. 2.2).
In practice one computes the words ki with a finite state machine. Such a

machine stretches a short secret key K into a much longer key stream sequence
ki; this is called a pseudo-random string generator. The sequence ki is eventually
periodic. One important (but not sufficient) design criterion for the finite state
machine is that the period has to be sufficient long (264 is a typical lower bound).
The values ki should also be uniformly distributed; another condition is that
there should be no correlations between (part of) successive words (note that
cryptanalytic attacks exist which exploit correlations of less than 1 in 1 million).
Formally, the sequence ki can be parameterized with a security parameter; then
on requires that the sequence satisfies every polynomial time statistical test
for randomness (here polynomial means polynomial in the security parameter).
Another desirable property is that no polynomial time machine can predict the
next bit of the sequence (based on the previous outputs) with a probability that
is significantly better than 1/2. An important (and perhaps surprising) result
in theoretical cryptology by A. Yao shows that these two conditions are in fact
equivalent [28].

±°
²¯
+ ±°

²¯
+- - -

-

?

©
ª

®
­

©
ª

?1010 10101000

0010 0010
secure channel

Fig. 2. An additive stream cipher

Appeared in SOFSEM 1998: 25th Conference on Current Trends in Theory and

Practice of Informatics, Lecture Notes in Computer Science 1521, B. Rovan (ed.),
Springer-Verlag, pp. 204–221, 1998.

c©1998 Springer-Verlag



5

Block Ciphers. Block ciphers take a different approach to encryption: the
plaintext is divided into larger words of n bits, called blocks. Every block is enci-
phered in the same way, using a keyed one-way permutation, i.e., a permutation
on the set of n-bit strings that is controlled by a secret key. The simplest way to
encrypt a plaintext using a block cipher is as follows: divide the plaintext into
n-bit blocks, and encrypt these block by block. The decryption also operates on
individual blocks:

ci = EK(pi) and pi = DK(ci) .

This way of using a block cipher is called the ECB (Electronic CodeBook) mode.
Note that the encryption operation does not depend on the location in the
ciphertext as is the case for additive stream ciphers.
Consider the following attack on a block cipher (the so-called tabulation at-

tack): the cryptanalyst collects ciphertext blocks and their corresponding plain-
text blocks (this is possible as part of the plaintext is often predictable); this is
used to build a large table. With such a table, one can deduce information on
other plaintexts encrypted under the same key. In order to preclude this attack,
the value of n has to be quite large (e.g., 64 or 128) and the plaintext should
not contain any repetitions (or other patterns), as these will be leaked to the
ciphertext.
This shows that even if n is large, the ECB mode is not suited to encrypt

plaintexts that are not random (such as text, images, etc.). This mode should
only be used in very special cases, where the plaintext is already random, such as
the encryption of cryptographic keys. There is however an easy way to randomize
the plaintext, by using the block cipher in a different mode of operation.
The default mode of operation for a block cipher is the CBC (Cipher Block

Chaining) mode. In this mode the different blocks are coupled by adding modulo
2 to a plaintext block the previous ciphertext block:

ci = EK(pi ⊕ ci−1) and pi = DK(ci)⊕ ci−1 .

Note that this ‘randomizes’ the plaintext, and hides patterns. To enable the
encryption of the first plaintext block (i = 1), one defines c0 as the initial value
IV . By varying this value, one can ensure that the same plaintext is encrypted
into a different ciphertext under the same key. The CBC mode allows for random
access on decryption: if necessary, one can decrypt only a small part of the
ciphertext.
It is also possible to use a block cipher as an additive stream cipher by feeding

the output back to the input; this mode is known as the OFB (Output FeedBack)
mode. A second stream mode is the CFB (Cipher FeedBack) mode; it has better
synchronization properties. The modes of operation have been standardized in
[6, 11].
This section has illustrated that a block cipher forms a very flexible building

block. The most famous block cipher is the Data Encryption Standard (or DES)
[5], which is widely used since 1977. The DES has a block size of 64 bits and a
key length of 56 bits; it will be shown in Sect. 4.3 that this is no longer sufficient.

Appeared in SOFSEM 1998: 25th Conference on Current Trends in Theory and

Practice of Informatics, Lecture Notes in Computer Science 1521, B. Rovan (ed.),
Springer-Verlag, pp. 204–221, 1998.

c©1998 Springer-Verlag



6

Therefore the US government is planning to replace it by a new block cipher,
the AES (Advanced Encryption Standard). Hereto an open call for algorithms
has been launched in September ’97; 15 candidates have been submitted by the
deadline of June ’98. Currently the evaluation procedure is under way. The AES
will have a block length of 128 bits and a key length between 128 and 256 bits.

2.2 Security of Conventional Algorithms

An essential aspect in the choice of an encryption algorithm is the security level.
In 1926 G.S. Vernam has published a simple encryption algorithm for telegraphic
messages [27]. The cipher is an additive stream cipher, where the key stream
consists of a completely random sequence, generated by a binary symmetric
source (all bits are uniformly and identically distributed). In 1949 C. Shannon,
the father of information theory, was able to prove mathematically that this
scheme offers perfect security, i.e., from observing the ciphertext, the opponent
cannot obtain any information on the plaintext, no matter how much computing
power he has [24]. The main disadvantage of this scheme is that the secret key is
exactly as long as the message (one should never reuse a key stream); C. Shannon
also showed that this the best one can do if one wants perfect security. In spite
of the long key, the Vernam algorithm is still used by diplomats and spies; it has
been used for the ‘red telephone’ between Washington and Moscow. Spies used
to carry key pads with random characters (it is easy to generalize the scheme
to arbitrary alphabets). The security of the scheme relies on the fact that every
page of the pad is used only once, which explains the name “one-time pad”.
In most commercial applications one cannot afford to distribute keys which

are as long as the plaintext. Therefore one uses encryption algorithms which do
not offer perfect security; this implies that it is in principle possible to recover
the plaintext and/or the secret key from the ciphertext, in the sense that one
has sufficient information to do this. This does not mean that it is also possible
in practice. For example, additive stream ciphers try to mimic the approach of
the Vernam scheme by replacing the random key stream sequence by a pseudo-
random sequence generated from a short key.

2.3 Public-Key Encryption

The main problem that is left unsolved by conventional cryptography is the key
distribution problem. Especially in a large network it is not feasible to distribute
keys between all user pairs (in a network with t users there are t(t − 1)/2 such
pairs). An alternative is to manage all keys in a central location, but this may
then become a single point of failure. Public-key cryptography offers a much
more elegant solution to this problem.
The concept of public-key cryptography has been invented by in 1976, inde-

pendently by W. Diffie and M. Hellman [3] and by R. Merkle [18]. The key idea
behind public-key cryptography is the concept of trapdoor one-way functions.
A one-way function is a function that is easy to compute, but hard to invert.
For example, in a conventional block cipher, the ciphertext has to be a one-way

Appeared in SOFSEM 1998: 25th Conference on Current Trends in Theory and

Practice of Informatics, Lecture Notes in Computer Science 1521, B. Rovan (ed.),
Springer-Verlag, pp. 204–221, 1998.

c©1998 Springer-Verlag



7

function of the plaintext and the key: it is easy to compute the ciphertext from
the plaintext and the key, but given the plaintext and the ciphertext it should
be hard to recover the key (otherwise the block cipher would not be secure).
Similarly one can show that the existence of additive stream ciphers (pseudo-
random string generators) implies the existence of one-way functions. Trapdoor
one-way functions are one-way function with an additional property: given some
additional information (the trapdoor), it becomes possible to invert the one-way
function.
With such functions Bob can send a secret message to Alice without the need

for prior arrangement of a secret key. Alice chooses a trapdoor one-way function
with public parameter PA (Alice’s public key) and with secret parameter SA

(Alice’s secret key). Alice makes her public key widely available (she can put it
on her home page, but it can also be included in special directories). Anyone who
wants to send some confidential information to Alice, computes the ciphertext
as the image of the plaintext under the trapdoor one-way function using the
parameter PA. Upon receipt of this ciphertext, Alice recovers the plaintext by
using her trapdoor information SA (see Figure 3). An attacker, who does not
know SA, sees only the image of the plaintext under a one-way function, and
will not be able to recover the plaintext. This assumes that it is infeasible to
compute SA from PA. Note that if one wants to send a message to Alice, one
has to know Alice’s public key PA, and one has to be sure that this key really
belongs to Alice (and not to Eve), since it is only the owner of the corresponding
secret key who will be able to decrypt the ciphertext. Public keys do not need
a secure channel for their distribution, but they do need an authentic channel.
As the keys for encryption and decryption are different, and Alice and Bob
have different information, public-key algorithms are also known as asymmetric
algorithms.

E
£ ¢

D
£ ¢

- - -

?

©
ª

®
­

®
­ ¾

?
P PC

(PA, SA)

PA

PA

SA

authentic channel

Fig. 3. Model for public-key or asymmetric encryption

The conditions which a public-key encryption algorithm has to satisfy are:
- the generation of a key pair (PA, SA) has to be easy;
- encryption and decryption have to be easy operations;
- it should be hard to compute the public key PA from the corresponding
secret key SA;

- SA(PA(P )) = P .

Designing a secure public-key encryption algorithm is apparently a very dif-
ficult problem. From the large number of proposals, only a few have survived

Appeared in SOFSEM 1998: 25th Conference on Current Trends in Theory and

Practice of Informatics, Lecture Notes in Computer Science 1521, B. Rovan (ed.),
Springer-Verlag, pp. 204–221, 1998.

c©1998 Springer-Verlag



8

(for example, almost all knapsack-based systems have been broken). The most
popular algorithm is the RSA algorithm [22], which was named after its inven-
tors (R.L. Rivest, A. Shamir, and L. Adleman). The security of RSA is based
on the fact that it is relatively simple to find two large prime numbers (in 1998
large means 115 decimal digits or more) and to multiply these, while factoring
their product (of 230 decimal digits) is not feasible with the current algorithms
and computers.

key generation: Find 2 prime numbers p and q with at least 115 digits and
compute their product, the modulus n = p · q. Compute the Carmichael
function λ(n), the least common multiple of p − 1 and q − 1. Choose an
encryption exponent e (at least 40 to 64 bits long), which is relatively prime
to λ(n) and compute the decryption exponent as d = e−1 mod λ(n) (with
Euclid’s algorithm). The public key consists of the pair (e, n), and the secret
key consists of the decryption exponent d or the pair (p, q);

encryption: represent the plaintext as an integer in the interval [0, n− 1] and
compute the ciphertext as C = P e mod n;

decryption: P = Cd mod n.

Without explaining the mathematical background of the algorithm, one can ob-
serve that decryption requires the extraction of modular eth roots; no algorithm
is known for this problem which does not use the prime factors of n; finding the
decryption exponent requires knowledge of λ(n) and hence of the factors of n.
On the other hand, this knowledge is not required for the encryption operation.
For the practical use of RSA, one has to take into account many technical de-
tails: for example, the plaintext P has to be mapped (with a function that is
easy to invert) to a random integer ∈ [0, n− 1] in order to avoid trivial attacks
(e.g., the extraction of natural eth roots when P e < n).
The more complex properties of public-key cryptography seem to require

some ‘high level’ mathematical structure; most public-key algorithms are based
on number theoretic problems (such as factoring and discrete logarithm in cer-
tain groups). While these number theoretic problems are believed to be difficult,
it should be noted that since the invention of public-key cryptography signifi-
cant progress has been made in factoring: the factorization record in 1975 was
39 decimal digits; in 1985 this was increased to 65 digits, and in 1994 a 130-digit
modulus was factored. This evolution is due to a combination of more sophis-
ticated factoring algorithms with progress in hardware and parallel processing.
The cryptographer should take this into account by selecting sufficiently large
keys for public-key algorithms.
The main advantage of public-key algorithms is the simplified key manage-

ment. The main disadvantages are the larger keys (typically 64 to 256 bytes)
and the slow performance: both in software and hardware public-key encryp-
tion algorithms are two to three orders of magnitude slower than conventional
algorithms. For example, a 1024-bit exponentiation requires about 0.3 seconds
on a 90 MHz Pentium, which corresponds to 3.4 kbit/s. On the same machine,
DES runs at 16.9 Mbit/s. Because of the large difference in performance and the
larger block length (which influences error propagation), one always employs

Appeared in SOFSEM 1998: 25th Conference on Current Trends in Theory and

Practice of Informatics, Lecture Notes in Computer Science 1521, B. Rovan (ed.),
Springer-Verlag, pp. 204–221, 1998.

c©1998 Springer-Verlag



9

hybrid systems: the public-key encryption scheme is used to distribute a secret
key, which is then used in a fast conventional algorithm.

3 Hashing and Signatures for Authentication

Information authentication includes two main aspects:
- data origin authentication, or who has originated the information;
- data integrity , or has the information been modified.

Other aspects which can be important are the timeliness of the information, the
sequence of messages, and the destination of information. These aspects can be
accounted for by using sequence numbers and time stamps in the messages and
by including addressing information in the data. In data communications, the
implicit authentication created by recognition of the handwriting, signature, or
voice disappears. The reason is that information becomes much more vulnerable
to falsification as the physical coupling between information and its bearer is
lost.
Until recently it was widely believed that encryption of information (with a

conventional algorithm) was sufficient for protecting its authenticity. The rea-
soning was that if a certain ciphertext resulted after decryption in a meaningful

plaintext, it had to be created by someone who knew the key, and therefore it
must be authentic. A few counterexamples are sufficient to refute this claim: if
a block cipher is used in ECB mode, an attacker can always reorder the blocks.
For any additive stream cipher (including the Vernam scheme), an opponent can
always modify any plaintext bit (without knowing whether a 0 has been changed
to a 1 or vice versa). The concept ‘meaningful’ information implicitly assumes
that the information contains redundancy, which allows to distinguish genuine
information from an arbitrary plaintext. However, one can envisage applications
where the plaintext contains very little or no redundancy. The separation be-
tween secrecy and authentication has also been clarified by public-key cryptog-
raphy: anyone who knows Alice’s public key can send her a confidential message,
and therefore Alice has no idea who has actually sent this message.
Two different levels of information authentication can be distinguished. If

two parties trust each other and want to protect themselves against malicious
outsiders, the term ‘conventional message authentication’ is used. In this setting,
both parties are at equal footing (for example, they share the same secret key).
If however a dispute arises between them, a third party (such as a judge) will
not be able to resolve it (for example a judge cannot tell whether a message has
been created by Alice or by Bob). If protection between two mutually distrustful
parties is required (which is often the case in commercial relationships), an elec-
tronic equivalent of a manual signature is needed. In cryptographic terms this is
called a digital signature.

3.1 Symmetric Authentication

The underlying idea is similar to that for encryption, where the secrecy of a
large amount of information is replaced by the secrecy of a short key. In the

Appeared in SOFSEM 1998: 25th Conference on Current Trends in Theory and

Practice of Informatics, Lecture Notes in Computer Science 1521, B. Rovan (ed.),
Springer-Verlag, pp. 204–221, 1998.

c©1998 Springer-Verlag



10

case of authentication, one replaces the authenticity of the information by the
protection of a short string, which is a unique ‘fingerprint’ of the information.
Such a ‘fingerprint’ is computed as a hash result. This can also be interpreted as
adding a special form of redundancy to the information. This process consists of
two components. First one compresses the information to a string of fixed length,
with a (cryptographic) hash function. Then the resulting string (the hash result)
is protected as follows:

- either the hash result is communicated over an authentic channel (e.g., it can
be read over the phone). It is then sufficient to use a hash function without
a secret parameter, which is called a Manipulation Detection Code or MDC;

- or the hash function uses a secret parameter (the key); it is then called a
Message Authentication Code or MAC.

MDCs. If an additional (authentic) channel is available, MDCs can provide
authenticity without requiring secret keys. Moreover an MDC is a flexible prim-
itive, which can be used for a variety of other cryptographic applications. An
MDC has to satisfy the following conditions:

- it should be hard to find an input with a given hash result (preimage resis-
tance);

- it should be hard to find a second input with the same hash result as a given
input (2nd preimage resistance);

- it should be hard to find two different inputs with the same hash result
(collision resistance).

An MDC satisfying these three conditions is called a collision resistant hash
function. For a strong hash function with an n-bit result, solving one of the first
two problems requires about 2n evaluations of the hash function. This implies
that n = 64 . . . 80 is sufficient. However, finding collisions is much easier: one
will find with high probability a collision in a set of hash results corresponding
to 2n/2 inputs. This implies that collision resistant hash functions need a hash
result of 128 to 160 bits. This last property is also known as the birthday paradox
based on the following observation: within a group of 24 persons the probability
that there are two persons with the same birthday is about 50%. The reason
is that a group of this size contains 276 different pairs of persons, which is a
large fraction of the 365 days in a year. Note that the birthday paradox plays
an essential role in the security of many cryptographic primitives (cf. Sect. 4.3).
Examples of MDCs in use today are RIPEMD-160 and SHA-1; both have been
standardized in [12]. Not all applications need collision resistant hash functions;
sometimes (2nd) preimage resistance is sufficient.

MACs. MACs have been used for more than twenty years in electronic trans-
actions in the banking environment. They require the exchange of a secret key
between the communicating parties. The MAC corresponding to a message is a
complex function of every bit of the message and every bit of the key; it should

Appeared in SOFSEM 1998: 25th Conference on Current Trends in Theory and

Practice of Informatics, Lecture Notes in Computer Science 1521, B. Rovan (ed.),
Springer-Verlag, pp. 204–221, 1998.

c©1998 Springer-Verlag



11

be infeasible to derive the key from observing a number of text/MAC pairs, or
to compute or predict a MAC without knowing the secret key.
A MAC is used as follows: Alice computes for her message P the value

MACK(P ) and appends this MAC to the message (here MAC denotes both
the function and its result). Bob recomputes the value of MACK(P ) based on
the received message P , and verifies whether it matches the received MAC. If
the answer is positive, he accepts the message as authentic, i.e., as a genuine
message from Alice. Eve, the active eavesdropper, can modify the message P to
P ′, but she is not able to compute the corresponding MAC value MAC(P ′), as
she is not privy to the secret key K. For a secure MAC, the best Eve can do is
guessing the MAC. In that case, Bob can detect the modification with high prob-
ability: for an n-bit MAC Eve’s probability of success is only 1/2n. The value of
n lies typically between 32 and 64. Note that if encryption and authentication
are combined, the key for encryption and authentication need to be different.
Moreover, the preferred option is to compute the MAC on the plaintext.
A popular way to compute a MAC is to encrypt the message with a block

cipher using the CBC mode (yet another use of a block cipher), and to keep
only part of the bits of the last block as the MAC. However, recent research has
indicated that this approach is less secure than previously believed [21]; again,
the birthday paradox plays a role in this work.
For a MAC, the equivalent of the Vernam scheme exists. This implies that

one can design a MAC algorithm which is unconditionally secure, in the sense
that the security of the MAC is independent of the computing power of the op-
ponent. The requirement is again that the secret key is used only once. The basic
idea of this approach is due to G.J. Simmons and dates back to the seventies
(see for example [25]). It turns out that these algorithms can be computationally
very efficient, since the properties required from this primitive are combinato-
rial rather than cryptographic. Recent constructions are therefore one order of
magnitude faster than other cryptographic primitives (encryption algorithms,
hash functions), and achieve speeds up to 1 Gbit/s on fast processors [9]. A
simple example is described here, which is derived from Reed-Solomon codes for
error-correction [13]. The key consists of two n-bit words denoted with K1 and
K2. The plaintext is divided into t n-bit words, denoted with p1 through pt.
The MAC, which consists of a single n-bit word, is computed based on a simple
polynomial evaluation:

MACK1,K2
(x) = K1 +

t∑

i=1

pi · (K2)
i ,

where addition and multiplication are to be computed in the finite field with
2n elements. It can be proved that the probability of creating another valid
message/MAC pair is upper bounded by t/2n. A practical choice is n = 64, which
results in a 128-bit key. For messages up to 1 Mbyte, the success probability of
a forgery is then less than 1/247. Note that it turns out to be possible to reuse
K2; however, for every message a new key K1 is required. This key could be
generated from a short initial key using an additive stream cipher, but then

Appeared in SOFSEM 1998: 25th Conference on Current Trends in Theory and

Practice of Informatics, Lecture Notes in Computer Science 1521, B. Rovan (ed.),
Springer-Verlag, pp. 204–221, 1998.

c©1998 Springer-Verlag



12

the unconditional security is lost. However, one can argue that it is easier to
understand the security of this scheme than that of a computationally secure
MAC.

3.2 Digital Signatures

A digital signature is the electronic equivalent of a manual signature on a doc-
ument. It provides a strong binding between the document and a person, and
in case of a dispute, a third party can decide whether or not the signature is
valid. Of course a digital signature will not bind a person and a document, but
will bind a key and a document. Additional measures are then required to bind
the person to his or her key. Note that for a MAC, both Alice and Bob can
compute the MAC, hence a third party cannot distinguish between them. While
block ciphers (and even one-way functions) can be used to construct digital sig-
natures, the most elegant and efficient constructions for digital signature rely on
public-key cryptography.

If Alice wants to sign some information P intended for Bob, she adds some
redundancy to the information, resulting in P̃ , and decrypts the resulting text
with her secret key. This operation can only be carried out by Alice. Upon
receipt of the signature, Bob encrypts it using Alice’s public key, and verifies
that the information P̃ has the prescribed redundancy. If so, he accepts the
signature on P as valid. Such a digital signature (which is a signature with
‘message recovery’) imposes an additional condition on the public-key system:
PA(SA(P )) = P . Note that anyone who knows Alice’s public key can verify the
signature. The RSA public-key encryption scheme is a bijection (a trapdoor one-
way permutation), and thus it allows for the construction of digital signatures
with message recovery. We leave it as an exercise to the reader to show why the
redundancy is essential in this approach.

If Alice wants to sign very long messages (without encrypting them), this
approach results in signatures that are as long as the message. Moreover, signing
with a public-key system is a relatively slow operation. In order to solve these
problems, Alice does not sign the information itself, but the hash result of the
information computed with an MDC. The signature now consists of a single
block, which is appended to the information (this is called a digital signature
‘with appendix’). In order to verify such a signature, Bob recomputes the MDC of
the message and encrypts the signature with Alice’s public key. If both operations
give the same result, Bob accepts the signature as valid. MDCs used in this way
need to be collision resistant: otherwise Alice can sign a message P , and later
be held accountable for a fraudulent message P ′ with the same MDC (and thus
with the same signature).

Note that there exist other signature schemes with appendix (such as the
DSA [7]), which are not derived immediately from a public-key encryption
scheme. For these schemes one can define a ‘signing operation’ (using the se-
cret key) and a ‘verification operation’ (using the public key), without referring
to ‘decryption’ and ‘encryption’ operations.

Appeared in SOFSEM 1998: 25th Conference on Current Trends in Theory and

Practice of Informatics, Lecture Notes in Computer Science 1521, B. Rovan (ed.),
Springer-Verlag, pp. 204–221, 1998.

c©1998 Springer-Verlag



13

4 Analysis and Design of Conventional Cryptographic

Algorithms

In this section we compare three approaches to the design of cryptographic
algorithms. Next we describe the typical phases in the life of an algorithm. Then
we contrast brute force and shortcut attacks, public and secret algorithms, and
weak and strong algorithms.

4.1 Three Approaches in Cryptography

Present day cryptology tries to develop provably secure and efficient crypto-
graphic algorithms. Often such algorithms are not available; therefore cryp-
tographic algorithms are studied following three approaches: the information
theoretic approach, the complexity theoretic approach, and the system based
approach. These approaches differ in the assumptions about the capabilities of
an opponent, in the definition of a cryptanalytic success, and in the notion of
security.
The most desirable from the viewpoint of the cryptographer are uncondition-

ally secure algorithms; this design approach is also known as the information

theoretic approach. However, few such schemes exist: examples are the Vernam
scheme (Sect. 2.2), and the MAC based on Reed-Solomon codes (Sect. 3.1). While
they are computationally very efficient, the cost in terms of key material may
be prohibitively large (certainly for the Vernam scheme). For most applications
one has to live with schemes which offer only conditional security.
A second approach is to reduce the security of his scheme to that of other

well known difficult problems, or to that of other cryptographic primitives. The
complexity theoretic approach starts from an abstract model for computation,
and assumes that the opponent has limited computing power within this model
[8]. This approach has many positive sides:

– It forces the formulation of exact definitions, and to state clearly the security
properties and assumptions.

– Once the proofs are written down, anyone can verify them and decide whether
or not they are correct.

However, this approach also has some limitations:

– Many cryptographic applications need building blocks, such are one-way
functions, one-way permutations, and pseudo-random functions, which can-
not be reduced to other primitives. In terms of the existence of such primi-
tives, complexity theory has only very weak results: in non-uniform complex-
ity (Boolean circuits) the best proved thus far is that there exist functions
which are twice as hard to invert as to compute, which is far too weak to be
of any use in cryptography [10].

– Sometimes the resulting scheme is not very efficient, or the security reduction
is quite loose: for example, the correct properties are proved, but the proof
is only asymptotic and gives no indication of the exact security level for a
concrete instance.

Appeared in SOFSEM 1998: 25th Conference on Current Trends in Theory and

Practice of Informatics, Lecture Notes in Computer Science 1521, B. Rovan (ed.),
Springer-Verlag, pp. 204–221, 1998.

c©1998 Springer-Verlag



14

This implies that for many instances, the cryptographer has to rely on the
system-based or practical approach. This approach tries to produce practical so-
lutions; the security estimates are based on the best algorithm known to break
the system and on realistic estimates of the necessary computing power or dedi-
cated hardware to carry out the algorithm. By trial and error procedures, several
cryptanalytic principles have emerged, and it is the goal of the designer to avoid
attacks based on these principles. The second aspect is to design building blocks

with provable properties, and to assemble such basic building blocks to design
cryptographic primitives.

4.2 Life Cycle of a Cryptographic Algorithm

A cryptographic algorithm usually starts with a new idea of a cryptographer.
A first step should always consist of an evaluation of the resulting algorithm, in
which the cryptographer tries to determine whether or not the scheme is secure. If
the scheme is unconditionally secure, he has to write the proofs, and to convince
himself that the model is correct and matches the application. For computational
security, it is again very important to write down security proofs, and to check
these for subtle flaws. Moreover, one has to assess whether the assumptions
behind the proofs are realistic. For the system-based approach, it is important
to prove partial results, and to write down arguments which should convince
others of the security of the algorithm. Often such cryptographic algorithms
have security parameters (the number of steps, the size of the key, . . . ); it is
then very important to give lower bounds for these parameters, and to indicated
the value of the parameters which corresponds to a certain security level.

The next step is the publication of the algorithm at a conference, in a journal,
or in an Internet Request for Comment (RFC). This (hopefully) results in an
independent evaluation of the algorithm. Often more or less subtle flaws are then
discovered by other researchers. This can vary from small errors in proofs, to
complete security breaks. Depending on the outcome, this can lead to a small fix
of the scheme or to abandoning the idea altogether. Sometimes such weaknesses
can be found ‘in real-time’ when the author is presenting his ideas at a conference,
but often evaluating a cryptographic algorithm is a very time consuming task; for
example, the design effort of the Data Encryption Standard (DES) has been more
than 17 man-years, and the open academic evaluation since has taken a multiple
of this effort. Cryptanalysis is quite destructive; in this respect it differs from
usual scientific activities, even when proponents of competing theories criticize
each other.

Few algorithms survive the evaluation stage; ideally, this stage should last for
several years. The survivors can be integrated into products and find their way
to the market. Sometimes they are standardized by organizations such as NIST
(National Institute of Standards and Technology, US), IEEE, IETF, or ISO.

As will be explained below, even if no new security weaknesses are found,
the security of a cryptographic algorithm degrades over time; if the algorithm is
not modular, the moment will come when it has to be taken out of service.

Appeared in SOFSEM 1998: 25th Conference on Current Trends in Theory and

Practice of Informatics, Lecture Notes in Computer Science 1521, B. Rovan (ed.),
Springer-Verlag, pp. 204–221, 1998.

c©1998 Springer-Verlag



15

4.3 Brute Force Attacks Versus Shortcut Attacks

A detailed description of the evaluation procedures for cryptographic algorithms
is beyond the scope of this paper. We restrict ourselves to explaining the differ-
ence between brute force attacks and shortcut attacks.

Brute Force Attacks. Brute force attacks are attacks which exist against any
cryptographic algorithm that is conditionally secure, no matter how it works
internally. These attacks only depend on the size of the external parameters of
the algorithm, such as the block length of a block cipher, or the key length of
any encryption algorithm or MAC. It is the task of the designer to choose the
external parameters in such a way that brute force attack are infeasible.
A typical brute force attack against an encryption algorithm or a MAC is

an exhaustive key search; it is equivalent to breaking into a safe by trying all
the combinations of the lock. The lock should be designed such that this is not
feasible in a reasonable amount of time. This attack requires only a few known
plaintext/ciphertext (or plaintext/MAC) pairs, which one can always obtain in
practice. It can be precluded by increasing the key length: adding one bit to the
key doubles the time for exhaustive key search. One should also ensure that the
key is selected uniformly at random in the key space.
On a standard PC, trying a single key for a typical algorithm requires a

few microseconds. For example, a 40-bit key (which is at present the maximum
value allowed by the US government for general purpose export) will be recovered
after a few hundred hours. If a LAN with 100 machines can be used, one can
find the key in a few hours. For a 56-bit key such as DES (which can be exported
from the US under restrictive conditions), a key search requires a few months if
several thousand machines are available (as has been demonstrated in the first
half of 1997). However, if dedicated hardware is used, a different picture emerges.
Recently a 250 000 US$ machine has been built that finds a 56-bit DES key in
about 50 hours [4]; the design (that required 50% of the cost) has been made
available for free.
One should also take into account “Moore’s law” [23], which states that

computers double their speed every 18 months (for the same cost). This implies
that a 64-bit key, which offers a reasonable security level for the time being, is
probably not sufficient for data which needs to be protected for 10 years. Such
applications will need keys of at least 80 bits. As the cost of increasing the key
size is quite low, it is advisable to design new algorithms with variable key size
up to 128. . . 256 bits.
There exist many other brute force attacks. For example, it turns out the

security of a block cipher in the CBC mode is decreased by what is called the
‘matching ciphertext’ attack. As a consequence of the birthday paradox, after
2n/2 encryptions with a single key, information on the plaintext starts to leak
(due to matches in the internal memory, which correspond to matching cipher-
texts). This attack can be a problem for present day block ciphers with a 64-bit
block length. It can only be prevented by designing new block ciphers with larger
block lengths (128 or more), or by changing the key frequently.

Appeared in SOFSEM 1998: 25th Conference on Current Trends in Theory and

Practice of Informatics, Lecture Notes in Computer Science 1521, B. Rovan (ed.),
Springer-Verlag, pp. 204–221, 1998.

c©1998 Springer-Verlag



16

Shortcut Attacks. Many algorithms are less secure than suggested by the size
of their external parameters. It is often possible to find more effective attacks
than trying all keys. Assessing the strength of an algorithm requires cryptanalytic
skills and experience, and often hard work. During the last 10 years powerful
new tools have been developed: this includes differential cryptanalysis [1], which
analyzes the propagation of differences through cryptographic algorithms, linear
cryptanalysis [16], which is based on the propagation of bit correlations, and fast
correlation attacks on stream ciphers [17].
The design of new algorithms according to the system-based approach is not

a memoryless process: when new cryptanalytic techniques are developed, the
cryptographers invent new designs which provide complete (or at least improved)
resistance against these new attacks. In this way cryptology develops by trial and
error procedures.

4.4 Public Versus Secret Algorithms

The open and independent evaluation process described in Sect. 4.2 offers a
strong argument for publishing all details of a cryptographic algorithm. Pub-
lishing the algorithm opens it up for public scrutiny, and is the best way to
guarantee that it is as strong as claimed. (Note that a public algorithm should
not be confused with a public-key algorithm.) Published algorithms can be stan-
dardized, and will be available from more than one source.
Nevertheless, certain governments and organizations prefer to keep their al-

gorithms secret. They argue (correctly) that obtaining the algorithm raises an
additional barrier for the attacker. Moreover, governments want to protect their
know-how on the design of cryptographic algorithms. (However, obtaining a de-
scription of the algorithm is often not harder than just bribing one person.)
This approach is acceptable, provided that sufficient experience and resources
are available for independent evaluation and re-evaluation of the algorithm.

4.5 Insecure Versus Secure Algorithms

In spite of the fact that secure cryptographic algorithms are available, which
offer good performance, in many applications one encounters very insecure cryp-
tographic algorithms. For example, popular software sometimes ‘encrypts’ data
by adding a constant key word to all data words. Several reasons can be indicated
for this:

– one excuse is performance: while it is true that adding a constant will always
be faster than strong encryption, it should be noted that in software, current
encryption algorithms achieve between 20 and 400 Mbit/s; this is sufficient
for many applications;

– legal and/or export restrictions: for national security reasons, certain coun-
tries (such as the USA) do not allow the export of strong encryption algo-
rithms; some countries (such as France) do not allow for strong encryption
within their territory (unless the keys are handed over to the government);

Appeared in SOFSEM 1998: 25th Conference on Current Trends in Theory and

Practice of Informatics, Lecture Notes in Computer Science 1521, B. Rovan (ed.),
Springer-Verlag, pp. 204–221, 1998.

c©1998 Springer-Verlag



17

– commercial pressure: companies often rush their security solutions to market,
without allowing for sufficient time for the slow evaluation process;

– evolution of computing power: the strength of a cryptographic algorithm
erodes over time because of Moore’s law; often there exists a large inertia to
replace or upgrade an algorithm. A typical example is the DES, that is still
widely used in spite of a 56-bit key.

– evolution of cryptanalysis: if designers are not aware of the latest develop-
ments in cryptanalysis, it is quite likely that their algorithms will not resist
these attacks. For example, the FEAL block cipher with 8 rounds, which was
published in 1987, can now be broken with only 10 chosen plaintexts.

5 Concluding Remarks

Securing an application should be based on a careful analysis of the risks and
vulnerabilities; this should lead to understanding the security requirements for
the data and the communication channels. The next step consists of selecting the
right mix of cryptographic algorithms to satisfy these requirements. A very im-
portant aspect is the underlying key management infrastructure, which ensures
that private and public keys can be established and maintained throughout the
system in a secure way. This is where cryptography meets the constraints of the
real world.
This paper only scratches the surface of modern cryptology, as the discussion

is restricted to a few basic techniques. Other problems solved in cryptography
include secure identification, secure sharing of secrets, electronic cash, and copy-
right protection. Many interesting problems are studied under the umbrella of
secure multi-party computation; examples are electronic elections, and the gen-
eration and verification of digital signatures in a distributed way.

References

1. E. Biham, A. Shamir, “Differential Cryptanalysis of the Data Encryption Stan-

dard,” Springer-Verlag, 1993.

2. D.W. Davies, W.L. Price, “Security for Computer Networks. An Introduction to

Data Security in Teleprocessing and Electronic Funds Transfer,” (2nd Ed.), Wiley,
1989.

3. W. Diffie, M.E. Hellman, “New directions in cryptography,” IEEE Trans. on In-

formation Theory, Vol. IT–22, No. 6, 1976, pp. 644–654.

4. EFF, “Cracking DES. Secrets of Encryption Research, Wiretap Politics & Chip

Design,” O’Reilly, May 1998.

5. FIPS 46, “Data Encryption Standard,” Federal Information Processing Standard,
NBS, U.S. Dept. of Commerce, January 1977 (revised as FIPS 46-2:1993).

6. FIPS 81, “DES Modes of Operation,” Federal Information Processing Standard,
NBS, US Dept. of Commerce, December 1980.

7. FIPS 186, “Digital Signature Standard,” Federal Information Processing Standard,
NIST, US Dept. of Commerce, May 1994.

Appeared in SOFSEM 1998: 25th Conference on Current Trends in Theory and

Practice of Informatics, Lecture Notes in Computer Science 1521, B. Rovan (ed.),
Springer-Verlag, pp. 204–221, 1998.

c©1998 Springer-Verlag



18

8. M.R. Garey, D.S. Johnson, “Computers and Intractability: A Guide tot the Theory

of NP-Completeness,” W.H. Freeman and Company, San Francisco, 1979.
9. S. Halevi, H. Krawczyk, “MMH: software message authentication in the
Gbit/second rates,” Fast Software Encryption, LNCS 1267, E. Biham, Ed.,
Springer-Verlag, 1997, pp. 172–189.

10. A.P.L. Hiltgen, “Construction of feebly-one-way families of permutations,” Proc.

Auscrypt’92, LNCS 718, J. Seberry, Y. Zheng, Eds., Springer-Verlag, 1993, pp. 422–
434.

11. ISO/IEC 10116, “Information technology – Security techniques – Modes of opera-

tion of an n-bit block cipher algorithm,” 1996.
12. ISO/IEC 10118, “Information technology – Security techniques – Hash-functions,

Part 3: Dedicated hash-functions,” 1998.
13. G.A. Kabatianskii, T. Johansson, B. Smeets, “On the cardinality of systematic A-

codes via error correcting codes,” IEEE Trans. on Information Theory, Vol. IT–42,
No. 2, 1996, pp. 566–578.

14. D. Kahn,“The Codebreakers. The Story of Secret Writing,” MacMillan, New York,
1967.

15. N. Koblitz, “A Course in Number Theory and Cryptography,” Springer-Verlag,
1987.

16. M. Matsui, “The first experimental cryptanalysis of the Data Encryption Stan-
dard,” Proc. Crypto’94, LNCS 839, Y. Desmedt, Ed., Springer-Verlag, 1994, pp. 1–
11.

17. W. Meier, O. Staffelbach, “Fast correlation attacks on stream ciphers,” J. of Cryp-
tology, Vol. 1, 1989, pp. 159–176.

18. R. Merkle, “Secrecy, Authentication, and Public Key Systems,” UMI Research
Press, 1979.

19. A.J. Menezes, P.C. van Oorschot, S. Vanstone, “Handbook of Applied Cryptogra-
phy,” CRC Press, 1996.

20. “State of the Art and Evolution of Computer Security and Industrial Cryptogra-

phy,” LNCS 741, B. Preneel, R. Govaerts, J. Vandewalle, Eds., Springer-Verlag,
1993.

21. B. Preneel, P.C. van Oorschot, “MDx-MAC and building fast MACs from hash
functions,” Proc. Crypto’95, LNCS 963, D. Coppersmith, Ed., Springer-Verlag,
1995, pp. 1–14.

22. R.L. Rivest, A. Shamir, L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Comm. ACM, Vol. 21, No. 2, 1978, pp. 120–126.

23. R.R. Schaller, “Moore’s law: past, present, and future,” IEEE Spectrum, Vol. 34,
No. 6, June 1997, pp. 53–59.

24. C.E. Shannon, “Communication theory of secrecy systems,” Bell System Techn.

J., Vol. 28, No. 4, 1949, pp. 656–715.
25. “Contemporary Cryptology: The Science of Information Integrity,” G.J. Simmons,

Ed., IEEE Press, 1991.
26. D. Stinson, “Cryptography. Theory and Practice,” CRC Press, 1995.
27. G.S. Vernam, “Cipher printing telegraph system for secret wire and radio telegraph

communications,” J. Am. Inst. Electrical Engineers, Vol. XLV, 1926, pp. 109–115.
28. A.C. Yao, “Theory and applications of trapdoor functions,” Proc. 23rd IEEE Sym-

posium on Foundations of Computer Science, IEEE, 1982, pp. 80–91.

Appeared in SOFSEM 1998: 25th Conference on Current Trends in Theory and

Practice of Informatics, Lecture Notes in Computer Science 1521, B. Rovan (ed.),
Springer-Verlag, pp. 204–221, 1998.

c©1998 Springer-Verlag


