
Using Artificial Intelligence in Intrusion Detection Systems

Matti Manninen
Helsinki University of Technology
mimannin@niksula.hut.fi

Abstract

Artificial Intelligence could make the use of Intrusion
Detection Systems a lot easier than it is today. They could
learn the preferences of the security officers and show
the kind of alerts first that the officer has previously been
most interested. As always, the hardest thing with learning
AIs, is to make them learn the right things. AIs could
learn the same things as a rule-based system by watching
a security officer work. AIs could also link together events
that, by themselves, are insignificant but when combined
may indicate that an attack is underway. In this article I’ll
compare AI-based solutions to traditional IDS solutions,
and analyze how the AIs could be taught.

KEYWORDS: Intrusion detection, artificial intelligence,
neural networks, computer security

1 Introduction

This article focuses on finding out how to make an IDS
environment learn the preferences and work practices of a
security officer, and how to make it more usable by showing
the most often viewed anomalies first. The goal is quite sim-
ple, but programming such a system that makes it happen is
not simple in any way. Making the learning process invisible
and continuous further adds to the difficulty of this task.

The most difficult task for the AI would be figuring
out the connections between different events. There are
several ways to achieve this, neural networks being the most
prominent.

1.1 Motivation behind Using IDSs

Networks and the computers in them get more complex
every day. This means that there are also more and more
services available for malicious exploitation. New vulner-
abilities are found from common programs daily and even
one vulnerability in a single computer might compromise
the network of an entire company.

There are two parallel ways to address this threat. The first
way is to ensure that a computer doesn’t have any known
security vulnerabilities, before allowing it to the network it
has access rights. The other way, that I will discuss in this
article, is an Intrusion Detection System. IDSs concentrate

on detecting malicious network traffic, such as packets that
would exploit a known security vulnerability.

1.2 Main Characteristics of Different IDSs

There are two main types of IDSs: online IDSs and offline
IDSs. The offline IDSs analyze connection data from the
logs after the connections have happened. This can happen
just after the connection has started, so that further access
could be denied if the connection was classified as an
intrusion. The online IDSs, if possible, analyze data before
connection is allowed. They also monitor the connections
so that a connection can be dropped if it starts to seem like
an intrusion.

The difference between these could be very minimal. The
limiting factor is the time it takes to analyze a connection.
Offline IDSs have less time constraints and should therefore
be more accurate. Also, as they analyze the situations
afterwards, they have more information available then, than
when the last connection was just beginning. Also online
IDSs may benefit from analyzing the logs from previous
connections, in order to enhance accuracy.

1.3 Scope of Paper

The article is divided into three separate domains. Even
though they are partly related, each has their own speciali-
ties to consider. These parts are

1. Usability of the learning process. Introduction of noise
into data in different cases.

2. Ways to detect intrusion based on learned examples.
Responses to noise in the data.

3. Showing the events to the security officer in the correct
order. Minimizing false alarms.

2 Related Work

James Cannady [3] has written a highly referenced article
about intrusion detection using neural networks. In the
article, he studies in detail the advantages and disadvantages
of neural networks for this application. The conclusion of
the article was that neural networks are very suitable for
IDS. However, the article shows that training the neural
network is not trivial and may in fact require substantial



effort.

Mehdi Moradi and Mohammad Zulkernine [6] have
further researched the neural network approach to intrusion
detection. Their focus is on off-line analysis. They are
particulary interested in classifying the intrusions, instead
of just detecting them. According to their article, a properly
trained neural network can also work as an online IDS for
the types of attacks it has been trained for.

Magnus Almgren and Erland Jonsson [1] have studied
how AI-based IDSs can learn the types of alerts it should
show the security officer. The focus of the article is on AIs
that learn from normal use of the system; in other words,
they don’t require any additional user input for the learning
process.

Similarly as Almgren and Jonsson, Stefano Zanero and
Sergio M. Savaresi [9] have studied invisibly learning AIs,
but concentrated on different clustering methods, such as
self-organizing maps. The article is fairly vague on how and
when those methods are at their best, but it does prove that
such clustering methods are also suitable for an IDS.

Jeremy Frank [4] compares different AI methods for
IDSs. Even though the study is from 1994, the results still
apply to current systems. The most important finding in
the article is that feature selection can be used to improve
performance dramatically.

3 Findings

This section contains all the results of the research that I
have done. The section is divided into subsections following
loosely the list in section 1.1.

3.1 The Learning Process

The learning process is the interaction period that the AI
needs in order to function properly. In several learning meth-
ods, the process is continuous so that the AI would con-
stantly adapt to new threats. There are several possible meth-
ods to teach an AI [1]. In this article I will cover the follow-
ing:

• Following the user’s clicks

• Explaining the clicks to AI

• Presenting a reason why AI has classified an event and
asking the user if that is correct

• Asking the user questions about the ranking

An IDS AI might consist of several subsystems, possibly
determined by the user interface. At the very least, it might
be a good idea to have one AI for detecting and classifying
events in a network and another AI for determining which
events the security officer wants to know about.

Several AIs of course means that all of them require
teaching before use. On the other hand, several AIs make it
possible to have a common classifying AI and a private user
interface AI for each security officer. For the classifying AI,
the training data could be generated based on a rule-based
expert system as in the experiment by Cannady [3]. Another
way would be to record the usual traffic in the network and
go through it to classify everything manually. This would
probably work especially well for a system that tries to
detect normal connections rather than unusual ones.

The user interface AI could use some standard settings as
a starting point. These standard settings should be quite light
and have only few samples so they would quickly change
towards that what the security officer wants. For example,
the user interface AI could determine the order in which to
show the events and which of the connected events, that by
themselves have little importance, should be shown.

3.1.1 Usability of the Learning Process

The usability of the learning process is very important. If
the process requires considerable work hours, it will soon
become very expensive.

From the security officer’s point of view, it is easiest
if the AI just learns his preferences when he uses the
system normally. The easiest way to implement this is to
monitor the clicks that the user makes [1]. This kind of
click monitoring approach assumes that the event, that the
security officer clicks, contains something interesting and
that it is important to show similar events the next time as
well.

This method is very easy for the user; it requires no
additional input. However, one severe problem is that
similar types of events tend to enhance themselves until
the system overwhelms the security officer with that type
of event. Collecting additional negative feedback from the
user might help against this [1]. Another problem, that
isn’t mentioned in the study by Almgren and Jonsson, is
the noise caused by this approach. Just following the clicks
might easily result in some unimportant events to be listed
as important because of misclicking. On the other hand, it
could be that some common events have to be checked in
response to a certain type of other event. If the AI cannot
properly figure out the connection between the main event
and these common events, it might easily think that the
common events are important since they gain significantly
more clicks than the main events because there might be
several such common events, which are related to one main
event.

Another way of interaction is to directly teach the system
in some cases. There are many ways to accomplish this.
Maybe the easiest for the security officer, is to tell the AI that
something that it shows either is or isn’t actually important.
This would provide the ability for negative feedback that
would help in the chain reaction problem where positive



feedback keeps on enhancing itself. Some spam filters use
this kind of approach where the system is self-enhancing,
but asks the user in case there is reasonable doubt about
whether or not the mail is spam. The same could be used
in IDSs: events with reasonable detection certainty enhance
the rules and uncertain ones are left for the user to decide.

A more detailed way of direct teaching would be to tell
the AI why the selected event is interesting [1]. This would
help the system in determining what should be stressed with
that kind of event.

Another detailed way of direct teaching would be the
opposite. The AI tells the user why it thinks some event is
important, and the security officer answers whether it was
right or not [1].

Luckily, one can use a mixture of these teaching methods.
Most of the time, the system should probably use the
clicking method, but when needed, other methods could be
used as well [1]. The other methods could be needed when
there are some false positives or false negatives.

3.1.2 Noise from the Learning Process

The noise produced by the learning process is an important
factor in the usefulness of the gathered material. If the
process produces a lot of noise the learning period will have
to be significantly longer than with a process that produces
fewer false samples, in order to gather the same amount of
valid data. With pre-made sample material, the noise can
be eliminated, but then the learning material cannot take the
personal preferences of a security officer into account.

The clicking method for training is especially prone to
noise. The idea is that everything that the user clicks would
be important in some way. However, in reality there are
lots of misclicks and false leads and thus also unimportant
events get clicked.

3.2 Detecting the Intrusion

There are various principles on which an IDS can be based
upon. There are also several different types of AIs that can
be used for each of these principles.

In addition to detecting an intrusion, it would be prefer-
able to also be able to detect the type of the attack. This
would make it possible to suggest proper actions that should
be taken [9].

3.2.1 Detection Principles, Different Aproaches to De-
tect an Intrusion

The two main ideas are either to detect forbidden and
suspicious activity or to detect normal activity and alarm
about anything that isn’t normal.

Detecting forbidden activity requires data, generated
or gathered, about previous similar events that have been
classified to be connected to intrusions.

The other option is to teach the system what is normal.
After that, the system can then try to distinguish unusual
events from the usual ones. This method sounds good in
theory, but the reality is quite different. Such systems often
produce a lot of false alarms and are very poor at identi-
fying what actually seems to be wrong [9]. In reality, the
differences between legal and illegal events are very small.
Because of this, an AI that tries to keep false negatives at a
minimum would have to be tuned to detect even the slightest
of variances from the learned data. In turn, this would
produce a lot of false positives because there are bound to
be differences anyway.

Figure 1: AI that focuses on detecting allowed activity

Figure 2: AI that focuses on detecting denied activity

In one sense this kind of approach could be thought of as
a circle, everything that’s inside is normal and everything
that’s outside is forbidden, as pictured in Fig. 1. The
circle must be quite small, ie. close to the center, so that
forbidden events, that are very near to normal, would be
correctly identified. The approach where forbidden activity
is detected is a different case. There is also the circle, as
the training data also contains data about what’s normal,
but in addition to the circle, there are also other dots, that
represent the different kind of forbidden events, as pictured
in Fig. 2. Then if we have an event that is quite similar
to normal activity but also a bit similar to some forbidden
event, it would be drawn towards both the normal and the
forbidden centers. Therefore it would in any case end up
quite far from the normal center. This explains why the
detection sensitivity in systems that detect forbidden events
can be kept at a lower level, while still maintaining the same
detection capability.



3.2.2 Traditional IDSs

A common factor for traditional IDSs is that they don’t
use any kind of AIs for intrusion detection. Rule-based
expert systems are the most traditional of IDSs. They match
events and scenarios to rules that define denied or allowed
scenarios. State transition analysis and color-coded petri
nets follow a sequence of actions with a graph or a state
machine to determine if an attack is detected. Traditional
IDSs are mostly used in misuse detection. In the field of
anomality detection they are no match for AI-based systems
[7].

The biggest difference between AI-based and traditional
IDSs is that only AIs can learn new rules on their own.
This means that in traditional systems the security officer
must insert new rules for each new attack type or each new
allowed program. In AI-based systems it is possible to teach
the system by examples rather than rules.

3.2.3 Different AI Types

There are several different soft computing techniques and al-
gorithms that can be successfully used to detect intrusions.
These techniques include [2]:

• Fuzzy logic

• Probabilistic reasoning

• Neural networks

• Genetic algorithms

Combinations of these can also be used. For example,
genetic algorithms can be used to build a neural network and
probabilistic reasoning can be built on fuzzy logic. Neural
networks are the most common AI type for an IDS [9].

Neural networks are basically sets of individual cells
that have weighted connections to other connected cells.
The training process of a neural network consists of
setting weights for each connection and comparing the
output with the desired output. This is iterated until the
desired accuracy with a test set of data has been achieved [9].

Genetic algorithms can be used to keep the number of
iterations as small as possible. Genetic algorithms first
randomize values for each set. Then they select a few of
the best sets and mix and differentiate values from each of
these. This is continued until the desired result is reachedor
the maximum number of generations has passed [2].

Gowadia, Farkas and Valtorta have studied a probabilistic
reasoning based AI in IDS use in their article [8]. They
used Bayesian networks to assess the probability of an
intrusion. They had multiagent system in which agents in
separate computers could communicate and tell each other
threat estimates from each one’s point of view. The agents
concentrated on detecting different intrusions on separate
domains. The authors concluded that this kind of approach
is feasible. The system offers a possibility to select the

percentage that an event must reach in order to be shown.
The multiagent approach adds redundancy to the IDS and
increases efficiency. Bayesian networks are also widely
used in learning spam filters for e-mail.

Because of their popularity in IDS use, I will mainly focus
on neural network based AIs. They have several important
advantages over other rule-based systems. They are able to
efficiently use incomplete or distorted data and to figure out
relations between events, which helps in detecting attacks
from multiple sources. They are very fast in classifying the
events. They are able to learn and identify new threats that
haven’t been expressly taught to them. The neural networks
return a probability instead of a boolean value, which makes
it possible for them to predict probable following events in
case there would be an attack going on. In turn, this would
make it possible to defend against them in advance, in case
that the system is an online IDS [3].

However, the neural networks do have their disadvantages.
Training them costs a considerable amount of computing
time. With a continuously learning system this might lead to
high hardware requirements. However, the biggest problem
is the black box nature of neural networks [3]. This means
that there are no clear rules on which the results are based;
instead the answers just pop out, with no clear explanation
about the process or the reasons for the result.

There are several types of neural networks that are suitable
for IDSs. Some of these are:

• Self-organizing maps (SOMs)

• Multi layer perceptrons (MLPs)

• Feature selection

Self-organizing maps are a tool for pattern discovery.
SOMs work by clustering similar entries into groups in
a map. Lichodzijewski et al. studied SOMs with respect
to IDS use in their article [5]. They concluded that self-
organizing maps can best be used in a context where events
do not have timestamps. This was a surprising finding, as
intuitively one would easily think that events outside office
hours could more easily be attacks and should therefore be
reacted to more aggressively. As the study suggest, this is
not the case. In reality, maybe the timestamps just cause
some clustering of their own, which disturbs other relevant
clustering more than it helps it. This result could well apply
to all neural network based IDS AIs as they all try to search
for similarities between different events. In this case similar
time stamps might link unrelated events together which
would just confuse the AI.

Moradi and Zulkernine [6] used a multi layer perceptron
based neural network with good results. MPLs consist of an
input layer, one or several hidden layers and an output layer.
Each of these layers has nodes that are connected to upper
and lower layers. MLPs can be used to classify different
types of attacks rather than just classifying an event as an
attack or normal traffic. The results were that MLPs are very
efficient in this kind of classifying. However, data gathering
for the required features is quite slow, which makes the test



system an offline IDS rather than an online IDS.

Frank [4] studied using feature selection for the neural
network values. Feature selection is a method that, in a way,
compresses and streamlines the data. It can be used to select
the most important characteristics from a set of training
data. This decreases the computing time for the actual
neural network training and reduces impact of unimportant
features that might otherwise disturb the accuracy.

3.3 Effects of Noise

Noise always causes problems, regardless of the used intru-
sion detection methods. The amount and type of these prob-
lems presumably varies from method to method. I would
figure that the most common problems are:

• False alarms

• Showing the events to the security officer in a wrong
order

• Classifying important events as unimportant

Unfortunately, noise seems to be a little studied subject
with regard to the training data of IDSs. Knowledge about
effects of noise in general signal processing can help when
trying to understand what noise could cause in IDSs.

3.4 Showing the Alarms

One aspect of a good IDS is showing only the important
alerts to the security officer. This section focuses on finding
out what factors effect in determining what alerts are
important and what are not. Also, the effects of showing just
the correct alarms, or failing to do so, are described in this
section.

3.4.1 Determining the Proper Order of Importance

The correct order of importance helps the security officer
to react to the most severe threats first. If the ordering
works properly and the security officer also trusts that it
works, it will save time as he doesn’t have to compare each
of the shown threats to determine the order of importance
himself. If there are hundreds of alarms or events and the
ordering doesn’t work properly, the important ones might
never be seen, if they wind up at the end of the list. In some
systems, new events might flow in constantly, at a rate that
would quickly bury away any events, which are listed as
unimportant.

3.4.2 False Alarms

No system is perfect and there are bound to be some false
alarms in any case. False alarms are often also called false
positives. Usually some information that is available to the
security officer isn’t available for the AI as any variable. In

some cases, this extra information could be the only thing
that would explain a connection to be legal even though,
by all measures, it seems like an attack. False alarms of
this type will, and even should, happen, no matter how well
you train an AI. It would be far worse not to alarm about
something suspicious, than to alarm and let the security
officer himself find the information that isn’t available in the
system.

The false alarms that are caused by day-to-day operation
are the ones that matter. If the AI cannot be taught how to
safely ignore these, it will cost a considerable amount of the
security officer’s time, as these alarms just continue to repeat
day after day. In addition to costing time, false alarms can
easily lead to a situation where the security officer himself
just ignores all alarms that look like these. This can easily
be exploited by performing an actual attack that would
look similar enough to ignore. Even though this approach
wouldn’t fool the AI and it would alarm, the security officer
might just ignore the real attack along with the false alarms.

The other issue with these kinds of false alarms is that
the AI learns some wrong things, which incorrectly causes
it to ignore the similar real attacks. The reason for these
false alarms might well have been a similar real attack in the
training data. If the security officer doesn’t know this, he
might think that the AI has received some noise that causes
these false alarms and clear some of the training data in
order to get rid of the alarms. After this, the AI wouldn’t
know about the real attack, and would therefore also classify
similar attacks as normal. In other words, this would cause
false negatives.

4 Conclusions

AI-based solutions can be used for IDSs. It seems that
neural networks are the most popular selection for this kind
of AI with a good reason. Wide variery of choices for a
neural network type make it possible to select a type that
works in a given application. Other AI types have also been
proved to be suitable for IDS use. They have been studied
less, which could partly explain why they cannot currently
fully compete with neural networks.

At this point AIs seem to have the needed accuracy for
IDS use. Configuring an AI-based IDS is easier than con-
figuring a traditional IDS. This decreases deployment costs
which is an important factor for companies. Because of this,
they could more easily test different easy-to-deploy IDSs to
see which of them is most the secure and requires the least
monitoring in their network.

The most surprising thing in writing this article was the
fact that I couldn’t find almost any information on the effects
of the noise in the learning data to the accuracy of an IDS.
To me, this would definately seem like a subject that would
be worth studying, especially as invisibly learning, ie. click
monitoring, AIs will usually gather up noise.



References

[1] M. Almgren and E. Jonsson. Tuning an ids - learning the
security officer’s preferences. In11th Nordic Workshop
on Secure IT Systems - Nordsec 06, pages 43–52, 2006.

[2] P. P. Bonissone. Soft computing: the convergence of
emerging reasoning technologies.Soft Computing—
A Fusion of Foundations, Methodologies and Applica-
tions, 1(1):6–18, 1997.

[3] J. Cannady. Artificial neural networks for misuse de-
tection. InProceedings of the 1998 National Informa-
tion Systems Security Conference (NISSC’98) October
5-8 1998. Arlington, VA., pages 443–456, 1998.

[4] J. Frank. Artificial intelligence and intrusion detec-
tion: Current and future directions. InProceedings of
the 17th National Computer Security Conference, Balti-
more, MD, 1994.

[5] A. H. M. Lichodzijewski, P.; Nur Zincir-Heywood.
Host-based intrusion detection using self-organizing
maps. InProceedings of the 2002 International Joint
Conference on Neural Networks, 2002.

[6] M. Moradi and M. Zulkernine. A neural network based
system for intrusion detection and classification of at-
tacks. In2004 IEEE International Conference on Ad-
vances in Intelligent Systems.

[7] A. Mounji. Rule-Based Distributed Intrusion Detection.
PhD thesis, University of Namur, 1997.

[8] V. G. C. F. M. Valtorta. Paid: A probabilistic agent-based
intrusion detection system. InComputers & Security,
pages 529–545, 2005.

[9] S. Zanero and S. M. Savaresi. Unsupervised learning
techniques for an intrusion detection system. InSAC
’04: Proceedings of the 2004 ACM symposium on Ap-
plied computing, pages 412–419, New York, NY, USA,
2004. ACM Press.


