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ABSTRACT 
 
Steganographic and watermarking information inserted into a color image file, regardless of embedding algorithm, 
causes disturbances in the relationships between neighboring pixels.  A method for steganalysis utilizing the local 
binary pattern (LBP) texture operator to examine the pixel texture patterns within neighborhoods across the color planes 
is presented.  Providing the outputs of this simple algorithm to an artificial neural net capable of supervised learning 
results in the creation of a surprisingly reliable predictor of steganographic content, even with relatively small amounts 
of embedded data.  Other tools for identifying images with steganographic content have been developed by forming a 
neural network input vector comprised of image statistics that respond to particular side effects of specific embedding 
algorithms.  The neural net in our experiment is trained with general texture related statistics from clean images and 
images modified using only one embedding algorithm, and is able to correctly discriminate clean images from images 
altered by data embedded by one of various different watermarking and steganographic algorithms.  Algorithms tested 
include various steganographic and watermarking programs and include spatial and transform domain image hiding 
techniques.  The interesting result is that clean color images can be reliably distinguished from steganographically 
altered images based on texture alone, regardless of the embedding algorithm. 
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1. INTRODUCTION 

1.1. Background 
While several different genres of steganographic algorithms exist, all of them strive to hide from the casual observer the 
presence of data within some form of media cover file.  If an observer recognizes anomalies within a steganographic 
media file, at that moment of realization the steganography fails to meet its purpose.  Originators of steganographic 
techniques aim to shield their embedding techniques from detection by incorporating mechanisms into their hiding 
algorithms to avoid displaying one of the multitudes of characteristics researchers have identified to distinguish 
steganographic media from clean cover media. 
 
For each new embedding algorithm, researchers have identified characteristic side effects that can be used to 
statistically identify media modified by that particular algorithm.  Iteratively searching for any one of the many 
identified steganographic side effects in the media can not only help identify suspect media, but provide clues about the 
embedding technique employed.  For known steganographic algorithms the test-and-see technique works fine.   
 
Because of the nature of the field, steganographic algorithms are constantly enhanced to evade proposed detection 
algorithms.  With the ever-multiplying number of programs and techniques available to embed data within media, it 
would be both wise and useful to determine a general detection method.  We recognize that probably no one detection 
algorithm can perfectly detect every hidden message, but, undaunted, our goal is to make an attempt at general 
steganalysis by approaching the problem from a pattern recognition perspective. 
 
This paper describes how to use the local binary pattern (LBP) operator to calculate statistics capturing the correlation 
between neighboring pixels, pixel neighborhoods, and across color planes to examine a color image for embedded data. 
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1.2. Steganalysis 
Beginning in the middle to late 1990’s, research efforts were initially put forth in the area of steganalysis, or the 
detection of steganography.  By definition, the steganography has failed to meet its purpose if the presence of the data 
within the media is detectable.  Steganalysis can be approached from two perspectives, each with a distinct goal.    
Passive steganalysis involves detection only.  The steganalysis process ends when there is an answer to the question, 
“Does this media harbor steganographic data?”  In the case of active steganalysis, the process is complete only after the 
hidden data is removed, destroyed, or strategically altered to render it useless.  The process described in this paper 
involves only the determination of whether an image is innocent or steganographic media. 
 
While the embedding techniques used in watermarking and steganography are fairly similar, the goals of each of the 
two areas are clearly distinct.  Because of the limited space in which to place the data within the carrier media, there are 
tradeoffs that must be made in order to best suit the purpose of the embedding.  Steganographic programs usually favor 
imperceptibility over robustness, whereas watermarking applications require robustness at the expense of 
imperceptibility or transmitted data quantity.  Embedded data is a noise within the media.  The more data placed inside 
cover media, the noisier the media file appears.  The weaker the steganographic signal within the cover, the less robust 
it will probably to be manipulations, but the data may be almost imperceptible.  With this background, the goal of 
steganographic utilities is primarily to hide data within a host imperceptibly.  This may involve limiting the amount of 
data and changing the values of the pixels or coefficients in a neighborhood around the altered pixel to make the 
embedding more inconspicuous. 
 
Because data located within the signal of a visual media file can be viewed as noise, there should be noticeable 
characteristics in the image texture that give away this fact.  There are steganographic methods that alter the media in 
such a way that in some cases the image can be processed to make the noise visible to the human eye.  For example, 
least significant bit (LSB) embeddings cause significant randomizations of the pixel LSBs, randomizations that are 
obvious when the LSBs of the image are viewed alone. Without the presence of the steganographic data, the least 
significant bits of the pixels do have some correlation with the image content, whereas the presence of steganographic 
data will make the least significant bit plane look random.  Highly textured images may also have a least significant bit 
plane exhibiting similar characteristics, though, so this method of steganalysis is not foolproof but is merely presented 
as an example. 
 
Although data hidden within an image is often imperceptible to the human eye, the statistical nature of the image is 
disturbed.  First attempts at steganalysis targeted the first order distributions of intensity or coefficients.  As 
steganographic algorithms became smarter to circumvent the obvious statistical giveaways, the field of steganalysis has 
progressed to examining higher order statistical image characteristics.  Image statistical analysis works as a 
steganographic method because natural image pixel interrelations are disturbed as a side effect of the embedding 
process.  In the case of spatial domain embedding, the use of any of the bit planes for data hiding will most likely 
decrease the natural order and correlation that exists locally between neighboring pixels, neighboring bit planes, and 
neighboring color planes.  Conversely, for robustness reasons, most frequency domain embedding techniques modify 
the low frequency components of the image, making the changes to the image globally rather than locally as with spatial 
techniques.  Instinct would be to assert that frequency domain embedding techniques, while they disrupt some of the 
order within the media, tend to be statistically safer from spatial anomaly detection than spatial embedding techniques.  
This is demonstrated to be untrue, as the algorithm just as easily identifies transform domain modifications. 
 
Many experiments have been conducted using image statistics and characteristics to discriminate between clean images 
and images with steganographic content.  Among the many researchers are Avcibas, who has shown that both image 
quality metrics and binary similarity measures can be used for image steganalysis with fairly reliable results.  Avcibas’s 
techniques are based on the observation that natural images and images harboring steganographic data blur differently, 
thus treating the search for hidden data as a local, spatial process. 
 
In (2) Avcibas uses binary similarity measures and ANOVA analysis to discriminate steganographic images from clean 
covers.  Seven different similarity measures are selected based onto regression analysis and are used to compute 
statistics which together form the input vector for the neural net.  Avcibas used a similar algorithm to examine the 
usefulness of image quality metrics for steganalysis, and obtaining a successful result.   
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Among the general algorithms, Farid developed a method for steganalysis based on multi-scale wavelet decomposition, 
using first and higher statistics to capture certain statistical regularities of natural images.  Using a trained linear Fisher 
discriminant, Farid could detect data embedded with Jsteg-Jpeg, Outguess, and EZStego with greater than 95% 
accuracy. 

1.3. Artificial neural networks for steganalysis 
Artificial neural networks (ANNs) are recognized as powerful data analysis and modeling tools.  They have been shown 
to capture and accurately represent both linear and non-linear relationships, and are an invaluable tool for approximating 
functions, clustering data, and recognizing patterns that are otherwise imperceptible.  Neural networks can often be used 
in place of traditional statistical analysis methodologies such as time series models, regression analysis, ANOVA 
analysis, and traditional clustering techniques such as the K-means models.  ANNs are very simple to apply to pattern 
recognition problems, requiring minimal knowledge about pattern recognition itself, and been used extensively in 
machine learning, knowledge discovery, and image analysis. 
 
Artificial neural networks have been shown to produce highly accurate function approximation results, and can model 
non-linearities that are inherent in most pattern recognition problems, making the application of a neural net ideal in this 
setting.   In (15), Shaohui demonstrated that a neural network can be trained to identify images harboring data 
embedded with any one of various watermarking and steganographic techniques, including Cox and Digimarc 
watermarks and Pretty Good Signature (PGS).  The neural nets described by Shaohui were trained using the modeled 
distribution of the wavelet transform coefficients at each of the first three levels of the decomposition. 

1.4. Local binary pattern operator 
The side effects of the embedding process are manifested as small local variations in color or intensity within a small 
neighborhood in the color image.  The local binary pattern operator was developed as a gray-scale invariant pattern 
measure that takes into account the amount of texture present in an image.  It was first mentioned in (9) by Harwood 
and formally introduced in the form used in this paper for use in texture analysis in (14) by Ojala.  The LBP is revered 
for both the computational simplicity and discrimination performance.  The LBP operator also seems to correspond 
loosely to the pattern recognition methods in the human visual system (12). 
 
The calculation for the local binary pattern value for pixel p uses the eight neighbors of p, together comprising a 3x3 
square of pixels.  The 0 to 255 intensity value for each pixel is obtained for each of the pixels in the square, and the 
outer pixel values are thresholded by the value of center pixel, p.  An eight bit integer is composed from the outer 
thresholded values to formulate a LBP value for the center pixel p.  A LBP value for each pixel in the image is placed 
into a 256-bin histogram and the histogram is stored along with a description of the texture it describes.   
 
If the LBP were to be used for texture analysis, the histogram of the image in question would be compared to the stored 
histogram of known images and textures by using the log-likelihood ratio.  Since our goal is steganographic analysis as 
opposite to texture analysis, instead of taking this step standard statistics describing the LBP histogram are calculated, 
including the standard deviation, variance, and mean.  These statistical values are used in the input vectors to the 
artificial neural net.   
 
Four different methods of calculating the LBP were used in the experiment to determine which was best for purposes of 
steganalysis.  Two methods tried form a 9-bin histogram; two methods form a 256-bin histogram.  The rationale was 
that possibly one method of computing LBP would be more advantageous in identifying hidden content.  Of the 256 bin 
options, the first and coincidentally best methodology involved computing the LBP value by forming the thresholded bit 
values into an integer in a left to right fashion as depicted below.   
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The LBP value is the integer with the least significant bit defined by the value in the top left, and the most significant bit 
in the lower right 
 
 

   

   

   

Figure 1:  Left to Right Computation of the LBP 

 
 
 

2. METHODOLOGY 

2.1 Description of experiment 
While multitudes of data can usually be hidden in an image, to help ensure imperceptibility it is recommended that the 
embedded bit rate be less than 0.02 bits per pixel (bpp) to minimize the probability of detection, especially for spatial 
embedding techniques.  For this reason in the following experiment the steganographic algorithms where possible 
embedded less than this amount.  For the test image sets, a randomly generated one hundred (100) byte sequence was 
used for the images to be modified, making a embedded bit rate of no more than 0.0082.  For the training set, sixty (60) 
random bytes were inserted, or 0.0049 embedded bits per pixel. 
 
While steganographic applications are specifically designed to hide data imperceptibly within media, the inclusion of 
steganographic noise into image data inevitably results in recognizable deviations from the natural pixel patterns present 
in clean images.  If there is a good way to recognize steganographically-induced image texture patterns, the steganalysis 
problem could be solved using standard pattern recognition methodologies.  Upon presentation of a feature set, a trained 
neural net could then discriminate between clean and steganographic images based on the texture pattern statistics.  The 
local binary pattern operator was selected for this task because of the speed at which it could be computed and for its 
excellent texture analysis performance. 
 
After computing LBP histograms for the image sets, a neural net was trained with statistics from 1000 clean color JPG 
images and 1000 images with one hundred (100) random bytes embedded using the Blindside steganographic program.  
The decision making capability of the neural net was tested by giving it input vectors from images modified using the 
F5, Digimarc, J1, PhaseMark, and JP Hide and Seek embedding algorithms. 
 

Table 1: Steganalysis Results, Neural Net Trained with Blindside (100 bytes ) 

Image Set Detection Rate 
Clean Images 991/1000   (99.1%) 

PhaseMark (strength 11) 886/1000  (88.6%) 
JP Hide and Seek (100 bytes) 866/1000  (86.6%) 

F5  (100 bytes) 865/1000  (86.5%) 
J1 21/24      (87.5%) 

Digimarc Watermark (Strength 1) 22/25      (88.0%) 
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The experiment was repeated with a training set consisting of statistics from clean images and images holding sixty 
bytes of data embedded with Blindside.  The amount of hidden data in the training set is less than 0.005 bits per pixel.  
Because of the smaller amount of data hidden in the images, there should be fewer side effects of embedding, thus the 
input vectors for steganographic images should be closer to the input vectors of the clean images, and the performance 
of the neural net should decline. 
 

Table 2: Steganalysis Results, Neural Net Trained with Blindside (60 bytes) 

 
Image Set Detection Rate 

Clean Images 990/1000   (99.0%) 
PhaseMark (strength 11) 829/1000  (85.2%) 

JP Hide and Seek (100 bytes) 835/1000  (84.9%) 
F5  (100 bytes) 831/1000  (83.1%) 

J1 21/24      (87.5%) 
Digimarc Watermark (Strength 1) 22/25      (88.0%) 

 
 

Data uses as input features for the neural net include the delta between histogram bins and first order statistics derived 
from the histogram bins.  Entries in the input vector were selected by examining the table below. 
 

Table 3: Pearson Product Moment Correlation Coefficient (r) 

  
LBP Histogram Bin Statistics  

Embedding Method 
 

 
Color
Plane Delta Mean Variance Entropy 

 
Blindside (60 bytes) 

R 
G 
B 

0.520 
0.616 
0.637 

0.121 
0.109 
0.126 

0.127 
0.112 
0.126 

-0.154 
-0.212 
-0.243 

 
Blindside (100 bytes) 

R 
G 
B 

0.499 
0.598 
0.618 

0.042 
0.043 
0.050 

0.040 
0.042 
0.056 

-0.198 
-0.246 
-0.275 

 
F5 (100 bytes) 

R 
G 
B 

-0.186 
-0.183 
-0.179 

0.042 
0.039 
0.048 

0.046 
0.042 
0.052 

0.065 
0.063 
0.062 

 
J1 

R 
G 
B 

0.194 
0.188 
0.204 

-0.122 
-0.100 
-0.095 

-0.130 
-0.108 
-0.103 

-0.110 
-0.093 
-0.100 

 
Digimark (strength 1) 

R 
G 
B 

0.024 
0.026 
0.024 

0.067 
0.065 
0.061 

0.065 
0.063 
0.057 

0.072 
0.071 
0.069 

 
JP Hide and Seek (100 bytes) 

R 
G 
B 

0.009 
0.009 
0.009 

0.010 
0.011 
0.011 

0.008 
0.008 
0.009 

0.012 
0.013 
0.012 

 
PhaseMark (strength 11) 

R 
G 
B 

-0.694 
-0.714 
-0.709 

0.433 
0.446 
0.446 

0.459 
0.472 
0.471 

0.550 
0.554 
0.545 
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3. DISCUSSION 
 
The presence of data within an image causes discrepancies in the image statistics, and the steganographic image can be 
discerned from a natural, clean image.  Past work utilizing first order statistics for steganalysis was fruitful, and 
spawned a flurry of algorithms that embedded data within the image while preserving the first order statistics. Recent 
work concludes that natural images also have meaningful second order statistics.  This has been taken into consideration 
in recent steganographic programs. 
 
Besides using general image statistics, there may be texture characteristics that can be used to discern clean images from 
steganographic.  This work shows that even images modified using frequency domain data hiding techniques exhibit 
texture characteristics that make the image discernable from a natural image.  Additionally, passive steganalysis can be 
performed with reasonable accuracy on color images by using a texture-based feature set.  We have shown that the 
statistics drawn from the LBP texture analysis process include effective statistical features that can be used for the 
purposes of steganalysis.  One interesting result is the assertion that local, spatial texture analysis techniques can be 
used to correctly categorize images harboring transform domain embedded data.   
 
Neural networks tend to be useful when it comes to identifying and categorizing patterns.  Interestingly, the neural net 
was trained to identify images modified using Blindside, and the neural net successfully identified most images 
modified with other algorithms included.  It should be mentioned that the experiment was repeated using other image 
sets as the neural net training set, only with much less successful results.  Additionally, images carrying 0.005 bits of 
hidden data per pixel have texture characteristics distinct enough from natural images that the texture features can still 
be used to train a neural net to recognize other steganographic images. 
 
Extensions of the research presented would be furthering the examination of texture analysis for the purposes of 
steganalysis to find identifiable feature sets to identify different embedding techniques.  If such a feature set could be 
found it would be interesting to see if a self organizing map could be created, grouping together images altered with 
similar embedding methodologies, i.e. least significant bit, discrete cosine transform techniques, and others. 
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