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Abstract—Image steganalysis has attracted increasing attention 
recently. LSB steganalysis is one of the most active research 
topics. The paper proposes a method for LSB steganalysis of 
images, where the secret message is embedded in a given number 
L of the least significant bits. The proposed estimation method is 
an extension of Fridrich’s method from the case L = 1 to 
arbitrary L>0. A weighted stego image is defined first and then 
estimation formula is derived. To evaluate the proposed 
steganalytic method, two experiments of detection and estimation 
are performed. It is shown that the accuracy of detecting the 
existence of secret messages in images and of estimating the 
embedding ratio of secret messages is relatively high. Estimation 
errors and further studies are also discussed. Experimental 
results and theoretical verification show that this mehtod is an 
effective method of LSB steganalysis. 
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I.  INTRODUCTION  
Steganography aims to hide the very presence of 

communication. That is to say, the essential goal of 
steganography is to conceal the facts of a hidden message. 
Similar to cryptanalysis, steganalysis attempts to defeat the 
goal of steganography. The most popular and frequently used 
steganographic method is the Least Significant Bit embedding 
(LSB). LSB stegangraphy is based on manipulating the LSB 
planes by directly replacing the LSBs of the cover-image with 
the message bits. In the literature, many techniques about data 
hiding are based on LSB [1,2], and the vast majority of 
steganographic programs[3] available for download on the 
Internet use LSB embedding (Steganos II, S-Tools 4.0, 
Steghide 0.3, and many others). For the convenience of 
description, we denote the binary representation of the pixel 
value of an image as “ 1 1q q Lb b b b− ,” where q is the 

number of bits to represent image pixel value, qb , Lb and 

1b are the Most Significant bit (MSB) , Lth-rightmost bit and 
Least significant bit (LSB) respectively. Some LSB methods 
modify L rightmost significant bits, such as simple LSB 
substitution [1] and Bit-Plane Complexity Segmentation 
Steganography (BPCS) [2], while almost all the steganographic 
programs only modify 1b . The popularity of the LSB 
embedding shows that the reliable detection of LSB 

steganography is an important research topic. 

There are numerous methods for the detection of LSB 
steganography [4-9]. Almost all the proposed steganalytic 
techniques except [9,10] are designed to attack the LSB 
steganography for the case L=1and cannot be extended to L>1. 
Niimi [10] studies the complexity histogram of an image and 
points out an anomaly in its shape. It is a visual-attack like 
technique, and hard to detect the existence of steganography 
automatically. The reliability of this technique is questionable. 
The technique is only for BPCS method, and hard to be 
extended to attack L>1. In [9], we proposed a method based on 
isotropy analysis, which is currently the first steganalysis 
method to attack LSB steganography for the case L>1. The 
method can not only detect the existence of hidden message, 
but also estimate the hidden message length. 

In this paper, a new method on estimating hidden message 
length of the case L>1 is proposed. The method is enlightened 
by the estimation method of [6]. So the advantage of this 
method is also its clean and quite simple mathematical 
derivation. In the next section, we explain the estimation 
method of [6]. In Section 3, we explain an assumption of 
natural images. Based on the assumption, the details of the 
detection and estimation scheme are presented in Section 4, and 
the experimental results are given in Section 5. Some related 
issues and problems for future study are discussed in Section 6. 

II. FRIDRICH’S SCHEME 
The goal of this section is to explain Fridrich’s estimation 

scheme [6].  

Let 1{ }n
i iX x == be a column vector of integers in the range 

[0, 255] representing a grayscale cover image with n=Mx×Nx 
pixels.  Let S={si} denote the stego image after embedding qn 
bits, 0 ≤ q ≤ 1, using LSB embedding (L=1) in qn pixels 
randomly selected from the cover image X.  Let ( ){ }p p

iS s=  
be the “weighted” stego image, 

( ) ( )
2

p
i i i i

ps s s s= + − , 0 1p≤ ≤ , 1 2( %2)i i is s s= + − , 

1, ,i n= . Then qS is the closest weighted stego image to X 
in least square sense.  This gives the idea to estimate the secret 
message length as an optimization problem. The estimation 
formula is derived as:  

1
(2 ) ( ( ( )))( )n

i i i ii
q n s F N s s s

=
= − − −∑              (1) 
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where ( ( ))iF N s  is the estimated pixel value of cover 
image from the neighborhood. The formula is clean and simple. 
The experimental results show good estimation performance of 
Equation (1). The authors of [6] also have analyzed the 
estimation error and proposed the improvements.  

III. SYMMETRY OF IMAGE PIXELS 

Assumption: Let {1, 2, , }L q∈ , {1, , 2 1}Ll∈ − , 

{0,1, , 2 1}q Lk −∈ − , and ( )h l  denotes the total number of 

pixels in images whose pixel value is 2L
ix k l= + .  For 

natural images, we have: 

 (0) (1) (2 1) 2L Lh h h n= = − =                        (2) 
The assumption means that image pixels have a kind of 

symmetric property. For example, if L=1, this is the case that 
the numbers of pixels in an image with odd and even intensity 

values are roughly the same. 

So ( )h l  follow a uniform distribution. The property of 

whether the distribution ( )h l , {1, , 2 1}Ll∈ −  are 
Uniform or not is taken using hypothesis testing. The Null and 
the Alternative hypotheses in this case are: 

H0: ( ) 2Lh l n=                                                    (3.a) 

H1: ( ) 2Lh l n≠                                                    (3.b) 

where {1, , 2 1}Ll∈ −  . 
In order to evaluate the validity of this assumption, 

statistical tests are carried out using the Chi-square test. The 
2χ statistic is given as: 

22 1
2

0

( ( ) 2 )
( ( ) 2 ) / 2

L L

L
n

h l n
h l n

χ
−

=

−
=

+∑                      (4) 

Let 2
αχ  denotes the upper tabulated value of Chi-square 

distribution at significant level α and 2 1L − degree of 
freedom. For an image that obeys the assumption, we have: 

2 2
αχ χ<                                    (5) 

The statistical tests are carried out on the Corel Image 
Database (only 5200 JPEG images in CD1 were used) [11]. In 
our experiments, we take the case of L=1,2,3,4 (Table 1) as 
examples to test the assumption. The significant level for chi-
square test in Equation (5) is set to 0.05. The experimental 
results are shown in Table 1. In the table, the ratios of the 
number of images that obey Equation (2) to the total number of 
images (5200) are listed. From the tables we can see that the 
assumption is appropriate for most natural images. 

IV. EXTENDING THE OPTIMIZATION METHOD 
Inspired by the estimation method of [6], we extend 

Fridirich’s method [6] from the case L = 1 to arbitrary L>0. We 
first extend the optimization theorem of [6]. The definition of 
X is the same as [6].  

Theorem 1: Let S={si} be the image after embedding qnL  
bits, 0 ≤ q ≤ 1, using LSB embedding (L>0) in qn pixels 
randomly selected from the cover image X. Let ( ){ }p p

iS s=  
be the “weighted” stego 
image, ( ) (2 1 2( %2 )) 2p L L

i i is s s p= + − − , 0 1p≤ ≤ , 
1, ,i n= , then: 

( ) 2
1

arg min ( )

1( ) ( )

p

n p
i ii

q E p

E p s x
n =

=

= −∑
                          (6) 

Proof: 
( ) 2

1

2

1

1( ) ( )

1 ( (2 1 2( %2 )) 2)

n p
i ii

n
L L

i i i
i

E p s x
n

s x s p
n

=

=

= −

= − + − −

∑

∑
 

Let 21 ( (2 1 2( %2 )) 2)
i i

L L
i i i

s x
A s x s p

n =

= − + − −∑ , 

21 ( (2 1 2( %2 )) 2)
i i

L L
i i i

s x
B s x s p

n ≠

= − + − −∑ . 

In the case of data hiding in the L-rightmost bits of a pixel, 
the pixel value has equal possibility to become any one of the 
remaining 2 1L − pixel values with the probability of 2Lp , 
and a pixel keeps unchanged with the probability of 
1 (2 1) 2L Lp− − . So combining the assumption described in 
the last section, we have: 

2 2 2

2 2 2

(1 ){(1 (2 1) 2 ) 2 [
( (2 1) 2) ( (2 3) 2) 4
( 2) ( 3 2) ( (2 1) 2) ]}

L L L

L L

L

A n q n
p p p

p p p

= − −

− + − + +

− + − + − −

 

2

2

1 { [ ( (2 1) 2 1)
2 2

( (2 1) 2 2)

L
L L

L

q nB p
n
p

= − − +

− − +
 

2

2 2

( (2 1) 2 2 1)
( (2 1) 2 1) ( (2 3) 2 1)

L L

L L

p
p p
+ − − + +

− + + − − +
 

2( (2 3) 2 2 2)L Lp+ − − + +  
1 2 1 2

1 2

( 2 2 1) ( 2 2 2)
( 2 2 )

L L

L

p p
p

− −

−

+ − + + − +

+ − +
 

TABLE 1 
TEST RESULTS OF ASSUMPTION  

L 1 2 3 4 

ratio 0.9950 0.9500 0.9350 0.9100



Fig. 1 Estimated embedding ratio of part images
from image database at L=2 
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Fig. 2. Distribution of estimated embedding ratio 
(dashed lines are true ratios) at L=2 
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2( (2 1) 2 1) ]}Lp+ − − +  

let 
12

1
(2 1)

L

k
kσ

−

=
= −∑ , we obtain: 

( ) ( )
[(1 ) ( 1) ] 2L

dE p dp d A B dp
q p p q σ

= +

= − + −
 

which proves the fact that ( )E p reaches its minimum 
at p q= . 

Using Equation (2), we can estimate the secret message 
length. However, xi is unknown for estimation. We use the 
same estimator as [6], which is shown as follows: 

1 1 1 1( ) 4kj k j k j kj kjx x x x x+ − + −= + + +                     (7) 
However, Theorem 1 cannot be used to estimate the secret 

message length directly. We derive another concise formula for 
estimation as follows: 

 Theorem 2: Let S={si} be the image after embedding qnL 
bits, 0 ≤ q ≤ 1, using LSB embedding (L>0) in qn pixels 
randomly selected from the cover image X. Let ix  be the 
estimator as [7], then: 

1
1

2arg min ( )
2 1 2( %2 )

n
i i

p L L
i i

s xq E p
n s=

−
= =

− −∑      (8) 

where q  is an estimate of hidden message length and  

( ) 2
1 1

1( ) ( )n p
i ii

E p s x
n =

= −∑                    (9) 

Proof: 
( ) 2

1 1

2

1

1( ) ( )

1 ( (2 1 2( %2 )) 2)

n p
i ii

n
L L

i i i
i

E p s x
n

s x s p
n

=

=

= −

= − + − −

∑

∑
 

according to Theorem 1, the minimum of E1(p) is reached for 
p that satisfies the following equation: 

 1

1

( 2 1 2( %2 ))( ) 1 0
L Ln

i i i

i

d s x sdE p
dp n dp=

− − + +
= =∑  

which gives (8). 
 

V. EXPERIMENTAL RESULTS 
In order to evaluate the extended estimation method, four 

experiments are performed here. Our experiments are carried 
out to test LSB steganography with randomly scattered 
message bits. In our experiments, we take the case of L=1,2,3 
and 4 as examples to test the effectiveness of our proposed 
steganalysis framework.  

We first consider the case of L=1. We have generated 4 
stego images for each image in Corel Image Database (10000 
JPEG images totally) [11] and the length of hidden messages 
are 20, 40, 60 and 80 percentage of hiding capacity, 
corresponding to =0.2, 0.4,0.6, 0.8p , with the case of L=1. 

The 

embedding process is just as the process described in Section 
3.1, and the secret message is embedded into the L-rightmost 
LSBs of the cover-image. ( )C Cp n M N′= × . After the 
embedding process, we estimate the embedding ratio using 
Equation (8). For the case of L=2,3 and 4, the tests are carried 
out as the case of L=1. 

For the convenience of display, only parts of experimental 
results are shown in Figure 1. The figure shows the 
experimental results of case L=2.  ‘+’, ‘o’ , ‘*’ , ‘△’ and  
‘×’represent the estimated percentages of message capacity, 
corresponding to =0.8, 0.6, 0.4,0.2, 0p .   Figure 2 shows 
the distribution of the estimated embedding ratio (dashed lines 
are true ratios). The figure shows also only the experimental 
results of case L=2. 



Because of the limited space, we do not show the 
experimental results of the case L=1, but the experimental 
results are as good as Fridrich’s scheme. 

VI. CONCLUSION 
An extended detection method of LSB steganography has 

been formulated in this paper. To evaluate the proposed 
steganalytic method, four examples of estimation have been 
performed. It is shown that the accuracy of estimating the 
embedding ratio of secret messages is relatively high.  
Experimental results and theoretical verification have shown 
that this mehod is an effective steganlytic method of LSB 
stegaography. 
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