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Abstract—We present techniques for steganalysis of images that
have been potentially subjected to steganographic algorithms, both
within the passive warden and active warden frameworks. Our hy-
pothesis is that steganographic schemes leave statistical evidence
that can be exploited for detection with the aid of image quality
features and multivariate regression analysis. To this effect image
quality metrics have been identified based on the analysis of vari-
ance (ANOVA) technique as feature sets to distinguish between
cover-images and stego-images. The classifier between cover and
stego-images is built using multivariate regression on the selected
quality metrics and is trained based on an estimate of the orig-
inal image. Simulation results with the chosen feature set and well-
known watermarking and steganographic techniques indicate that
our approach is able with reasonable accuracy to distinguish be-
tween cover and stego images.

Index Terms—Analysis of variance, image quality measures,
multivariate regression analysis, steganalysis, steganography,
watermarking.

I. INTRODUCTION

STEGANOGRAPHY refers to the science of “invisible”
communication. Unlike cryptography, where the goal is to

secure communications from an eavesdropper, steganographic
techniques strive to hide the very presence of the message itself
from an observer. Although steganography is an ancient sub-
ject, the modern formulation of it is often given in terms of the
prisoner’s problem[1] where Alice and Bob are two inmates
who wish to communicate in order to hatch an escape plan.
However, all communication between them is examined by the
warden, Wendy, who will put them in solitary confinement at
the slightest suspicion of covert communication. Specifically,
in the general model for steganography, we have Alice wishing
to send asecret message to Bob. In order to do so, she
“embeds” into acover-object , to obtain thestego-object .
The stego-object is then sent through the public channel.

The warden, Wendy, who is free to examine all messages ex-
changed between Alice and Bob, can bepassiveor active. A
passive warden simply examines the message and tries to de-
termine if it potentially contains a hidden message. If it ap-
pears that it does, she then takes appropriate action, else, she
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01A201, and NSF INT 9996097. N. Memon was supported by AFOSR Award
Number F49620-01-1-0243. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Christine Guillemot.
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lets the message through without any action. An active warden,
on the other hand, can alter messages deliberately, even though
she may not see any trace of a hidden message, in order to foil
any secret communication that can nevertheless be occurring be-
tween Alice and Bob. The amount of change the warden is al-
lowed to make depends on the model being used and the cover-
objects being employed. For example, with images, it would
make sense that the warden is allowed to make changes as long
as she does not alter significantly the subjective visual quality
of a suspected stego-image.

It should be noted that the main goal of steganography is
to communicate securely in a completely undetectable manner.
That is, Wendy should not be able to distinguish in any sense
between cover-objects (objects not containing any secret mes-
sage) and stego-objects (objects containing a secret message). In
this context, “steganalysis” refers to the body of techniques that
are designed to distinguish between cover-objects and stego-ob-
jects. It should be noted that nothing might be gleaned about
the contents of the secret message. When the existence of
hidden message is known, revealing its content is not always
necessary. Just disabling and rendering it useless will defeat the
very purpose of steganography. In this paper, we present a ste-
ganalysis technique for detectingstego-images, i.e., still images
containing hidden messages, using image quality metrics. Al-
though we focus on images, the general techniques we discuss
would also be applicable to audio and video media.

Given the proliferation of digital images, and given the high
degree of redundancy present in a digital representation of an
image (despite compression), there has been an increased in-
terest in using digital images as cover-objects for the purpose
of steganography. The simplest of such techniques essentially
embeds the message in a subset of the LSB (least significant
bit) plane of the image, possibly after encryption [2]. It is well
known that an image is generally not visually affected when its
least significant bit plane is changed. Popular steganographic
tools based on LSB like embedding vary in their approach for
hiding information. For exampleSteganosandStoolsuse LSB
embedding in the spatial domain, whileJstegembeds in the fre-
quency domain. Other more sophisticated techniques include
the use of quantization and dithering. For a good survey of
steganography techniques, the reader is referred to [2]. What
is common to these techniques is that they assume a passive
warden framework. That is they assume the warden Wendy will
not alter the image. We collectively refer to these techniques as
passive warden steganography techniques.

Conventional passive warden steganography techniques like
LSB embedding are not useful in the presence of an active
warden as the warden can simply randomize the LSB plane to
thwart communication. In order to deal with an active warden
Alice must embed her message in a robust manner. That is, Bob
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should be able to accurately recover the secret messagede-
spite operations like LSB randomizing, compression, filtering,
and rotation by small degrees, etc. performed by the active
warden Wendy. Indeed, the problem of embedding messages in
a robust manner has been the subject of intense research in the
image processing community, albeit for applications other than
steganography, under the name ofrobust digital watermarking
[3].

A robust digital watermark is an imperceptible signal added to
digital content that can be later detected or extracted in order to
make some assertion about the content. For example, the pres-
ence of her watermark can be used by Alice to assert owner-
ship of the content. Recent years have seen an increasing in-
terest in digital watermarking with many different applications,
ranging from copyright protection and digital rights manage-
ment, to secret communication. Essentially robust digital wa-
termarks provide a means of image-based steganography in the
presence of an active warden since modifications made by the
warden will not affect the embedded watermark as long as the
visual appearance of the image is not significantly degraded.
However, despite this obvious and commonly observed connec-
tion to steganography, there has been very little effort aimed at
analyzing or evaluating the effectiveness of common robust wa-
termarking techniques for steganographic applications. Instead,
most work has focused on analyzing or evaluating the water-
marking algorithms for their robustness against various kinds
of attacks that try to remove or destroy them. However, if robust
digital watermarks are to be used in active warden steganog-
raphy applications, detection of their presence by an unautho-
rized agent defeats their very purpose. Even in applications that
do not require hidden communication, but only robustness, we
note that it would be desirable to first detect the possible pres-
ence of a watermark before trying to remove or manipulate it.
This means that a given signal would have to be first analyzed
for the presence of a watermark.

In this paper, we develop steganalysis techniques both for
conventional LSB-like embedding used in the context of a pas-
sive warden model and for watermarking which can be used to
embed secret messages in the context of an active warden. In
order to distinguish between these two models, we will be using
the terms watermark and message when the embedded signal is
in the context of an active warden and a passive warden, respec-
tively. Furthermore, we simply use the terms marking or embed-
ding when the context of discussion is general to include both
active and passive warden steganography.

The techniques we present are novel and to the best of our
knowledge, the first attempt at designing general purpose tools
for steganalysis. General detection techniques as applied to
steganography have not been devised and methods beyond
visual inspection and specific statistical tests for individual
techniques like LSB embedding [4]–[7] are not present in the
literature. Since too many images have to be inspected visually
to sense hidden messages, the development of a technique to
automate the detection process will be very valuable to the
steganalyst. Our approach is based on the fact that hiding
information in digital media requires alterations of the signal
properties that introduce some form of degradation, no matter
how small. These degradations can act as signatures that

could be used to reveal the existence of a hidden message. For
example, in the context of digital watermarking, the general
underlying idea is to create a watermarked signal that ispercep-
tually identical but statistically differentfrom the host signal.
A decoder uses this statistical difference in order to detect
the watermark. However, the very same statistical difference
that is created could potentially be exploited to determine if a
given image is watermarked or not. In this paper, we show that
addition of a watermark or message leaves unique artifacts,
which can be detected using Image Quality Measures (IQM).

The rest of this paper is organized as follows. In Section II,
we discuss the selection of the image quality measures to be
used in the steganalysis and the rationale for utilizing multiple
quality measures. We then show that the image quality metric
based distance between anunmarked imageand its filtered ver-
sion is different as compared to the distance between amarked
imageand its filtered version. Section III describes the regres-
sion analysis that we use to build a composite measure of quality
to indicate the presence or absence of a mark. Statistical tests
and experiments are given in Section IV and, finally, conclu-
sions are drawn in Section V. The selected IQMs are described
in the Appendix.

II. CHOICE OFIMAGE QUALITY MEASURES

The main goal of this paper is to develop a discriminator
for cover images and stego images, using an appropriate set of
IQMs. Image quality measurement continues to be the subject
of intensive research and experimentation [8]–[11]. Objective
image quality measures are based on image features, a func-
tional of which, should correlate well with subjective judgment,
that is, the degree of (dis)satisfaction of an observer [12]. Ob-
jective quality measures have been utilized in coding artifact
evaluation, performance prediction of vision algorithms, quality
loss due to sensor inadequacy etc. [13]. In this paper, however,
we want to exploit image quality measures, not as predictors of
subjective image quality or algorithmic performance, but specif-
ically as a steganalysis tool, that is, as features in detecting wa-
termarks or hidden messages.

A good IQM should be accurate, consistent and monotonic
in predicting quality. In the context of steganalysis,prediction
accuracycan be interpreted as the ability of the measure to
detect the presence of hidden message with minimum error
on average. Similarly,prediction monotonicitysignifies that
IQM scores should ideally be monotonic in their relationship
to the embedded message size or watermark strength. Finally,
prediction consistencyrelates to the quality measure’s ability
to provide consistently accurate predictions for a large set of
watermarking or steganography techniques and image types.
This implies that the spread of quality scores due to factors of
image variety, active warden or passive warden steganography
methods should not eclipse the score differences arising from
message embedding artifacts. In order to understand how these
metrics measure up to the above desiderata we resorted to anal-
ysis of variance (ANOVA) techniques. Specifically, ANOVA
was used to show whether a metric’s response was consistent
with a change in the image or whether it was a random effect.
The ranking of the goodness of the metrics was done according
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Fig. 1. Schematic descriptions of (a) watermarking or stegoing, (b) filtering
an unmarked image, and (c) filtering a marked image.

to the F-scores in the ANOVA tests to identify the ones that
responded most consistently and strongly. A similar study
had been done in [11] to delineate good metrics to measure
image quality under compression and sensor artifacts. In the
final analysis we seek IQMs that are sensitive specifically to
steganography effects, that is, those measures for which the
variability in score data can be explained better because of
some treatment rather then as random variations due to the
image set.

The steganalysis detector we develop is based on regression
analysis of a number ofrelevantIQMs. The idea behind detec-
tion of watermark or hidden message presence is to obtain a
consistent distance metric for images containing a watermark
or hidden messagevis-à-vis those without,with respect to a
common reference. The reference processing should possibly re-
cover the original un-watermarked image, and to this purpose,
we have used low-pass filtering based on a Gaussian kernel. In
this respect other approaches such as denoising and Wiener fil-
tering are also possible [14]. In fact Wiener filtering approach
gave better results, for example, in the case of the Digimarc al-
gorithm while denoising proved more effective in the case of
Jsteg. However the Gaussian filtering approach was preferred
because it gave uniformly good results across all steganographic
techniques.

To clarify the rationale of our detector, let us recall that
steganographic message embedding techniques, whether by
spread-spectrum or quantization modulation or LSB insertion,
can be represented as a signal addition to the cover image, as
shown in Fig. 1. Let be the cover image, be the
stego-image, and the inserted watermark. Let be the ML
(Maximum Likelihood) operator for the estimate of the water-
mark sequence. In the absence of any watermark or stego-signal

corresponds to the high-frequency contentof the
image, while for a marked signal it yields where

denotes the ML estimate of the mark. The image quality
metrics, in fact, are simply trained to differentiate between
these two signals and . Fig. 2 gives an instance of
the watermarked versus nonwatermarked class separability
based on a scatter diagram of the three image quality metrics
used. The training procedure for the steganalyzer is shown in
Fig. 3(a).

Fig. 2. Scatter plots of the three Image Quality Measures (M3: Czekakowski
measure, M5: Image fidelity, and M6: Normalized cross-correlation).

Fig. 3. Schematic description of (a) training and (b) testing.

The filter was chosen as a Gaussian smoothing
filter where

is the 2-D Gaussian
kernel and is the normalizing
constant. The aperture of the Gaussian filter was set experi-
mentally to with a mask size 3 3. The reason why
Gaussian blurring works fine as a common reference is that it
gives us the local mean which is also the maximum likelihood
(ML) estimate of the image under Gaussian assumption [14].
Under a Laplacian distribution assumption the median would
have been the ML estimate. Therefore the blurred image minus
the original image yields the maximum likelihood estimate
of the additive watermark. For the two ML estimators that
we have tested, is equivalent to the subtraction from the
received stego-image of its local mean or median. Finally in
the comparison between the mean and median filters as the
ML estimates of the image we have found out that the former
performs slightly better in the detection tests.

As for the selection of quality measures we used the results
of a previous study [11] where several (26 in total) measures
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were investigated to predict compression, blur and noise
artifacts. From these measures we gleaned out the ones that
served well the purpose of our steganalysis. The rationale
of using several quality measures is that different measures
respond with differing sensitivities to artifacts and distortions.
For example, measures like mean-square-error respond more to
additive noise, whereas others such as spectral phase or mean
square HVS-weighted (Human Visual System) error are more
sensitive to pure blur; while the gradient measure reacts to
distortions concentrated around edges and textures. Similarly
embedding techniques affect different aspects of images. In
fact some watermarking algorithms inject “noise” in block
DCT coefficients, others in a narrow-band of global DCT or
Fourier coefficients, still others operate in selected localities in
the spatial domain. Since we want our steganalyzer to be able
to work with a variety of watermarking and steganographic
algorithms, a multitude of quality features are needed so that
the steganalyzer has the chance to probe several features in
an image that are significantly impacted by the embedding
process.

In order to identify specific quality measures that are useful
in steganalysis, we used ANOVA [15] tests, with the expecta-
tion that it would distinguish measures that are consistent and
accuratevis-à-visthe effects of watermarking and of steganog-
raphy. More specifically several quality measures were statis-
tically tested to determine if their fluctuations resulted from
image variety or whether they were due to treatment effects of
message embedding. ANOVA was used to show whether the
variation in the data could be accounted for by the hypothe-
sized factor, for example, the strength factor of watermarking
or steganography. The hypotheses for the comparison of inde-
pendent groups are

means of all the groups
are equal

means of the two or more
groups are not equal

It should be noted that the test statistic is antest with
and degrees of freedom, where is the total number of
watermarked or stegoed images. A low-value (high value)
for this test indicates evidence for rejecting the null hypothesis
in favor of the alternative. In other words, there is evidence that
at least one pair of means are not equal. We opted to carry out the
multiple comparison tests at a significance level of 0.05. Thus
any test resulting in a-value under 0.05 was considered to be
significant, and therefore, one would reject the null hypothesis
in favor of the alternative hypothesis. This is to assert that the
difference in the quality metric arises from the “strength” pa-
rameter of the watermarking or steganography artifacts, and not
from variations in the image content.

We performed three different ANOVA tests: The first was for
active warden steganography, the second for passive warden
steganography, and the last one for both active and passive
warden steganography.

For active warden image tests, the first group consisted of the
IQM scores computed from plain images and their filtered ver-
sions. The remaining three groups consisted of the IQM scores
computed from watermarked images by Digimarc [16], PGS

TABLE I
ONE-WAY ANOVA TESTS FORWATERMARKING, STEGANOGRAPHY, AND

POOLED WATERMARKING AND STEGANOGRAPHY

[17] and Cox [18] techniques, respectively, and their filtered ver-
sions. The data given to the ANOVA algorithm consisted of four
vectors, each of dimension, where is the number of
images used in the test from the training set. More specifically,
consider a typical quality measure, say , where the para-
metric dependence upon the watermarking algorithm is shown
with , , for plain images, Digimarc, PGS and Cox
techniques, respectively. The-dimensional vector reads as:

.
For passive warden image tests, the first group consisted

of the IQM scores computed from plain (nonmarked) images,
while the remaining three groups consisted of the IQM scores
computed from images marked by Steganos [19], Stools [20]
and Jsteg [21], respectively, and their filtered versions.

For the joint active warden and passive warden steganography
analysis, the first group consisted of the IQM scores computed
from plain images. The remaining six groups consisted of the
IQM scores computed from watermarked images by Digimarc,
PGS and Cox technique, marked images by Steganos, Stools,
and Jsteg, respectively, and their respective filtered versions.

In Table I we give ANOVA results with respect to active
warden, passive warden and combined techniques. The mea-
sures that have higher discriminative power—measures that
catch the statistical evidence of steganography—are shown
in bold. These measures, in fact, sense better the statistical
difference between the populations of marked and nonmarked
images so that they can be used to separate the two classes. The
implications of the result are twofold. One is that, using these
features a steganalysis tool can be designed to detect marked
images, as we show in Section III, using multivariate regression
analysis. The other is that, current steganographic algorithms
should exercise more care on these statistically significant
image features to eschew detection. It is interesting to note that
the significance ordering of the IQMs for active warden and
passive warden steganographic algorithms are different. For
instance while the Minkowsky measures were not statistically
significant for passive warden steganographic algorithms, they
were for the active warden algorithms. Minimizing the Mean
Square Error (MSE) or the Kullback–Leibler distance between
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the original (cover) image and the stego image is not necessarily
enough to achieve covert communication as the evidence can
be caught by another measure such as spectral measures. The
selected subset of image quality measures in the design of
steganalyzer with respect to their statistical significance were
as follows.

Active Warden Steganography:Mean Absolute Error
, Mean Square Error , Czekznowski Correlation

Measure , Image Fidelity , Cross Correlation ,
Spectral Magnitude Distance , Normalized Mean
Square HVS Error . We denote this feature set as

for future reference
in the experiments in Section IV.

Passive Warden Steganography:Angle Mean , Median
Block Spectral Phase Distance , Median Block Weighted
Spectral Distance , Normalized Mean Square HVS Error

. We denote this feature set as .
Pooled Active Warden and Passive Warden Steganog-

raphy: Mean Absolute Error , Mean Square Error ,
Czekanowski Correlation Measure , Angle Mean ,
Spectral Magnitude Distance , Median Block Spectral
Phase Distance , Median Block Weighted Spectral Distance

, Normalized Mean Square HVS Error . We denote this
feature set as .

III. REGRESSIONANALYSIS OF THEQUALITY MEASURES

The steganalysis we propose is based on the observation in
Section II that an embedded and filtered image differs statis-
tically from a nonembedded but simply filtered image. This
statistical difference can be put in light by comparing the em-
bedded image and its original version against a common ref-
erence treatment that is their filtered versions. It has been ob-
served that filtering an image with no watermarked message
causes changes in the IQMs differently than the changes brought
about on embedded images. This differential behavior is in part
because steganographic embedding is not in general a global
operation, but is local in nature. The message signal is either in-
jected locally, e.g., on a block basis, or the signal is subjected to
a perceptual mask. In any case, we consistently obtained statis-
tically different quality scores from embedded-and-filtered im-
ages and from filtered-but-not-embedded sources. For the hy-
pothesis testing we used the quality scores, which are separately
calculated for differences obtained from a nonembedded image
and its embedded varieties.

In the design phase of the steganalyzer, we regressed the
normalized IQM scores to, respectively,1 and 1, depending
upon whether an image did not or did contain a message. Sim-
ilarly, IQM scores were calculated between the original images
and their filtered versions. In the regression model [15], we ex-
pressed each decision labelin a sample of observations as a
linear function of the IQM scores, denoted as’s, plus a random
error,

...

(1)

In this expression, denotes the IQM score, where the first
index indicates theth image , and the second one
the quality measure, , being the total number of
quality measures considered. Thes denote the regression co-
efficients. The complete statement of the standard linear model
is

(2)

where the data matrix has rank, and is a zero-mean
Gaussian noise. The corresponding optimal MMSE linear pre-
dictor can be obtained by

(3)

Once the prediction coefficients are obtained in the training
phase, these coefficients can be used in the testing phase. Given
an image in the test phase, first it is filtered and theIQM
scores are obtained using the image and its filtered version. Then
using the prediction coefficients, these scores are regressed to
the output value. If the output exceeds the threshold 0 then the
decision is that the image isembedded, otherwise the decision
is for not embedded. That is

(4)

for the image contains watermark, and for it does
not. The schematic diagram of the steganalyzer in the test phase
is given in Fig. 3(b).

IV. SIMULATION RESULTS

The active warden techniques we used were the following:
Photoshop plug-in Digimarc [16], Cox’s technique [18], and
the technique from Swiss Federal Institute of Technology, PGS
[17]. One obvious reason for selecting the above techniques
was their free availability on the Internet and that they were
all popularly known algorithms. A more relevant reason was
that these techniques permitted adjusting the watermark inser-
tion strength, which was instrumental to probe the sensitivity
of IQMs. On the other side the three passive warden stegano-
graphic tools selected were Steganos [19], S-Tools [20] and
Jsteg [21]. These tools were among the most cited ones for
their satisfactory results with respect to steganographic applica-
tions. We used an image database from [22] for the simulations.
The database contained an adequate variety of images including
computer generated images, images with bright or with reduced
and dark colors, images with textures and fine details, and some
well-known images like Lena, peppers etc. We performed eight
experiments organized in three sets.

The three experiments 1)–3) in the first set involved active
warden techniques only, namely: 1) First, the individual ste-
ganalysis of each watermarking algorithm, Digimarc, PGS and
Cox at admissible watermark strengths; 2) Second, the steganal-
ysis of pooled watermarking algorithms at admissible water-
mark strengths; 3) Third, the cross-validation experiment where
the steganalyzer was trained on images watermarked by Digi-
marc, and tested on images watermarked by PGS and Coxet al.

The next three experiments 4)–6) in the second set involved
passive warden steganography only: 4) The steganalysis of in-
dividual steganography algorithms, Steganos, Stools and Jsteg
for different embedded message sizes; 5) The steganalysis of
pooled steganography algorithms for different message sizes;
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TABLE II
TRAINING AND TESTSAMPLES FORDIGIMARC AND PGSFOREXPERIMENT 1

TABLE III
TRAINING AND TEST SAMPLES FORCOX FOR EXPERIMENT 1

TABLE IV
TRAINING AND TEST SAMPLES FORPOOLED WATERMARKING ALGORITHMS

FOR EXPERIMENT 2 (L1: LEVEL 1 ETC.)

TABLE V
TRAINING AND TEST SAMPLES FOREXPERIMENT 3: TRAIN ON DIGIMARC,

TEST ONPGSAND COX

6) In the sixth experiment the steganalyzer was trained on im-
ages embedded with Steganos and Stools, and tested on images
embedded with Jsteg for cross-validation purposes.

In the third set the final two experiments 7) and 8) involved
both active warden and passive warden steganography algo-
rithms. The seventh experiment was steganalysis of the pooled
three passive warden and three active warden steganographic
algorithms for admissible levels of watermark strength and for
different message lengths. In the last and eighth experiment the
steganalyzer was trained on images embedded with Steganos,
Stools, or watermarked by Digimarc and tested on images em-
bedded with Jsteg or watermarked by Coxet al.The aim of the
last two experiments, in the same spirit as in experiments 3)
and 6), was to see the generalizing ability of the steganalyzer
in case an image was to be marked with a method unknown to it
in the learning phase. In experiments 1)–3) the feature set was

which was defined in Section II, for the experiments 4)–6) the
feature set was , while the feature set wasfor the remaining
experiments 7) and 8).

The organizations of the training and testing samples for
the experiments are given in Tables II–XII. The images in
the training and test sets are denoted by numbers. More
specifically the training set is and the test
set is . There were four levels of watermark
strength for Digimarc and PGS (denoted by L1 to L4 in the
Tables). We used the original settings of Cox’s technique;
modified the 1000 most significant coefficients in spectral
domain. The embedded message sizes were 1/10 and 1/40
of the cover image size for Steganos and Stools, while the
message sizes were 1/100 of the cover image size for Jsteg.

TABLE VI
TRAINING AND TEST SAMPLES FORSTOOLS FOREXPERIMENT 4

TABLE VII
TRAINING AND TEST SAMPLES FORJSTEG FOREXPERIMENT 4

TABLE VIII
TRAINING AND TESTSAMPLES FORSTEGANOS FOREXPERIMENT 4. (NOTE: IN

CERTAIN IMAGES THE STEGANOS DID NOT LET THEMESSAGES TO BE

EMBEDDED NO MATTER WHAT THEIR SIZE)

TABLE IX
TRAINING AND TEST SAMPLES FOR POOLED STEGANOGRAPHY

ALGORITHMS FOREXPERIMENT 5

TABLE X
TRAINING AND TESTSAMPLES FOREXPERIMENT 6: TRAIN ON STEGANOS AND

STOOLS, TEST ONJSTEG

TABLE XI
TRAINING AND TEST SAMPLES FORPOOLED WATERMARKING AND

STEGANOGRAPHYALGORITHMS FOREXPERIMENT 7

TABLE XII
TRAINING AND TEST SAMPLES FOREXPERIMENT 8: TRAIN ON STEGANOS,

STOOLS AND DIGIMARC, TEST ONJSTEG AND COX

The performance of the steganalyzer is given in Table XIII.
Simulation results indicate that the selected IQMs form a multi-
dimensional feature space whose points cluster well enough to
do a classification of marked and nonmarked images. The clas-
sifier is still able to do a classification when the tested images
come from an embedding technique unknown to it, indicating
that it has a generalizing capability of capturing the general in-
trinsic characteristics of steganographic techniques.
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TABLE XIII
PERFORMANCE OF THESTEGANALYZER FOR ALL THE EXPERIMENTS

It may be argued that the statistical classification scores leave
something to be desired. We would like to point out, however,
that our goal was to design a general steganalysis tool that would
perform adequately across several techniques. Certainly the per-
formance of the steganalysis algorithm can be improved by con-
straining the domain and the set of algorithms. In fact recent
years have seen many steganalysis techniques proposed in the
literature such as [4], [5], [7]. The proposed algorithm is more
general, however, in that it does not assume only spatial or only
spectral domain embedding.

V. CONCLUSIONS

In this paper, we have addressed the problem of steganal-
ysis of images, and we have developed a technique for discrim-
inating between cover-images and stego-images. Our approach
is based on the hypothesis that message-embedding schemes
leave statistical evidence or structure in images that can be ex-
ploited for detection. In fact we have shown that the distance in
the feature space between an unmarked and a reference image
is different than the distance between a marked image and its
reference version. We used image quality metrics as the fea-
ture set. To identify good features (quality measures), which
provide the best discriminative power, we used ANOVA tech-
nique. A different point of view of the IQM-based steganalysis
would be that these very image features should be taken into
account in the design of watermarking or steganographic tech-
niques if eschewing detection is desired. After selecting an ap-
propriate feature set, we used multivariate regression techniques
to get an optimal classifier. Simulation results with well known
and commercially available watermarking and steganographic
techniques indicate that the selected IQMs form a multidimen-
sional feature space whose points cluster well enough to do a
classification of marked and nonmarked images. The classifier
is still able to do a classification when the tested images come
from an embedding technique unknown to it, indicating that it
has a generalizing capability of capturing the general intrinsic
characteristics of watermarking and steganographic techniques.
Future work will expand, on the one hand, the scope of the al-
gorithm (the type of watermark algorithms, the media such as
audio) and, on the other hand, to improve its detection perfor-
mance, e.g., via decision fusion.

APPENDIX

We give brief descriptions of the selected image quality mea-
sures in this Appendix. In Table I, 19 IMQs are quoted, but here

we describe the 10 selected measures that qualify in the ANOVA
tests (indicated in bold characters in the Table). We denote mul-
tispectral components of an image at the pixel position, , and
in band as , where for color images.
The boldface symbols, , indicate the multispec-
tral pixel vectors at position . The multiband image matrix
is denoted by and , where the hat superscripted quantity is
the distorted (e.g., watermarked) version of the image. We will
use to describe the ten IMQ features used in
the detector.

A. Minkowsky Measures

The norm of the dissimilarity of two images can be calcu-
lated by taking the Minkowsky average of the pixel differences
spatially and then chromatically (that is over the bands)

(5)

corresponds to mean absolute error , and to
mean square error , respectively.

B. Correlation Measures

A measure to compare vectors with strictly nonnegative com-
ponents, as in the case of images, is the Czekanowski distance
[23]

(6)
A variant of correlation-based measures is the statistics of

the angles between the pixel vectors of the two images. Similar
colors will result in vectors pointing in the same direction, while
significantly different colors will point in different directions in
the color space. Since we deal with positive vectors , we
are constrained to the first quadrant of the Cartesian space so
that the maximum difference attained will be . The angular
correlation between two vectors is defined as follows [24]:

(7)

The closeness between two digital images can also be
quantified in terms of correlation function. The Image Fidelity
and Normalized Cross-Correlation measures are defined,
respectively, as follows:

(8)

(9)
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C. Spectral Measures

Let the Discrete Fourier Transforms (DFT) of theth band of
the original and embedded image be denoted by and

, respectively. The spectra are defined as

(10)

The phase and magnitude spectra are defined, respectively as
and . The

spectral magnitude distortion measure is given by

(11)

Due to the localized nature of distortion and/or the nonsta-
tionary image field, Minkowsky averaging of block spectral dis-
tortions may be more advantageous. Thus an image can be di-
vided into blocks of size , say 32 32, and block wise
spectral distortions can be computed. Let the DFT of theth
block of the th band image be

(12)
where and , or in the
magnitude-phase form

(13)

Then the following measures can be defined in the transform
domain over theth block

(14)

(15)

(16)

with the relative weighting factor of the magnitude and phase
spectra. Among possible rank order operations on the block
spectral differences the median has proven useful. The norm pa-
rameter set at and block size of 32 32 yielded higher
F scores. Weighting parameteris chosen so as to render the
contributions of the magnitude and phase terms commensurate.
Median of block spectral phase and median of weighted block
spectral distortion measures are defined, respectively, as

(17)

(18)

D. HVS Based Measure

The incorporation of human visual system (HVS) model into
objective measures [25], [26] has led to a better correlation with

the subjective ratings in multimedia. It is conjectured therefore
that in steganalysis tasks they may have as well some relevance.
We assume that the human visual system can be modeled as a
band-pass filter with a transfer function in polar coordinates,

(19)

where . Once images are processed with such
a spectral mask and inverse DCT transformed, the Normalized
Mean Square HVS Error is defined as

(20)
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