
On Reducing Redundancy and Improving Efficiency of
XML Labeling Schemes

Changqing Li, Tok Wang Ling, Jiaheng Lu and Tian Yu
Department of Computer Science, National University of Singapore, Singapore, 117543

{lichangq, lingtw, lujiahen, yutian}@comp.nus.edu.sg

ABSTRACT
The basic relationships to be determined in XML query
processing are ancestor-descendant (A-D), parent-child (P-C),
sibling and ordering relationships. The containment labeling
scheme can determine the A-D, P-C and ordering relationships
fast, but it is very expensive in determining the sibling
relationship. The prefix labeling scheme can determine all the four
basic relationships fast if the XML tree is shallow. However, if
the XML tree is deep, the prefix scheme is inefficient since the
prefix is long. Furthermore, the prefix_label is repeated by all the
siblings (only the self_labels of these siblings are different). Thus
in this paper, we propose the P-Containment and P-Prefix
schemes which can determine all the four basic relationships
faster no matter what the XML structure is; meanwhile P-Prefix
can reduce the redundancies in the prefix labeling scheme.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – query processing

General Terms
Performance.

Keywords
XML, Labeling scheme, Query, Redundancy.

1. INTRODUCTION
XPath and XQuery are two main XML query languages. The
following XPath query:

 /book[/title]//section/paragraph[2]/preceding-sibling::*

finds all the elements that are siblings of paragraph[2] (means the
second paragraph) and these sibling elements should be before
paragraph[2]. Meanwhile, paragraph[2] should be a child of
section and section should be a descendant of book. In addition,
book should satisfy the restriction that it has a child title.

“//” represents the A-D relationship, “/” represents the P-C
relationship, and “preceding-sibling” represents two relationships
i.e. sibling relationship and ordering relationship (preceding).

Therefore to facilitate the XML queries, the core operation is to
efficiently determine these four basic relationships. The labeling
(numbering) [2, 3] schemes can help to determine these

relationships, but each labeling scheme is not efficient to
determine all the four basic relationships. For instance, the
containment scheme [3] is very inefficient to determine the sibling
relationship; it needs to search the parent of a node, then decide
whether another node is a child of this parent. The prefix scheme
[2] is inefficient in determining all the four relationships if the
XML tree is deep. Thus the objective of this paper is to propose
labeling schemes that can efficiently determine all the four basic
relationships no matter what the XML structure is.

The main contributions of this paper are summarized as follows:

• We propose the P-Containment scheme which can efficiently
determine all the four basic relationships.

• We propose the P-Prefix scheme which can reduce the
redundancies in the prefix scheme, and determine all the four
basic relationships efficiently even if the XML tree is deep.

2. RELATED WORK AND MOTIVATION
We use examples to illustrate the labeling schemes.

2.1 Containment Scheme
Example 2.1. Figure 1 shows the containment labeling scheme
[3]. The values near each node are the “start”, “end” and
“level” values. “5,6,3” is a child of “2,7,2” since interval [5, 6]
is contained in interval [2, 7] and levels 3 – 2 = 1. To determine
whether “5,6,3” is a sibling of “3,4,3”, the containment scheme
needs to search the parent of “3,4,3” firstly, then decide whether
“5,6,3” is a child of this parent. The search of the parent needs a
lot of parent-child determinations and is very expensive.

2.2 Prefix Scheme
Example 2.2. It is inefficient for the prefix scheme [2] to
determine all the four basic relationships if the XML tree is deep.
For instance, to determine that “1.2.1.1.3.3.4.5” is a parent of
“1.2.1.1.3.3.4.5.2”, the prefix scheme needs to compare 8 pairs of
numbers. In addition, the prefix_label should be repeated by all
the siblings. For instance, “1.2.1”, “1.2.2” and “1.2.3” repeat
the prefix_label “1.2” three times. These are redundancies.

Copyright is held by the author/owner(s).
CIKM’05, October 31-November 5, 2005, Bremen, Germany.
ACM 1-59593-140-6/05/0010.

Figure 1. Containment scheme.

1,16,1

2,7,2 8,9,2 10,13,2 14,15,2

3,4,3 5,6,3 11,12,3

225

3. P-CONTAINMENT AND P-PREFIX
3.1 P-Containment Scheme
Different from the traditional containment scheme [3], we store
the “parent_start” value rather than the “level” value. The
“parent_start” value of a node is the “start” value of its parent. We
call this improved containment scheme P-Containment. Based on
P-Containment, we can determine the parent-child relationship
faster, and determine the sibling relationship much faster.

Property 3.1 For two different nodes u and v, node u is a parent
of node v iff the “parent_start” value of node v is equal to the
“start” value of node u based on P-Containment.

Property 3.2 For two different nodes u and v which are not the
root of the XML tree, node u is a sibling of node v iff the
“parent_start” value of node u is equal to the “parent_start”
value of node v based on P-Containment.

The ancestor-descendant and ordering relationship determinations
based on P-Containment are the same as the traditional
containment scheme.

3.2 P-Prefix Scheme
Though the idea of our P-Prefix is to some extent similar to the
idea of P-Containment, they have differences.

3.2.1 Speed Up Sibling and Ordering Relationship
Determinations (P-Prefix-I)
To reduce the redundancy of the prefix scheme, we separate the
prefix_labels and self_labels, remove the duplicated prefix_labels
appeared later, and give each unduplicated prefix_label a unique
index number (called P-Prefix-I).

Property 3.3 (Sibling Determination). Based on P-Prefix-I, node
u is a sibling of node v iff P-PIndexI(u). = P-PIndexI(v), where P-
PIndexI means the P-Prefix-I index.

Property 3.4 (Ordering Determination). Based on P-Prefix-I,
node u is before (after) node v in document order iff 1) P-
PIndexI(u) < (> resp) P-PIndexI(v); or 2) P-PIndexI(u) = P-
PIndexI(v) and self_label(u) < (> resp) self_label(v).

P-Prefix-I guarantees that the sibling relationship determination is
only one comparison and the ordering relationship determination
is at most two comparisons no matter how deep the XML tree is.

3.2.2 Speed Up Parent-Child Relationship
Determination (P-Prefix-II)
The main idea to determine the P-C relationship is that we store
the parent index of a node together with the index of this node
(similar to P-Containment), called P-Prefix-II. If the parent index
is built on the labels instead of the prefix_labels, the parent-child
relationship determination only needs one comparison, i.e. the
parent index of one node is equal to the index of another node.
But in that way, the sibling and ordering relationship
determinations are expensive when the XML tree is deep. Thus
based on P-Prefix-I, we build the parent index on prefix_labels.

Definition 3.1 (Second_self_label). A label is a
second_self_label if it is the self_label of a prefix_label.

Definition 3.2 (Second_prefix_label). A label is a
second_prefix_label if it is the preifx_label of a prefix_label.

Property 3.5 (P-C Determination). Node u is a parent of node v
iff P-PIndexI(u) = P-PParentIndexI(v) and self_label(u) =
second_self_label(v), where P-PParentIndexI means the parent P-
Prefix-I index.

Property 3.5 guarantees that the P-C determination is only two
comparisons no matter how deep the XML tree is and the sibling
and ordering determinations are still the same as P-Prefix-I.

3.2.3 Speed Up Ancestor-Descendant Relationship
Determination (P-Prefix-III)
To facilitate the ancestor-descendant relationship determination,
based on P-Prefix-II, we index the second_prefix_label for every
certain number depth, called P-Prefix-III index. Based on P-
Prefix-III index, we can determine the A-D relationship at a
higher level firstly, then at a lower level.

Definition 3.3 (Remainder_second_prefix_label). Suppose the
total depth of the second_prefix_label is TD and we index every
DI depth, then the remainder_second_prefix_label is the rest TD
mod DI depth of the second_prefix_label.

Property 3.6 (A-D Determination). (This property is a
procedure) Suppose the label is in sequence P-PIndicesIII
⊕ remainder_second_prefix_label ⊕ seond_self_label ⊕
self_label, where P-PIndicesIII are the P-Prefix-III indices. We
directly compare the labels of nodes u and v from left to right. If
the comparison is between an P-Prefix-III index and a label, we
get back the label based on the P-Prefix-III index and continue
the comparisons. If label(u) is a prefix of label(v), node u is an
ancestor of node v.

P-Prefix-III can determine all the four basic relationships faster.

4. PERFORMANCE STUDY
We test P-Containment and P-Prefix. P-Containment works faster
than the traditional containment scheme to determine the parent-
child and sibling relationships. P-Prefix can determine all the four
basic relationships faster even if the XML tree is deep; meanwhile
P-Prefix has smaller label size than the traditional prefix scheme.

5. CONCLUSION
In this paper, we have proposed the P-Containment and P-Prefix
schemes which can determine all the four basic relationships very
fast no matter what the XML structure is. In addition, P-Prefix
reduces the redundancies of the traditional prefix scheme. More
details of this paper can be found in [1].

6. REFERENCES
[1] C. Li and T.W. Ling. On Reducing Redundancy and

Improving Efficiency of Labeling Schemes (long version of
this paper). Available from the author, 2005.

[2] I. Tatarinov, S. Viglas, K.S. Beyer, J. Shanmugasundaram,
E.J. Shekita, and C. Zhang. Storing and querying ordered
XML using a relational database system. In Proc. of
SIGMOD, pages 204-215, 2002.

[3] C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo, and G.
Lohman. On Supporting Containment Queries in Relational
Database Management Systems. In Proc. of SIGMOD, pages
425-436, 2001.

226

