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Cooperative MIMO Interference Systems
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Abstract—This paper considers the cooperative optimization of
mutual information in the MIMO Gaussian interference channel
in a fully distributed manner via game theory. Null shaping
constraints are enforced in the design of transmit covariance
matrices to enable interference mitigation among links. The
transmit covariance matrices leading to the Nash Equilibrium
(NE) are derived, and the existence and uniqueness of the
NE is analyzed. The formation of the cooperative sets, that
represent the cooperation relationship among links, is considered
as coalition games and network formation games. We prove
that the proposed coalition formation (CF) and coalition graph
formation (CGF) algorithms are Nash-stable, and the proposed
network formation (NF) algorithm converges to a Nash Equilib-
rium. Simulation results show that the proposed CF and CGF
algorithms have significant advantages when the antennas at the
transmitters is large, and the proposed NF algorithm enhances
the sum rate of the system apparently even at low signal-to-noise
ratio region and/or with small number of transmit antennas.

Index Terms—Game theory, MIMO Interference channel,
cooperative network, rate maximization.

I. INTRODUCTION

THE multiple-input multiple-out (MIMO) interference
channel [1] is a mathematical model applicable to many

communication systems where multiple links share the same
communication medium. Two typical examples are the MIMO
cellular systems, where a user located near the cell edge
suffers the co-channel interference from the adjacent cell, and
the MIMO ad hoc network, where a transceiver pair suffers
the interference from other transceiver pairs using the same
frequency band. In this model, how to suppress/cancel the
cross link interference is crucial, since it greatly impacts the
transmission rate. Different techniques have been proposed to
counter the inter-cell interference in cellular system including
randomization [2], cancellation/rejection [3], coordinated mul-
tipoint transmission (CoMP) [4][5] and inter-cell interference
coordination/avoidance (ICIC) in frequency domain [6] and
power domain [7]. The work of interference management in
the MIMO interference channels includes design of power
levels [8][9], precoding matrix [10-16], subcarrier assignment
[17], and scheduling [18][19].

In this paper, we focus on the distributed precoding matrix
design in the MIMO interference systems. One possible way
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to deal with this problem is to employ interference align-
ment (IA) [20-22], where the transmitters coordinate so that
interfering signals are aligned and seem as originating from
a single source. However, IA-based approach requires global
channel state information (CSI), which is hard to acquire in
practice. Another avenue to deal with the problem is the game-
theoretic approach [10-17]. Scutari et al [10][11] formulated
the problem as a noncooperative game, designed an iterative
waterfilling (IWF) algorithm that was suitable for arbitrary
channel matrix to maximize the mutual information, and
analyzed the existence and uniqueness of the Nash Equilib-
rium (NE). This IWF algorithm requires no cross-link CSI
and is easy to implement, but the efficiency of the NE is
restricted due to the selfishness of the players and the lack
of interference coordination. A simple way to improve the
efficiency of NE is to introduce pricing [12] for interference
management. Interference price was injected into the sum rate
maximization objective function with minimum mean-squared
error (MMSE) receivers in [13], while the first-order Taylor
approximation of sum rate of other links was regarded as
the price in [14], and the multi-user sum rate optimization
problem was formulated as a concave game to conduct the
analysis of the existence and uniqueness of NE. Interference
coordination can also be formulated as cooperative games. A
practical suboptimal algorithm for finding the Nash Bargaining
(NB) solution in MIMO interference system was designed in
[15]. The authors of [16] designed the precoding vectors by
combining egostic and altruistic beamforming vectors, and this
idea has been shown to achieve Pareto boundary in two-player
MISO interference systems [23]. The Pareto boundary for
multi-player MIMO interference channels was characterized
in [24].

Unlike the above works, we consider a new approach of
interference coordination, where null shaping constraints are
enforced in the design of transmit covariance matrices to en-
able interference mitigation among different links. In [25], the
null shaping constraints are used in cognitive radio scenario to
limit the interference of secondary users to the primary users
unrequitedly, without cooperation among themselves. In our
work, the null shaping constraints are imposed multilaterally.
For each transceiver, there is a pair of outgoing cooperative
set and incoming cooperative set, which stands for the links
alleviating interference to this link and the links profiting from
null shaping constraints enforced on this link, respectively.

In this paper, we first formulate the cooperative multi-link
transmission with cross-link interference mitigation problem
as a strategy game by fixing the outgoing cooperative set and
incoming cooperative set. Then the solution leading to the
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NE is derived, and the uniqueness and existence of the NE is
analyzed. Thirdly, we formulate the formation of cooperative
sets as coalition games [26-28] and network formation games
[29], provide algorithms for these games, and investigate
the stability of the proposed algorithms. Simulation results
show that the game with null shaping constraints among links
improves the probability of uniqueness of the NE, compared to
the noncooperative game. The proposed coalition algorithms
and network formation algorithms achieve higher average rate
than that of the noncooperative waterfilling algorithm. The
network formation algorithm improves the sum rate of the
system significantly even at low SNR region and/or with small
number of transmit antennas.

Throughout this paper, we use upper boldface letter for
matrices and lowercase boldface for vectors. AH and A−1

refer to the conjugate transpose and Moore-Penros pseudo
inverse of a matrix A. det(A), Tr(A), ‖A‖F and ρ(A) stand
for the determinant, trace, Frobenius norm and spectral radius
of A. The rank of a matrix A is denoted as rank(A) or rA.
I represents an identity matrix. (x)+ � max(0, x).

The rest of this paper is outlined as follows. Section II
reviews the noncooperative rate maximization game in MIMO
interference systems. In Section III, we present the cooperative
multi-link MIMO transmission with transmitter null shaping,
derive the solution leading to NE, and investigate the condition
of the uniqueness and existence of the NE. In Section IV, we
model the problem of cooperative sets formation as coalition
games in partition form, coalition graph game and network for-
mation game respectively, and propose distributed algorithms
for these formulations. Simulation results are demonstrated
and analyzed in Section V. Finally, concluding remarks are
given in Section VI.

II. NONCOOPERATIVE RATE MAXIMIZATION GAME

We consider a vector Gaussian interference channel com-
prising K MIMO links that share the same physical resources.
In link q, the transmitter and receiver are equipped with nTq

and nRq antennas respectively. As shown in Fig.1, when a
transmitter sends signal to its receiver, it also causes interfer-
ence to other receivers. The transmission over link q can be
described by the baseband signal model

yq = Hqqxq +
∑
r �=q

Hrqxr + nq, (1)

where xq ∈ C
nTq×1 is the transmitted signal vector by

source q, nq ∈ C
nRq×1 is a zero-mean circularly symmetric

complex Gaussian noise vector with nonsingular covariance
matrix Rnq . Hqq ∈ C

nRq×nTq is the channel matrix of link q,
Hrq ∈ C

nRq×nTr is the cross-channel matrix between source
r and destination q. We assume that Hrq ∼ CN (0, η2rqI)

(r, q ∈ {1, 2, ..,K}) with ηrq =
√
κ/dαrq, where κ is the

path loss constant, drq is the distance between transmitter r
and receiver q, and α is the path loss exponent.

The second term in the right handside of (1),
∑
r �=q

Hrqxr,

represents the co-channel interference received by qth des-
tination. We assume that the co-channel interference from

Fig. 1. K-pair MIMO interference channel model.

other links to destination q is unknown and treated as noise.
We assume the slow fading channels, i.e., the channels are
fixed during a symbol transmission. Moreover, we assume
perfect CSI at both transmitter and receiver sides, and each
receiver can perfectly measure the covariance matrix of the
noise together with co-channel interference generated by other
links.

With the above assumption, the maximum information rate
on link q can be expressed as [1]:

Rq(Qq,Q−q) = log det(I+HH
qqR

−1
−q(Q−q)HqqQq), (2)

where Qq = E[xqx
H
q ] is the Hermitian positive semi-definite

(PSD) transmit covariance matrix of the transmitted vector xq ,
i.e. Qq � 0, and

R−q(Q−q) = Rnq +
∑
r �=q

HrqQrH
H
rq (3)

is the interference-plus-noise covariance matrix observed by
user q, Q−q � (Qr)r �=q is the set of all links’ covariance
matrices by removing the link q. The transmission of each
link is power limited, i.e.,

Tr(Qq) � Pq. (4)

Given the above setup, the problem can be formulated as a
strategic noncooperative game[10][11][30]:

(G) :
max
Qq

Rq(Qq,Q−q)

s.t. Qq ∈ Qq

∀q ∈ Ω (5)

where Ω � {1, ..,K} is the set of players (i.e., the links),
Rq(Qq,Q−q) is the payoff function of play q defined in (2),
and Qq is the set of valid strategies (the covariance matrices)
of player q, defined as

Qq � {Q ∈ C
nTq×nTq : Q � 0, Tr(Q) � Pq}. (6)

In the noncooperative game G, each player competes with
each other selfishly by choosing his strategy, the transmit
covariance matrix Qq , to maximize his own information rate
Rq(Qq,Q−q) defined in (2), subject to the average transmit
power constraint in (4). A Nash Equilibrium is reached when
each user, given the strategy profiles of others, does not get
any rate increase by unilaterally changing his own strategy
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[12]. The transmit covariance matrix leading to the NE can
be found via IWF as [10][11]:

Q�
q = Uq(μqI−D−1

q )+UH
q , (7)

where UqDqU
H
q = HH

qqR
−1
−q(Q

�
−q)Hqq is the eigenvalue de-

composition (EVD) of HH
qqR

−1
−q(Q

�
−q)Hqq , Uq is the unitary

matrix of eigenvectors, Dq is a diagonal matrix of eigenvalues,
and μq denotes the water level, which is optimized to meet
the power constraint, i.e., Tr(Q�

q) = Pq .

III. COOPERATIVE MULTI-LINK MIMO TRANSMISSION

WITH TRANSMITTER NULL SHAPING

The strength of desired signal and noise plus cross-link
interference are the two main factors affecting the transmission
rate. In the noncooperative rate maximization game G, players
choose their strategies by maximizing the useful signal power,
without considering the cross-link interference, due to which
the transmission rate is impaired. To further improve the per-
formance in MIMO interference channel system, we propose a
new rate maximization game in this paper, where null shaping
constraints are enforced in the design of transmit covariance
matrices to enable interference mitigation among links.

A. Problem Formulation

Let Cq be the incoming cooperative set of links that
eliminate co-channel interference to link q, and Nq be the
outgoing cooperative set of links that profit from null shaping
constraints imposed on link q. Assume that link q expects
to achieve nlq data streams, nlq ≤ min{nTq , nRq}, then the
outgoing cooperative set Nq should satisfy∑

r∈Nq

nRr � nTq − nlq . (8)

The constraint in (8) restricts the size of outgoing cooperative
set Nq. The more antennas deployed at the transmitter, the
more degree of freedom player q has for others. It should be
noted that, the condition in (8) could be made less restrictive
when all transmitters in Nq and transmitter q send a single
data stream to their receivers [31]. Then the condition in
(8) becomes |Nq| ≤ nTq − 1. However, this zero forcing
transmission would require rank constraints on the transmit
covariance matrices [32], which is out of the scope of this
paper and thus is not considered here.

Given the cooperative sets Cq and Nq for each player, the
maximum information rate on link q can be expressed as

Rc
q(Qq(Nq),Q−Cq ) =

log det(I+HH
qqR

−1
−Cq

(Q−Cq )HqqQq(Nq)),
(9)

where

R−Cq (Q−Cq ) = Rnq +
∑
r �∈Cq

HrqQrH
H
rq (10)

is the interference-plus-noise covariance matrix observed by
user q, Q−Cq � (Qr)r �∈Cq is the set of covariance matrices
of links that is not in Cq. Compared to (2), the source of
interferers diminishes with cost of sacrificing spatial degrees
of freedom to help others.

The valid strategies set of player q through cooperation is
defined as

Qc
q � {Q ∈ C

nTq×nTq : Q � 0,Tr(Q) � Pq,

HqrQHH
qr = 0, ∀r ∈ Nq}.

(11)

Compared to the valid strategies set of noncooperative game
in (6), additional null constraints corresponding to set Nq are
enforced in (11).

Given the rate function in (9) and the constraints in (11),
the cooperative transmission problem can be formulated as a
strategic game [30]:

(Gc) :
max
Qq

Rc
q(Qq(Nq),Q−Cq )

s.t. Qq ∈ Qc
q

∀q ∈ Ω (12)

In game Gc, the player chooses the transmit covari-
ance matrix Qq by maximizing his own information rate
Rc

q(Qq(Nq),Q−Cq ) with the null shaping constraints. Given
the cooperative sets, Gc is regarded as a noncooperative
game by definition. However, Gc is formulated to solve the
cooperative multi-link transmission problem. Hence, in our
paper, it is referred to as cooperative transmission game.

B. NE of Gc

To investigate the Nash equilibria of the proposed coopera-
tive transmission game Gc, we first introduce some notations.
Denote HqNq = [HT

ql1
, ..,HT

ql|Nq| ]
T , li ∈ Nq as the aggre-

gated channel matrix of links in set Nq . Let Π⊥
HqNq

= I −
HH

qNq
(HqNqH

H
qNq

)−1HqNq be the the orthogonal projection
onto the null space of matrix HqNq . Since matrix Π⊥

HqNq
is

Hermitian and Idempotent, we have the following eigenvalue
decomposition,

U⊥
q U

⊥H
q = Π⊥

HqNq
. (13)

where U⊥
q ∈ C

nTq×r
U⊥

q is the semi-unitary matrix orthogonal
to HqNq , with rU⊥

q
� rank(U⊥

q ) = nTq − rank(HqNq ). De-

note H̃qr = HqrU
⊥
q as the modified channel from transmitter

q to receiver r. The Nash equilibria of the proposed game Gc

is shown in the following theorem.
Theorem 1 : All the Nash equilibria of the cooperative

transmission game Gc are the solutions to the following fixed-
point equations:

Qc�
q = U⊥

q Ũq(μ̃qI− D̃−1
q )+ŨH

q U⊥H
q , ∀q ∈ Ω (14)

where ŨqD̃qŨ
H
q = H̃H

qqR
−1
−Cq

(Qc�
−Cq

)H̃qq is the eigenvalue

decomposition. Ũq is the unitary matrix of eigenvectors, D̃q

is a diagonal matrix of eigenvalues, and μ̃q denotes the water
level, which is optimized to meet the power constraint, i.e.,
Tr(Qc�

q ) = Pq .
Proof: The proof of theorem 1 is similar to [25, Th.1],

here, we outline the proof for readability. For a player q,
he does not cause interference to the links in his outgoing
cooperative set Nq, which means that Qq lies in the null space
of HqNq . Thus the best response strategy of player q in game
Gc can be expressed as

Qc
q = U⊥

q Q̃
c
qU

⊥H
q . (15)
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Since U⊥H
q U⊥

q = I, we can get Tr(Qc
q) =

Tr(U⊥
q Q̃

c
qU

⊥H
q ) = Tr(Q̃c

q), and the feasible region of Q̃c
q

is

Q̃c
q = {Q ∈ C

r
U⊥

q
×r

U⊥
q : Q � 0,Tr(Q) � Pq}. (16)

And Q̃c
q is the solution of the following optimization

problem.

max
Q̃q�0

log det(I+HH
qqR̃

−1
−Cq

(Q̃−Cq )HqqU
⊥
q Q̃qU

⊥H
q )

s.t. Q̃q ∈ Q̃c
q,

(17)
where,

R̃−Cq (Q̃−Cq ) = R−Cq(Q−Cq )

= Rnq +
∑
r �∈Cq

HrqU
⊥
r Q̃rU

⊥H
r HH

rq.
(18)

The solution of (17) is [10][11]:

Q̃c
q = Ũq(μ̃qI− D̃−1

q )+ŨH
q , ∀q ∈ Ω (19)

where ŨqD̃qŨ
H
q = U⊥H

q HH
qqR̃

−1
−Cq

(Q̃c
−Cq

)HqqU
⊥
q is the

eigenvalue decomposition. Ũq is the unitary matrix of eigen-
vectors, D̃q is a diagonal matrix of eigenvalues, and μ̃q

denotes the water level, which is optimized to meet the power
constraint.

Substituting (19) into (15), all the Nash equilibria of game
Gc are the solutions to the fixed-point equations in (14).

C. Conditions for the Existence and Uniqueness of the NE

In this subsection, we analyze the existence and uniqueness
of the NE of the cooperative transmission game Gc.

Theorem 2 (Existence): In the game Gc, there always exists
a NE, for any given cooperative sets, channel matrices and
power constraints.

Proof: In game Gc, the payoff functions is quasi-concave
and the valid strategy sets are convex compact, thus there
always exists a NE for any modified channel matrices and
power constraints [11].

To analyze the condition for the uniqueness of the NE of
the game Gc, we introduce a nonnegative matrix Sc ∈ CK×K

as follows

[Sc]qr �
{

ρ(H̃H
rqH̃

−H
qq H̃−1

qq H̃rq),

0,

if r �= q

otherwise
(20)

where H̃rq = HrqU
⊥
r is the modified channel from trans-

mitter r to receiver q. With the matrix Sc, we can obtain
sufficient conditions for the uniqueness of the NE of the
proposed cooperative transmission game Gc as shown in the
following theorem.

Theorem 3 (Uniqueness): The NE of the cooperative
transmission game Gc is unique if

ρ(Sc) < 1 (21)

The proof of Theorem 3 is similar to [11, Th.6][25,Th.1].

IV. COOPERATIVE SETS FORMATION

In the previous section, we discuss the formulation and
properties of the proposed cooperative transmission game
assume that the cooperative sets are given. However, how to
acquire the cooperative set is very important. In this section,
we formulate the cooperative set formation as coalition games
and network formation games, and design corresponding dis-
tributed algorithms.

A. Cooperative Sets Formation using Coalition Formation
Game

Given a partition Π of Ω and a coalition S ∈ Π, we denote
vq(S,Π) as the payoff that link q ∈ S can receive when acting
in coalition S with the partition Π. Consider the transmission
rate as the payoff of each player, the coalition value set, i.e.,
the mapping V , can be defined as follows:

V (S,Π) = {v(S,Π) ∈ R
|S| | vq(S,Π) = Rc

q(Qq(S),Q−S),

∀q ∈ S}. (22)

Using (22), the cooperative set formation can be modeled as
a (Ω, V ) coalition game in partition form with nontransferable
utility[26]. With such a formulation, the two cooperative sets,
Cq and Nq, are the same, i.e., Cq = Nq = S \ {q}.

In order to build a coalition formation algorithm for the
cooperative sets formation, we define the following coalition
switch rule.

Definition 1 (Coalition Switch Rule): Given a partition
Π = {S1, .., SM} of the set of links Ω, a link q decides to
leave its current coalition Sm and join another coalition Sk ∈
Π ∪ {∅}, Sk �= Sm, leading to a new partition Π′ = {Π \
{Sm, Sk}} ∪ {Sm \ {q}, Sk ∪ {q}}, if and only if,⎧⎪⎨

⎪⎩
vq(Sk ∪ {q},Π′) > vq(Sm,Π), q ∈ Sm

vr(Sk ∪ {q},Π′) � vr(Sk,Π), ∀r ∈ Sk

Sk ∪ {q} �∈ h(q), ifSk �= ∅

(23)

The first condition in (23) indicates that the payoff of player
q can be strictly improved after joining another coalition while
the second one guarantees that the payoff of players in the
new coalition will not decrease. The third constraint is used
to avoid repetitive partitions, where h(q) is the history set of
the coalitions that player q belongs to. The three conditions
are also defined as preference relation [27][33], and can be
denoted as (Sk ∪ {q},Π′) 
q (Sm,Π) for simplicity.

Based on the coalition switch rule, we present a coalition
formation (CF) algorithm which consists of three phases:
neighbor discovery, coalition formation, and MIMO transmis-
sion with transmitter null shaping.

In Phase 1, each player discovers its strongest interferers.
Denote prq as the average signal/interference power received
by player q from transmitter r . For player q, if prq/pqq > α,
he will add this link in his possible incoming cooperative set
C̃q .

In Phase 2, players investigate the possibility of coalition
switch by pairwise negotiation with the neighbors detected
in Phase 1. We assume that players perform coalition switch
distributedly and sequentially with random orders. The effect
of different orders on the performance will be discussed
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in section V. For simplicity, a player only investigates the
one including his strongest interferer instead of all possible
coalitions. A procedure of coalition formation is described as
follow.

For a player q, we denote Sq as his coalition member set,
Sq = Sm \ {q}, q ∈ Sm.

1. Player q checks whether his possible incoming coopera-
tive set C̃q and coalition member set Sq are the same. If not,
he will find the strongest interferer in the set C̃q \Sq, denoted
as πq . Then an INQUIRE request is sent to this interferer.

2. After player πq receives the request, he will send his
coalition information (Sk = πq∪Sπq ) to player q, and forward
the INQUIRE request to other members in Sk.

3. Player q gets the information of target coalition, and
checks the third condition in (23), i.e., Sk ∪ {q} �∈ h(q). If it
is satisfied, he will estimate his payoff in (22) assuming that
a new partition Π′ = {Π \ {Sm, Sk}}∪ {Sm \ {q}, Sk ∪ {q}}
is constructed. This indicates that set Sq stops interference
cancelling to link q, and players in Sk start to perform
null shaping to him. To do this, player q needs to ac-
quire the channel matrices {Hqr}r∈Sk

for generating U⊥
q ,

and estimates the interference-plus-noise covariance matrix
R−Sk∪{q}(Q−Sk∪{q}). If vq(Sk ∪ {q},Π′) > vq(Sm,Π),
player q will send members in Sk a JOIN request. In the
meantime, each player r ∈ Sk calculates his payoff in
(22) assuming that a new coalition Sk ∪ {q} is formed. If
vr(Sk∪{q},Π′) � vr(Sk,Π), he will send player q and other
members in Sk an AGREE message.

4. if player q receives all the AGREE messages from
members in the target coalition, he will update his coalition
member set Sq = Sk. And If |Sm| > 1, he will send a
DEVIATE request to players in Sq, and update his history
h(q) = h(q) ∪ {Sm}. Meantime, if player r ∈ Sk receives
the JOIN request from player q and all the AGREE message
from other players in Sk, he will update his coalition member
set Sr = Sr ∪ {q}. A new partition Π′ = {Π \ {Sm, Sk}} ∪
{Sm \ {q}, Sk ∪ {q}} is generated. Denote Sq,l as the last
history of coalition put into set h(q), Phase 2 ends until
|vq(Sq ∪ {q}) − vq(Sq,l)| < η, ∀q ∈ Ω. η is the threshold
for determining convergence.

In Phase 3, players transmit data cooperatively in MIMO
interference channel, imposing null shaping constraints formed
in Phase 2 on the transmitters. There may be multiple NEs.
In such cases, we do not search all the NEs and find the
best one. Instead, we stop Phase 3 once a NE is found for
simplicity, due to which the achieved NE may depend on the
initial conditions of the algorithm. Denote ηN as the maximal
number of iterations. If no NE is found within ηN iterations,
Phase 3 stops and each player chooses the strategy in the last
iteration.

The proposed coalition formation algorithm is guaranteed
to converge as shown in the following theorem.

Theorem 4: The proposed coalition formation algorithm
always converges with any initial partition.

Proof: Since the total number of the partitions is finite
and the third condition in (23) rules out repetitive deviations,
the proposed coalition formation algorithm is guaranteed to
converges regardless the initial partition.

The stability of the partition generated from the proposed

Algorithm 1
The proposed CF algorithm
Initial State

At the beginning, the network starts with singleton, where
the network is noncooperative, Πinit = {{1}, .., {K}}.
and the coalition member set Sq = ∅, ∀q ∈ Ω.

Phase 1 Neighbor Discovery:
Each player detects its strongest interferers and constructs
its possible incoming cooperative set,
C̃q = {r | prq/pqq > α}

Phase 2 Coalition Formation:
repeat

For a player q ∈ Ω,
Sm = Sq ∪ {q}.
if C̃q �= Sq ,

1) finds the strongest interferer
πq = argmax{r∈C̃q\Sq} prq,

and sends an INQUIRE request to player πq .
2) Player πq sends coalition information Sk = Sπq ∪ {πq}

to player q, and forwards the INQUIRE request to other
members in Sk.

3) Player q gets the information of Sk, and
if Sk ∪ {q} �∈ h(q),

calculates payoff in (22), based on a new partition
Π′ = {Π \ {Sm, Sk}} ∪ {Sm \ {q}, Sk ∪ {q}}.
If vq(Sk ∪ {q},Π′) > vq(Sm,Π),

player q sends members in Sk a JOIN request.
end

end
For each player r ∈ Sk calculates his payoff in (22),
based on a new coalition Sk ∪ {q}.
if vr(Sk ∪ {q},Π′) � vr(Sk,Π),

sends player q and other members in Sk

an AGREE message.
end

4) If player q receives all the AGREE messages from
members in the target coalition,
a) Sq = Sk.
b) If |Sm| > 1,

sends a DEVIATE request to players in Sq ,
and h(q) = h(q) ∪ {Sm}.

If player r ∈ Sk receives the JOIN request from
player q and all the AGREE message from
other players in Sk,
Sr = Sr ∪ {q}.

end
until |vq(Sq ∪ {q}) − vq(Sq,l)| < η, ∀q ∈ Ω.

{Nq} = {Cq} = {Sq}
Phase 3 MIMO Transmission with Transmitter Null
Shaping:

Transmit covariance matrices are designed by the
game Gc with the cooperative sets {Nq} and {Cq}
formed in Phase 2.
Stops once a NE is found or the number of iterations
reaches ηN .

coalition formation algorithm can be evaluated using the
concept of Nash-stable [27][33].

Definition 2: A partition Π = {S1, .., SM} is Nash-stable, if
∀q ∈ Ω, q ∈ Sm, Sm ∈ Π, we have (Sm,Π) �q (Sk∪{q},Π′)
for all Sk ∈ Π∪{∅} with Π′ = Π\{Sm, Sk}∪{Sm\{q}, Sk∪
{q}}.

From the above definition, we can see that a partition is
Nash-stable if no player has the incentive to deviate from
its current coalition to join another coalition or to act non-
cooperatively by forming an individual coalition. Since our
coalition formation algorithm is based on the coalition switch
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rule, it is easy to show that the resulting partition is Nash-
stable.

Proposition 1: The partition derived by the proposed coali-
tion formation algorithm is Nash-stable.

B. Cooperative Sets Formation using Coalition Graph Game

In the previous subsection, we discuss cooperative sets for-
mation using coalition formation game and propose a coalition
formation (CF) algorithm. In the proposed CF algorithm, we
assume that any two players in a coalition help each other,
i.e., the cross-link interference between any two players in a
coalition is mitigated. The outgoing/incoming cooperative set
of a player can be represented by all members of the coalition
without any structure among members. In this subsection, we
will formulate the cooperative sets formation problem as a
coalition graph formation game and propose a coalition graph
formation (CGF) algorithm. In the proposed CGF algorithm,
whether the cross-link interference between two players in
a coalition is canceled or not depends on the connectivity
between these two players. The cooperative sets of a player is
revealed by the graph structure of members in the coalition.

We first introduce some basic concepts of coalition graph
game. A coalition graph G(S) is defined as a pair (S,A(S)),
where S is a non-empty finite set of vertices, and A(S) is a
collection of undirected arcs of the graph. Denote (q, r) as the
edge between vertex q and vertex r, and the adjacent-vertex set
of vertex q in the graph G(S) is denoted as vtx(G(S), q) =
{r ∈ S|(q, r) ∈ A(S), q ∈ S, r �= q}. The set of possible
edges between vertex q and the vertices in a coalition S is
defined as Ā(S, q) = {(q, r)|r ∈ S, q �∈ S}.

Given a partition Π of Ω, a coalition S ∈ Π and a graph
G(S) = (S,A(S)), we denote vq(G(S),Π) as the payoff that
link q ∈ S can receive when acting in coalition graph G(S)
with the partition Π. Consider the transmission rate as the
payoff of each player, the coalition value set, i.e., the mapping
V , can be defined as follows:

V (G(S),Π) = {v(G(S),Π) ∈ R
|S|} (24)

where ∀q ∈ S, vq(G(S),Π) is given by

vq(G(S),Π) = Rc
q(Qq(vtx(G(S), q)),Q−vtx(G(S),q)) (25)

Using (24), the cooperative set formation can be modeled
as a (Ω, A(Ω), V ) coalition graph game [26] in partition form
with nontransferable utility. With such a formulation, the two
cooperative sets, Cq and Nq , are the same, i.e., Cq = Nq =
vtx(G(S), q).

In order to present a coalition graph formation algorithm
for the cooperative sets formation, we define the following
coalition graph switch rule.

Definition 3 (Coalition Graph Switch Rule): Given a
partition Π = {S1, .., SM} and the corresponding coalition
graph G(Π) = {G(S1), .., G(SM )}, a link q decides to
leave its current coalition Sm, and join another coalition
Sk ∈ Π ∪ {∅}, leading to a new partition Π′ = {Π \
{Sm, Sk}}∪{Sm\{q}, Sk∪{q}} and its corresponding graph

G(Π′), if and only if,⎧⎪⎨
⎪⎩

vq(G(Sk) ∪ Ā�(Sk, q),Π
′) > vq(G(Sm),Π), q ∈ Sm

vr(G(Sk) ∪ Ā�(Sk, q),Π
′) � vr(G(Sk),Π), ∀r ∈ Sk

G(Sk) ∪ Ā�(Sk, q) �∈ h(q), ifSk �= ∅

(26)
where,

Ā�(Sk, q),Π
′) = arg max

ā⊆Ā(Sk,q)
vq(G(Sk) ∪ ā,Π′). (27)

The first condition in (26) indicates that the payoff of player
q can be strictly improved after removing edges in current
coalition and building new edges to another coalition while
the second one guarantees the payoff of players in the new
coalition will not decrease. The third constraint is used to
avoid repetitive partitions. The three conditions in (26) is also
called preference relation, and can be denoted as (G(Sk ∪
{q}),Π′) 
q (G(Sm),Π) for simplicity.

Based on the coalition graph switch rule, we propose a
coalition graph formation (CGF) algorithm composed of three
phases: neighbor discovery, coalition graph formation, and
MIMO transmission with transmitter null shaping.

In Phase 1, each player discovers its strongest interferers.
For player q, if prq/pqq > α, he will add this link in his
possible incoming cooperative set C̃q.

In Phase 2, players investigate the possibility of coalition
graph switch by pairwise negotiation with the neighbors
detected in Phase 1. A procedure of coalition graph formation
is described as follow.

For a player q, Sm = Sq ∪ {q}.
1. He checks whether his possible incoming cooperative set

C̃q and coalition member set Sq are the same. If not, he will
find the strongest interferer πq in the set C̃q \ Sq . Then an
INQUIRE request is sent to this interferer.

2. After player πq receives the request, he will send his
coalition information (Sk = πq ∪ Sπq ) to player q.

3. Player q gets the information of target coalition, and
determines the best edge set Ā�(Sk, q). If G(Sk)∪Ā�(Sk, q) �∈
h(q), player q will estimate his payoff in (25) assuming
that a new coalition graph G(Sk) ∪ Ā�(Sk, q) is constructed.
This indicates that set vtx(G(Sm), q) stops interference can-
celling to link q, and players in vtx(Ā�(Sk, q), q) start to
perform null shaping to him. To do this, player q needs to
acquire the channel matrices {Hqr}r∈vtx(Ā�(Sk,q),q) for gener-
ating U⊥

q , and estimates the interference-plus-noise covariance
matrix R−vtx(Ā�(Sk,q),q)(Q−vtx(Ā�(Sk,q),q)). If vq(G(Sk) ∪
Ā�(Sk, q),Π

′) > vq(G(Sm),Π), a JOIN request is sent to
members in Sk, and a CONNECT request is sent to players
in vtx(Ā�(Sk, q), q).

4. Each player r ∈ Sk determines the new coalition graph
G(Sk)∪ Ā�(Sk, q) corresponding to the received CONNECT
request, and calculates his payoff in (25) based on the new
graph. If vr(G(Sk) ∪ Ā�(Sk, q),Π

′) � vr(G(Sk),Π), he will
send player q and other members in Sk an AGREE message.

5. If player q receives all the AGREE messages from mem-
bers in the target coalition, he will update his coalition member
set Sq = Sk, and adjacent-vertex set vtx(G(Sk ∪ {q}), q) =
vtx(Ā�(Sk, q), q). And If |Sm| > 1, he will send a DEVIATE
request to players in Sq , and update his history h(q) = h(q)∪
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{G(Sm)}. Meantime, if player r ∈ Sk receives all the AGREE
message from other players in Sk, he will update his coalition
member set Sr = Sr ∪ {q}, and if the CONNECT request
from player q is received in step 4, he will update his adjacent-
vertex set vtx(G(Sk ∪{q}), r) = vtx(G(Sk), r)∪{q}. A new
partition Π′ = {Π\ {Sm, Sk}}∪{Sm \ {q}, Sk ∪{q}} and its
corresponding graph G(Π′) are generated. Denote Gq,l as the
last history of coalition graph put into set h(q), Phase 2 ends
until |vq(G(Sq ∪ {q}))− vq(Gq,l)| < η, ∀q ∈ Ω.

In Phase 3, players transmit data cooperatively in MIMO
interference channel, imposing null shaping constraints formed
in Phase 2 on the transmitters. There may be multiple NEs.
In such cases, we do not search all the NEs and find the
best one. Instead, we stop Phase 3 once a NE is found for
simplicity, due to which the achieved NE may depend on the
initial conditions of the algorithm. If no NE is found within ηN
iterations, Phase 3 stops and each player chooses the strategy
in the last iteration.

The proposed coalition graph formation algorithm is guar-
anteed to converge as shown in the following theorem:

Theorem 5: The proposed coalition graph formation algo-
rithm always converges with any initial partition.

Proof: Since the total number of coalition graphs is
finite and the third condition in (26) rules out repetitive
deviations, the proposed coalition graph formation algorithm
is guaranteed to converges regardless the initial partition.

The stability of the coalition graph generated from the
proposed coalition graph formation algorithm can be evaluated
using the expanding concept of Nash-stable.

Definition 4: A coalition graph G(Π) = {G(S1), .., (SM )}
is Nash-stable, if ∀q ∈ Ω, q ∈ Sm, G(Sm) ∈ G(Π), we have
(G(Sm),Π) �q (G(Sk) ∪ Ā(Sk, q),Π

′) for all Sk ∈ Π ∪ {∅}
with Π′ = Π\{Sm, Sk}∪{Sm \{q}, Sk∪{q}} and G(Π′) =
G(Π)\{G(Sm), G(Sk)}∪{G(Sm)\A(Sm, q), Sk∪Ā(Sk, q)}.

From the above definition, we can see that a coalition graph
is Nash-stable if no player has the incentive to remove edges in
its current coalition and build new edges in another coalition
or to act non-cooperatively by forming an individual coalition.

Proposition 2: The graph derived by the proposed coalition
graph formation algorithm is Nash-stable.

Proof: If the coalition graph G(Πf ) resulting from the
proposed algorithm is not Nash-stable then ∃q ∈ Ω with q ∈
Sm, G(Sm) ∈ G(Πf ), and a coalition graph G(Sk) ∈ G(Πf )
such that (G(Sk)∪Ā(Sk, r),Π

′) 
q (G(Sm),Πf ), and player
q has the incentive to perform a graph switch operation, and
this contradicts with the assumption that Πf is the result of the
convergence of the proposed algorithm. Hence, any coalition
graph achieved by the proposed coalition graph formation
algorithm is Nash-stable.

C. Cooperative Sets Formation using Network Formation
Game

In the above two subsections, we discuss cooperative sets
formation using coalition formation game and coalition graph
formation game. In these two coalition games, players in one
coalition are balanced, i.e., if player q helps player r, r �= q,
player r will also help player q. But in some cases, helps
can be nonreciprocal. In this subsection, we formulate the

Algorithm 2
The proposed CGF algorithm
Initial State

At the beginning, the network starts with singleton, where
the network is noncooperative,
Πinit = {{1}, .., {K}},
G(Πinit) = {({q}, ∅)|∀q ∈ Ω},
∀q ∈ Ω, Sq = ∅, vtx(G({q}, ∅), q) = ∅.

Phase 1 Neighbor Discovery:
Each player detects its strongest interferers and constructs
its possible incoming cooperative set,
C̃q = {r | prq/pqq > α}

Phase 2 Coalition Graph Formation:
repeat

For a player q ∈ Ω,
Sm = Sq ∪ {q}.
if C̃q �= Sq ,

1) finds the strongest interferer
πq = argmax{r∈C̃q\Sq} prq ,

and sends an INQUIRE request to player πq .
2) Player πq sends coalition information

Sk = Sπq ∪ {πq} to player q
3) Player q gets the information of Sk, and determines

the best edge set,
Ā�(Sk, q),Π

′) = argmaxā⊆Ā(Sk,q)
vq(G(Sk) ∪ ā,Π′).

if G(Sk) ∪ Ā�(Sk, q) �∈ h(q),
calculates payoff in (25), based on a new coalition
graph G(Sk) ∪ Ā�(Sk, q).
If vq(G(Sk) ∪ Ā�(Sk, q),Π

′) > vq(G(Sm),Π),
a) A JOIN request is sent to members in Sk,
b) A CONNECT request is sent to players

in vtx(Ā�(Sk, q), q).
end

end
4) Each player r ∈ Sk determines the new coalition graph

G(Sk) ∪ Ā�(Sk, q), and calculates his payoff in (25).
If vr(G(Sk) ∪ Ā�(Sk, q),Π

′) � vr(G(Sk),Π),
sends player q and other members in Sk

an AGREE message.
end

5) If player q receives all the AGREE messages from
members in the target coalition,
a) Sq = Sk.
b) vtx(G(Sk ∪ {q}), q) = vtx(Ā�(Sk, q), q)
c) If |Sm| > 1,

sends a DEVIATE request to players in Sq ,
and h(q) = h(q) ∪ {G(Sm)}.

If player r ∈ Sk receives all the AGREE message from
other players in Sk,

Sr = Sr ∪ {q}.
If CONNECT request from player q is received
in step 4,

vtx(G(Sk ∪ {q}), r) = vtx(G(Sk), r) ∪ {q}.
end

end
until |vq(G(Sq ∪ {q})) − vq(Gq,l)| < η, ∀q ∈ Ω.
{Nq} = {Cq} = {vtx(G(Sm), q)|∀q ∈ Ω, q ∈ Sm}

Phase 3 MIMO Transmission with Transmitter Null
Shaping:

Transmit covariance matrices are designed by the
game Gc with the cooperative sets {Nq} and {Cq}
formed in Phase 2.
Stops once a NE is found or the number of iterations
reaches ηN .

cooperative sets formation problem as a network formation
game, and use directed graph to embody the cooperations
among players.
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We first introduce some basic concepts of network forma-
tion game. A directed graph GD(S) is defined to be a pair
(S,AD), where S is a non-empty finite set of vertices, and
AD is a collection of directed arcs of the graph. Let aqr be
a directed arc from vertex q to vertex r. The set of incoming
arcs of vertex q is defined as Ain

q = {arq ∈ AD|r ∈ S, q ∈
S}, and the set of outgoing arcs of vertex q is defined as
Aout

q = {aqr ∈ AD|r ∈ S, q ∈ S}. Denote AD
q = Ain

q ∪ Aout
q

as the directed arcs of vertex q. The set of vertices that are
origins/destinations of the incoming/outgoing arcs of vertex q
is denoted as vtx(Ain

q ) and vtx(Aout
q ) respectively.

The set of possible outgoing arcs from vertex q to other
vertices is denoted as Āout

q = {aqr|r ∈ S, q ∈ S}, while the
set of possible incoming arcs from other vertices to vertex q is
denoted as Āin

q = {arq|r ∈ S, q ∈ S}. The set of all possible
directed arcs between vertex q and other vertices is denoted
as ĀD

q = Āin
q ∪ Āout

q .
Given a directed graph GD = (Ω, AD), we denote vq(G

D)
as the payoff that player q ∈ Ω can receive when graph GD

is in place. Consider the transmission rate of each link as the
payoff of each player, the value set, i.e., the mapping V , can
be defined as follows:

V (GD) = {v(GD) ∈ R
|Ω|} (28)

where ∀q ∈ Ω, vq(AD) is given by

vq(A
D) = Rc

q

(
Qq(vtx(A

out
q )),Q−vtx(Ain

q )

)
(29)

Using (28), the cooperative set formation can be modeled
as a (Ω, AD, V ) network formation game. With such a for-
mulation, the outgoing cooperative set Nq = vtx(Aout

q ), and
the incoming cooperative set Cq = vtx(Ain

q ).
In order to present a network formation algorithm, we

borrow the concept of potential function from [34]: An exact
potential function φ is a function that maps every strategy
vector s = (s1, s2, .., sM ) to some real value and satisfies
the following conditions: If s′q �= sq is an alternate strategy
for player q, and s′ = (s−q, s

′
q), then φ(s) − φ(s′) =

vq(s)− vq(s
′).

This definition implies that each player’s individual interest
is aligned with the group’s interest, since each change in the
utility function of each player directly represents the same
change in the potential function. If players act sequentially,
and choose best response strategies or at least improve their
utilities (better response strategies), given the most recent
actions of the other players, then the game will converge to a
NE regardless of the order of players and the initial condition
of the game [34].

Define the potential function φq as

φq(A
′D
q , A′D

−q) = vq(A
′D
q , A′D

−q)

−
∑
r �=q

(
vr(A

D
q , AD

−q)− vr(A
′D
q , A′D

−q)
)
. (30)

This expression reflects the intention to maximize the
player’s own payoff, but subtracting the potential negative
effect over other players. Using the potential function in (30),
we define the following network switch rule for cooperative
sets formation.

Definition 5 (Network Switch Rule): Given a directed arc
set AD , a player q decides to remove his current arcs AD

q

and build new arcs Ā′D
q , leading to a new arc set A′D =

AD \AD
q ∪ Ā′D

q , if and only if,⎧⎪⎨
⎪⎩

vq(A
′D
q , A′D

−q) > vq(A
D
q , AD

−q)

φq(A
′D
q , A′D

−q) ≥ vq(A
D
q , AD

−q)

Ā′D
q �∈ h(q), ifA′D

q �= ∅

(31)

The first condition in (31) indicates that the payoff of player
q can be strictly improved after removing current arcs and
building arcs, and the second one guarantees the sum payoff
of all players in the new directed graph will also increase. The
third constraint is used to avoid repetitive switches. The three
conditions in (31) is also called preference relation, and can
be denoted as (A′D) 
q (A

D) for simplicity.
Now, we propose a network formation (NF) algorithm

composed of three phases: neighbor discovery, network for-
mation with potential function, and MIMO transmission with
transmitter null shaping.

In Phase 1, each player discovers its strongest interferers.
For player q, if prq/pqq > α, he will add this link in his
possible incoming cooperative set C̃q.

In Phase 2, players investigate the possibility of network
switch. A procedure of network formation is described as
follow.

Player q determines the best incoming arc set from the
possible incoming cooperative set C̃q,

Āin,�
q = argmax

ā⊆C̃q

vq(A
D \Ain

q ∪ ā). (32)

To calculate the new payoff, player q should be able
to estimate the interference-plus-noise covariance matrix
R−vtx(ā,q)(Q−vtx(ā,q)).

If Āin,�
q �= Ain

q and Āin,�
q �∈ h(q),

1. An INQUIRE request is sent to players in set vtx(Āin,�
q ).

2. After receiving the INQUIRE request, player r ∈
vtx(Āin,�

q ) acquires the channel matrices Hrq, and generates
the new U⊥

r assuming that Aout
r = Aout

r ∪ {arq}. The
difference of his payoff

�vr = vr(A
D
q \Ain

q ∪ Āin,�
q )− vr(A

D), (33)

is estimated and sent back to player q.
3. Player q estimates his potential function,

φq(A
D
q \Ain

q ∪Āin,�
q ) = vq(A

D
q \Ain

q ∪Āin,�
q )+

∑
r∈vtx(Āin,�

q )

�vr.

(34)
If φq(A

D
q \ Ain

q ∪ Āin,�
q ) > vq(A

D), player q will update
his incoming adjacent vertex set vtx(Ain

q ) = vtx(Āin,�
q ), and

history set h(q) = h(q) ∪ AD. A CONFIRMED message is
sent to players in set vtx(Āin,�

q ).
4. For a player r ∈ vtx(Āin,�

q ), If the CONFIRMED
message is received, he will update his outgoing adjacent
vertex set, vtx(Aout

r ) = vtx(Aout
r ) ∪ {q}. Hence, a new

directed graph (Ω, AD
q \ Ain

q ∪ Āin,�
q ) is generated. Denote

AD,l
q as the last history of directed arc set of player q put

into set h(q), Phase 2 ends until |vq(AD
q ) − vq(A

D,l
q )| < η,

∀q ∈ Ω.
In Phase 3, players transmit data cooperatively in MIMO

interference channel, imposing null shaping constraints formed
in Phase 2 on the transmitters. There may be multiple NEs.
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Algorithm 3
The proposed NF algorithm
Initial State

At the beginning, the network starts with noncooperative
state, AD

init = ∅,
{vtx(Ain

q )} = {∅}, {vtx(Aout
q )} = {∅}

Phase 1 Neighbor Discovery:
Each player detects its strongest interferers and constructs
its possible incoming cooperative set,
C̃q = {r | prq/pqq > α}

Phase 2 Network Formation:
repeat

For a player q ∈ Ω, determines the best incoming arc set,
Āin,�

q = argmaxā⊆C̃q
vq(A

D \ Ain
q ∪ ā)

If Āin,�
q �= Ain

q and Āin,�
q �∈ h(q),

1) an INQUIRE request is sent to players in set
vtx(Āin,�

q ).
2) Player r ∈ vtx(Āin,�

q ) estimates his payoff
assume that Aout

r = Aout
r ∪ {arq}, and sends the

payoff difference �vr to player q.
3) Player q estimates his potential function in (34),

If φq(A
D
q \Ain

q ∪ Āin,�
q ) > vq(A

D),
a) vtx(Ain

q ) = vtx(Āin,�
q ),

b) h(q) = h(q) ∪ AD.
c) A CONFIRMED message is sent to players

in set vtx(Āin,�
q ).

end
4) For a player r ∈ vtx(Āin,�

q ),
If the CONFIRMED message is received,

vtx(Aout
r ) = vtx(Aout

r ) ∪ {q}
end

end
until |vq(AD

q )− vq(A
D,l
q )| < η, ∀q ∈ Ω.

{Nq} = {vtx(Aout
q )}, {Cq} = {vtx(Ain

q )}.
Phase 3 MIMO Transmission with Transmitter Null
Shaping:

Transmit covariance matrices are designed by the
game Gc with the cooperative sets {Nq} and {Cq}
formed in Phase 2.
Stops once a NE is found or the number of iterations
reaches ηN .

In such cases, we do not search all the NEs and find the
best one. Instead, we stop Phase 3 once a NE is found for
simplicity, due to which the achieved NE may depend on the
initial conditions of the algorithm. If no NE is found within ηN
iterations, Phase 3 stops and each player chooses the strategy
in the last iteration.

Theorem 6: The proposed network formation algorithm is
stable and always converges to a pure Nash Equilibrium with
any initial graph and operation order.

Proof: According to the conclusion of potential game
in [29, Th 19.11-19.12], the proposed network formation
algorithm converges to a pure NE, since the sum rate of
all players is improved in every step. This NE is a directed
graph which represents the cooperative sets of each player. The
algorithm is stable, due to the monotone convergence property.

V. SIMULATION RESULTS AND ANALYSIS

For simulation, we consider a MIMO mutil-cell cellular
network, consisting seven hexagonal cells, with full frequency
reuse. In each cell, there is one user equipment (UE) being
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Fig. 2. Snapshot of cooperative sets formation resulting from the proposed
CF, CGF and NF algorithms with (nTq , nRq ) = (6, 2), nlq = 2, d = 0.8

and P/σ2 = 10dB.

served by the base station (BS) on a given transmission
resource unit. Each UE is randomly distributed with the nor-
malized distance d ∈ [0.2, 1) to its serving BS. The distance
between two adjacent BS is 1km. The elements of the channel
matrix Hrq are generated as circularly symmetric complex

Gaussian variable. Hrq ∼ CN (0, η2rqI), with ηrq =
√
1/dαrq,

and the path loss exponent α = 3.
In this section, we evaluate the performance of different

algorithms through simulations. Specifically, we will evaluate
the uniqueness of the NE of noncooperative rate maximization
game G and cooperative transmission game Gc. Then we will
discuss the influence of the number of transmit antennas and
the strength of cross-link interference on different algorithms,
and show the effect on average size of outgoing cooperative
set |Nq|, computational complexity and average rate. Finally,
we will illustrate the influence of SNR levels and different
order on the transmission rate.

In Fig. 2, we randomly deploy the users with the normalized
distance d = 0.8, the number of transmit/receiver antennas of
each link is (nTq , nRq ) = (6, 2), the expected number of data
streams nlq = 2, and P/σ2 = 10dB. Fig. 2 shows the features
of the proposed CF, CGF and NF algorithms. The cooperative
sets generated from the proposed coalition algorithms are
equivalent to undirected graphs, while the result achieved from
the proposed NF algorithm is a directed graph. The solution
space of CF algorithm is a subset of that of CGF algorithm.
Grand cooperative graph (GCG) represents the altruistic co-
operation, where each player helps as many links as possible
once condition (8) is satisfied, i.e., |Nq| = (nTq − nlq )/nRr .
In the case of (nTq , nRq ) = (6, 2) and nlq = 2, |Nq| = 2.

Table 1 displays the transmission rates of each players using
different algorithms. The proposed CF algorithm achieves
higher average rate than that of noncooperative IWF algo-
rithm described in section II, since interference mitigation are
performed in coalitions. For example, the transmission rates
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TABLE I
LINK RATE TABLE

Algorithm NF GCG CGF CF IWF
Link1 4.3495 3.8666 3.8625 3.3508 3.5538
Link2 3.7873 4.0089 4.1751 3.6261 3.3242
Link3 3.3529 3.2130 3.4927 3.4678 1.6417
Link4 4.7973 5.8439 3.5411 3.6356 3.7098
Link5 3.5474 2.9140 2.6905 2.7813 2.8444
Link6 2.7160 2.8621 3.5497 3.5446 2.9776
Link7 4.8720 4.3866 5.5889 5.6512 4.3218

Rate Per Link 3.9175 3.8707 3.8429 3.7225 3.1962
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Fig. 3. Probability of uniqueness of the NE of G and Gc with grand
cooperative graph, (nTq , nRq ) = {(4, 2), (6, 2), (8, 2)}, nlq = 2, and
P/σ2 = 5dB.

of players in coalitions {2, 3} and {6, 7} are higher than the
rates when they act noncooperative. The proposed CGF further
improves CF by optimizing the cooperative structure in the
coalitions. For instance, the coalition graph {{6, 7}, {1, 7}}
has higher sum rate than the structure {6, 7}∪ {1} does. The
proposed NF algorithm is the best of these algorithms, because
it breaks through the limitation of reciprocal cooperation, and
expands the optimization dimensions. For example, player 1,
4, 5 are more suitable to get unreciprocal helps from their
neighbors.

In Fig. 3, we compare the probability of the uniqueness
of the NE of noncooperative rate maximization game G
and cooperative transmission game Gc. Here, we use the
probability of sufficient condition in Theorem 3 being satisfied
to indirectly show the probability of the uniqueness of the NE.
We simulate different numbers of the transmit/receiver anten-
nas (nTq , nRq ) = {(4, 2), (6, 2), (8, 2)}, the expected number
of data streams nlq = 2, and P/σ2 = 5dB. Here, we use
the simplest GCG to represent the cooperative transmission
game. As shown in Fig. 3, the probability of uniqueness of
the NE of both games G and Gc with GCG decreases as
the distance between UE and BS increases, corresponding
to an increase of inter-cell interference. This confirms to the
definition of matrix S in (20) and the sufficient condition for
the uniqueness of the NE given in Theorem 3. Fig. 2 also
shows that, increasing the antennas at the transmitter side leads
to a grow of uniqueness. The game Gc with GCG has higher
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Fig. 4. Average size of set Nq of CF, CGF, NF, GCG and Opt algorithms with
regard to d (inter-cell interference). (nTq , nRq ) = {(8, 2), (4, 2)}, nlq = 2,
and P/σ2 = 5dB.

TABLE II

Algorithm CF CGF NF Opt
Payoff-Re-Calculation/Player 7.9 13 5×102 2×104

Convergence Steps/Player 4.6 4.8 12.6 2×104

Convergence Time 2.6s 3.4s 7.1s 46.7min

probability of uniqueness of NE, compared to the game G,
since the power of interference channels are weakened due to
cross-link cooperation. The probability difference grows with
the number of antennas at the transmitter, since more spatial
degrees of freedom are available for interference mitigation.

In Fig. 4-6, we simulate the influence of strength of inter-
cell interference to the proposed CF, CGF, NF algorithms
and optimization approach (Opt). Here, the Opt algorithm is
based on the proposed NF algorithm with exhaustive search.
The results are averaged over random positions of UEs with
the normalized distance d varying form 0.6 to 1, and random
realization of the channel matrix. P/σ2 = 5dB.

The size of Nq of different algorithms are compared in
Fig.4. The parameter |Nq| represents the number of links a
player helps in the MIMO interference systems. From Fig.4,
we can see that that all algorithms start the cooperation when
d = 0.66. For d < 0.66, a user may not suffer strong
interference from its neighboring BS. |Nq| of GCG scheme
is largest, since it is the most altruistic scheme of all the
algorithms. |Nq| of Opt is slightly smaller than that of the
NF when nTq = 8, and nTq = 4 with d < 0.77, and
larger than that of the NF when nTq=4 with d > 0.77.
In the (nTq , nRq ) = (8, 2) case, when d > 0.77, |Nq|
of GCG is larger than 1, which means that the average
number of links requiring interference cancellation is larger
than the maximum |Nq| of the (nTq , nRq ) = (4, 2) case.
This implies that, compared to the NF algorithm, the Opt
approach leads to a smaller |Nq| when the strong interference
leakage can be fully cancelled by the transmitter, and a larger
|Nq| when the transmitter cannot handle all the significant
interference leakage to other links. The proposed CF and CGF
algorithms have almost the same |Nq|. The |Nq| of CF/CGF
is much smaller than other cooperative algorithms, since the
requirement of reciprocality restricts the cooperation among
links. |Nq| of CGF is slightly larger than that of CF when
(nTq , nRq ) = (8, 2), due to the flexibility introduced in the
coalition.
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In Table II, we illustrate the computational complexity and
convergence time of different algorithms when nTq = 8,
d = 0.9, η = 10−4, and the time for message exchange
among BSs is 20ms. Since a player investigates possible
cooperation switch by re-calculating his payoff, we use the
number of times of Payoff-Re-Calculation per player as a
measure of computational complexity. We also measure the
number of times that Phase 2 is run and denote it as the
number of convergence step. From Table II, we can see that the
computational complexity of the Opt algorithm that performs
full search is too high to be used in practice. On the other
hand, the convergence time of the proposed CF, CGF and
NF algorithms are reasonable and applicable to slow mobile
system.

In Fig.5, we compare the average transmission rate of the
proposed CF, CGF and NF algorithms with the noncooperative

IWF, GCG and Opt. As seen from Fig.5, the average trans-
mission rate of all algorithms generally decrease as users are
away from their serving BSs. There is an apparent rise around
d = 0.66 for some algorithms, since cross-link cooperation
begins, which corresponds to the result of Fig.4. According
to Table II, the complexity of NF algorithm is much less than
the Opt, but the transmission rate of NF is close to that of
Opt. For the CF, CGF and GCG algorithms, advantages over
the noncooperative IWF are shown only when nTq = 8.

In the proposed CF algorithm, we assume that any two
players in a coalition help each other, i.e., the cross-link inter-
ference between any two players in a coalition is mitigated.
The outgoing/incoming cooperative set of a player can be
represented by the coalition that the player belongs to directly.
In this subsection, we will formulate the cooperative sets
formation problem as a coalition graph formation game and
propose a coalition graph formation (CGF) algorithm. In the
proposed CGF algorithm, wether the cross-link interference
between two players in a coalition is canceled or not depend
on the structure of the coalition graph.

In Fig. 6, we show the average rate achieved per link
with regard to different SNR (P/σ2) levels. The results are
averaged over random positions of UEs with normalized
distance d = 0.7 and random realization of the channel
matrix. The performance of the proposed CF, CGF and NF
algorithms are compared with the classic noncooperative IWF
algorithm. As seen from Fig. 3, the average rates of all
the proposed algorithms and noncooperative IWF algorithm
increase as P/σ2 grows and finally reach their upper bounds.
Increasing the antennas at the transmitter leads to higher
average rate for all algorithms. When the number of antennas
at the transmitter is 8, the proposed CF and CGF algorithms
significantly improve the noncooperative IWF algorithm, and
the simple GCG scheme achieves almost the same rate as the
proposed NF algorithm. When the number of antennas at the
transmitter is 4, CF and CGF algorithms do not show obvious
advantages, and GCG scheme even performs worse than IWF
at low SNR region. Fortunately, the proposed NF algorithm
is apparently superior to the noncooperative IWF with the
different SNR and numbers of antennas at the transmit side.

In Fig. 7, we evaluate the influence of different order on the
proposed algorithms. The users are uniformly located with the
normalized distance d = 0.7 to their serving BS, the number
of antennas is set to (nTq , nRq ) = (8, 2), and the expected
number of data streams nlq = 2. The cross ’+’ represents the
variance of transmission rate over random positions of UE
and random realization of the channel matrix, while the circle
’◦’ stands for the variance of transmission rate over random
positions of UE, random realization of the channel matrix, and
random generation of the operation order. Here, for clearness,
we only display the variances of CGF and NF, since CF and
CGF exhibit quite similar characteristics. As seen from Fig.4,
the centers of each {+,◦} pair largely coincide, which indicates
that different order has negligible effect on the property of the
proposed algorithms.

Considering the performance evaluated in this section, we
summarize the properties of the proposed algorithms in Table
III.



ZHOU et al.: NETWORK FORMATION GAMES IN COOPERATIVE MIMO INTERFERENCE SYSTEMS 1151

TABLE III
ALGORITHM COMPARISON

Algorithm Brief Concept Advantage Disadvantage Application

IWF Noncooperative Lowest complexity, rapid convergence Low rate Slow mobility

Reciprocal cooperation,
CF Cooperative sets of a player is revealed Low complexity, rapid convergence, Low rate Slow mobility,

by all members in the coalition without improved rate when nTq is large when nTq is small large nTq

any structure among members.

Reciprocal cooperation,
CGF Cooperative sets of a player is revealed Low complexity, rapid convergence, Low rate Slow mobility,

by the graph structure of members in improved rate when nTq is large when nTq is small large nTq

the coalition

GCG Altruistic nonreciprocal cooperation Lowest complexity, rapid convergence, Deteriorative rate Slow mobility,
approaches the rate of NF at high SNR at low SNR high SNR

NF Nonreciprocal cooperation based on Rapid convergence, High complexity Slow mobility
potential function approaches the rate of Opt

Nonreciprocal cooperation based on Very high complexity,
Opt potential function with exhaustive Highest achievable rate slow convergence Static scenario
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Fig. 7. Influence of difference order on the proposed CGF and NF algorithms,
(nTq , nRq ) = (8, 2), nlq = 2, and d = 0.7.

VI. CONCLUSION

In this paper, we consider the cooperative maximization
of mutual information in the MIMO Gaussian interference
channel via game theory. Null shaping constraints are enforced
in the design of transmit covariance matrices to enable in-
terference mitigation among links. The transmit covariance
matrices leading to the NE are derived, and the existence
and uniqueness of the NE is analyzed. We define cooperative
sets to stand for the cooperation relationship among links,
and the formation of the cooperative sets is formulated as
coalition games and network formation games. The proposed
CF and CGF algorithms are Nash-stable, and the proposed NF
algorithm converges to a Nash Equilibrium. Simulation results
show that CF and CGF algorithms show significant advantages
when the antennas at the transmitters is large, and the NF
algorithm enhances the sum rate of the system apparently even
at low SNR region or with small number of transmit antennas.
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