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1 Problem Statement

We consider a generic two-step decay chain of a spin-zero particle. The decay chain
can be represented as follows

A → B + C

C → D + E

In the decay process mentioned above, we assume that all the particles are spinless. The
objective is to evaluate the invariant mass of two massless particles B and D produced
as a result of the decay.

2 Kinematic Calculation

Let the masses of particles A, C and E be mA,mC and mE respectively. We start
in the rest frame of the parent particle A. So the total initial momentum is zero and
the total initial energy is mA (In the calculations that follow the speed of light is set
to 1). Let us orient our coorinate system such that when particle A decays, particle B

is produced with momentum pB along the negative z-axis. Therefore by momentum
conservation, particle C has momentum has pB in the positive z-direction. Energy
conservation yields

mA =
√

p2

B
+ m2

C
+ pB

∴ pB =
m2

A
− m2

C

2mA

(1)

EC =
√

p2

B
+ m2

C
=

m2

A
+ m2

C

2mA

(2)

Now let us consider the decay of particle C. First let us apply a boost to move into
the rest frame of particle C. Suppose particle C moves with velocity v w.r.t the rest
frame of A. Then in transforming to the rest frame of C we get

pB

′

= γ (pB − vEC) = 0
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This gives us an expression for v in terms of mA and mC

v =
pB

EC

=
m2

A
− m2

C

m2

A
+ m2

C

(3)

γ =
1

√
1 − v2

=
m2

A
+ m2

C

2mAmC

(4)

Now let us consider the rest frame of particle C. Particle C decays into a massless
particle D and a massive particle E. The treatment is similar to the decay of particle
A discussed above. Let the momentum of particle D be pD

′

. Then by comparing
equation (1) we get

pD

′

=
m2

C
− m2

E

2mE

= ED

′

(5)

Suppose particle D makes an angle θ with the z-axis. Then we can decompose the
momentum of particle D into two components - one parallel to the z-axis and one
perpendicular to the z-axis. Let these components be p‖

′

and p⊥
′

respectively. Then
we have

p‖
′

= pD

′

cosθ (6)

p⊥
′

= pD

′

sinθ (7)

Now let us transform back to the rest frame of particle A. The transformation equations
are as follows

p‖ = γ
(

p‖
′

+ vED

′

)

∴ p‖ = γ
(

pD

′

cosθ + vpD

′

)

∴ p‖ = γpD

′

(cosθ + v) (8)

p⊥ = p⊥
′

(9)

ED = γ

(

ED

′

+ vp‖

′
)

∴ ED = γ
(

pD

′

+ vpD

′

cosθ
)

∴ ED = γpD

′

(1 + vcosθ) (10)

The invariant mass of particles B and D is given by

Q2 = (EB + ED)
2
−

(

p‖ − pB

)2
− p⊥

2 (11)

∴ Q2 = E2

B + 2EBED + E2

D − p2

‖ − p2

B + 2p‖pB − p⊥
2

∴ Q2 = 2pBED + E2

D − p2

‖ + 2p‖pB − p⊥
2 (∵ EB = pB)

∴ Q2 = 2pB

(

ED + p‖
)

+ E2

D − p2

‖ − p⊥
2
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From equations (8) and (10) we get

E2

D − p2

‖ = γ2

(

pD

′

+ vpD

′

cosθ
)2

− γ2

(

pD

′

cosθ + vpD

′

)2

∴ E2

D − p2

‖ = γ2pD

′2

(1 + vcosθ)
2

− γ2pD

′2

(cosθ + v)
2

∴ E2

D − p2

‖ = γ2pD

′2 (

1 + v2cos2θ − v2 − cos2θ
)

∴ E2

D − p2

‖ = γ2pD

′2 (

1 − v2
) (

1 − cos2θ
)

∴ E2

D − p2

‖ = pD

′2 (

1 − cos2θ
)

(

∵ γ2 =
1

1 − v2

)

∴ E2

D − p2

‖ = pD

′2

sin2θ = p⊥
2

Putting this result back in the expression for Q2 we get

Q2 = 2pB

(

ED + p‖
)

∴ Q2 = 2γpD

′

pB (1 + vcosθ + v + cosθ)

∴ Q2 = 2γpD

′

pB (1 + v) (1 + cosθ)

Using equations (1), (3), (4) and (5) we get

Q2 =
1

2
mA

2

(

1 −
mC

2

mA
2

)(

1 −
mE

2

mC
2

)

(1 + cosθ) (12)

Q is minimum when θ is equal to π while it is maximum for θ equal to 0. Also, the min-

imum value of Q is zero while the maximum value is mA

√

(

1 − mC
2

mA
2

)(

1 − mE
2

mC
2

)

.

3 Invariant mass distribution

It is important to note that the variable θ in the kinematic equation (12) is the decay an-
gle of particle B as seen from the rest frame of particle C. Since the particles involved
in the decay chain are all spinless, the decay probability of particle C is completely
isotropic. This means that dN

dΩ
is a constant (where dN is the number of B particles

produced by the decay of C particles in the solid angle dΩ).

∴

dN

dΩ
= constant

dΩ = sinθdθdφ

Since the system is rotationally symmetric around the z-axis we can integrate over dφ

to get dN = αd (cosθ) where α is the proportionality constant. From (12) we get

2QdQ =
1

2
mA

2

(

1 −
mC

2

mA
2

) (

1 −
mE

2

mC
2

)

d (cosθ)
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2QdQ =
1

2
mA

2

(

1 −
mC

2

mA
2

)(

1 −
mE

2

mC
2

)

dn

α

Thus we can see that dN varies linearly with Q. When we plot the invariant mass
distribution of B and D we are actually plotting dN at different values of Q. In order to

make this plot we divide the entire range of Q from 0 to mA

√

(

1 − mC
2

mA
2

)(

1 − mE
2

mC
2

)

into small bins of width dQ and for each such bin we plot the corresponding value of
dN . Since we have demonstrated that dN varies linearly with Q we can claim that the
mass distribution forms a perfect triangle.

4 Conclusion

The above exercise in relativistic kinematics has applications in the phenomenology
of supersymmetry. The SUSY particles form decay chains similar to the one under
consideration and the triangular signature of the invariant mass distribution of decay
products (two leptons) may serve as a strong indicator for discovering supersymmetry
at the LHC.
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