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1. Introduction 

1.1 Chlorophyll fluorescence: Basics 

Several molecules absorb light energy which they emit after a time difference (lifetime) as 

radiation energy. Molecules remain at a low energy level or the ground electronic singlet 

state (So) or the lowest vibrational level at room temperature  (Noomnarm and Clegg, 2009). 

On absorption of a photon, the molecule is excited from So to the first electronic excited 

singlet state S1 within < 10-15 s-1 (Figure 1). These molecules can also be transferred to 

higher energy levels (S2 to Sn) also. These excited state molecules can relax to the S1 

electronic state via vibrational relaxation  within 10-12 s-1. The molecule will ultimately relax 

to the So state through photon emission, which is called fluorescence emission. Also here, 

the energy of the emitted photon must equal the changes in the energy levels. 

 

Fig. 1. The basic principles of excitation and deexcitation phenomena and the differences 
between excitation (absorption) spectra and emission (fluorescence) spectra of light 
absorbing pigment molecules (Chlorophyll) in green plants. 
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The molecular excitation follows the principle: ΔE = hv, with ΔE, energy difference between 

ground and excited state; h, Planck quantum; and v, frequency of radiation (Rabinowitch & 

Govindjee, 1969; Kumke & Löhmannsröben, 2009).  

Light energy is absorbed by chlorophyll, carotenoids and other pigment molecules present 

in the photosynthetic antenna molecules present in the thylakoid membranes of green plants 

(Strasser et al., 2000, 2004; Govindjee, 2004; Maxwell and Johnson, 2000; Falkowski & Raven, 

2007). Absorption of a photon raises a chlorophyll a molecule to its lowest singlet excited 

state, for which three internal decay pathways exist: fluorescence, in which the molecule 

returns to the ground state with the emission of radiation; internal conversion, in which the 

energy of the molecule is converted into vibrational energy; and intersystem crossing, in 

which the singlet state is converted to the triplet state (Figure 2). If certain other molecules 

are present along with the chlorophyll, external decay pathway(s) may also become 

available in addition to the internal decay pathways. Such external pathways facilitate the 

transfer of energy to a molecule with a similar energy gap or the transfer of an electron to or 

from another molecule, such as in excitation energy transfer in light-harvesting antennae 

and charge separation in photochemical reaction centers, respectively. All of these 

downward processes competitively contribute to the decay of the chlorophyll excited state. 

Accordingly, an increase in the rate of one of these processes would increase its share of the 

decay process and lower the fluorescence yield (φf). The quantum yield of chlorophyll 

fluorescence from the photosynthetic apparatus is therefore 0.6-3%, while chlorophyll a in an 

organic solvent exhibits a high fluorescence yield of approximately 30% (Latimer et al., 1956; 

Trissl et al., 1993). Oxygenic photosynthesis is endowed with the unique property of a 

fluorescence emission. Light energy that is absorbed by chlorophyll in a photosynthetic 

systems can undergo three fates: a) it can be used to drive photosynthesis (photochemistry), b) 

it can be dissipated as heat or c) it can be re-emitted as red fluorescence (Figure 2). These three 

processes occur in competition. Since the sum of rate constants is constant, any increase  in the 

efficiency of one process will result in a decrease in the yield of the other two. Therefore, 

determining the yield of chlorophyll fluorescence will give information about changes in the 

efficiency of photochemistry and heat dissipation (Figure 2). 

  

Fig. 2. The origin of chlorophyll fluorescence: basic aspects. 

The oxygenic photosynthesis involves two light reactions operating simultaneously at 
photosystem (PS) II and PSI reaction centers (Figure 3). The light energy absorbed by the 
light harvesting antenna (LHC) pigments distribute the energy to the two photosystems, 
used to oxidize water to oxygen, reduce NADP+, and produce ATP (Rabinowitch & 
Govindjee, 1969; Blankenship, 2002; Falkowski & Raven, 2007). Most of the chlorophyll a 

www.intechopen.com



 
Chlorophyll Fluorescence in Plant Biology 173 

fluorescence, at room temperature, originates in the antenna complexes of PSII and originate 
as fluorescence emission at 685nm (F685) (Govindjee, 2004). The absorption of photons by 
antenna molecules is a very fast process and occurs within  femtoseconds, leading to the 
formation of excited chlorophylls (Chl*). The main function of the antenna (LHC) is to 
transfer excitation energy to the photosynthetic reaction centers leading to photochemistry. 
But a part of the absorbed light energy is dissipated as heat and is emitted as fluorescence 
(Figure 3). Primary charge separation occurs in PSI and PSII reaction centers involving P700 
and P680, respectively. Photochemistry takes place within picoseconds, and further 
reactions proceed independent of the presence of light (Stirbet & Govindjee, 2011). The 
characteristic of fluorescence emission is determined by the absorbing pigment molecules, 
the excitation energy transfer, and the orientation of the fluorescing pigments in the 
photosynthetic membrane. Besides these characteristics,  fluorescence is also affected by the 
redox state of the donors and acceptors of photosystems, and thylakoid stacking etc. 
(Strasser et al. 2005). Although fluorescence measurements are indicators of indirect effects, 
still fluorescence is widely used as a luminescence signature for wide array of 
photosynthetic events and alterations in the photosynthetic systems. There are different 
types of fluorescence measurements used in plant biology and photosynthesis, which are 
described below. Depending on the type of study and the suitability of the photosynthetic 
system, different fluorescence techniques are used. The analysis of these fluorescence curves 
or images and its analysis gives an insight to the photosynthetic energy transducing or 
pigment protein orientation in the photosynthetic systems. 

2. Types of chlorophyll fluorescence 

Chlorophyll a fluorescence is a highly versatile tool, not only for researchers studying 
photosynthesis, but also for those working in broader fields related to biophysics, 
biochemistry and physiology of green plants. Chlorophyll fluorescence analysis is sensitive, 
non-invasive, and relatively simple. With the advent of different instrumental techniques 
and time resolved spectroscopy, fluorometry developed into various types with timescale of 
signal capturing. The fluorescence measurements, that are conventionally used, are  

i. Room temperature fluorescence (Rabinowitch & Govindjee, 1969) , 
ii. Low temperature fluorescence (77K fluorescence) (Rabinowitch & Govindjee, 1969), 
iii. Fluorescence temperature curve, (Ilik et al., 2003),  
iv. Variable Chl a fluorescence, differing in the manner by which the photochemistry is 

saturated (e.g., shutterless and LED-based instruments) for direct fluorometry:  
a. fast Chl fluorescence or plant efficiency analyser (PEA) (Strasser & Govindjee, 1991; 

1992),  
b. pulse amplitude modulation, PAM, fluorometry (Schreiber et al., 1986; Schreiber, 

2004),  
c. the pump and probe (P & P) fluorometry (Mauzeralla, 1972; Falkowski  et al., 1986),  
d. the fast repetition rate (FRR) fluorometry (Kolber et al. 1998),  
e. the pump during probe (PDP) fluorometry (Olson et al., 1996), and several others 

that are functionally similar, such as  
f. the fluorescence induction and relaxation (FIRe) technique (Gorbunov & 

Falkowski, 2005),  
g. the background irradiance gradient single turnover (BIG-STf) fluorometry 

(Johnson, 2004), and  
h. advanced laser fluorometry (ALF) (Chekalyuk & Hafez, 2008). 
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However, the working principle and the phenomenon for analysis are similar for these 
instruments. In the present chapter we describe the commonly used room temperature 
fluorescence, low temperature or 77 K fluorescence, fast Chl fluoresce and PAM 
fluorescence. The other methods are useful but are not discussed due to their specialized use 
in various fields. However, the techniques and principles described here are routinely used 
in plant biology at present. 

2.1 Room temperature fluorescence 

Under a physiological state of active chloroplasts in green plants at room temperature, 
chlorophyll fluorescence emission is a net result of heat dissipation, stimulation of dark 
reduction of plastoquinone, and increased cyclic electron flow to light, also increases the 
leakage of electrons from the thylakoid, there may be a deactivation of Rubisco (ribulose 1,5 bi-
phosphatecarboxylase- oxygenase), and the generation of reactive oxygen species such as the 
superoxide anion (O2-) and H2O2. The chlorophyll fluorescence emission spectra is taken as a 
measure of the amount of chlorophyll content in the green plants (Buschmann, 2007). There 
are two maxima for Chl fluorescence at room temperature, (i)  in the red region at 685 nm 
emitted by PS II and (ii) in the far-red region at 720-740 nm emitted by PS I. At higher 
chlorophyll concentrations, chlorophyll fluorescence is mainly detected in the range of 720-740 
nm. But the re-absorption of the emitted red fluorescence by the chlorophyll in PS II results in 
a strong fluorescence emission band at 685 nm (Figure 4). The technique and the 
instrumentation are simple. The fluorescence emission is measured at right angle (90°) or 45° 
to the excitation beam of blue or red wavelength band of visible light. However, when cooled 
to liquid nitrogen temperature (77K) the fluorescence  emission at 685nm, 695nm and 735nm 
can be resolved separately and can be analysed (see the section 77K fluorescence). 

 

Fig. 3. Schematic illustration of primary conversion in photosynthesis which governs in vivo 
chlorophyll fluorescence yield. Variable fluorescence originates almost exclusively from 
PSII. Maximal fluorescence yield is lowered by photochemical charge separation and 
dissipation. 
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Fig. 4. A typical room temperature fluorescence emission by green to leaf. 

2.2 77K fluorescence  

The fluorescence at liquid-nitrogen temperature from algal cells and isolated thylakoid 

membranes to show a distinct spectral bands at approximately 685, 695, and 735 nm (Murata 

et al., 1966; Boardman et al., 1966; Govindjee et al., 1967). The two bands at approximately 

685 and 695 nm corresponded to fluorescence emitted from Chl in PSII, while the band at 

735 (usually a broad band between 715–740 nm) correspond to the fluorescence from the Chl 

in PSI (Figure 5). This study led to the discovery of state transitions, which is a regulatory 

mechanism for balancing the distribution of light energy between PSI and PS II. When algal 

cells were illuminated with light wavelength (567nm) exciting the pigment molecules in PS 

II named as ‘light II,’ and then frozen to liquid-nitrogen temperature (77K), the fluorescence 

at 685 nm and 695 nm was repressed and the emission at 715 nm was enhanced (Murata et 

al., 1966).  

To the contrary, illumination with ‘light I’ at 405 nm plus 435 nm, which was absorbed by 

PSI, enhanced the emission at 685 nm from PSII (Murata et al., 1966). A regulatory 

mechanism existed in the algal cells that balanced the distribution of light energy to PSI and 

PSII depending on the energy of excitation or the quality of light. With an elegant and 

simultaneous measurement of changes in the oxygen-evolving activity and the fluorescence 

yield of Chlorella pyrenoidosa under ‘light I’ and ‘light II,’ Bonaventura and Myers (1969) 

proposed the concept of - state transitions. This concept is routinely used for decades as 

‘state 1’,  referring to photosynthetic organisms exposed to light that is preferentially 

absorbed by PSI (light I) and ‘state 2’ to describe photosynthetic organisms exposed to light 

that is preferentially absorbed by PSII (light II) (Murata, 1970). This phenomena is extended 

to the energized state of thylakoid membranes. In the presence of ATP, the membranes 

seemed to establish state 2 and vice-versa. Subsequently, divalent and trivalent ion 

dependent distribution of light energy between the two photosystems in isolated thylakoid 

membranes were reported (Murata, 2009).  
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Fig. 5. 77K fluorescence spectrum of a healthy  green leaf.  

It is now known that under state II light illumination, LHCII becomes phosphorylated by 
thylakoid membrane localized protein kinase(s), which  is regulated by the redox state of the 
plastoquinone pool (Misra & Biswal, 2000; Zer et al., 2003). The phosphorylated fraction of 
LHCII then dissociates from PSII and binds to PSI. Reversal of light to state I results in 
inactivation of the kinase(s), and the LHCII antennae becomes dephosphorylated by 
constitutively active phosphatases. The (dephosphorylated) LHCII complexes migrate to 
stacked regions of the grana and re-associate with PSII, restoring its original capacity to 
absorb light (Allen, 1992; Aro & Ohad, 2003; Mullineaux & Emlyn-Jones, 2005; Rochaix, 
2007). This leads to structural changes in the thylakoid membrane itself (Anderson, 1999; 
Garab & Mustardy, 1999; Dekker & Boekema, 2005). Taking into account of recent 
developments in several microscopic techniques to study the morphological changes that 
occur in thylakoid membranes of higher plant chloroplasts during state transitions, 
Chuartzman et al. (2008) reported that the rearrangements in membrane architecture occurs 
during the state transition, and involves both granal and stroma lamellar domains. 
However, due to experimental set-up, repeatability of the experiments and pigment 
concentration that affects the shape and characteristic of 77K fluorescence, this technique is 
used to a limited extent and is not as routine as the fast chlorophyll fluorescence or PAM 
fluorometry as described in the following sections. 77K finds its applications only for 
conformation of certain temporal and structural orientation of the pigment protein 
complexes in the thylakoid membranes and energy tunneling within the two photosystems.  

2.3 Fast chlorophyll fluorescence 

Illumination of dark adapted photosynthetic materials emit, Chl a fluorescence  with a 
characteristic induction or transient which was discovered by  Hans Kautsky  and is named 
after him as the Kautsky curve ( Kautsky & Hirsh, 1931). Chl a fluorescence induction curve 
measured under continuous light has a fast (less than a second) exponential phase, and a 
slow decay phase (few minutes duration). Kautsky curve of a healthy green leaf is shown in 
Figure 6. The expansion of the fast rise phase gives rise to the exponential ‘OJIP’ curve 
(Figure 6). The analysis of the OJIP curve taking the theoretical assumptions and 
probabilities derives different photosynthetic parameters for the dark adapted state of the 
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Fig. 6. Kautsky curve of a healthy green leaf and the expansion of the fast rise phase to the 
exponential ‘OJIP’ curve. The analysis of the OJIP curve gives rise to different parameters 
for the dark adapted state of the photosynthetic systems (details in text and also refer 
Strasser et al., 2004; Stirbet  & Govindjee, 2011).  

photosynthetic systems (Strasser et al., 2000, 2004; Stirbet  & Govindjee, 2011). The slow 

phase is known as ‘SMT’ and is assigned to a various factors like energy transduction, ATP 

synthesis, CO2 fixation, State  transition, non-photochemical Chl a fluorescence quenching 

etc. (Stirbet  & Govindjee, 2011). The nomenclature for ‘OJIP’ is O for origin or F0 level 

measured at 20-50µs after illumination, J and I are intermediate states measured after 2ms 
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and 30 ms, and P is the peak or FM (maximal fluorescence). In contrast to the angiosperms, 

the foraminifers, zooxanthellae and lichens, show an additional G peak and H (=P) peak 

(Tsimilli-Michael et al., 1998; Ilik et al., 2006). The origin G peak is assigned to an early 

activation of the ferredoxin-NADP+-reductase, FNR, (Ilik et al., 2006). In heat-stressed 

samples, another peak arises between F0 and FJ at 300 µs which is designated as K peak 

(Guisse et al., 1995; Srivastava et al., 1997; Strasser, 1997; Misra et al., 2001b, 2007). 

The OJIP curve from F0 to FM (=FP) is correlated with the primary photochemical reactions of 

PS II (Duysens & Sweers, 1963) and the fluorescence yield is controlled by a PSII acceptor 

quencher (called ‘‘Q’’ = QA)  (van Gorkom, 1986). Thus, the OJIP transient can be used for 

the titration of the photochemical quantum yield of PSII photochemistry, and the electron 

transport properties. As such the OJIP fluorescence curve analysis is routinely used to 

monitor the effect of various photosynthetic inhibitors, climatic stress, and photosynthetic 

mutations altering the structure, architecture and function of the photosynthetic apparatus   

(Misra et al., 2001a, b, 2007; Strasser et al., 2004).  

The photosynthetic samples kept in darkness, have the electron acceptor side of PSII in 

the oxidized state, as there is no electron flow in the photosynthetic electron transport 

chain and water oxidation by PS II. So the PSII reaction centers remain open, and the 

fluorescence intensity is minimum, i.e. equal to Fo (=’O’ level in OJIP curve). On 

illumination with a strong intensity of light that can theoretically excite all the pigment 

molecules in the pigment protein bed of the thylakoid membrane, a fast electron transport 

process takes place and is recorded by a O-J transition or rise within 2 ms. This is followed 

by slow phases J–I and I–P rise, which are known as thermo sensitive or thermal phases. 

The FM level (=P) or Fmax is attained within 1s, representing a closed PS II centres or 

complete reduction of all the primary electron acceptor in PS II, the QA molecules and 

saturating the electron flow on the acceptor side of PS II (Schansker et al., 2005). This 

chapter explains the OJIP curve analysis under saturating light intensities and its use in 

photosynthetic studies. 

The fluorescence induction curve, from photosynthetic samples kept in darkness, are used 

empirically and commonly using F0 or FM values. The difference between FM and F0, known 

as the variable fluorescence, FV, and the ratio FV/FM in a healthy plant ranging from  0.78–

0.84 (Bjorkman & Demmig 1987) is used extensively as the maximum quantum yield of 

primary PSII photochemistry (Butler & Kitajima, 1975; Palliton, 1976). Considering the 

connectivity parameter or the excitation energy migration among PSIIs (Butler, 1978) and 

using the relative variable fluorescence at time t, Vt = (Ft – F0)/(FM – F0), the fraction of 

closed PSII centers (Bt) can be calculated as  

Bt =[QA-]/ [QA-]total, since Vt = Bt/[1 + C (1 - Bt)],  

where C is probability of connectivity among the PSIIs. When C = 0, or there is no 

connectivity, Vt = Bt. This’separate package model of PSII units’ is the fundamental 

postulate of the JIP test (Strasser et al., 2000; 2004; Tsimilli-Michael & Strasser, 2008). In a 

recent chapter, Stirbet & Govindjee (2011) revised the JIP-test including the connectivity 

parameters, as described above, and given a revision of calculations for fluxes and PSII 

performances as shown in Table 1. 
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Table 1. Equations and definitions of JIP parameters by Strasser et al. (2004; 2010) and 
modified by Stirbet & Govindjee (2011) 

QA
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2.4 PAM fluorescence 

The widely used chlorophyll  fluorescence technique is the so-called quenching analysis of 
modulated fluorescence by the saturation pulse method. In this type of measurement system 
instead of using a continuous light, a high intensity light mimicking the ‘sun light intensity’ 
is switched on and off (pulse) at high frequency and the detector is tuned to measure the 
fluorescence emission only, thereby providing a more efficient and more powerful system to 
measure fluorescence emission in presence of background measuring light (Bradbury & 
Baker, 1981; Quick & Horton, 1984; Schreiber et al., 1986; Schreiber, 2004). A leaf is dark 
adapted for at least 10-15 min prior to the measurement. The ground fluorescence (Fo) in 
darkness is measured by a weak modulating light beam (ML). Then the application of a 
saturating pulse (SP) (about 8000 µmol m-2 s-1 for 0.6 - 1 s), raises the fluorescence to a 
maximum value, Fm. This measurement allows the determination of the maximum quantum 
efficiency of photosystem II (PSII) primary photochemistry, given as Fv/Fm, as described for 
the fast chlorophyll fluorescence measurements described in earlier section. This parameter 
is often called as ‘intrinsic quantum yield’ (Kitajima & Butler, 1975). Initially after this first 
light pulse the actinic light (AL) is switched on (photosynthetic samples are illuminated) 
and SP is turned on repeatedly. This induced Fm’  (fluorescence maxima at light adapted 
state). The Fm’ increases initially with few pulses and then starts declining (quenching) after 
few minutes. The intial phase of rise in fluorescence in light adapted state is called 
‘photochemical quenching’ which is ascribed to the photochemical phenomena in 
generating reductants and subsequent reduction of carbon dioxide pool in the leaves (van 
Kooten & Snell, 1990; Edwards & Baker, 1993) subsequent pulses of saturating light 
interrupted with dark period gradually reduces the intensity of fluorescence emission 
otherwise known as ‘non-photochemical fluorescence quenching’ or NPQ (Walter & Horton, 
1991; Johnson et al., 1993; Oxbrough & Baker, 1997, Niyogi et al., 1997). A typical PAM 
fluorescence measurement is shown in Figure 7. The calculation of quenching parameters 

 

Fig. 7. A typical PAM fluorescence signal of a leaf disc. The fluorescence in dark adapted 
leaves are denoted by F and in the light adapted state F’ are recorded and different 
quenching parameters are measured (see Text).  
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needs either a shift from NPQ to photochemical quenching or vice versa. It is not practicable 
to shift completely away from NPQ to a complete photochemical quenching situation, so the 
alternative of complete shift from photochemical quenching to a NPQ stage is suggested by 
many workers (Bradbury & Baker, 1981; Quick & Horton, 1984). The terminology suggested 
by van Kooten & Snell (1990) and then modified by Maxwell & Johnson (2000) and Baker 
(2008) is used widely. 

The sample is first dark adapted. The test is started and Fo, or minimal fluorescence, is 
measured without actinic light. Then a saturation pulse (SP) completely closes all the 
primary electron acceptors (QA) in PSII by completely reducing PSII. So maximal 
fluorescence, Fm, is the result. After the saturation pulse, an actinic light is turned on and the 
fluorescent signal declines slowly with the onset of CO2 fixation until it reaches steady state. 
Photochemical quenching a measure of open PSII centers, photo-protective non-
photochemical quenching and other heat dissipation mechanisms occur. Saturation pulses 
during steady state photosynthesis provide Fm', maximal fluorescence in light adapted state, 
after NPQ has reached equilibrium with photochemistry. qP, or qL, now represents the 
fraction of PSII receptors that remain open or oxidized. F’ (or Fs) represents fluorescence 
related to current steady state photochemical levels. Then the actinic light is turned off, and 
simultaneously far red (FR) illumination is turned on to allow the transfer of electrons 
quickly to reduce PSI, and allow the re-oxidation of PSII. Fo' represents this value with un-
relaxed non-photochemical quenching. The rising values of the saturation pulses after the 
actinic light has been turned off represent the relaxation of NPQ over time. A portion of 
NPQ, qE (or Y(NPQ), represents photo-protection mechanisms of thylakoid lumen ΔpH and 
the xanthophyll cycle. The remainder of NPQ represents qT, and qI, (or Y(NO). qT is 
quenching due to state 1 and state 2 transitions and is negligible in higher plants. qI 
represent photo-inhibition and photo-damage (adapted from Fracheboud & Leipner 2003; 
http://www.ab.ipw.agrl.ethz.ch/ ~yfracheb/ flex.htm). 

2.4.1 Photochemical quenching 

As shown in the fast Chl fluorescence measurement, the maximum quantum efficiency of 
PSII photochemistry is calculated as: 

Fv/Fm = (Fm-Fo) / Fm 

A decrease in Fm and/or an increase in Fo results in a decrease in Fv/Fm. The Fo increase is 
provoked by dissociation of LHCII from the PSII core complex and is reported to be due to 
the free pigments (Misra & Terashima, 2003; Misra et al., 2001a,b, 1998, 2007).  

In natural conditions, sun light far exceeds the quantum requirements for photochemistry in 
photosynthesis, commonly referred as ‘photoinhibition’ (Misra, 1993; Misra et al. 1997; 2001; 
2007). Under these conditions, the PSII RC undergoes photoinduced damages of the D1 
protein. The first turn-over of this polypeptide copes up with the photoinhibitory situations. 
However, under severe stress, the capacity for repair of damaged PSII RC becomes 
suboptimal and an irreversible inhibition of PSII can be detected in vivo as a decrease in the 
chlorophyll fluorescence ratio Fv/Fm. So Fv/Fm is often used as a useful parameter to 
estimate the extent of photoinhibition of photosynthesis. However, when NPQ induces a 
decrease in Fv/Fm, this quantification can be erroneous. However, under photoinhibitory 
conditions, NPQ is lowered due to low Fm signal (Misra et al., 2006, 2011). Since 
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photoinhibition will reduce the excitation pressure on the reducing site of PSI, these leaves 
are often characterised by higher values of Fq'/Fv' (Misra et al. 2003, 2006, 2011). 

The application of a SP in the presence of AL allows the determination of the maximum 

fluorescence in the light-adapted state (Fm') or of the PSII ‘open centres’. But Fm' shows a 

decrease compared to that of Fm value, indicating the presence of NPQ. Genty et al. (1989) 

proposed the ‘photochemical quenching’ which later became popularly known as ‘Genty 

parameter’ and is calculated as: 

Fq'/Fm' = (Fm'-F') / Fm' 

Theoretically ‘Genty parameter’ is proportional to the quantum efficiency of PSII 
photochemistry in the light adapted state (PSII quantum efficiency = ΦPSII), which is 
affected by the level of electron acceptors, e.g. NADP+, available at the acceptor side of 
PSI (Oxborough & Baker, 1997). However, Fq'/Fm' is greatly affected by the light intensity. 
So precaution has to be done during measurements under natural conditions where 
changes in the incident sun light intensity is frequented. This terminology is also used in 
the literature as ΦPSII, ΔF/Fm', (Fm'-Ft)/Fm' and (Fm'-Fs)/Fm' (where ΔF = Fq', and Ft and Fs is 
equal to F'). Both, the changes in the electron flux on the reducing side of PSII and the 
down-regulation of PSII affects Fq'/Fm', as this is the product of Fq'/Fv' (PSII quantum 
efficiency factor = coefficient of photochemical quenching (qP) and Fv'/Fm' (maximum 
quantum efficiency of PSII). Fv'/Fm' is affected by antenna quenching. Fq'/Fv' or qP is an 
approximation of the redox state of the primary electron acceptor QA in the light adapted 
state. 

qP is a measure of the fraction of open PSII reaction centers and is defined as the coefficients 

of photochemical fluorescence quenching (van Kooten & Snel, 1990). In cases where qN is 

greater than 0.4 this may not be a good assumption. Under such a condition, the calculation 

of qN and qP values are affected. So another parameter – Fod is introduced  to minimize the 

effect of qN on the calculation of qP (van Kooten & Snel, 1990). Kramer et al. (2004) used qL 

as photochemical quenching parameter. It is a measure of the fraction of open PSII reaction 

centers. 1- qP, reflects the proportion of closed centers or the “excitation pressure” on PS II 

(Maxwell et al.,1994; Misra et al., 2006, 2011). 

2.4.2 The rate of linear electron transport in PSII (ETR) 

The electron transport rate in PSII (ETR) can be calculated as proposed by Fryer et al. (1998): 

ETR = Fq'/Fm' · PFD · αL · (PSII/PSI) 

Where:  

PFD is the photosynthetic photon flux density in µmol quanta m-2 s-1, measured with a 

quantometer;  

aL the leaf absorbance, measured with an integrating sphere; and  

PSII/PSI = proportion of light absorption by PSII and PSI (assumed value).  

The maximum ETR is the sum total of all electron sinks in a chloroplast such as carbon 

fixation, photorespiration, nitrate assimilation, Mehler reaction. A perturbation or change in 

any of these parameters affects ETR. 
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2.4.3 Non-photochemical quenching (NPQ) 

Non-photochemical quenching of chlorophyll fluorescence is an indicative of the level of 

non-radiative energy dissipation in the LHC II of PSII, which is ascribed to prevent over-

reduction of the electron transfer chain and, therefore, provides protection from 

photodamage. The parameter NPQ is derived from the Stern-Volmer equation and can be 

used to follow changes in apparent quencher concentration (Bilger & Bjorkman, 1990). NPQ 

is related to the rate constant for excitation quenching by regulated thermal dissipation (k'N). 

Non photochemical quenching is measured in plants by several methods depending on the 

NPQ limitations. NPQ – the non-photochemical quenching is a measure of heat dissipation 

and is the sum total for the photo-protective mechanisms, state transition quenching, and 

photo-inhibition (Krause and Weis, 1991; Muller et al., 2001; Finazzi et al., 2006).  

NPQ = qE + qT + qI.  

NPQ is calculated as: NPQ = (Fm/Fm') - 1 

NPQ can occur even at low light intensity. Stress conditions such as high light intensity or 

photoinhibition, low internal CO2 concentration due to drought or chilling (low 

temperature) accelerate NPQ. So NPQ serves as an index of stress. At moderate light 

intensity, the NPQ steady state value is temperature dependent. However, NPQ saturates 

after a specific temperature limiting the capacity of quencher, which is altered by 

acclimation. Low temperature decreases the rate of NPQ development irrespective of the 

light intensity. Bilger and Björkman (1991) demonstrated that the development of NPQ 

upon exposure of leaves to excess light is, at least partially, determined by the rate of 

zeaxanthin formation (Misra et al., 2006, 2011). In higher plants, NPQ is divided into two 

different components (i) rapidly relaxing ΔpH- or energy-dependent NPQ, known as qE and 

(ii) a slower photoinhibitory NPQ, known as qI. qE is ΔpH dependent and depends on the 

xanthophyll cycle dependent photo-protective mechanisms in the leaf, qT value is negligible 

in higher plants and so increasing value of qI indicates enhanced stress in higher plants  

(Muller et al. 2001). 

This is independent of Fo estimation or the quantification of ‘closed’ PSII RCs and reflects 
heat-dissipation of 'excess excitation energy' in the antenna system.  

qN is similar to NPQ but requires Fod (dark adapted state after a far-red illumination ) or 

Fo’ (light adapted state) for estimation. qN is defined as the coefficient of non-

photochemical fluorescence quenching. The assumptions for using qN is that it affects 

primarily the 'variable fluorescence' (Fv) and not the Fo and qN is not greater than 0.4. By 

using the Far-Red source after actinic illumination, the PSII acceptors re-oxidized and PSI 

is reduced. A new Fod value is measured and used for corrections to the quenching 

coefficients (van Kooten & Snel, 1990). NPQ is relatively insensitive to the part of non-

photochemical quenching associated with qN values lower than 0.6 This range of qN is 

affected by ΔPH of the thylakoid lumen which is an important aspect of photosynthetic 

regulation. (Bilger & Björkman, 1990). Kramer et al. (2004) introduced new quenching 

parameters such as  Y(NPQ) that represents heat dissipation related to all photo-

protective mechanisms and Y(NO) represents all other components that are not photo-

protective.  
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2.4.4 Calculations for quenching parameters 

qP = (Fm’- F) / (Fm’-Fo’) 

NPQ = (Fm - Fm’) / (Fm’) 

NPQ = qE + qT + qI 

qE = Fm’ after rapid relaxation is complete with the actinic light turned off usually one to 

ten minutes - Fm’ during steady state fluorescence with actinic light on/Fm’ at steady state. 

qT = Fm’ after rapid relaxation is complete usually with the actinic light turned off usually 

one hour - Fm’ at qE /Fm’ at steady state. 

qI = Fm-Fm’ at qT/ Fm’ at steady state. 

qN = Fm - Fm’/ Fm-Fo 

qL = qP(Fo’/F’) 

Y(NO)  = 1/NPQ +1 + qL((Fm/Fo)-1) 

Y(NPQ) = 1 - Y - Y(NO) 

1 = qL + Y(NPQ) + Y(NO) 

3. Applications of chlorophyll fluorescence measurements in plant biology 

The primary use of fluorescence has been the estimation of chlorophyll concentration and 

pigment-protein interaction studies, stability of thylakoid membranes etc. However, the 

relationship between chlorophyll and in vivo fluorescence varies with a wide range of time 

and space. These processes included species changes, nutrient concentrations, incident 

radiation, etc (Falkowski & Raven, 2007). The use of sun-stimulated fluorescence to estimate 

primary productivity is suggested. 

Not only that the fluorimetric techniques are used for aquatic plant productivity, but also these 
chlorophyll fluorescence measurements, have a wide range application in the field of forestry, 
crop or plant productivity estimates and in stress adaptation studies (for reviews see  Sayed, 
2003; Baker & Rosenquivst, 2004; Rohacek et al., 2008; Strasser et al., 2004; Tsimilli-Michael et 
al., 1998; Tsimilli-Michael & Strasser,2008; Srivastava et al., 1995, 1997 ). 

An extensive study is done on the application of fluorimetry especially PAM and fast Chl 
fluorimetry on the stress adaptation studies in plants. The most widely studied stress is 
‘photoinhibition’ as this process is related to the fundamental principle of fluorescence energy 
quenching. The role of the xanthophyll cycle in non-photochemical quenching is the most 
interesting out come of these photoinhibitory studies using fluorescence parameters (Demmig-
Adams, et al., 1996; Frank et al., 1994; Horton et al., 1994; Misra et al, 2003; 2006; 2011).  

Recently, chlorophyll fluorescence is used as one of the sensitive parameters for biosensors 

using thylakoid membranes or algal cells as the transducers (Apostolova et al., 2011;  

Dobrikova et al. 2009; Giardi & Pace, 2005; Koblizek et al., 1998; Misra et al., 2003, 2006, 2011; 

Raskov et al., 2011; Vladkova et al, 2009, 2011). Besides this fast Chl fluorescence can be used 

as a sensitive device for detection of ion/ salt sensitivity and other environmental stress 

factors (Misra et al., 2001a,b, 2007).  

A consorted effort on the improvement of the instrumentation, miniaturization and 

quickness of the data acquisition will help in further information flux in this field which still 

has a wide scope and utility. 
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