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SUMMARY

The objective of the proposed research is to develop high performance, low

computational complexity resolution enhancement and demosaicing algorithms. Our

approach to both problems is to find creative ways to incorporate edge informa-

tion into the algorithm design. However, in contrast with the usual edge directed

approaches, we do not try to detect edge presence and orientation explicitly. For

the image interpolation problem, we study the relationship between low resolution

and high resolution pixels, and derive a general interpolation formula to be used on

all pixels. This simple interpolation algorithm is able to generate sharp edges in

any orientation. We also propose a simple 3 by 3 filter that quantifies local lumi-

nance transition and apply it to the demosaicing problem. Additionally, we propose

a gradient based directional demosaicing method that does not require setting any

thresholds. We show that the performance of this algorithm can be improved by us-

ing multiscale gradients. Finally, we address the low spectral correlation demosaicing

problem by proposing a new family of hybrid color filter array (CFA) patterns and a

local algorithm that is two orders of magnitude faster than a comparable non-local

solution while offering the same level of performance.

ix



CHAPTER I

INTRODUCTION

Digital images are comprised of data samples arranged in a two dimesional grid.

These data samples are usually referred to as picture elements or pixels. The number

of pixels in an image determines its resolution. The higher number of pixels an image

has, the more information it could contain and the better it could represent the

original data. In other words, all other things being equal, a high resolution image

has better quality than a low resolution one.

Changing the resolution of an image is called image resampling. One may need to

resample an image for a variety of reasons. For instance, if a display device has lower

resolution than an image to be displayed, then the image needs to be downsampled so

that it could fit to the display screen. Similarly, if an image takes up too much data

storage space or takes too long to transmit, a possible solution (other than applying

compression) is to downsample the image. On the other hand, a low resolution image

can be upsampled to improve its visual quality. From a digital signal processing

point of view, image downsampling is arguably simpler than upsampling because in

the downsampling case all the information is already available and the only challenge

is to represent it with a smaller number of pixels. However, for the upsampling

case, one needs to create new information by interpolating the available input pixels.

From this point on, we will refer to image upsampling when we talk about image

interpolation or image resampling.

Natural images generally consist of various regions with different characteristics.

While some regions/objects are smooth, others are structured or textured. Moreover,

edges form wherever object boundaries meet, which leads to sharp luminance changes.
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While most interpolation algorithms interpolate smooth regions successfully, they

tend to fail in edge packed regions. Common interpolation failures are blurriness and

staircase effect which refers to edge jagginess. In order to avoid such artifacts, some

interpolation algorithms try to detect edge presence and orientation, and adapt the

interpolation coefficients accordingly. However, edge detection can be error prone

and costly, which results in degraded interpolation performance. We propose an edge

preserving interpolation method that does not require explicit edge detection. The

proposed method studies the relationship between low and high resolution pixels and

it applies the same interpolation formula to all input pixels.

Demosaicing or Color Filter Array (CFA) interpolation is a special image interpo-

lation problem. Here, the image size is fixed but only a subset of the color information

is available at each pixel location. The mising information at every pixel need to be

estimated to obtain the complete color image. While spatial correlation is the only es-

timation basis for regular image interpolation, spectral correlation between the color

channels also comes into play for the demosaicing problem. Demosaicing algorithms

need to exploit both of them to avoid false color artifacts that are closely associated

with the demosaicing process.

Simple spatially invariant demosaicing methods work in smooth regions with sub-

tle color changes, but they tend to fail around structures with saturated colors.

Adaptive methods that take advantage of local directional information have been

introduced to improve the interpolation quality. Our work on the demosaicing area

have resulted in several algorithms and a new family of CFA patterns.
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CHAPTER II

ORIGIN AND HISTORY OF THE PROBLEM

The image interpolation problem in general and the CFA interpolation problem as a

special case of it have been studied for many years. The following sections provide a

brief literature survey on both problems.

2.1 Image Interpolation

Different approaches to the spatial interpolation problem may be categorized as

• Linear spatially invariant interpolation

• Transform domain interpolation

• Statistical learning based interpolation

• Edge adaptive interpolation

Linear spatially invariant interpolation techniques such as bilinear and bicubic

interpolation [21] have low computational complexity. However, they often fail to

protect the integrity of edge structures and introduce blurring. Some adaptive tech-

niques have been proposed to overcome such shortcomings [25]. Transform based

algorithms try to extract high frequency information from the image and use it to

improve interpolation quality. Although waveleth transform is the most common

method of choice [6, 7], algorithms based on other transforms, such as fourier and

discrete cosine, were proposed too [8, 11]. The main drawback of the transform based

algorithms is their high computational cost. On top of the transform and inverse

transform calculation costs, the iterative nature of these algorithms make them com-

putationally expensive compared to linear interpolation methods.
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Another approach to the interpolation problem is to use image statistics for train-

ing interpolation filters. The idea is to classify pixels using some kind of feature

extraction and to train suitable filters for each pixel class. Resolution Synthesis [3]

is an early example of classification based algorithms. Lenke et al. [26] proposed a

classification based polynamial interpolation and applied their ideas to temporal inter-

polation for video sequences. Another method described in [19] uses neural networks

to train content-adaptive filters.

Edge adaptive interpolation is yet another approach to the interpolation problem.

It became a center of focus because the importance of edge preservation for improved

interpolation quality has been recognized early on [41, 20].

The New Edge Directed Interpolation (NEDI) proposed by Li et al. [29] is a

spatially adaptive interpolation technique that uses local covariance information to

preserve the edge structure. Its basic assumption is that there is a significant corre-

lation between low resolution and high resolution local covariances. Once the local

covariance for the low resolution image is estimated, it can be used to adapt the

interpolation coefficients for that neighborhood.

NEDI algorithm is powerful at maintaining well defined edges. It does not in-

troduce any sign of staircase effect in most cases. However, the algorithm tends to

perform poorly in textured areas especially where closely packed edge structures are

present. It also introduces artifacts for perfectly horizontal or vertical edges. Another

important disadvantage of NEDI is its high computational cost. It requires around

1300 multiplications per pixel for a local window size of 8 [29]. The number of com-

putations can be reduced by excluding the smooth regions since they do not require

edge directed interpolation. However, computational complexity still remains high

for real time applications.

Muresan et al. [36] proposed selecting local quadratic signal class based on training

data and using optimal recovery theory for interpolation. A simplified edge directed

4



interpolation algorithm based on the ideas in [36] is presented in [35]. This algorithm

detects the presence of an edge and its direction, and applies some form of linear

interpolation based on the edge direction decision.

Another algorithm proposed in [45] uses directional filtering and data fusion for

edge directed interpolation. The algorithm starts with interpolating the image with

a conventional method such as bicubic or bilinear. Then, it generates two orthogonal

observation sets for each interpolated pixel. It treats these sets as noisy observations of

the desired pixel value and uses local statistics to combine them adaptively. A simpler

version of the algorithm which makes further assumptions to reduce the computational

complexity is also presented.

The algorithm reduces ringing artifacts and its computational complexity is far

less than NEDI. However, although satisfactory, its edge preservation is not as perfect

as the NEDI algorithm. Also, its performance is dependent on the initial interpola-

tion method used and the simplifying assumptions made. Furthermore, even though

the method combines the orthogonal observations optimally in its own domain, its

statistical data is limited to the directions of these observations rather than the whole

neighborhood because of the directional nature of the algorithm.

2.2 Demosaicing

Color images require multiple data samples for each pixel as opposed to grayscale

images for which a pixel is represented by only one data sample. For the RGB image

format, these data samples represent red, green, and blue channels. A typical digital

camera captures only one of these channels at each pixel location and the other two

need to be estimated to generate the complete color information. This process is

called Color Filter Array (CFA) interpolation or demosaicing. Although many CFA

patterns have been proposed over the years, the most prevalent one is the Bayer

pattern shown in Figure 1 [4]. Bayer pattern is an example of pure RGB based CFA
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patterns. Some pattern designs are comprised of elements that are combinations of

RGB colors such as the Hirakawa pattern [18].

Figure 1: Bayer CFA pattern.

As an important step in image processing pipeline of digital cameras, demosaicing

has been an area of interest both in academia and industry. The simplest approach

to the demosaicing problem is to treat color channels seperately and fill in missing

pixels in each channel using a spatially invariant interpolation method such as bi-

linear or bicubic interpolation. While such an approach works fine in homogenous

areas, it leads to color artifacts and lower resolution in regions with texture and edge

structures.

Obtaining better demosaicing performance is possible by exploiting the correlation

between color channels. Spectral correlation can be modeled by either constant color

ratio rule [22, 31] or constant color difference rule [14, 23]. The basic assumption

is that color ratio/difference is constant over a local distance inside a given object.

This assumption is likely to break apart across boundaries, hence many demosaicing

algorithms try to utilize it adaptively in one way or another.
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Since Bayer CFA pattern has twice as many green channel samples as red and

blue ones, green channel suffers less from aliasing and it is the natural choice as

the starting point for CFA interpolation process. In [12], Glotzbach et al. proposed

improving red and blue channel interpolation by adding high frequency components

extracted from green channel to red and blue channels. In another frequency domain

approach, Gunturk et al. [13] used an alternating projections scheme based on strong

inter-channel correlation in high frequency subbands. Although the main objective is

to refine red and blue channels iteratively, the same approach can also improve green

channel interpolation beforehand which in turn yields better red and blue channel

results. A more recent method [30] makes several observations about color channel

frequencies and suggests that filtering the CFA image as a whole instead of individ-

ual color channels should preserve high frequency information better. To estimate

luminance, the method proposes a fixed 5 by 5 filter at green pixel locations and an

adaptive filter for red and blue pixel locations. Estimated full resolution luminance

is then used to complete the missing chrominance information.

Edge-directed green channel interpolation has been proposed early on with vari-

ous direction decision rules [14, 23, 16, 2]. The method outlined in [14] is particularly

noteworthy because it proposed using derivatives of chrominance samples in initial

green channel interpolation. Several subsequent demosaicing algorithms made use of

this idea. Authors of [9] proposed using variance of color differences as a decision

rule while Zhang et al. [42] proposed making a soft decision to improve the inter-

polation performance of the original method. In this method [42], color differences

along horizontal and vertical directions are treated as noisy observations of target

pixel color difference and they are combined optimally using Linear Minimum Mean

Square Error Estimation (LMMSE) framework. Paliy et al. [37] further improved

directional filtering proposed in [42] by introducing scale adaptive filtering based on

linear polynomial approximation (LPA).

7



Several methods proposed performing interpolation in both horizontal and vertical

directions and making a posteriori decision based on some criteria. Hirakawa et

al. [17] compared local homogeneity of horizontal and vertical interpolation results

and Menon et al. [33] used color gradients over a local window to make the direction

decision.
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CHAPTER III

EDGE DIRECTED IMAGE INTERPOLATION

3.1 Background

When we started looking into the image interpolation problem, our aim was to de-

velop a fast method that could avoid blurry output and jaggy edges. By studying

the relationship between high resolution and low resolution pixels in the same neigh-

borhood and employing Bayesian inference on the findings, we were able to come up

with a successful edge directed method. Instead of trying to detect edge presence

and orientation explicitly and performing interpolation based on that, the proposed

method applies a simple yet powerful formula to all regions.

The proposed interpolation method is built upon the concept of geometric duality

between low resolution and high resolution pixels. Namely, the relationship between

the adjacent pixels of a low resolution image is correlated to that of the high reso-

lution pixels in the same neighborhood. Thus, the interpolation performance can be

improved by analyzing the interaction between low resolution pixels and formulating

a cost function for the synthesis of high resolution pixels based on this analysis.

3.2 Algorithm Details

For the general case of scaling an image by a ratio of 2, the interpolation can be

performed in two steps. The first step is to estimate the diagonal pixels by using the

closest four neighbors all of which are available in the input image. The second step

is to fill in the remaining pixels using both the pixels interpolated in the first step and

the original ones. The second step is no different than the first one except that the

pixel orientations are rotated by 45 degrees. The interpolation steps are illustrated

9
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Figure 2: First interpolation step.

in Figure 2 and 3, respectively. The black circles in Figure 2 represent the already

available low resolution pixels and the black diamond represents the diagonal pixel to

be interpolated. Figure 3 demonstrates the second interpolation step with the white

diamond representing the pixel to be interpolated while the black circles and black

diamonds representing the already available pixels.

The coefficient set determines the weights given to the neighboring pixels for gen-

erating the interpolated pixel value. Any number of neighboring pixels can be chosen

to be included in the coefficient set. Although a bigger coefficient set with more

input pixels can achieve higher interpolation quality, it also leads to more computa-

tional complexity. The coefficient value for each pixel in the set is selected according

to a cost function on the local training window in the low resolution image. The

interpolated value of an already known input pixel in the training window is:

Î8 = α1.I1 + α2.I3 + α3.I13 + α4.I15 (1)

To measure the performance of the particular coefficient set, the actual and the

interpolated pixel values are compared. The square or the absolute value of the error

10
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defines the cost for that particular pixel:

Square Error = (I8 − Î8)2

Absolute Error = |(I8 − Î8)|. (2)

The same calculation is performed for each pixel in the training window. Although

it can be any positive integer, the size of the training window is 4 by 4 in Figure 2.

Choosing the size an even number ensures symmetry with respect to the interpolated

pixel. The final cost for the particular local neighborhood is calculated by adding all

the individual costs of the training window pixels.

Total Square Error =
∑

(Ii − Îi)2

Total Absolute Error =
∑
|(Ii − Îi)|. (3)

The calculation of the final cost function can be altered by giving more weight to

the closest neighbors of the interpolated pixel.

An alternative cost function scheme is to use all eight closest neighbors of a training

window pixel. It is based on the idea to find the error when an already known pixel

11



is interpolated from its closest four interpolated neighbors as shown in Figure 4. It

can be thought as a way of consistency checking for a coefficient set. Assuming that

the same coefficient set is valid for interpolation on a small window of 3 by 3, which

is a very reasonable assumption to make, the following formulas are extracted:

III

III

III

P

P P

P

1 2 3

4 5 6

7 8 9

1 2

3 4

Figure 4: Consistency checking.

P̂1 = α1I1 + α2I2 + α3I4 + α4I5

P̂2 = α1I2 + α2I3 + α3I5 + α4I6

P̂3 = α1I4 + α2I5 + α3I7 + α4I8

P̂4 = α1I5 + α2I6 + α3I8 + α4I9

Î5 = α1P̂1 + α2P̂2 + α3P̂3 + α4P̂4. (4)

Solving for Î5 in terms of original I pixels gives the following equation:

Î5 =α2
1I1 + 2α1α2I2 + α2

2I3 + 2α1α3I4 + (2α1α4 + 2α2α3)I5

+ 2α2α4I6 + α2
3I7 + 2α3α4I8 + α2

4I9.

(5)

Again, the error is calculated for all pixels in the training window and added

together to find the final cost for the neighborhood. Note that all 8 first degree

neighbor pixels contribute to the cost function in this case whereas only 4 diagonal

neighbors were used in the first cost function.
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With the cost function defined for a particular coefficient set, different sets can

be compared to find the best one for each local neighborhood. The question at this

point is, how the coefficients should be selected for the best interpolation quality. In

NEDI’s case, the coefficients are determined according to the local covariance matrix.

However, this can lead to strange coefficients even with singular matrices controlled,

which in turn leads to visual artifacts in the image.

The first constraint for a better interpolation performance is to select the sum of

the coefficients to be equal to one. This restriction prevents the signal from being

amplified or attenuated.

With the sum restriction in place, experiments on natural images were performed

to find out if the cost functions above are able to select appropriate coefficient sets

without an additional constraint on the coefficients. Although the results were not

impressive, they revealed some useful information about the coefficients.

An important observation was that coefficients much bigger than one or much

smaller than zero are unnecessary and even harmful to the interpolation performance.

That is why a maximum and minimum limit is set for every coefficient. -1 and 1.5

seemed reasonable choices for testing purposes (Note that their absolute distance to

0.25 is equal to each other). Additionally, a sampling grid of 0.25 is set to select

the coefficient sets. It turns out that there are 891 coefficient sets such that the

coefficients range from -1 to 1.5 and their sum is always 1. For each interpolated

pixel, the best set among these choices is selected according to the first cost function

defined above. The performance of this interpolation setting is moderate with some

visual artifacts present.

Since it is very costly to search for the best coefficient set among hundreds of

choices, another alternative is needed. For this reason, the best coefficient set for

each interpolated pixel is saved and K-means clustering is performed both to decrease

the number of possible choices and to increase the performance. Indeed, clustering
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increased the interpolation quality. However, very interestingly, as the number of

clusters is decreased, the interpolation quality kept improving with 16 clusters per-

forming better than 32, and 8 performing better than 16. This observation implies

that the additional clusters do not improve the interpolation but degrade it. This led

to the conclusion that an additional constraint on the coefficients is needed.
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Figure 5: Coefficient correlation.

To gain more insight on how the best coefficient sets are distributed and to find

out if there is any dependency between them, the coefficients from the best sets are

plotted against one another. This examination revealed that there is a correlation

between the first and the fourth and between the second and the third coefficients.

Coupled with the restriction that their total is one, this means that there is a negative

correlation between adjacent coefficients (i.e. the first and the second one, the first and

the third one, and so on). Figure 5 illustrates the correlation between the coefficients.

X and Y axes denote the values of the second and third coefficients, respectively. Z

axis denotes the number of times those coefficient values are selected as part of the

best coefficient set. For more than 80 percent of the time, their values are equal to
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each other in the best coefficient sets of the test image. The same observation is

valid for the other cross coefficient pair, i.e. the first and the fourth. Hence, if we

have information about a given coefficient, we can deduce the optimal value of its

pair using Bayesian inference. The strong correlation between the cross coefficients

tells us that their values should be close to each other with a high probability. We

can simplify this relationship and apply it as another restriction by equating cross

coefficients to each other:

α1 = α4

α2 = α3. (6)

Combined with the sum requirement, the equations above imply the following results:

α1 = 0.5− α2

α1 = 0.5− α3

α4 = 0.5− α2

α4 = 0.5− α3. (7)

Applying the additional constraints above increases the interpolation quality sig-

nificantly. Moreover, it is now possible to determine all coefficients when only one of

them is given. This is very powerful because finding the best coefficient set according

to least squares minimization reduces to a first degree problem. The formula to find

the best coefficient set automatically can be derived as follows:

TSE =
∑

[α1Ii1 + (0.5− α1)Ii2 + (0.5− α1)Ii3 + α1Ii4 − Ii]2 (8)

Rearranging:

TSE =
∑

[α1(Ii1 + Ii4 − Ii2 − Ii3) + (0.5Ii2 + 0.5Ii3 − Ii)]2
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Figure 6: Four coefficients.

TSE =
∑

[α2
1(Ii1 + Ii4 − Ii2 − Ii3)2 + 2α1(Ii1 + Ii4 − Ii2 − Ii3)(0.5Ii2 + 0.5Ii3 − Ii)

+ (0.5Ii2 + 0.5Ii3 − Ii)2].

(9)

Taking the derivation of the equation above to find coefficient set that yields the

minimum Total Square Error (TSE) gives:

∑
[2α1(Ii1 + Ii4 − Ii2 − Ii3)2 + 2(Ii1 + Ii4 − Ii2 − Ii3)(0.5Ii2 + 0.5Ii3 − Ii)] = 0

α1 =
−
∑

2(Ii1 + Ii4 − Ii2 − Ii3)(0.5Ii2 + 0.5Ii3 − Ii)∑
2(Ii1 + Ii4 − Ii2 − Ii3)2

α1 =

∑
(Ii1 + Ii4 − Ii2 − Ii3)(Ii − 0.5Ii2 − 0.5Ii3)∑

(Ii1 + Ii4 − Ii2 − Ii3)2
. (10)

The output of the final formula is the first coefficient. The fourth coefficient is

equal to the first one and the second and third ones are equal to 0.5 minus the first

coefficient.

There are two important points to check in the formula above. The first one is

to make sure that the denominator is not zero. This condition is likely to happen in

a perfectly smooth region. Hence, the coefficients are all set to 0.25 in this case and

the method reduces to bilinear interpolation. The second point is to check the final

output of the formula to see if the result is bigger or smaller than some limit. If it is,

then it might be better to set the result to that limit. This restriction prevents any
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visual artifacts from appearing in the output. The experiments suggest that [-1.0,-0.5]

and [1.0,1.5] are appropriate lower and upper limit ranges.

The least squares minimization for the second cost function remains as a third

degree problem even with all the constraints. Hence, it is not easy to find the best

coefficient set directly in this case. Still, it is possible to optimize the coefficient sets

and perform the minimization among them. Comparable interpolation results can be

obtained with only 8 or even 4 coefficient sets. The coefficient sets can be optimized

by using K-means clustering on the data obtained from natural images.

Based on the chosen cost function, different versions of the proposed interpolation

algorithm can be summarized as follows. If the first cost function (for which the pixel

values are estimated with Equation (1)) with squared error is chosen, it is possible to

find the interpolation coefficients automatically. On the other hand, if the first cost

function with absolute error or the second cost function (for which the pixel values are

estimated with Equation (5)) is chosen, the interpolation coefficients are found from

a set of possible choices. The equality of the coefficients restriction can be relaxed to

some degree in this case, since it does not lead to a closed form solution. Overall, the

first cost function is preferable to the second one because finding coefficient values

with a self-adaptive simple formula is much more convenient than training coefficient

sets.

Low computational complexity is almost always desirable for image processing

algorithms. However, it is a necessity rather than a convenience for real-time and low

power applications. We believe the low computational requirement and high quality

of the proposed algorithm makes it a perfect match for any application.

An important advantage of the proposed method is its regularity. Since it does

not require edge detection and the same interpolation formula is used for every pixel,

the computational cost does not vary with different input images.

The proposed interpolation algorithm can be summarized as follows:
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(a) (b)

(c) (d)

(e)

Figure 7: Wall detail: original image (a), bilinear interpolation (b), NEDI (c),
AQua2 (d), and proposed method (e).

1. Extend the image border by mirroring the pixels near the border.

2. Choose the training window size (2 by 2, 4 by 4, or 6 by 6 are reasonable

choices).

3. (Irrelevant for 2 by 2 training window) Choose the weights of training window
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pixels in cost calculation (They could be given equal weight for simplicity, or the

center pixels could be weighed more to preserve locality).

4. For a pixel to be interpolated, use the following formula derived above to find

the interpolation coefficients automatically (refer to Figure 6):

α1 =

∑
((Ii1 + Ii4)− (Ii2 + Ii3))(Ii − 0.5(Ii2 + Ii3))∑

((Ii1 + Ii4)− (Ii2 + Ii3))2
. (11)

5. Find the interpolated pixel value using the following formula (refer to Figure 4):

P̂1 = α1(I1 + I5) + (0.5− α1)(I2 + I4). (12)

6. Fill in all the interpolated pixel values by repeating steps 4-5, first all the

diagonal pixels and then the rest.

7. Crop the output image border by twice the extension size used in step 1.

3.3 Experimental Results

We evaluated the efficacy of the proposed algorithm with the Kodak image set, which

consists of 20 images. The results are compared with bilinear interpolation, NEDI al-

gorithm [29], and fast edge directed polynomial interpolation (AQua2) algorithm [35].

Figure 7 shows a sample test image region interpolated with each algorithm for visual

quality comparison.

The test images are first low-pass filtered and downsampled by two. Then, they

are interpolated by each method and the outputs are compared both objectively

and subjectively. For objective comparison, Peak Signal-to-Noise Ratio (PSNR) and

Structural Similarity Index (SSIM) results are used. The proposed method outper-

forms other edge directed methods in both measures.

Although it is well established that higher PSNR does not necessarily mean better

picture quality, PSNR is still the most common measure of objective quality. The

proposed method managed to outperform other algorithms for every single image in

the test set in terms of PSNR. The comparison results are summarized in Table 1.
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Table 1: Comparison of PSNR values for different interpolation methods.

image no Bilinear NEDI AQua2 Proposed
1 25.11 24.90 25.02 25.17
2 32.24 32.22 32.31 32.47
3 25.25 25.79 25.82 26.29
4 26.71 26.78 26.77 26.94
5 31.81 32.33 32.35 32.92
6 22.66 22.70 22.73 22.97
7 31.13 31.55 31.37 31.87
8 30.84 31.54 31.38 31.89
9 28.35 28.46 28.47 28.69
10 31.54 31.69 31.68 31.88
11 23.14 23.02 23.09 23.23
12 30.11 30.33 30.31 30.51
13 30.45 30.36 30.44 30.54
14 30.58 30.74 30.92 31.17
15 26.96 26.93 26.99 27.17
16 27.12 27.14 27.27 27.63
17 30.11 30.58 30.47 30.93
18 27.63 27.51 27.62 27.77
19 29.64 29.62 29.64 29.87
20 25.78 25.77 25.76 25.97

mean 28.36 28.50 28.52 28.79
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An important observation on the PSNR comparison results is the closeness of

average PSNR values of the other two edge directed methods. AQua2 method slightly

outperforms NEDI. However, the quality difference between them is no more than

0.02 dB on average. The proposed algorithm, on the other hand, outperforms these

methods by 0.27-0.29 dB. The fact that it achieves this quality difference on a large

number of assorted typical images as opposed to some singled out extreme cases is

remarkable.

Table 2: Comparison of SSIM index results for different interpolation methods.

image no Bilinear NEDI AQua2 Proposed
1 0.734 0.717 0.728 0.733
2 0.862 0.857 0.860 0.863
3 0.816 0.823 0.830 0.842
4 0.781 0.780 0.782 0.789
5 0.933 0.937 0.939 0.944
6 0.754 0.750 0.755 0.764
7 0.897 0.899 0.899 0.904
8 0.893 0.901 0.901 0.908
9 0.820 0.818 0.821 0.826
10 0.879 0.875 0.878 0.880
11 0.684 0.670 0.678 0.685
12 0.886 0.886 0.887 0.890
13 0.831 0.828 0.831 0.834
14 0.901 0.905 0.907 0.912
15 0.818 0.810 0.816 0.822
16 0.829 0.829 0.828 0.836
17 0.895 0.896 0.896 0.900
18 0.850 0.844 0.849 0.853
19 0.840 0.832 0.836 0.841
20 0.824 0.820 0.825 0.832

mean 0.836 0.834 0.837 0.843

Structural Similarity Index (SSIM) is a method developed for assessing the sim-

ilarity between two images [40]. If one of the images is considered to have perfect

quality, SSIM index returns the quality of the other image. Its range is from zero to

one, one being the perfect match. The proposed algorithm is compared with other
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methods in terms of SSIM index to assess the interpolation quality more meaning-

fully than simple error difference. It outperformed other edge directed methods on

every image in the test set in terms of this measure, too. Similarly, it outperformed

conventional bilinear interpolation for the most part, with the exception of the first

image. AQua2 is the better performing one among the other methods, followed by

bilinear interpolation and then NEDI. The SSIM index comparison results are given

in Table 2.
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CHAPTER IV

DEMOSAICING ON THE BAYER PATTERN

4.1 Edge Strength Filter Based Demosaicing

4.1.1 A New Filter

The basis of the proposed algorithm is the observation that the constant color differ-

ence assumption tends to fail across edges. If one can effectively utilize edge infor-

mation to avoid averaging non-correlated color differences, demosaicing performance

could increase dramatically. To be able to do that, we need to find a way to express

the edge information meaningfully at the pixel level so that it is useful enough to im-

prove demosaicing performance. Edge detection filters such as Sobel and Canny can

tell whether an edge structure is present at a given pixel. However, they do not pro-

vide any information about the sharpness of luminance transition at that particular

pixel.

Figure 8: Grayscale pixels.

We propose an edge strength filter that provides local, orientation-free luminance

transition information. The filter has a 3 by 3 support size. Given a grayscale input

image, it could be formulated as:

ESP5 =
|P1 − P9|

2
+
|P3 − P7|

2
+ |P2 − P8|+ |P4 − P6|. (13)
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By applying the filter to all available pixels, we get the edge strength map of the

input image. Note that, although the filter result for a single pixel does not provide

any edge direction information, the relationship between neighboring pixel results

yields the edge orientation in that neighborhood.

The proposed filter is very useful for finding edges in a grayscale image. However,

a mosaicked image only has one of the three color channels available for every pixel

location, and it certainly does not have complete luminance information at any pixel.

That is why, the edge strength filter can only be applied to a mosaicked image by

making an approximation. Instead of trying to estimate luminance information and

taking estimated luminance difference of neighboring pixel pairs, we take the differ-

ence in terms of the available color channel for each pixel pair. For instance, for the

red center pixel case the diagonal differences will come from the blue channel and the

rest from the green channel:

ESR10 =
|B5 −B15|

2
+
|B7 −B13|

2
+ |G6 −G14|+ |G9 −G11|. (14)

Figure 9: Bayer CFA pixels.

Similarly, the edge strength for green and blue pixels will be calculated as follows:

ESB7 =
|R2 −R12|

2
+
|R4 −R10|

2
+ |G3 −G11|+ |G6 −G8|

ESG6 =
|G1 −G11|

2
+
|G3 −G9|

2
+ |R2 −R10|+ |B5 −B7|
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ESG11 =
|G6 −G16|

2
+
|G8 −G14|

2
+ |B7 −B15|+ |R10 −R12|. (15)

Figure 10 shows the mosaicked lighthouse image and its edge strength filter result.

The edge strength map obtained from the mosaicked input image will help us both

in initial green channel interpolation stage and in subsequent green channel update.

Figure 10: Mosaicked lighthouse image and its edge strength filter output.

4.1.2 Initial Green Channel Interpolation

We propose making a hard decision based on the edge strength filter described above.

For this purpose, every green pixel to be interpolated (red or blue pixel in the mo-

saicked image) is marked either horizontal or vertical by comparing the edge strength

differences along each direction on a local window. For a window size of 5 by 5,
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horizontal and vertical difference costs can be formulated as follows:

HCi,j =
2∑

m=−2

(
1∑

n=−2

(ESi+m,j+n − ESi+m,j+n+1))

V Ci,j =
1∑

m=−2

(
2∑

n=−2

(ESi+m,j+n − ESi+m+1,j+n)), (16)

where ESi,j is the edge strength filter output at pixel location (i, j).

The target pixel will be labeled horizontal if horizontal cost is less than vertical

and vice versa. The rationale behind this decision scheme is that if there happens

to be a horizontal edge in a given neighborhood, then the edge strength differences

between vertical neighbors will vary more than those of horizontal neighbors. After

all the pixels are labeled, the robustness of the direction decision can be improved by

relabeling them based on the directions of their neighbors. For instance, considering

the closest 8 neighbors of a target pixel and the pixel itself, the pixel will be labeled

horizontal only if more than 4 of those 9 pixels are initially labeled horizontal.

Based on the final direction label, green channel is interpolated using the following

formulas:

G̃i,j =


Bi,j +

G̃H
i,j −Bi,j

2
+
Gi,j−1 − B̃H

i,j−1

4
+
Gi,j+1 − B̃H

i,j+1

4
, if Horizontal

Bi,j +
G̃V

i,j −Bi,j

2
+
Gi−1,j − B̃V

i−1,j

4
+
Gi+1,j − B̃V

i+1,j

4
, if Vertical

(17)

where directional estimations are calculated by:

G̃H
i,j =

Gi,j−1 +Gi,j+1

2
+

2 ∗Bi,j −Bi,j−2 −Bi,j+2

4

G̃V
i,j =

Gi−1,j +Gi+1,j

2
+

2 ∗Bi,j −Bi−2,j −Bi+2,j

4

B̃H
i,j =

Bi,j−1 +Bi,j+1

2
+

2 ∗Gi,j −Gi,j−2 −Gi,j+2

4

B̃V
i,j =

Bi−1,j +Bi+1,j

2
+

2 ∗Gi,j −Gi−2,j −Gi+2,j

4
. (18)
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Green channel estimation for red pixel locations is performed with the same for-

mulas simply by replacing B ’s with R’s.

4.1.3 Green Channel Update

The second step of the proposed algorithm is updating the green channel. We make

use of the constant color difference assumption combined with the edge strength filter

to improve the initial green channel interpolation while avoiding averaging across

edge structures. For every green pixel to be updated, the closest four neighbors with

available color difference estimates are considered. The weight for each neighbor is

inversely correlated with the total absolute edge strength difference in its direction.

In other words, a neighbor will contribute less to the update result if there happens

to be a strong edge between the target pixel and itself. Assuming we are updating

the green channel value at a blue pixel:

D1 =
1

|ESi,j − ESi−1,j|+ |ESi−1,j − ESi−2,j|+ |ESi−2,j − ESi−3,j|+ C1

D2 =
1

|ESi,j − ESi,j−1|+ |ESi,j−1 − ESi,j−2|+ |ESi,j−2 − ESi,j−3|+ C1

D3 =
1

|ESi,j − ESi,j+1|+ |ESi,j+1 − ESi,j+2|+ |ESi,j+2 − ESi,j+3|+ C1

D4 =
1

|ESi,j − ESi+1,j|+ |ESi+1,j − ESi+2,j|+ |ESi+2,j − ESi+3,j|+ C1

DTotal = D1 +D2 +D3 +D4

Ĝi,j =Bi,j +W1(G̃i,j −Bi,j) +W2[
D1

DTotal

(G̃i−2,j −Bi−2,j)+

D2

DTotal

(G̃i,j−2 −Bi,j−2) +
D3

DTotal

(G̃i,j+2 −Bi,j+2) +
D4

DTotal

(G̃i+2,j −Bi+2,j)]

W1 +W2 = 1. (19)

Again, the green channel values at red pixel locations are updated in the same

way by replacing B ’s with R’s in the formulas above. Ĝi,j stands for the updated
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green channel result while G̃i,j is the initial green channel interpolation. C1 is a

nonzero constant to avoid zero denominator. Updating the green channel reduces

color artifacts and improves PSNR. However, zipper artifacts become more prominent

as the number of updates increase. Experiments on test images suggest that one or

two green channel updates are adequate.

The performance of green channel update can be improved further by making

W1 adaptive for each pixel by checking the total absolute difference between the

closest known green pixels. The idea is that the green channel update should be more

aggresive if there happens to be a lot of difference between known green pixels in that

neighborhood because the initial interpolation is more likely to fail in such areas. The

update formulas with adaptive weights are as follows:

GDi,j =min(
|Gi−1,j −Gi,j+1|+ |Gi,j+1 −Gi+1,j|

4
+

|Gi+1,j −Gi,j−1|+ |Gi,j−1 −Gi−1,j|
4

, C2)

G̃
′

i,j =Bi,j + (W1 −GDi,j)(G̃i,j −Bi,j) + (W2 +GDi,j)[
D1

DTotal

(G̃i−2,j −Bi−2,j)+

D2

DTotal

(G̃i,j−2 −Bi,j−2) +
D3

DTotal

(G̃i,j+2 −Bi,j+2) +
D4

DTotal

(G̃i+2,j −Bi+2,j)]

W1 +W2 = 1. (20)

4.1.4 Red and Blue Channel Interpolation

Once the green channel interpolation is finalized, we fill in red and blue channels

using constant color difference assumption. For the red channel interpolation at blue

pixels and the blue channel interpolation at red pixels, the diagonal neighbors are

used adaptively based on the green channel gradients in both directions:

D1 =
1

|Ĝi−2,j−2 − Ĝi,j|+ |Ĝi−1,j−1 − Ĝi+1,j+1|+ |Ĝi,j − Ĝi+2,j+2|

D2 =
1

|Ĝi−2,j+2 − Ĝi,j|+ |Ĝi−1,j+1 − Ĝi+1,j−1|+ |Ĝi,j − Ĝi+2,j−2|
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DTotal = D1 +D2. (21)

If coordinate (i, j) is a red pixel location, the blue channel estimation is calculated

by:

B̂i,j =Ĝi,j −
D1 ∗ (Ĝi−1,j−1 −Bi−1,j−1 + Ĝi+1,j+1 −Bi+1,j+1)

2 ∗DTotal

− D2 ∗ (Ĝi−1,j+1 −Bi−1,j+1 + Ĝi+1,j−1 −Bi+ 1, j − 1)

2 ∗DTotal

.

(22)

Similarly, if it is a blue pixel location, the red channel estimation is:

R̂i,j =Ĝi,j −
D1 ∗ (Ĝi−1,j−1 −Ri−1,j−1 + Ĝi+1,j+1 −Ri+1,j+1)

2 ∗DTotal

− D2 ∗ (Ĝi−1,j+1 −Ri−1,j+1 + Ĝi+1,j−1 −Ri+ 1, j − 1)

2 ∗DTotal

.

(23)

For the red and blue channel estimation at green pixels, we employ bilinear in-

terpolation over color differences since the considered adaptive approaches do not

provide any performance gain. Here, only the closest two neigbours for which the

original pixel value available are used:

B̂2i,2j = G2i,2j −
(Ĝ2i−1,2j −B2i−1,2j) + (Ĝ2i+1,2j −B2i+1,2j)

2

B̂2i+1,2j+1 = G2i+1,2j+1 −
(Ĝ2i+1,2j −B2i+1,2j) + (Ĝ2i+1,2j+2 −B2i+1,2j+2)

2

R̂2i,2j = G2i,2j −
(Ĝ2i,2j−1 −R2i,2j−1) + (Ĝ2i,2j+1 −R2i,2j+1)

2

R̂2i+1,2j+1 = G2i+1,2j+1 −
(Ĝ2i,2j+1 −R2i,2j+1) + (Ĝ2i+2,2j+1 −R2i+2,2j+1)

2
. (24)

By the end of this step, we filled in all the missing color channel values in the input

image. We utilized a simple edge strength filter both to determine the initial green

channel interpolation direction and to avoid applying the constant color difference

rule across edge structures.
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4.2 Color Difference Gradients Based Demosaicing

4.2.1 Algorithm Background

We developed the color difference gradients based demosaicing algorithm by address-

ing a few limitations we observed in the DLMMSE method [42]. Firstly, as a result of

its directional nature, the DLMMSE algorithm uses only a subset of a target pixel’s

neighbors (pixels that share the same column or row with the target pixel) to find

out how much each direction should contribute to the color difference calculation. Al-

though the solution is optimal in its own domain, unconsidered neighbor pixels might

provide additional information that could improve the color difference estimation.

That is why, we want to include every neighbor pixel inside a given local window to

the decision making process. However, since available color difference at every pixel is

either (G-R) or (G-B), we cannot apply the variance metric as the DLMMSE method

does. For this reason, we use gradients of color differences to come up with weights

for each direction.

Secondly, the DLMMSE method operates on horizontal and vertical directions

like other directional methods. However, for a given direction, the conditions might

be different for pixels falling to the opposite sides of the target pixel especially near

edges or in texture regions. For this reason, we decouple north-south and east-west

directions from each other and consider them seperately. Instead of making a hard

direction decision, we combine estimations from every direction, which eliminates the

need for setting thresholds.

4.2.2 Green Channel Interpolation

The proposed algorithm first interpolates the green channel in a single run, then uses

its results to fill in red and blue channels. The first step of the algorithm is applying

Hamilton and Adams’ [14] interpolation formula to all pixels in both vertical and

horizontal directions. For red pixel locations, horizontal and vertical green channel
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estimations are calculated as follows:

G̃H
i,j = (Gi,j−1 +Gi,j+1)/2 + (2 ∗Ri,j −Ri,j−2 −Ri,j+2)/4

G̃V
i,j = (Gi−1,j +Gi+1,j)/2 + (2 ∗Ri,j −Ri−2,j −Ri+2,j)/4. (25)

Similarly, for green pixels with red vertical neighbors, vertical red channel estima-

tion is:

R̃V
i,j = (Ri−1,j +Ri+1,j)/2 + (2 ∗Gi,j −Gi−2,j −Gi+2,j)/4. (26)

And for green pixels with horizontal red channel neigbors,

R̃H
i,j = (Ri,j−1 +Ri,j+1)/2 + (2 ∗Gi,j −Gi,j−2 −Gi,j+2)/4. (27)

Estimations with blue pixels are calculated in the same manner, simply by replac-

ing R with B in the formulas above. The next step is to find horizontal and vertical

color difference estimations using original and directionally estimated pixel values.

∆̃V
g,r(i, j) =


G̃V

i,j −Ri,j, G is interpolated

Gi,j − R̃V
i,j, R is interpolated

∆̃H
g,r(i, j) =


G̃H

i,j −Ri,j, G is interpolated

Gi,j − R̃H
i,j, R is interpolated

(28)

Again, horizontal and vertical (G-B) difference estimations are calculated simi-

larly. By the end of this step, we have two difference maps, one for horizontal and

the other one for vertical estimations as shown in Figure 11.
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Figure 11: Horizontal and vertical color difference maps.

Next, directional color differences are combined to form the final difference esti-

mation for the target pixel:

∆̃g,r(i, j) =[wN ∗ f ∗ ∆̃V
g,r(i− 4 : i, j)+

wS ∗ f ∗ ∆̃V
g,r(i : i+ 4, j)+

wE ∗ ∆̃H
g,r(i, j − 4 : j) ∗ f ′+

wW ∗ ∆̃H
g,r(i, j : j + 4) ∗ f ′]/wT

wT = wN + wS + wE + wW

f = [1 1 1 1 1]/5. (29)

The vector f could be modified to put more weight to color differences closer to

the target pixel. The weight for each direction (wN , wS, wE, wW ) is calculated by

adding color difference gradients in that direction over a local window. For a window

size of 5 by 5:

wN = 1/(
i∑

a=i−4

j+2∑
b=j−2

DV
a,b)

2

wS = 1/(
i+4∑
a=i

j+2∑
b=j−2

DV
a,b)

2
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wE = 1/(
i+2∑

a=i−2

j∑
b=j−4

DH
a,b)

2

wW = 1/(
i+2∑

a=i−2

j+4∑
b=j

DH
a,b)

2, (30)

where gradients are defined as:

DV
i,j = |∆̃V

i−1,j − ∆̃V
i+1,j|

DH
i,j = |∆̃H

i,j−1 − ∆̃H
i,j+1|. (31)

Finally, the target green pixel value is calculated by adding the estimated color

difference to the available (red or blue) target pixel:

G̃(i, j) = R(i, j) + ∆̃g,r(i, j)

G̃(i, j) = B(i, j) + ∆̃g,b(i, j). (32)

4.2.3 Red and Blue Channel Interpolation

After the green channel processing is finished, we start filling in red and blue channels.

The red pixel values at blue locations and the blue pixel values at red locations are

interpolated using the following filter that was proposed in [37]:

prb =



0 0 −1 0 −1 0 0

0 0 0 0 0 0 0

−1 0 10 0 10 0 −1

0 0 0 0 0 0 0

−1 0 10 0 10 0 −1

0 0 0 0 0 0 0

0 0 −1 0 −1 0 0



∗ 1

32

R̃i,j = G̃i,j − ∆̃g,r(i− 3 : i+ 3, j − 3 : j + 3)⊗ prb

B̃i,j = G̃i,j − ∆̃g,b(i− 3 : i+ 3, j − 3 : j + 3)⊗ prb, (33)
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where ⊗ denotes element-wise matrix multiplication and then summation of ele-

ments.

For red and blue pixels at green locations, we use bilinear interpolation over the

closest four neighbors. The immediate vertical neighbors of a green pixel are either

red or blue pixels. For the red pixel case, red and blue pixel values at a green pixel

location are interpolated as follows:

R̃(i, j) = G(i, j)− (G̃i−1,j −Ri−1,j)/4− (G̃i+1,j −Ri+1,j)/4

− (G̃i,j−1 − R̃i,j−1)/4− (G̃i,j+1 − R̃i,j+1)/4

B̃(i, j) = G(i, j)− (G̃i−1,j − B̃i−1,j)/4− (G̃i+1,j − B̃i+1,j)/4

− (G̃i,j−1 −Bi,j−1)/4− (G̃i,j+1 −Bi,j+1)/4.

(34)

The interpolation formulas are similar for the blue vertical neighbor case. At this

point, we interpolated the missing pixels for every channel and reconstructed our

color image.

4.3 Multiscale Gradients Based Demosaicing

4.3.1 Algorithm Background

Gradients are useful for extracting directional data from digital images. Several de-

mosaicing methods including a recent integrated gradients method proposed in [10]

made use of them. We demonstrated in [38] that the gradients of color difference

signals could be valuable features to adaptively combine directional color difference

estimates. In this method, the horizontal and vertical color difference estimates are

blended based on the ratio of the total absolute values of vertical and horizontal color

difference gradients over a local window.

The first step of the algorithm is to get initial directional color channel estimates.

The Bayer pattern is comprised of blue&green and red&green rows and columns as
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depicted in Figure 1. For red&green rows and columns in the input mosaic image,

the directional estimates for the missing red and green pixel values are:

G̃H(i, j) =
G(i, j − 1) +G(i, j + 1)

2
+

2.R(i, j)−R(i, j − 2)−R(i, j + 2)

4

R̃H(i, j) =
R(i, j − 1) +R(i, j + 1)

2
+

2.G(i, j)−G(i, j − 2)−G(i, j + 2)

4

G̃V (i, j) =
G(i− 1, j) +G(i+ 1, j)

2
+

2.R(i, j)−R(i− 2, j)−R(i+ 2, j)

4

R̃V (i, j) =
R(i− 1, j) +R(i+ 1, j)

2
+

2.G(i, j)−G(i− 2, j)−G(i+ 2, j)

4
, (35)

where H and V denote horizontal and vertical directions and (i, j) is the pixel

location. For every pixel coordinate, we now have a true color channel value and

two directional estimates. By taking their difference, we get the directional color

difference estimate:

∆̃H
g,r(i, j) =


G̃H(i, j)−R(i, j), if G is interpolated

G(i, j)− R̃H(i, j), if R is interpolated

∆̃V
g,r(i, j) =


G̃V (i, j)−R(i, j), if G is interpolated

G(i, j)− R̃V (i, j), if R is interpolated

(36)

where ∆̃H
g,r stands for the horizontal difference estimate between green and red

channels. The equations are similar for blue&green rows and columns. The generated

horizontal and vertical color difference maps are shown in Figure 11. As mentioned

above, the directional estimates are combined adaptively using the color difference

gradients. The absolute color difference gradients at pixel coordinates (i,j) are given

by:

DH(i, j) = |∆̃H(i, j − 1)− ∆̃H(i, j + 1)|

DV (i, j) = |∆̃V (i− 1, j)− ∆̃V (i+ 1, j)|. (37)

35



It could be argued that the performance of such an algorithm relies on its ability to

successfully combine directional estimates. The color difference gradients calculated

above are used to find weights for each direction. The horizontal color difference

gradient equation above can be written in terms of red and green pixel values as

follows:

DH(i, j) = |(G(i, j − 1)− R̃H(i, j − 1))− (G(i, j + 1)− R̃H(i, j + 1))|

= |(2.G(i, j − 1) +G(i, j − 3) +G(i, j + 1)

4
− R(i, j − 2) +R(i, j)

2
)−

(
2.G(i, j + 1) +G(i, j − 1) +G(i, j + 3)

4
− R(i, j) +R(i, j + 2)

2
)|.

(38)

We observe that there are R(i, j) terms present and they cancel out each other.

Rearranging with respect to different color channels leaves us with:

DH(i, j) =|R(i, j + 2)−R(i, j − 2)

2
−

(G(i, j + 3) +G(i, j + 1))− (G(i, j − 3) +G(i, j − 1))

4
|.

(39)

There are two important observations that we made on the equation above. First,

what our color difference gradient corresponds to is taking the difference between the

available color channel values two pixels away from the target pixel, doing the same

operation in terms of the other color channel by using simple averaging, and then

finding the difference between these two operations as illustrated in the top portion

of Figure 12. If these two color channels are changing in parallel with each other

along this direction, then the resulting absolute value would be small. On the other

hand, if there is an abrupt color change, then the result would be large and the color

difference estimate along this direction would be given a small weight in combined

color difference calculation. Our second and more important observation is that, we

can do these same operations at half the scale:

Dh(i, j) = |G(i, j + 1)−G(i, j − 1)

2
−(R(i, j + 2) +R(i, j))− (R(i, j − 2) +R(i, j))

4
|,

(40)
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where Dh(i, j) denotes the horizontal estimation at half the scale. A smaller scale

is more desirable because it allows the local color dynamics to be captured at a better

resolution. Note that the available color channels are replaced at this scale, but we

are still performing the same operations: We take the difference between the available

color channel values one pixel (instead of two pixels) away from the target pixel, we

do the same operation in terms of the other channel by using its closest samples, and

then we take the difference between these two. At this scale, the R(i, j) terms cancel

each other out and we are left with:

Dh(i, j) = |G(i, j + 1)−G(i, j − 1)

2
− R(i, j + 2)−R(i, j − 2)

4
|. (41)

We observe that the first part of this equation is the green channel gradient, and

the second part is the red channel gradient at twice the scale normalized by the

distance between their operands as shown in the bottom part of Figure 12.

Figure 12: Relationship between the color difference gradients equation and the
multiscale gradients equation.

Like the color difference gradient equation (Equation no. 39), this equation checks

whether different color channel pixels along this direction are changing in agreement
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with each other or not. However, we expected this new equation to be more successful

with combining the directional estimates because we capture the color dynamics at a

more local level and we do it without resorting to any simple averaging.

The fact that this equation combines two different scales of gradients together

gave us the idea that it should be possible to incorporate even more scales into the

equation. However, since the locality will get weaker with each additional scale, the

larger scales should contribute less to the result. The easiest way of doing that is to

optimize the normalizing terms in the denominators. The final multiscale gradients

equations for red&green rows and columns can be given as follows:

Dh(i, j) =|G(i, j + 1)−G(i, j − 1)

2
− R(i, j + 2)−R(i, j − 2)

N1

+

G(i, j + 3)−G(i, j − 3)

N2

− R(i, j + 4)−R(i, j − 4)

N3

+ ...|

Dv(i, j) =|G(i+ 1, j)−G(i− 1, j)

2
− R(i+ 2, j)−R(i− 2, j)

N1

+

G(i+ 3, j)−G(i− 3, j)

N2

− R(i+ 4, j)−R(i− 4, j)

N3

+ ...|,
(42)

where the Ni terms are the normalizers. The equations are similar for blue&green

rows and columns.

4.3.2 Initial Green Channel Interpolation

Like most demosaicing methods designed for the Bayer pattern including our methods

described in previous sections, the multiscale gradients based algorithm starts with

interpolating the green channel. After updating the initial green channel interpola-

tion results in one pass, the red and blue channels are filled in using the constant

color difference assumption. The ratio between the vertical and horizontal multiscale

gradients results over a local window is employed at every stage.

For initial green channel interpolation, we have directional color difference esti-

mates around every green pixel to be interpolated as given in Equation (36) and we

combine them adaptively:

38



∆̂g,r(i, j) =[wV .f.∆̃
V
g,r(i− 1 : i+ 1, j)+

wH .∆̃
H
g,r(i, j − 1 : j + 1).f′]/wT

wT = wV + wH

f = [1/4 2/4 1/4]. (43)

For a local window size of 5 by 5, the weight for each direction is calculated as

follows:

wV = 1/(
i+2∑

k=i−2

j+2∑
l=j−2

Dv
k,l)

2

wH = 1/(
i+2∑

k=i−2

j+2∑
l=j−2

Dh
k,l)

2. (44)

The division operation can be avoided by defining the weights as the denominators

and exchanging them (The ratio of 1/a to 1/b is equal to the ratio of b to a provided

that both are nonzero).

4.3.3 Green Channel Update

After the directional color difference estimates are combined as explained in the pre-

vious section, we can directly calculate the green channel and move onto completing

the other channels. However, it is possible to improve the green channel results by

updating the initial color difference estimates. We consider the closest four neighbors

to the target pixel with each one having its own weight:

∆̃g,r(i, j) =∆̂g,r(i, j).(1− w)+

[wN .∆̂g,r(i− 2, j)+

wS.∆̂g,r(i+ 2, j)+

wE.∆̂g,r(i, j − 2)+

wW .∆̂g,r(i, j + 2)].w/wT
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wT = wN + wS + wE + wW . (45)

Again, the weights (wN , wS, wE, wW ) are calculated by finding the total multiscale

color gradients over a local window. For a 3 by 5 window for horizontal and a 5 by 3

window for vertical components, the weight calculations can be given as follows:

wN = 1/(
i∑

k=i−4

j+1∑
l=j−1

Dv
k,l)

2

wS = 1/(
i+4∑
k=i

j+1∑
l=j−1

Dv
k,l)

2

wW = 1/(
i+1∑

k=i−1

j∑
l=j−4

Dh
k,l)

2

wE = 1/(
i+1∑

k=i−1

j+4∑
l=j

Dh
k,l)

2. (46)

Once the color difference estimate is finalized, we add it to the available target

pixel to obtain the estimated green channel value:

G̃(i, j) = R(i, j) + ∆̃g,r(i, j)

G̃(i, j) = B(i, j) + ∆̃g,b(i, j). (47)

4.3.4 Red and Blue Channel Interpolation

For red and blue channel interpolation, we first complete the missing diagonal samples

i.e. red pixel values at blue locations and blue pixel values at red locations. These

pixels are interpolated using the 7 by 7 filter proposed in [37]:
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prb =



0 0 −1 0 −1 0 0

0 0 0 0 0 0 0

−1 0 10 0 10 0 −1

0 0 0 0 0 0 0

−1 0 10 0 10 0 −1

0 0 0 0 0 0 0

0 0 −1 0 −1 0 0



.
1

32

R̃i,j = G̃i,j − ∆̃g,r(i− 3 : i+ 3, j − 3 : j + 3)⊗ prb

B̃i,j = G̃i,j − ∆̃g,b(i− 3 : i+ 3, j − 3 : j + 3)⊗ prb, (48)

where ⊗ denotes element-wise matrix multiplication and subsequent summation.

The red and blue pixels at green locations are interpolated adaptively. In order to

avoid repetitive weight calculations, we reuse the directional weights (wH , wV ) defined

in Equation (44). The immediate vertical neighbors of a green pixel are either red or

blue pixels. For the red pixel case the interpolation is carried out as follows:

R̃(i, j) = G(i, j)− wV .(G̃(i− 1, j)−R(i− 1, j) + G̃(i+ 1, j)−R(i+ 1, j))

2.(wV + wH)

− wH .(G̃(i, j − 1)− R̃(i, j − 1) + G̃(i, j + 1)− R̃(i, j + 1))

2.(wV + wH)

B̃(i, j) = G(i, j)− wV .(G̃(i− 1, j)− B̃(i− 1, j) + G̃(i+ 1, j)− B̃(i+ 1, j))

2.(wV + wH)

− wH .(G̃(i, j − 1)−B(i, j − 1) + G̃(i, j + 1)−B(i, j + 1))

2.(wV + wH)
.

(49)

The equations for the blue vertical neighbor case are similar. With the completion

of red and blue pixel values at green coordinates, we obtain the full color image.
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Figure 13: 24 image Kodak dataset.

4.4 Experimental Results on the Bayer Pattern

The results of the three proposed methods are compared with eleven state of the art

algorithms included in a recent survey paper [28] and two methods introduced after

this survey paper. These eleven methods are: Lu and Tan’s method (LT), Alternating

Projection (AP), Adaptive Homogeneity-directed (AHD), Successive Approximation

with edge-weighted improvement (SA), Lukac’s method with post-processing (CCA),

Frequency-domain Demosaicing (FD), Directional Filtering and a posteriori Deci-

sion (DFPD), Variance of color-difference (VCD), Directional Linear Minimum Mean

Square-Error Estimation (DLMMSE), Local Polynomial Approximation (LPA), and

Adaptive Filtering for demosaicing (AF). The two more recent methods are Regu-

larization Approaches to Demosaicking (RAD) [34], and Integrated Gradients (IGD)

[10] methods. Twelve images from the Kodak PhotoCD dataset are used as the test

images. The PSNR comparison results are summarized in Table 3. Among the six-

teen methods in total, the proposed multiscale gradients based algorithm (labeled

MSG in Table 3) has the best overall PSNR average with 42.97 dB. Our gradient

based (GBTF) method comes third closely after the IGD method with 42.53 dB.
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LPA method follows it with 42.39 dB, and the proposed ESF based algorithm is be-

hind LPA with 42.35 dB. The fence region from the lighthouse image is shown in

Figure 14 for subjective quality comparison. The complete Kodak dataset is shown

in Figure 13.

Table 3: Comparison of PSNR values for different demosaicing methods.

No. LT AP AHD SA CCA FD DFPD VCD DL LPA AF RAD IGD ESF GBTF MSG
R 42.90 42.07 41.42 41.90 41.14 38.86 42.48 42.97 42.90 43.86 42.93 42.02 43.20 42.51 43.35 43.81

1 G 46.24 45.33 45.16 46.32 45.56 44.16 46.15 46.74 47.56 47.75 46.98 46.32 47.18 46.88 47.66 47.95
B 43.06 42.69 42.23 42.96 42.13 41.41 43.13 43.50 43.86 44.46 43.65 42.97 43.68 43.41 44.10 44.44
R 38.00 39.06 38.58 40.21 39.58 37.40 40.27 40.93 41.39 42.10 38.74 40.89 42.17 42.15 42.11 42.51

2 G 39.82 42.75 40.08 43.48 43.03 42.30 42.04 43.83 43.69 44.81 41.67 43.80 45.12 45.37 45.02 45.55
B 37.59 38.97 38.05 39.54 38.96 38.23 39.68 40.37 40.44 41.07 38.18 39.74 41.27 41.09 41.10 41.41
R 43.33 42.53 41.13 42.53 41.74 39.35 42.38 42.92 42.95 43.77 43.48 42.95 43.41 43.15 43.57 44.12

3 G 45.88 44.91 43.67 44.52 45.21 43.49 44.97 45.58 46.26 46.53 46.66 46.19 46.39 46.44 46.77 47.41
B 42.44 41.51 40.33 40.48 40.87 41.03 41.47 41.85 41.80 42.65 42.41 41.93 42.14 41.97 42.26 42.96
R 34.88 35.20 34.17 35.96 35.65 32.28 35.56 36.57 36.33 37.42 35.51 36.25 37.51 37.01 37.26 37.84

4 G 37.15 39.66 36.14 40.37 39.77 37.58 38.08 40.25 39.63 41.15 38.88 40.04 41.60 41.27 41.12 41.86
B 34.98 35.58 34.35 36.78 36.22 32.95 35.85 37.10 36.66 37.85 35.63 36.46 38.27 37.65 37.59 38.15
R 42.85 42.50 41.76 42.93 42.76 39.93 42.86 43.70 43.71 44.26 43.16 42.78 44.35 43.85 44.29 44.64

5 G 44.90 45.30 44.06 46.12 45.98 43.60 45.44 46.71 46.68 47.01 46.29 45.84 47.35 46.98 47.33 47.74
B 41.90 42.31 41.08 42.33 41.94 41.11 42.49 43.10 42.93 43.42 42.69 42.15 43.26 43.06 43.37 43.79
R 38.81 39.08 37.64 39.18 39.03 36.88 39.29 39.73 39.98 40.44 39.38 39.71 40.45 40.41 40.66 41.16

6 G 40.88 42.78 39.89 43.29 43.32 42.74 41.75 43.33 43.19 43.85 42.63 43.27 44.46 44.56 44.42 45.03
B 39.35 40.02 38.41 40.53 40.46 39.23 39.94 40.82 40.96 41.39 39.80 40.22 41.71 41.49 41.65 42.04
R 41.01 42.18 42.37 43.40 42.45 40.10 43.77 44.47 44.75 44.91 41.61 44.06 45.51 45.56 45.33 45.74

7 G 42.88 45.75 43.77 46.42 45.72 44.84 45.41 47.03 46.82 47.15 44.53 46.86 47.96 48.27 47.87 48.35
B 40.55 41.70 41.57 42.24 41.62 40.62 42.94 43.55 43.54 43.77 40.99 42.68 44.13 44.03 43.98 44.35
R 40.11 40.02 39.16 40.98 40.66 37.12 40.56 41.10 41.69 42.18 40.58 40.76 42.35 41.99 42.35 42.76

8 G 41.95 43.86 40.77 44.33 43.96 42.05 42.55 44.09 44.14 44.72 43.49 43.88 45.32 45.11 45.25 45.76
B 39.46 39.95 38.62 40.33 39.95 37.90 40.15 40.60 40.88 41.46 39.92 39.79 41.72 41.18 41.57 41.95
R 42.14 41.79 40.22 42.15 42.48 39.78 41.40 42.31 42.77 42.95 42.37 42.34 43.09 42.83 43.27 43.60

9 G 43.47 44.59 41.66 45.07 45.49 43.59 43.26 44.89 44.88 45.14 44.94 45.07 45.78 45.63 45.83 46.29
B 40.47 40.66 39.01 40.33 40.90 40.41 40.24 40.98 40.95 41.36 40.79 40.50 41.50 41.07 41.48 41.84
R 38.87 39.51 37.62 40.32 40.71 37.80 38.83 40.21 40.40 40.91 39.61 40.35 41.44 41.28 40.94 41.59

10 G 40.19 42.79 38.88 43.45 43.75 42.17 40.61 42.89 42.43 43.13 42.16 43.08 44.04 44.19 43.57 44.31
B 38.21 39.07 36.93 39.41 39.60 38.44 38.28 39.41 39.34 39.77 38.77 39.20 40.20 40.07 39.83 40.33
R 39.20 38.61 37.01 38.54 38.18 37.10 38.33 38.93 39.20 39.37 39.29 39.16 39.46 39.31 39.60 39.85

11 G 41.40 41.23 39.46 41.56 41.67 40.53 40.91 41.97 42.26 42.32 42.39 42.20 42.50 42.57 42.90 43.14
B 38.65 38.19 36.82 38.13 38.12 37.61 38.22 38.77 38.84 39.10 38.91 38.60 39.04 38.96 39.25 39.50
R 36.05 36.78 34.58 37.18 36.20 36.89 36.32 37.29 37.99 37.78 36.80 37.91 37.61 37.43 38.09 38.15

12 G 37.22 39.07 36.49 39.88 39.68 39.83 38.25 39.86 39.87 40.05 39.04 40.23 40.46 40.00 40.30 40.66
B 34.59 35.07 33.90 35.68 35.55 35.65 35.11 35.75 36.22 36.17 35.15 35.99 36.22 35.77 36.18 36.30

Avg 40.32 40.92 39.36 41.36 41.11 39.58 40.81 41.78 41.89 42.39 41.11 41.56 42.55 42.35 42.53 42.97
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(a) Original (b) VCD (c) DLMMSE

(d) LPAICI (e) RAD (f) IGD

(g) ESF (h) GBTF (i) MSG

Figure 14: Comparison on the Bayer pattern. Fence region from the lighthouse
image.
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CHAPTER V

DEMOSAICING ON THE LUKAC PATTERN

5.1 Motivation

Although designed for the Bayer mosaic pattern, the proposed methods can be modi-

fied to be applied to other mosaic patterns. However, such an application may not be

feasible for all mosaic patterns because of the restrictions dictated by the directional

nature of our approach. When the modification is feasible, an important question

would be whether the changes needed to comply with the new pattern layout lead to

a significant performance loss or not. To find out if we can outperform other avail-

able solutions on a different pattern layout, we modified our Edge Strength Based

algorithm for the Lukac pattern. Encouraged by the experimental results, we also

applied the multiscale gradients idea behind our latest demosaicing method to the

Lukac pattern.

5.2 Application of the ESF Based Method to the Lukac Pat-
tern

Lukac mosaic pattern is similar to Bayer pattern in the sense that it consists of pure

RGB components. When we shift every other row in a Bayer pattern by one pixel to

either side, we obtain the Lukac pattern. Hence, the horizontal relationship between

the pixels is still the same, but the vertical arrangement is significantly altered. An

inspection on the Lukac mosaic pattern reveals that it is possible to take gradients

in three directions as opposed to four on the Bayer pattern. While we still have

the horizontal component, the vertical one is gone and the diagonal components lean

more towards the vertical direction. Based on this observation, we modify the edge

strength filter as follows:
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Figure 15: Numbered Lukac pattern layout.

ER11 =
|B6 −B15|+ |G7 −G16|

2
+

|B8 −B15|+ |G7 −G14|
2

+ |G10 −G12|,
(50)

where ERi
stands for the filter output at the red pixel coordinate Ri. The filter

equation is similar for green and blue pixel locations. By running the filter through

the whole mosaicked input image, we obtain an edge strength map. This map will

be used to interpolate and update the green channel adaptively. Figure 16 shows a

mosaicked input sample region and its generated edge strength map.

Figure 16: Mosaicked region and its edge strength filter output.

5.2.1 Green Channel Interpolation

Similar to the Bayer pattern, Lukac pattern has twice as many green samples as red

and blue ones. Hence, the green channel is less prone to aliasing and the natural

choice for initial interpolation. The first step of the green channel interpolation is to
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find directional color difference estimations. Horizontal estimation is straightforward

because all the rows are comprised of either green-red or green-blue interleaved pixels

like the Bayer pattern:

B̃H(i, j) =
B(i, j − 1) +B(i, j + 1)

2
+

2 ∗G(i, j)−G(i, j − 2)−G(i, j + 2)

4

G̃H(i− 1, j − 1) =
G(i− 1, j − 2) +G(i− 1, j)

2
+

2 ∗R(i− 1, j − 1)−R(i− 1, j − 3)−R(i− 1, j + 1)

4
.

(51)

However, it is not possible to carry out the same operation in the vertical direction

because the channel values are not in place. That is why, instead of a 5 by 1 column,

we consider a window of 5 by 3 around the target pixel. If a channel value is missing,

then it is estimated by taking the average of closest horizontal samples as follows:

R̃V (i, j) =

R(i− 1, j − 1) +R(i− 1, j + 1)

2
+R(i+ 1, j)

2
+

2 ∗G(i, j)− G(i− 2, j − 1) +G(i− 2, j + 1)

2
− G(i+ 2, j − 1) +G(i+ 2, j + 1)

2
4

G̃V (i− 1, j − 1) =
G(i− 2, j − 1) +

G(i, j − 2) +G(i, j)

2
2

+

2 ∗R(i− 1, j − 1)− R(i− 3, j − 2) +R(i− 3, j)

2
− R(i+ 1, j − 2) +R(i+ 1, j)

2
4

.

(52)

Next, we calculate the horizontal and vertical color difference estimates for each

pixel location. For green pixel locations, we observe that the vertical and horizontal

estimates do not belong to the same channel. To get around this problem, we make

another approximation and use the closest vertical color difference estimation.

∆̃H
g,b(i, j) = G(i, j)− B̃H(i, j)

∆̃V
g,b(i, j) = G(i− 1, j)− B̃V (i− 1, j)
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∆̃H
g,r(i− 1, j − 1) = G̃H(i− 1, j − 1)−R(i− 1, j − 1)

∆̃V
g,r(i− 1, j − 1) = G̃V (i− 1, j − 1)−R(i− 1, j − 1). (53)

Once we have the complete horizontal and vertical color difference information,

we combine them adaptively using the edge strength map generated above. Since the

constant color difference assumption is likely to break across edges, we calculate edge

strength differences in both directions over a local window and give more weight to

the direction with less difference. Assuming a window size of 5 by 5, the weights for

horizontal and vertical directions are:

H(i, j) = 1/(
2∑

m=−2

1∑
n=−2

(E(i+m, j + n)− E(i+m, j + n+ 1)))

V (i, j) = 1/(
1∑

m=−2

2∑
n=−2

(E(i+m, j + n)− E(i+m+ 1, j + n))). (54)

And the green channel interpolation is carried out as follows:

∆̂g,b(i, j − 1) =[V (i, j − 1).fv.∆̃
V
g,b(i− 2 : i+ 2, j − 1)+

H(i, j − 1).∆̃H
g,b(i, j − 2 : j).f ′h]/Ti,j−1

∆̂g,r(i− 1, j − 1) = [V (i− 1, j − 1).fv.∆̃
V
g,r(i− 3 : i+ 1, j − 1)

+H(i− 1, j − 1).∆̃H
g,r(i− 1, j − 2 : j).f ′h]/T (i− 1, j − 1)

T (i, j) = H(i, j) + V (i, j)

fh = [1 2 1]/4

fv = [1 0 2 0 1]/4. (55)

Again, we needed to modify the vertical component because the required color

difference estimate is not available for the immediate vertical neighbor. That is why

we skip one pixel and bring the estimate from the next closest vertical resource.

After the initial interpolation, we update the green channel interpolation reusing the

weights derived above. The green channel update treats north-south and east-west

48



directions seperately. However, since there are no perfectly vertical red or blue pixels

(to any red or blue pixel) available in the Lukac pattern, we take the simple average

of the closest samples again:

∆̃g,b(i, j − 1) = ∆̂g,b(i, j − 1).(1− w)+

[V (i− 2, j − 1).(∆̂g,b(i− 2, j − 2) + ∆̂g,b(i− 2, j))/2+

V (i+ 2, j − 1).(∆̂g,b(i+ 2, j − 2) + ∆̂g,b(i+ 2, j))/2+

H(i, j − 3).∆̂g,b(i, j − 3)+

H(i, j + 1).∆̂g,b(i, j + 1)].w/T (i, j − 1)

∆̃g,r(i− 1, j − 1) = ∆̂g,r(i− 1, j − 1).(1− w)+

[V (i− 3, j − 1).(∆̂g,r(i− 3, j − 2) + ∆̂g,r(i− 3, j))/2+

V (i+ 1, j − 1).(∆̂g,r(i+ 1, j − 2) + ∆̂g,r(i+ 1, j))/2+

H(i− 1, j − 3).∆̂g,r(i− 1, j − 3)+

H(i− 1, j + 1).∆̂g,r(i− 1, j + 1)].w/T (i− 1, j − 1)

T (i, j) = V (i− 2, j) + V (i+ 2, j) +H(i, j − 2) +H(i, j + 2). (56)

Then, we add the finalized color difference estimate to the target pixel value to

get the green channel estimate:

G̃(i, j − 1) = B(i, j − 1) + ∆̃g,b(i, j − 1)

G̃(i− 1, j − 1) = R(i− 1, j − 1) + ∆̃g,r(i− 1, j − 1). (57)

5.2.2 Red and Blue Channel Interpolation

After the green channel interpolation is complete, we fill in red and blue channels using

the closest color difference estimates available. For the red channel interpolation, we

consider the closest four neighbors for pixels on the red-green rows, and the closest

49



three neighbors for pixels on the green-blue rows.

R̃(i, j) =G(i, j)− G̃(i+ 1, j)−R(i+ 1, j)

2

− G̃(i− 1, j − 1)−R(i− 1, j − 1) + G̃(i− 1, j + 1)−R(i− 1, j + 1)

4

R̃(i, j − 1) =G(i, j − 1)− G̃(i− 1, j − 1)−R(i− 1, j − 1)

2

− G̃(i+ 1, j − 2)−R(i+ 1, j − 2) + G̃(i+ 1, j)−R(i+ 1, j)

4

R̃(i− 1, j) =G(i− 1, j)−

G̃(i− 1, j − 1)−R(i− 1, j − 1) + G̃(i− 1, j + 1)−R(i− 1, j + 1)

2.5

− G̃(i− 3, j)−R(i− 3, j) + G̃(i+ 1, j)−R(i+ 1, j)

10
.

(58)

The interpolation formulas are similar for the blue channel. By the end of this

step, we completed all the missing samples in the input image.

5.3 Application of the MSG Based Method to the Lukac
Pattern

We tested our ESF based algorithm on the Kodak image set and compared its results

to other solutions available for the Lukac pattern. It outperformed other algorithms

on every image in the test set. Based on this result, we wanted to see if the perfor-

mance of our multiscale gradients solution can carry onto the Lukac pattern as well.

The rest of this section describes the changes that were needed to apply the MSG

algorithm to the Lukac pattern.

5.3.1 Green Channel Interpolation

As a result of the Lukac pattern layout, it is not possible to take immediate vertical

gradients. However, we observe that we can take vertical gradients when we double

the scale. So we modified our vertical multiscale gradients equation accordingly:
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Dv(i, j) =|G(i+ 2, j)−G(i− 2, j)

M0

− R(i+ 4, j)−R(i− 4, j)

M1

+

G(i+ 6, j)−G(i− 6, j)

M2

− R(i+ 8, j)−R(i− 8, j)

M3

+ ...|,
(59)

where the Mi terms are the normalizers.

The layout of the Lukac pattern also necessitates a change in vertical color differ-

ence estimation. Since all the required channel values are not available in the same

column, we estimate the missing values by taking simple average using samples from

adjacent columns:

R̃V (i, j) =

R(i− 1, j − 1) +R(i− 1, j + 1)

2
+R(i+ 1, j)

2
+

2.G(i, j)− G(i− 2, j − 1) +G(i− 2, j + 1)

2
− G(i+ 2, j − 1) +G(i+ 2, j + 1)

2
4

G̃V (i− 1, j − 1) =
G(i− 2, j − 1) +

G(i, j − 2) +G(i, j)

2
2

+

2.R(i− 1, j − 1)− R(i− 3, j − 2) +R(i− 3, j)

2
− R(i+ 1, j − 2) +R(i+ 1, j)

2
4

.

(60)

Another problem we faced with the Lukac pattern was the mismatch between ver-

tical and horizontal color difference estimates at green channel coordinates. Namely,

the calculated vertical and horizontal color differences at these locations belong to dif-

ferent color pairs. That is why we bring the needed vertical color difference estimate

from the closest available resource:

∆̃V
g,b(i, j) = G(i− 1, j)− B̃V (i− 1, j)

∆̃V
g,r(i− 1, j) = G(i, j)− R̃V (i, j).
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Also, the combined color difference estimate equations are modified to bring the

neighboring vertical estimates from two pixels away instead of one:

∆̂g,r(i− 1, j − 1) =[wV .fv.∆̃
V
g,r(i− 3 : i+ 1, j)+

wH .∆̃
H
g,r(i− 1, j − 2 : j).f′h]/wT

wT = wV + wH

fh = [1/4 2/4 1/4]

fv = [1/4 0 2/4 0 1/4]. (61)

Similarly, we modify the green channel update equation as follows:

∆̃g,r(i, j) =∆̂g,r(i, j).(1− w)+

[wN .(∆̂g,r(i− 2, j − 1) + ∆̂g,r(i− 2, j + 1) + ∆̂g,r(i− 4, j))/3+

wS.(∆̂g,r(i+ 2, j − 1) + ∆̂g,r(i+ 2, j + 1) + ∆̂g,r(i+ 4, j))/3+

wE.∆̂g,r(i, j − 2)+

wW .∆̂g,r(i, j + 2)].w/wT

wT = wN + wS + wE + wW . (62)

5.3.2 Red and Blue Channel Interpolation

The Lukac pattern layout necessitates modifications in red and blue channel interpo-

lation as well. We still estimate the missing red and blue samples using the closest

color difference estimates, but their orientation is different from the Bayer pattern.

For the red channel interpolation, the pixels on green&blue rows use estimates from

three neighbors and the ones on green&red rows use four:

R̃(i, j) =G(i, j)− G̃(i+ 1, j)−R(i+ 1, j)

2

− G̃(i− 1, j − 1)−R(i− 1, j − 1) + G̃(i− 1, j + 1)−R(i− 1, j + 1)

4

52



R̃(i, j − 1) =G(i, j − 1)− G̃(i− 1, j − 1)−R(i− 1, j − 1)

2

− G̃(i+ 1, j − 2)−R(i+ 1, j − 2) + G̃(i+ 1, j)−R(i+ 1, j)

4

R̃(i− 1, j) =G(i− 1, j)−

G̃(i− 1, j − 1)−R(i− 1, j − 1) + G̃(i− 1, j + 1)−R(i− 1, j + 1)

2.5

− G̃(i− 3, j)−R(i− 3, j) + G̃(i+ 1, j)−R(i+ 1, j)

10
.

(63)

Blue channel interpolation is similar to the red channel interpolation described

above. Although we needed to make several changes to apply the algorithm to the

Lukac pattern, the main structure of the MSG method is maintained.

5.4 Experimental Results on the Lukac Pattern

We tested the proposed algorithms on the 20 image Kodak test set. The results

are compared to methods featured in a recent paper on regularization approaches

to demosaicing [34]. These methods are the adaptive (AA) and quadratic (QA) ap-

proaches [34], the recursive filtering (RF) method proposed in [24], and the universal

solution (US) proposed in [32]. The comparison results are summarized in Table 4.

The proposed MSG based algorithm outperforms other methods for every image in

the test set in terms of CPSNR. Our ESF based solution comes second with 0.25

dB behind MSG. The next highest performing method (adaptive approach from [34])

trails our MSG and ESF methods by 1.17 dB and 0.92 dB, respectively. A sample

region from the lighthouse image (image no. 16) is shown in Figure 17 for visual

quality comparison.

These results clearly show our algorithms can successfully be applied to a non-

Bayer pattern to the extend that they outperform other available solutions by a clear

margin in terms of objective CPSNR measure while providing better visual results.
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Table 4: Comparison of CPSNR values for different demosaicing methods on the
Lukac pattern.

No. US RF QA AA ESF MSG
1 30.78 34.05 36.58 37.80 39.52 39.90
2 36.57 37.82 36.84 37.90 40.15 40.51
3 30.93 32.25 35.59 36.73 36.96 37.21
4 32.02 35.22 37.13 39.08 40.31 40.95
5 37.09 38.19 39.74 41.35 41.63 41.87
6 28.67 32.27 34.95 36.14 37.11 37.40
7 36.64 39.04 40.20 41.61 42.77 42.90
8 36.80 38.98 40.61 41.83 42.48 42.49
9 33.78 36.06 38.25 39.32 40.42 40.74
10 37.11 39.58 40.20 42.34 43.23 43.50
11 28.55 30.55 34.48 34.34 35.55 35.92
12 35.81 37.10 37.69 38.57 38.89 38.90
13 35.46 38.90 40.32 42.70 43.91 44.49
14 36.37 37.60 40.58 40.97 41.71 41.73
15 31.73 33.40 35.99 36.22 36.28 36.87
16 32.51 35.53 37.72 39.27 40.39 40.72
17 32.93 37.07 38.19 39.35 40.80 40.91
18 32.83 35.40 37.75 38.76 40.02 40.02
19 34.35 36.01 37.00 37.65 38.16 38.26
20 30.32 32.56 34.78 34.97 35.12 35.17

Avg 33.56 35.88 37.73 38.85 39.77 40.02
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(a) Original

(b) QA (c) AA

(d) ESF (e) MSG

Figure 17: Comparison on the Lukac pattern. Fence region from the lighthouse
image.
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CHAPTER VI

LOW SPECTRAL CORRELATION DEMOSAICING

6.1 Algorithm Background

Most demosaicing methods assume that there is a strong correlation between the color

channels. This assumption holds true most of the time and leads to both objective

and subjective quality improvement. However, if the spectral correlation is weaker

than anticipated, allowing different color channels to affect each other’s interpolation

results too much will lead to false color and zipper artifacts. A very recent paper [43]

asserts that the commonly used Kodak test set does not accurately represent modern

digital images and proposes a new test set with vivid colors and sharp color changes.

Consequently, this new test set has higher saturation and lower spectral correlation

than the Kodak test set on average. The images included in this dataset are shown in

Figure 18. The paper proposes fusing directional estimates using gradients on a very

small local window and then enhancing the results with non-local averaging. This

interpolation method outperforms all the classic demosaicing approaches on the new

test set because it does not heavily rely on spectral correlation. On the other hand,

we suspect that it would perform poorly on the Kodak test set for the very same

reason.

Although the method proposed in [43] offers superior objective and subjective

quality for images with low spectral correlation, its performance comes with a high

computational cost because of the non-local nature of the algorithm. We wanted

to see if we can achieve a similar performance using only local information. Our

approach was to apply the multiscale gradients idea that we described earlier to the

low spectral correlation case with some modifications combined with some other ideas.
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Figure 18: 18 image McMaster dataset.

One such idea is to depend less on the constant color difference assumption that we

extensively relied on in an adaptive manner. For instance, this assumption is more

likely to break for pixels with intensities close to maximum or minimum possible

values.

6.2 Green Channel Interpolation

For the low correlation demosaicing design, we still employ the multiscale gradients

idea to adaptively combine directional estimates. However, for such challenging im-

ages, along with the spectral correlation the spatial correlation also tends to be lower

with rapid color changes and high frequency content. That is why we keep the lo-

cal window that we collect information about the target pixel small. The multiscale

gradients equations for red&green rows and columns can be written as:

Dh(i, j) =|G(i, j + 1)−G(i, j − 1)

2
− R(i, j + 2)−R(i, j − 2)

N1

|

Dv(i, j) =|G(i+ 1, j)−G(i− 1, j)

2
− R(i+ 2, j)−R(i− 2, j)

N1

|, (64)
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where N1 is a normalizing constant, and Dh(i, j) and Dv(i, j) stand for the hori-

zontal and vertical values at pixel location (i, j), respectively.

We estimate the target green pixel in a single step by adaptively combining the

closest four green neighbors and using the available target channel (either red or blue)

as a feedback.

G̃(i, j) =R(i, j).w − [wN .R(i− 2, j) + wS.R(i+ 2, j)+

wE.R(i, j − 2) + wW .R(i, j + 2)] ∗ w/wT+

[wN .G(i− 1, j) + wS.G(i+ 1, j)+

wE.G(i, j − 1) + wW .G(i, j + 1)]/wT

wT = wN + wS + wE + wW , (65)

where the weights (wN , wS, wE, wW ) are calculated by summing multiscale color

gradients over a local window in that direction. The contribution of each pixel in this

local window can be identical for simplicity or the center pixels can be given more

weight to preserve the locality. For a window size of 3 by 3, the directional weights

can be given as:

wN = 1/(
i∑

k=i−2

j+1∑
l=j−1

(Dv
k,l)

2)

wS = 1/(
i+2∑
k=i

j+1∑
l=j−1

(Dv
k,l)

2)

wW = 1/(
i+1∑

k=i−1

j∑
l=j−2

(Dh
k,l)

2)

wE = 1/(
i+1∑

k=i−1

j+2∑
l=j

(Dh
k,l)

2). (66)

The weight w that determines the amount of feedback given by the target pixel

channel is a function of local green pixel average. If the average is closer to either 0 or

255 (in an 8 bit per channel color depth setup), then it is more likely for the constant

color difference rule to break so we want less feedback from the target pixel channel.
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The relationship between w and the local green channel average can be formulated

as follows:

Gavg =
G(i− 1, j) +G(i+ 1, j) +G(i, j − 1) +G(i, j + 1)

4

T = min(Gavg, 255−Gavg)

w =



w1 if T < t1,

w2 if T > t2,

w1+
(T − t1).(w2 − w1)

(t2 − t1)
else.

(67)

6.3 Red and Blue Channel Interpolation

Once we complete the green channel adaptively in a single pass, we move onto the

red and blue channels. For red channel interpolation at blue pixels, we consider the

four closest neighbors with available red channel and estimated green channel values.

These pixels happen to be the diagonal neighbors of the target pixel because of the

Bayer channel layout. We estimate the red target pixel in a similar way to the green

channel estimation except the directions are shifted 45 degrees now. To deal with this

change while retaining the multiscale gradient approach, we calculate the diagonal

multiscale gradients:

Dnw(i, j) =|G(i+ 1, j + 1)−G(i− 1, j − 1)

2
− R(i+ 2, j + 2)−R(i− 2, j − 2)

N1

|

Dne(i, j) =|G(i+ 1, j − 1)−G(i− 1, j + 1)

2
− R(i+ 2, j − 2)−R(i− 2, j + 2)

N1

|,

(68)

where Dnw(i, j) and Dne(i, j) are the diagonal multiscale gradient outputs at the

north-west and north-east directions, respectively. The multiscale gradients are then

used to calculate the directional weights:

wNW = 1/(
i∑

k=i−2

j∑
l=j−2

(Dnw
k,l )2)

59



wNE = 1/(
i∑

k=i−2

j+1∑
l=j

(Dne
k,l)

2)

wSW = 1/(
i+2∑
k=i

j∑
l=j−2

(Dne
k,l)

2)

wSE = 1/(
i+2∑
k=i

j+2∑
l=j

(Dnw
k,l )2), (69)

and the red channel estimation is given by:

R̃(i, j) = G̃(i, j).w−[wNW .G̃(i− 1, j − 1) + wNE.G̃(i− 1, j + 1)+

wSW .G̃(i+ 1, j − 1) + wSE.G̃(i+ 1, j + 1)] ∗ w/wT+

[wNW .R(i− 1, j − 1) + wNE.R(i− 1, j + 1)+

wSW .R(i+ 1, j − 1) + wSE.R(i+ 1, j + 1)]/wT

wT = wNW + wNE + wSW + wSE. (70)

The interpolation of blue channel values at red pixel locations is similar. The

weight ’w’ can be made adaptive the same way it was done for the green channel.

Foor red and blue channel interpolation at green pixel coordinates we follow the

same logic. However, since there are only two immediate neighbors with the original

desired channel value available for these locations, we modify the equations accord-

ingly. The available neighbors share either the same row or the same column with

the target pixel. For the case where they are in the same column, the red channel

interpolation is given by:

R̃(i, j) = G(i, j).w − [G̃(i, j − 1) + G̃(i, j + 1)] ∗ w/2 + [R(i, j − 1) +R(i, j + 1)]/2.

(71)

And for the same row case:

R̃(i, j) = G(i, j).w − [G̃(i− 1, j) + G̃(i+ 1, j)] ∗ w/2 + [R(i− 1, j) +R(i+ 1, j)]/2.

(72)

Again, the interpolation for the blue channel is similar. By the end of this step,

we interpolated all the missing pixel values.
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6.4 Experimentel Results

The proposed algorithm is tested on the new dataset which was recently released

online [44]. This dataset features very challenging images with high saturation and

low spectral correlation. We compared the results of our algorithm to the non-local

method in [43] and other methods included in their paper. These methods are the

Local Directional Interlopation Non-local Means (LDI-NLM) and the Local Direc-

tional Interlopation Non-local Adaptive Thresholding (LDI-NAT) methods which are

the two slightly different versions of their algorithm. The other methods included

in the comparison are the Self-similarity Driven (SSD) method [5], the Directional

Linear Minimum Mean Square-error Estimation (DLMMSE) method [42], the Suc-

cessive Approximation (SA) method [27], the Adaptive Homogeneity-directed (AHD)

method [17], and the Second Order Laplacian Correction (SOLC) method [1].

Table 5: Comparison of PSNR values for different demosaicing methods on the new
McMaster dataset.

img no SOLC AHD SA DLMMSE SSD LDI-NLM LDI-NAT Proposed
R 28.26 26.02 23.53 26.94 27.28 28.81 29.29 29.20

1 G 31.22 29.82 25.17 30.63 30.68 32.31 32.67 33.00
B 26.34 24.04 22.05 24.82 25.12 26.47 26.71 26.98
R 33.68 32.47 31.63 33.30 33.61 34.66 35.02 34.83

2 G 37.62 37.20 34.00 37.66 37.81 39.01 39.08 39.61
B 32.11 31.26 30.74 31.86 32.01 32.79 32.92 32.89
R 30.64 31.10 31.47 32.60 32.81 33.41 33.05 33.64

3 G 33.73 33.49 32.75 35.28 35.05 35.50 35.51 36.52
B 28.60 29.67 29.80 30.70 30.93 30.99 30.31 30.69
R 32.80 33.76 34.59 34.70 36.36 37.41 36.25 36.19

4 G 37.16 35.66 34.05 36.99 38.98 39.01 40.33 41.41
B 30.89 31.48 32.19 32.07 33.49 34.02 33.30 33.11
R 33.61 29.52 28.60 30.38 31.10 34.50 35.05 33.99

5 G 36.28 34.73 30.97 35.11 35.43 37.67 38.15 38.08
B 30.47 28.78 28.08 29.41 29.48 31.02 31.16 31.35
R 37.14 33.92 32.23 34.98 36.09 38.59 39.40 38.07

6 G 40.30 37.72 32.50 38.61 38.85 41.70 43.42 42.56
B 34.00 29.96 29.14 31.15 31.72 34.21 34.97 34.18
R 33.85 35.64 37.03 38.30 36.61 36.28 36.09 36.45

7 G 36.34 37.36 40.39 40.70 37.62 37.66 37.41 38.27
B 32.45 35.07 36.22 37.29 36.38 34.59 34.49 34.58
R 34.87 34.15 35.31 35.45 35.31 36.89 36.31 37.04

8 G 39.09 39.45 38.49 41.43 40.34 40.44 40.29 41.34
B 35.04 35.79 35.82 36.99 36.76 36.84 36.67 37.18
R 34.36 31.54 30.71 32.39 33.72 35.54 35.49 35.76

9 G 39.62 37.99 33.83 38.73 39.52 41.56 41.73 42.50
B 35.34 34.00 32.54 34.66 35.38 36.54 36.30 37.00

The PSNR comparison results are summarized in Table 5 and Table 6. Based
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Table 6: Comparison of PSNR values for different demosaicing methods on the new
McMaster dataset (continued).

SOLC AHD SA DLMMSE SSD LDI-NLM LDI-NAT Proposed
R 36.86 33.99 34.03 34.70 36.33 37.64 38.26 37.63

10 G 40.86 39.17 36.15 40.00 40.23 42.19 42.64 42.87
B 36.08 34.88 34.78 35.55 36.13 36.51 36.83 36.91
R 38.12 36.13 36.16 36.91 38.16 39.25 39.82 39.29

11 G 40.78 39.34 37.11 40.44 40.19 41.66 42.57 42.45
B 37.19 34.73 34.33 35.75 36.81 37.50 37.66 38.57
R 37.13 33.60 34.49 34.74 35.37 37.62 38.36 37.92

12 G 40.17 40.09 37.66 39.59 39.70 41.45 41.49 41.67
B 35.70 36.24 36.24 36.47 37.11 37.51 37.59 37.74
R 39.80 37.91 38.11 38.66 40.01 42.23 41.77 40.96

13 G 43.46 42.16 39.90 42.57 43.82 45.55 44.89 45.14
B 37.65 36.20 36.51 36.75 37.19 37.88 38.13 38.24
R 37.85 37.33 36.82 37.74 38.66 39.28 39.39 39.44

14 G 41.37 40.65 38.79 41.13 41.93 42.62 42.84 43.30
B 35.64 34.30 34.45 34.78 35.00 35.82 36.12 36.36
R 36.44 34.88 34.87 35.32 36.23 37.34 36.95 37.30

15 G 41.20 40.27 38.13 40.71 40.75 42.39 42.68 43.06
B 38.17 36.84 36.52 37.30 37.90 38.49 38.99 39.35
R 32.75 30.95 28.75 31.95 32.21 34.18 34.97 34.80

16 G 34.09 32.36 28.60 33.22 32.99 35.00 35.59 35.33
B 31.63 26.85 24.87 28.06 28.30 31.12 31.53 34.08
R 31.24 27.12 25.35 28.32 29.24 31.60 32.14 31.74

17 G 35.17 32.13 26.68 33.31 33.62 37.31 37.62 38.19
B 30.69 26.65 25.06 27.77 28.38 30.78 30.91 31.31
R 32.69 32.30 31.61 33.32 33.24 34.63 34.58 34.06

18 G 36.20 35.69 33.84 37.02 35.91 37.30 37.27 37.47
B 33.43 31.90 31.11 32.93 33.44 34.87 34.30 35.56
R 34.71 33.05 32.68 34.06 34.71 36.10 36.23 36.02

Avg G 38.11 37.10 34.63 38.10 38.08 39.46 39.79 40.15
B 33.41 32.30 31.87 33.15 33.47 34.33 34.38 34.78
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on the results, the proposed algorithm has the best green channel quality with 40.15

dB. LDI-NAT method comes second with 39.79 dB, and LDI-NLM is the third with

39.46 dB. The proposed method offers the best green channel result in 11 images

out of 18. In blue channel, the proposed method is 0.40 dB above LDI-NAT with

34.78 dB. And in terms of number of images with the highest blue channel result, the

proposed method comes first with 13 images, followed by LDI-NAT and LDI-NLM

with 2 each, and DLMMSE with 1. And finally for the red channel, the proposed

method is behind LDI-NAT and LDI-NLM with 36.02 dB. Overall, the proposed

method offers comparable results to the non-local LDI-NAT and LDI-NLM methods,

and significantly better results than the rest of the methods. This is significant

because the proposed method uses only local information to interpolate missing pixel

values which makes it less computationally complex than non-local methods. To put

the complexity into context, it takes 8.5 seconds to interpolate an image with the

proposed method while it takes 1460 seconds to process the same image on the same

computer with LDI-NAT. Hence, the complexity of the proposed solution is about

two orders of magnitute less than a comparable non-local method.
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CHAPTER VII

A NEW FAMILY OF CFA PATTERNS

7.1 Introduction

Our work in the demosaicing field until this chapter focused on algorithm design.

Namely, we tried to come up with better ways to interpolate a mosaicked image

back to a full color image for a given mosaic pattern layout. We described algorithms

designed for Bayer and Lukac mosaic patterns. However, there are many more pattern

designs proposed in the literature. While some of these CFA patterns (including

Bayer and Lukac) are pure RGB based, others are comprised of combinations of

RGB channels [18]. Some patterns even incorporate panchromatic pixels into their

design [15]. We will refer to the patterns with components that are combinations of

RGB channels as mixed patterns.

7.2 Pattern Design

The Bayer pattern repeats itself in two pixels in both directions. Hence, its smallest

building block consists of four pixels. Assuming we start with the green channel, we

can simply write the order of these pixels as [GRBG]. Most demosaicing solutions

in the literature are developed for this layout. However, if we think in more general

terms, we realize that these demosaicing algorithms are agnostic to the actual chan-

nels. In other words, a demosaicing algorithm developed for the Bayer pattern simply

needs three channels to be arranged in a special order, but the channels themselves

can be anything. Let us denote these channels with numbers. Then, we can write

the generalized Bayer pattern layout as [1231] and the actual Bayer pattern [GRBG]

becomes a special subset of this layout. The question is whether we can find a better
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subset than the Bayer pattern.

Our work on images with low spectral correlation led us to think that mixed

patterns might lead to better demosaicing results since the spectral correlation be-

tween their components are higher than that of pure RGB channels. However, many

mixed pattern designs have more than 3 unique channels and their layouts are not as

straightforward as the Bayer pattern layout. That is why, we wanted to stick with

the generalized Bayer layout [1231] and select its channels so as to maximize their

correlation. However, we cannot select all three channels to be linear combinations of

RGB colors with nonzero weights for each color because that would lead to amplified

estimation errors when we solve for individual color values.

These considerations led us to a hybrid pattern design where we have two com-

ponents with pure color channels and a third component with a combination of color

channels. One way of achieving this is to replace the G channel with a linear com-

bination of RGB and keep R and B channels unchanged in the Bayer pattern. This

way we obtain a hybrid pattern that still satisfies the [1231] layout. Compared to the

Bayer pattern, this hybrid pattern is expected to have more correlation between its

first and second, and also first and third components because these pairs now have

common channel inputs.

Table 7 shows the spectral correlation between first and second, and first and third

components of the Bayer pattern and the proposed pattern on the 12 image Kodak

test set. For the Bayer pattern, these channels are red and green, and blue and green.

For the proposed pattern, the green component is replaced with a color combination.

Selecting the RGB weights as [1/6, 2/3, 1/6] respectively leads to equal contributions

from all channels in the overall pattern. The results show that on average the proposed

pattern has slighty higher spectral correlation between its components than the Bayer

pattern. However, we observe that the spectral correlation for the Bayer pattern was

already high to begin with on this test set. We wanted to find out if the proposed
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Table 7: Spectral correlation comparison on the Kodak dataset

Bayer Pattern Proposed Pattern
img no: red-green blue-green red-mixed blue-mixed

1 0.6168 0.6330 0.7316 0.7374
2 0.9798 0.9915 0.9854 0.9915
3 0.8333 0.9051 0.8835 0.9318
4 0.9682 0.9774 0.9743 0.9794
5 0.9496 0.8536 0.9535 0.8779
6 0.8376 0.9786 0.8773 0.9793
7 0.9854 0.9531 0.9835 0.9599
8 0.9671 0.9182 0.9667 0.9310
9 0.9960 0.9827 0.9952 0.9862
10 0.9024 0.9158 0.9045 0.9202
11 0.8680 0.8815 0.9110 0.9201
12 0.9795 0.9712 0.9845 0.9786
avg 0.9070 0.9135 0.9293 0.9328

pattern led to a more pronounced difference for images with low spectral correlation.

That is why we generated the results for the McMaster test set and presented them

in Table 8. Figure 19 shows the proposed pattern layout.

The McMaster dataset has lower average spectral correlation and the average

difference between the two patterns is higher than it was on the Kodak set. Now,

the question is whether better spectral correlation in the new pattern can lead to

better demosaicing performance. As we mentioned earlier, the demosaicing methods

designed for the Bayer pattern can also work on the proposed hybrid pattern since

both patterns share the same general layout. The only additional step needed is

to extract the green channel result from the interpolation output. Assuming the

proposed pattern is implemented with the following transformation matrix:


C1

C2

C3

 =


1 0 0

1/6 2/3 1/6

0 0 1



R

G

B

 , (73)

the original RGB channels are obtained using the inverse transformation matrix
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Table 8: Spectral correlation comparison on the McMaster dataset

Bayer Pattern Proposed Pattern
img no: red-green blue-green red-mixed blue-mixed

1 0.6574 0.5122 0.7413 0.6347
2 0.8697 0.8209 0.8961 0.8544
3 0.9281 0.9152 0.9536 0.9460
4 0.9691 0.9716 0.9861 0.9878
5 0.8697 0.8516 0.8931 0.8810
6 0.8429 0.5652 0.8708 0.6407
7 0.8398 0.9965 0.8856 0.9929
8 0.9647 0.9868 0.9744 0.9884
9 0.7783 0.9024 0.8545 0.9251
10 0.5658 0.5795 0.7159 0.6700
11 0.4409 0.5328 0.6479 0.6262
12 0.7695 0.8542 0.8254 0.8795
13 0.8590 0.8339 0.8901 0.8685
14 0.8517 0.6542 0.8791 0.7172
15 0.4824 0.8367 0.6530 0.8951
16 0.9730 0.1802 0.9774 0.2050
17 -0.0100 -0.1142 0.3385 0.1012
18 0.7486 0.9247 0.8404 0.9530
avg 0.7445 0.7114 0.8235 0.7648
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Figure 19: Proposed Bayer based pattern.

after CFA interpolation is completed:


R

G

B

 =


1 0 0

−1/4 3/2 −1/4

0 0 1



C1

C2

C3

 . (74)

7.3 Experimental Results

We tested the performance of several demosaicing algorithms on the Kodak and Mc-

Master datasets with the original Bayer pattern and the proposed pattern. Table

9 summarizes the results for the 12 image Kodak dataset. The demosaicing meth-

ods included in the comparison are the Regularization Approaches to Demosaicking

(RAD) [34] method and the Directional Linear Minimum Mean Square-Error Estima-

tion (DLMMSE) method in addition to our gradient based (GBTF) and multiscale

gradients based (MSG) methods. In the table, R, G, and B columns list the PSNR

results for each individual color component and and the C column gives the combined
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CPSNR results. Our first observation is that the proposed pattern always leads to

higher PSNR results for red and blue channels and lower results for the green channel.

This is expected because we no longer have known green pixels in the input but on

the other hand we have more correlation between the pattern components. We check

the combined CPSNR results to find out if the performance is improved overall. Here

we see that the CPSNR for the proposed pattern is lower than the Bayer pattern

by 0.10 dB for RAD and 0.02 dB for DLMMSE. However, it outperforms the Bayer

pattern by 0.08 dB for GBTF and by 0.12 dB for MSG methods. Hence, the CPSNR

results of the proposed and Bayer patterns are very close to each other. Another

observation from the data is that the performance of the proposed pattern increases

as the PSNR level of the employed demosaicing algorithm gets higher.

Table 9: Comparison between Bayer and proposed pattern on the Kodak dataset.

GBTF MSG
img no Bayer Proposed Bayer Proposed

R G B C R G B C R G B C R G B C
1 43.35 47.66 44.10 44.67 44.11 46.36 44.70 44.96 43.81 47.95 44.44 45.06 44.57 46.67 45.05 45.34
2 42.11 45.02 41.10 42.45 42.38 43.65 41.48 42.41 42.51 45.55 41.41 42.84 42.80 44.20 41.82 42.83
3 43.57 46.77 42.26 43.82 44.41 45.38 43.18 44.23 44.12 47.41 42.96 44.46 44.99 46.05 43.89 44.89
4 37.26 41.12 37.59 38.34 37.66 39.80 37.88 38.34 37.84 41.86 38.15 38.94 38.28 40.52 38.47 38.98
5 44.29 47.33 43.37 44.70 44.84 45.83 44.13 44.87 44.64 47.74 43.79 45.09 45.26 46.22 44.55 45.29
6 40.66 44.42 41.65 41.97 41.16 43.00 41.83 41.93 41.16 45.03 42.04 42.46 41.66 43.67 42.25 42.45
7 45.33 47.87 43.98 45.45 45.60 46.33 44.45 45.39 45.74 48.35 44.35 45.85 46.05 46.77 44.85 45.82
8 42.35 45.25 41.57 42.79 42.68 43.84 42.00 42.78 42.76 45.76 41.95 43.20 43.12 44.40 42.40 43.23
9 43.27 45.83 41.48 43.18 43.51 44.49 41.95 43.19 43.60 46.29 41.84 43.54 43.89 45.02 42.33 43.60
10 40.94 43.57 39.83 41.18 41.12 42.21 40.17 41.09 41.59 44.31 40.33 41.78 41.82 42.96 40.71 41.73
11 39.60 42.90 39.25 40.30 40.41 41.62 39.90 40.58 39.85 43.14 39.50 40.55 40.69 41.95 40.17 40.87
12 38.09 40.30 36.18 37.87 38.48 39.19 36.59 37.94 38.15 40.66 36.30 38.02 38.58 39.70 36.72 38.16
avg 41.73 44.84 41.03 42.23 42.20 43.48 41.52 42.31 42.15 45.34 41.42 42.65 42.64 44.01 41.93 42.77

RAD DLMMSE
img no Bayer Proposed Bayer Proposed

R G B C R G B C R G B C R G B C
1 42.02 46.32 42.97 43.41 42.42 45.30 43.26 43.50 42.88 47.54 43.82 44.33 43.55 45.93 44.34 44.50
2 40.89 43.80 39.74 41.16 41.05 42.23 39.96 40.98 41.39 43.68 40.41 41.62 41.66 42.17 40.77 41.49
3 42.95 46.19 41.93 43.35 43.40 44.74 42.46 43.44 42.95 46.24 41.77 43.28 43.67 44.58 42.58 43.53
4 36.25 40.04 36.46 37.27 36.51 38.63 36.65 37.16 36.32 39.63 36.65 37.30 36.69 38.25 36.93 37.23
5 42.78 45.84 42.15 43.32 43.05 44.40 42.63 43.30 43.69 46.66 42.90 44.14 44.21 44.97 43.60 44.23
6 39.71 43.27 40.22 40.81 40.05 41.71 40.29 40.62 39.98 43.19 40.93 41.17 40.44 41.61 41.08 41.02
7 44.06 46.86 42.68 44.21 44.19 45.18 42.95 44.01 44.75 46.80 43.47 44.80 44.98 45.13 43.89 44.63
8 40.76 43.88 39.79 41.16 40.91 42.48 40.01 41.02 41.68 44.13 40.85 42.01 41.99 42.59 41.26 41.91
9 42.34 45.07 40.50 42.25 42.43 43.53 40.79 42.10 42.77 44.86 40.92 42.56 42.97 43.32 41.36 42.47
10 40.35 43.08 39.20 40.59 40.47 41.43 39.42 40.36 40.40 42.42 39.32 40.53 40.55 40.88 39.62 40.31
11 39.16 42.20 38.60 39.73 39.63 40.96 38.94 39.76 39.20 42.25 38.81 39.84 39.96 40.79 39.40 40.01
12 37.91 40.23 35.99 37.71 38.15 38.79 36.25 37.59 37.98 39.87 36.20 37.76 38.39 38.52 36.60 37.75
avg 40.77 43.90 40.02 41.25 41.02 42.45 40.30 41.15 41.16 43.94 40.50 41.61 41.59 42.39 40.95 41.59

After confirming that the proposed hybrid pattern offers comparable performance

to the Bayer pattern on the Kodak dataset, we move onto the McMaster dataset. We
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compared the performance of the patterns using the Local Directional Interlopation

Non-local Adaptive Thresholding (LDI-NAT) method [43] and our local low corre-

lation method (LLC) presented in the previous section. The comparison results are

summarized in Table 10. The hybrid pattern outperforms the Bayer pattern by 0.48

dB for the LDI-NAT method and by 0.31 dB for the local low correlation method

(LLC). Hence, the proposed pattern enables better interpolation quality than the

Bayer pattern for these two highest performing methods on the McMaster dataset.

A sample image region is presented in Figure 20 for subjective quality comparison.

(a) Bayer (b) Proposed

Figure 20: Image 17 interpolated with the low correlation method on the Bayer
pattern and the proposed pattern.

7.4 Extension of the Proposed Pattern

The proposed change to the Bayer pattern can be extended to other available patterns

such as the Lukac pattern. Following the same reasoning with the Bayer pattern, we

replace the G channels with a combination of RGB, and leave the R and B channels

unchanged. The proposed Lukac based pattern is given in Figure 21.

Another dimension for the extension of the proposed pattern is to replace the
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Table 10: Comparison between Bayer and proposed pattern on the McMaster
dataset.

LDI-NAT LLC
img no Bayer Proposed Bayer Proposed

R G B C R G B C R G B C R G B C
1 29.29 32.67 26.71 28.92 29.97 31.80 27.87 29.58 29.20 33.00 26.98 29.08 29.94 31.75 27.86 29.56
2 35.02 39.08 32.92 35.00 35.36 38.24 33.52 35.30 34.83 39.61 32.89 34.98 35.39 38.21 33.53 35.31
3 33.05 35.51 30.31 32.45 34.37 34.57 31.28 33.13 33.64 36.52 30.69 32.99 34.35 34.52 31.27 33.11
4 36.25 40.33 33.30 35.75 37.63 38.26 34.30 36.36 36.19 41.41 33.11 35.73 37.59 38.40 34.31 36.39
5 35.05 38.15 31.16 33.87 34.83 36.49 31.98 34.03 33.99 38.08 31.35 33.67 34.77 36.40 31.97 33.99
6 39.40 43.42 34.97 37.97 38.70 41.08 35.21 37.66 38.07 42.56 34.18 37.04 38.66 40.92 35.17 37.60
7 36.09 37.41 34.49 35.83 36.64 36.02 34.69 35.71 36.45 38.27 34.58 36.17 36.65 35.99 34.70 35.71
8 36.31 40.29 36.67 37.43 37.38 39.78 37.47 38.08 37.04 41.34 37.18 38.12 37.38 39.73 37.45 38.06
9 35.49 41.73 36.30 37.11 36.59 40.66 37.76 38.03 35.76 42.50 37.00 37.60 36.61 40.64 37.75 38.03
10 38.26 42.64 36.83 38.63 38.86 41.26 37.73 39.05 37.63 42.87 36.91 38.46 38.86 41.22 37.75 39.05
11 39.82 42.57 37.66 39.57 39.96 41.39 39.13 40.06 39.29 42.45 38.57 39.80 39.94 41.34 39.12 40.04
12 38.36 41.49 37.59 38.85 39.07 40.73 38.00 39.12 37.92 41.67 37.74 38.77 39.04 40.70 38.04 39.13
13 41.77 44.89 38.13 40.74 41.66 43.91 38.99 41.06 40.96 45.14 38.24 40.61 41.68 43.89 38.99 41.06
14 39.39 42.84 36.12 38.63 39.61 41.88 36.92 39.01 39.44 43.30 36.36 38.84 39.67 41.84 36.93 39.02
15 36.95 42.68 38.99 38.95 37.98 41.71 39.81 39.57 37.30 43.06 39.35 39.31 38.01 41.64 39.81 39.57
16 34.97 35.59 31.53 33.64 34.65 34.90 34.91 34.82 34.80 35.33 34.08 34.71 34.62 34.80 34.89 34.77
17 32.14 37.62 30.91 32.74 33.07 36.15 32.60 33.68 31.74 38.19 31.31 32.84 33.00 35.98 32.54 33.59
18 34.58 37.27 34.30 35.19 34.58 36.59 36.19 35.69 34.06 37.47 35.56 35.48 34.62 36.56 36.17 35.70
avg 36.23 39.79 34.38 36.18 36.72 38.63 35.46 36.66 36.02 40.15 34.78 36.34 36.71 38.59 35.46 36.65

channel locations, i.e. having red and green or blue and green pure channels and

the corresponding mixed channels instead of the original red and blue pure channel

configuration. Again, these changes do not affect the compatibility of the proposed

pattern with the algorithms designed for the Bayer pattern because we still maintain

the generalized Bayer layout. Finally, using the same argument, we can expand the

proposed Lukac layout pattern by replacing the channel locations. The proposed

patterns are illustrated in Figure 22.
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Figure 21: Proposed Lukac based pattern.
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Figure 22: Patterns generated by replacing channel locations in Bayer and Lukac
based layouts.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

In this thesis we focused on resolution enhancement and demosaicing areas. We first

looked into the image interpolation problem for which edge preservation is an impor-

tant issue. Instead of taking the edge detection route, we approached the problem

from a geometric perspective and derived a general formula to be applied to all pixels

without any classification. We then turned our attention to demosaicing, which can

be considered a special form of image interpolation. We developed several algorithms

with each one giving us more insight to the problem and enabling the development

of the next solution.

The spectral correlation between color channels might be the most important

source of information for the demosaicing problem. However, this information source

may not always be as reliable as one might assume. Highly saturated images with

rapid color changes pose an important challenge to demosaicing algorithms. Although

non-local averaging can alleviate the complications caused by low spectral correlation,

it also increases computational complexity by several orders of magnitude. That is

why we pursued a local solution to the low spectral correlation problem, and described

the resulting algorithm in this thesis. Finally, we looked into the CFA pattern design

problem and generated a new family of hybrid patterns that are compatible with

algorithms developed for the Bayer or Lukac pattern.

Future work will focus on extending our single frame image interpolation solution

to multiple frames. We believe that the advantages of our approach in the spatial do-

main may lead to improved super-resolution performance. There are several possible
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improvement areas in the super-resolution problem. Firstly, we will investigate re-

placing the usual interpolation methods found in super-resolution algorithms with our

edge directed interpolation algorithm. However, in its current spatial domain form,

our algorithm operates on diagonal pixel values. In the super-resolution setting, these

values will not be readily available due to random motion between different frames.

That is why, we will need to either make an approximation or change our formulation

to handle such cases. We also need to find out how much of an effect these choices

have on the performance of our edge directed approach. Secondly, we will look into

subpixel accurate motion estimation, which is the backbone of super-resolution. We

will examine the latest developments in motion estimation research and look for a

solution to couple with our interpolation method. Among the current approaches,

probabilistic motion estimation shows a lot of promise [39]. If needed, we will try

to develop our own motion estimation solution, aiming for a balance between low

computational complexity and high motion vector accuracy.
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[26] Lenke, S. and Schröder, H., “Classification based polynomial image inter-
polation,” in Proceedings of SPIE, vol. 6812, p. 681214, 2008.

[27] Li, X., “Demosaicing by successive approximation,” Image Processing, IEEE
Transactions on, vol. 14, no. 3, pp. 370–379, 2005.

[28] Li, X., Gunturk, B., and Zhang, L., “Image demosaicing: A systematic
survey,” in Proc. IS&T/SPIE Conf. on Visual Communication and Image Pro-
cessing, vol. 6822, Citeseer.

[29] Li, X. and Orchard, M., “New edge-directed interpolation,” Image Process-
ing, IEEE Transactions on, vol. 10, no. 10, pp. 1521–1527, 2001.

[30] Lian, N., Chang, L., Tan, Y., and Zagorodnov, V., “Adaptive filtering
for color filter array demosaicking,” Image Processing, IEEE Transactions on,
vol. 16, no. 10, pp. 2515–2525, 2007.

[31] Lukac, R. and Plataniotis, K., “A normalized model for color-ratio based
demosaicking schemes,” in Image Processing, 2004. ICIP’04. 2004 International
Conference on, vol. 3, pp. 1657–1660, IEEE.

[32] Lukac, R. and Plataniotis, K., “Universal demosaicking for imaging
pipelines with an rgb color filter array,” Pattern Recognition, vol. 38, no. 11,
pp. 2208–2212, 2005.

[33] Menon, D., Andriani, S., and Calvagno, G., “Demosaicing with directional
filtering and a posteriori decision,” Image Processing, IEEE Transactions on,
vol. 16, no. 1, pp. 132–141, 2007.

[34] Menon, D. and Calvagno, G., “Regularization approaches to demosaicking,”
Image Processing, IEEE Transactions on, vol. 18, no. 10, pp. 2209–2220, 2009.

[35] Muresan, D., “Fast edge directed polynomial interpolation,” in Image Pro-
cessing, 2005. ICIP 2005. IEEE International Conference on, vol. 2, pp. II–990,
IEEE, 2005.

[36] Muresan, D. and Parks, T., “Adaptively quadratic (aqua) image interpo-
lation,” Image Processing, IEEE Transactions on, vol. 13, no. 5, pp. 690–698,
2004.

[37] Paliy, D., Katkovnik, V., Bilcu, R., Alenius, S., and Egiazarian, K.,
“Spatially adaptive color filter array interpolation for noiseless and noisy data,”
International Journal of Imaging Systems and Technology, vol. 17, no. 3, pp. 105–
122, 2007.

[38] Pekkucuksen, I. and Altunbasak, Y., “Gradient based threshold free color
filter array interpolation,” in Image Processing (ICIP), 2010 17th IEEE Inter-
national Conference on, pp. 137–140, IEEE, 2010.

78



[39] Protter, M. and Elad, M., “Super resolution with probabilistic motion esti-
mation,” Image Processing, IEEE Transactions on, vol. 18, no. 8, pp. 1899–1904,
2009.

[40] Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E., “Image quality
assessment: From error visibility to structural similarity,” Image Processing,
IEEE Transactions on, vol. 13, no. 4, pp. 600–612, 2004.

[41] Xue, K., Winans, A., and Walowit, E., “An edge-restricted spatial interpo-
lation algorithm (journal paper),” Journal of Electronic Imaging, vol. 1, no. 02,
pp. 152–161, 1992.

[42] Zhang, L. and Wu, X., “Color demosaicking via directional linear minimum
mean square-error estimation,” Image Processing, IEEE Transactions on, vol. 14,
no. 12, pp. 2167–2178, 2005.

[43] Zhang, L., Wu, X., Buades, A., and Li, X., “Color demosaicking by local
directional interpolation and non-local adaptive thresholding,” Journal of Elec-
tronic Imaging, vol. 20, no. 2, 2011.

[44] Zhang, L., “Mcmaster dataset.” http://www4.comp.polyu.edu.hk/∼
cslzhang/CDM Dataset.htm.

[45] Zhang, L. and Wu, X., “An edge-guided image interpolation algorithm via
directional filtering and data fusion,” Image Processing, IEEE Transactions on,
vol. 15, pp. 2226 –2238, aug. 2006.

79



VITA

Ibrahim Pekkucuksen was born in Konya, Turkey in 1983. He received the BS degree

in electrical engineering from Texas A&M University, College Station, in 2005, and the

MS degree in electrical engineering from Georgia Institute of Technology, Atlanta, in

2007. He will receive the PhD degree in electrical engineering from Georgia Institute of

Technology, Atlanta, in 2011. His research interests include resolution enhancement,

demosaicing, and motion estimation.

80


