

Is there still room for new developments in geostatistics?

Jean-Paul Chilès

MINES ParisTech, Fontainebleau, France

Georges Matheron lecture, IAMG 34th IGC, Brisbane, 8 August 2012

Matheron: books and monographs

- 1962-1963: *Treatise of applied geostatistics* (in French), Technip and BRGM editions, Paris
- 1965: Regionalized variables and their estimation (in French), Masson, Paris
- 1967: Elements for a theory of porous media (in French), Masson, Paris
- 1968: Treatise of applied geostatistics (in Russian), MIR, Moscow
- 1969: Theory of random sets (in French), Ecole des Mines de Paris
- 1969: Geostatistics course (in French), Mines Paris
- 1969: Universal kriging (in French), Mines Paris
- 1970: Mathematical morphology (in French), Mines Paris
- 1970: The theory of regionalized variables and its applications, Mines Paris
- 1972-1975: Random sets and integral geometry, Wiley, New York
- 1978-1989: Estimating and choosing, Springer, Berlin

Three recent developments

- Dealing with outliers
- Modeling a change of support with the discrete Gaussian model
- Simulating a Gaussian random vector

Dealing with outliers

J. Rivoirard, X. Freulon, et al.

Kriging in the presence of outliers

- Some variables (gold grade, concentration in a pollutant) have a histogram with a long tail. The data include some high values or outliers.
- How can we interpolate?

Georges Matheron lecture

Standard approach

- Lack of robustness of the sample variogram
- Large nugget effect
- Large kriging variance

Ignoring the outlier in the variogram calculation Kriging with all data

- Robust, but biased, variogram
- Inconsistency between variogram and kriging
- Extends the influence of the outlier data on the basis of the structure of the low grades

variogram

h

γ

0

Introduction of a cutoff

A cutoff z separates Z(x) into ➢ Truncated grade min(Z(x), z) ➢ Excess

Truncation of large values

- Application of the standard approach to the truncated grade
- More interpretable variogram
- Annihilates the excess

Global spreading of the excess

- Excess considered as a nugget effect and spread over the whole domain
- Consistent globally
- Spreads the excess even in areas where there is no excess

Spreading the excess where there is excess

• OK but requires knowing where there is excess

Spreading the excess where excess is likely

- Estimate the indicator of excess
- Spread the excess proportionally to the indicator estimate

Validity of the approach

$$Z(x) = T(x) + m_E I(x) + R(x)$$

- $T(x) = \min(Z(x), z)$ (truncated grade)
- $I(x) = 1_{Z(x)>z}$ (indicator of the excess)
- R(x) : zero-mean residual
- m_E : conditional mean of the excess

Validity of the approach

The model

$$Z(x) = T(x) + m_E I(x) + R(x)$$

is specially interesting when:

- *R* is spatially uncorrelated with *T* and *I* (no edge effect in the high-value zone)
- *R* is not structured

Indeed the final estimator is then

 $Z^*(x) = T^*(x) + m_E I^*(x)$ (*T*^{*} and *I*^{*} obtained by cokriging) It is free from high grades.

Georges Matheron lecture

Application

- Gold deposit (vertical vein)
- Very skew distribution: mean = 1.76 g/t, $\sigma/m = 7.74$, maximum = 443 g/t

Top view of the deposit: Trace of the cross-section and location of the blast holes

Application

• Cokriging of indicator of excess and truncated grade (cutoff: 5 g/t)

Application

• Final cokriging estimates compared with direct kriging

Predicting a change of support with the discrete Gaussian model

Support and selectivity

low-constrast variations

high-contrast variations

Selectivity depends on block size

Support and grade distribution

Principle of the discrete Gaussian model

Assumptions of the discrete Gaussian model

Model DGM1 (Matheron, 1976) Assumption: The pair $(Y(\underline{x}), Y_v)$ is bi-Gaussian $(\underline{x} : \text{random point in } v)$

Characterized by the correlation coefficient r of $Y(\underline{x})$ and Y_{v}

Model DGM2 (Emery, 2007) Additional assumption: The pair ($Y(\underline{x})$, $Y(\underline{x}')$) is bi-Gaussian ($\underline{x}, \underline{x}'$: independently random in v)

Offers the facility that $Y_v = Y(v) / r$, where *r* is the correlation coefficient of $Y(\underline{x})$ and Y(v)

These assumptions are approximations

Check of the additional assumption of DGM2 (1D, triangle covariance, segment length = range)

0

1

2

3

Sample of the approximate $(Y(\underline{x}), Y(\underline{x}'))$ distribution

Some dissimilarity

0

-1

-2

-3

-3

-2

-1

Validity of DGM models: Case of a lognormal SRF

- DGM model = permanence of lognormality
- Example of a logarithmic standard deviation $\sigma = 1.5$
- 2D, square $L \times L$, range *a*

Conclusions

DGM1 is more robust than DGM2:

- DGM1 gives a good answer up to a large logarithmic variance.
- DGM2 can be used safely for a small logarithmic variance, and otherwise for a block of small size with respect to the range.

DGM2 facilitates calculations in case of:

- multiple supports
- polymetallic deposit
- information effect

Simulating a Gaussian random vector

C. Lantuéjoul and N. Desassis

Initial motivation

- Secondary diamond deposits
- Simulation of the number of diamonds in blocks
- Data measured in blocks with various supports

Cox process

- Poisson point process with random intensity (or potential) *Z*(*x*)
- Z(x) = transform of a Gaussian SRF Y(x)
- $Z(v_1), Z(v_2), \dots$ obtained through DGM2
- Conditional simulation: requires the simulation of a large-size Gaussian vector

Simulating a large-size Gaussian vector with a given covariance matrix

• Objective:

Simulate a Gaussian vector $\mathbf{Z} = (Z_1, Z_2, ..., Z_N)$ with zero-mean unit-variance components and correlation matrix $\boldsymbol{\rho} = [\rho_{ij}]$

Direct approach: Cholesky decomposition

- Well-known solution:
 - Decompose ρ into the product A A' where A is a lower triangular matrix
 - Select a Gaussian vector U with independent standard normal components
 - \succ Take $\mathbf{Z} = \mathbf{A} \mathbf{U}$
- Limited to a reasonable N

Iterative approach: Gibbs sampler

After initialization of vector \mathbf{z} (e.g., $\mathbf{z} = \mathbf{0}$):

- i. Select a component, say *i*
- ii. Delete the value of this component
- iii. Choose a new value from the conditional distribution of Z_i given the other components
- iv. Go to i.
- The parameters of the conditional distributions derive from the inverse ρ^{-1}
- Can diverge if one uses the conditional distribution from a subset of the data (moving neighborhood)

Iterative approach: Gibbs sampler

Grid 100×100, *spherical variogram with range* 10, *neighborhood* 15×15

Iterative approach: Gibbs sampler

Grid 100×100, spherical variogram with range 10, neighborhood 5×5

Reversing the viewpoint

- Two useful properties:
 - ✓ If ρ is a covariance matrix, its inverse ρ^{-1} is a covariance matrix.
 - ✓ If the vector **Y** has mean **0** and covariance ρ^{-1} , **Z** = ρ **Y** has mean **0** and covariance ρ .
- A solution:
 - \checkmark Use the Gibbs sampler to simulate Y; then, derive Z.
- Requires the inverse $(\rho^{-1})^{-1}$, which is known (it is nothing but ρ)

Suppressing the reference to ${\bf Y}$

- Suppose that **Z** has mean **0** and correlation matrix ρ .
- If the component Z_i is changed into Z'_i , possibly correlated with Z_i but conditionally independent of the other Z'_i 's, let us consider

$$Z_j' = Z_j + \rho_{ji} (Z_i' - Z_i) \qquad j \neq i$$

• It can be shown that \mathbf{Z}' also has covariance matrix $\boldsymbol{\rho}$.

Propagation algorithm

After initialization of vector \mathbf{z} (e.g., $\mathbf{z} = \mathbf{0}$):

- i. Select a component, say *i*
- ii. Choose a new value for this component
- iii. Propagate its influence on the other components

iv. Go to i.

- Different strategies for the choice of the new value
- Does not require the inverse ρ^{-1}

Propagation algorithm

- Achieves what seemed impossible: Simulate without inverting the covariance matrix
- Can therefore be used to simulate very large vectors

Conclusion

- It is worth revisiting standing problems
- What seems impossible may become straightforward once a sound solution has been found
- Is there still room for new developments in geostatistics?
 ➤ Yes!
 - ➤ and even in classical geostatistics!

Special acknowledgements to Georges Matheron (1930–2000) who continues to be a source of inspiration

