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Matheron: books and monographs

• 1962-1963: Treatise of applied geostatistics (in French), Technip and

BRGM editions, Paris

• 1965: Regionalized variables and their estimation (in French), Masson, Paris

• 1967: Elements for a theory of porous media (in French), Masson, Paris

• 1968: Treatise of applied geostatistics (in Russian), MIR, Moscow

• 1969: Theory of random sets (in French), Ecole des Mines de Paris

• 1969: Geostatistics course (in French), Mines Paris

• 1969: Universal kriging (in French), Mines Paris

• 1970: Mathematical morphology (in French), Mines Paris

• 1970: The theory of regionalized variables and its applications, Mines Paris

• 1972-1975: Random sets and integral geometry, Wiley, New York

• 1978-1989: Estimating and choosing, Springer, Berlin
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• Dealing with outliers

• Modeling a change of support with the discrete Gaussian 

model

• Simulating a Gaussian random vector

Three recent developments
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Dealing with outliers

J. Rivoirard, X. Freulon, et al.

4



Georges Matheron lecture

Kriging in the presence of outliers

• Some variables (gold grade, concentration in a pollutant) 

have a histogram with a long tail. The data include some 

high values or outliers.

• How can we interpolate?

x
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0
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Standard approach

x

Z(x)

0

• Lack of robustness of the sample variogram

• Large nugget effect

• Large kriging variance
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Ignoring the outlier in the variogram calculation

Kriging with all data

x

Z(x)

0

• Robust, but biased, variogram

• Inconsistency between variogram and kriging

• Extends the influence of the outlier data on the 

basis of the structure of the low grades

g

h0

variogram
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Introduction of a cutoff

cutoff z

x

Z(x)

0

A cutoff z separates Z(x) into

Truncated grade min(Z(x), z)

Excess

truncated

grade

excess
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Truncation of large values

• Application of the standard approach to the truncated 

grade

• More interpretable variogram

• Annihilates the excess
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Global spreading of the excess

• Excess considered as a nugget effect and spread over the 

whole domain

• Consistent globally

• Spreads the excess even in areas where there is no excess
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Spreading the excess where there is excess

cutoff z

excess truncated

grade

x

Z(x)

0

• OK but requires knowing where there is excess
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Spreading the excess where excess is likely

cutoff z

excess truncated

grade

x

Z(x)

0

• Estimate the indicator of excess

• Spread the excess proportionally to the indicator estimate 
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Validity of the approach

cutoff z

x

Z(x)

0

Z(x) = T(x) + mE I(x) + R(x)

• T(x) = min(Z(x), z)   (truncated grade)

• I(x) = 1Z(x)>z (indicator of the excess)

• R(x) : zero-mean residual

• mE : conditional mean of the excess

truncated

grade

excess
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Validity of the approach

The model

Z(x) = T(x) + mE I(x) + R(x)

is specially interesting when:

• R is spatially uncorrelated with T and I

(no edge effect in the high-value zone)

• R is not structured

Indeed the final estimator is then

Z*(x) = T*(x) + mE I*(x)

(T* and I* obtained by cokriging)

It is free from high grades.
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Application

• Gold deposit (vertical vein)

• Very skew distribution:

mean = 1.76 g/t, s/m = 7.74, maximum = 443 g/t

Top view of the deposit:

Trace of the cross-section and location of the blast holes
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Application

• Cokriging of indicator of excess and truncated grade 

(cutoff: 5 g/t)

Indicator 

of excess

Truncated 

grade
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Application

• Final cokriging estimates compared with direct kriging

Final 

cokriging 

estimates

Direct 

kriging 

estimates
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Predicting a change of support

with the discrete Gaussian model
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Support and selectivity

low-constrast variations high-contrast variations

Selectivity depends on block size
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Support and grade distribution

Histograms for support sizes 

0, 1, 2, 4, 8, 16, 32

Diffusion process with exponential p.d.f. and exponential covariance (a = 1)
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Principle of the discrete Gaussian model

SRF Z(x)

Gaussian 

SRF Y(x)

Z(v)

Gaussian 

RV Yv

φ φv
v

r
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Assumptions of the discrete Gaussian model

Model DGM1 (Matheron, 1976) 

Assumption: The pair (Y(x), Yv) is bi-Gaussian

(x : random point in v)

Characterized by the correlation coefficient r of Y(x) and Yv

Model DGM2 (Emery, 2007)

Additional assumption: The pair (Y(x), Y(x')) is bi-Gaussian

(x , x' : independently random in v)

Offers the facility that Yv = Y(v) / r , where r is the correlation 

coefficient of Y(x) and Y(v)

v

x
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These assumptions are approximations

Check of the additional assumption of DGM2

(1D, triangle covariance, segment length = range)

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

Sample of the true

(Y(x), Y(x')) distribution

Sample of the approximate

(Y(x), Y(x')) distribution

Some dissimilarity
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Validity of DGM models:

Case of a lognormal SRF

• DGM model = permanence of lognormality

• Example of a logarithmic standard deviation s = 1.5

• 2D, square L × L, range a

10

20

30

jv

-3 -2 -1 0 1 2 3 y

L / a = 0.1 L / a = 1

True jv 

DGM1

DGM2

5

10

-3 -2 -1 0 1 2 3 y

jv

L / a = 10

0.5

1

1.5

-3 -2 -1 0 1 2 3 y

jv

Comparison of "true" φv with φv given by DGM1 and DGM2
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Conclusions

DGM1 is more robust than DGM2:

• DGM1 gives a good answer up to a large logarithmic variance.

• DGM2 can be used safely for a small logarithmic variance, and 

otherwise for a block of small size with respect to the range.

DGM2 facilitates calculations in case of:

• multiple supports

• polymetallic deposit

• information effect 
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Simulating

a Gaussian random vector

C. Lantuéjoul and N. Desassis
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Initial motivation

• Secondary diamond deposits

• Simulation of the number of diamonds in blocks

• Data measured in blocks with various supports
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Cox process

• Poisson point process with random intensity 

(or potential) Z(x)

• Z(x) = transform of a Gaussian SRF Y(x)

• Z(v1), Z(v2), … obtained through DGM2

• Conditional simulation: requires the 

simulation of a large-size Gaussian vector
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Simulating a large-size Gaussian vector

with a given covariance matrix

• Objective:

Simulate a Gaussian vector Z = (Z1, Z2, …, ZN)

with zero-mean unit-variance components and

correlation matrix r = [rij] 
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Direct approach: Cholesky decomposition

• Well-known solution:

Decompose r into the product A A’ where A is a 

lower triangular matrix

Select a Gaussian vector U with independent standard 

normal components

Take Z = A U

• Limited to a reasonable N
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Iterative approach: Gibbs sampler

After initialization of vector z (e.g., z = 0):

i. Select a component, say i

ii. Delete the value of this component

iii. Choose a new value from the

conditional distribution of Zi

given the other components

iv. Go to i.

31

• The parameters of the conditional distributions derive from the 

inverse r–1

• Can diverge if one uses the conditional distribution from a 

subset of the data (moving neighborhood)

… …

i.     ii.   iii.

i
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Iterative approach: Gibbs sampler

Grid 100×100, spherical variogram with range 10, neighborhood 15×15
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Iterative approach: Gibbs sampler

Grid 100×100, spherical variogram with range 10, neighborhood 5×5
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Reversing the viewpoint

• Two useful properties:

 If r is a covariance matrix, its inverse r–1 is a 

covariance matrix.

 If the vector Y has mean 0 and covariance r–1,

Z = r Y has mean 0 and covariance r.

• A solution:

Use the Gibbs sampler to simulate Y; then, derive Z.

• Requires the inverse (r–1)–1, which is known (it is 

nothing but r)
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Suppressing the reference to Y

• Suppose that Z has mean 0 and correlation matrix r.

• If the component Zi is changed into Zi', possibly 

correlated with Zi but conditionally independent of the 

other Zj’s, let us consider

Zj' =  Zj + rji (Zi' – Zi)      j ≠ i

• It can be shown that Z' also has covariance matrix r.
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Propagation algorithm

After initialization of vector z (e.g., z = 0):

i. Select a component, say i

ii. Choose a new value for this component

iii. Propagate its influence on the other

components

iv. Go to i.

36

• Different strategies for the choice of the new value

• Does not require the inverse r–1

… …

i.     ii.   iii.

i
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Propagation algorithm

• Achieves what seemed impossible:

Simulate without inverting the covariance matrix

• Can therefore be used to simulate very large vectors
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• It is worth revisiting standing problems

• What seems impossible may become straightforward once a 

sound solution has been found

• Is there still room for new developments in geostatistics?

Yes!

 and even in classical geostatistics!

Conclusion
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