
Inside the Hypercube

Jean-Philippe Aumasson1,�, Eric Brier3, Willi Meier1,��,
Maŕıa Naya-Plasencia2,� � �, and Thomas Peyrin3

1 FHNW, Windisch, Switzerland
2 INRIA project-team SECRET, France

3 Ingenico, France

Some force inside the Hypercube occasionally manifests itself with deadly results.

http://www.staticzombie.com/2003/06/cube 2 hypercube.html

Abstract. Bernstein’s CubeHash is a hash function family that includes
four functions submitted to the NIST Hash Competition. A CubeHash
function is parametrized by a number of rounds r, a block byte size b, and
a digest bit length h (the compression function makes r rounds, while
the finalization function makes 10r rounds). The 1024-bit internal state
of CubeHash is represented as a five-dimensional hypercube. The sub-
missions to NIST recommends r = 8, b = 1, and h ∈ {224, 256, 384, 512}.

This paper presents the first external analysis of CubeHash, with
• improved standard generic attacks for collisions and preimages
• a multicollision attack that exploits fixed points
• a study of the round function symmetries
• a preimage attack that exploits these symmetries
• a practical collision attack on a weakened version of CubeHash
• a study of fixed points and an example of nontrivial fixed point
• high-probability truncated differentials over 10 rounds

Since the first publication of these results, several collision attacks for
reduced versions of CubeHash were published by Dai, Peyrin, et al. Our
results are more general, since they apply to any choice of the parame-
ters, and show intrinsic properties of the CubeHash design, rather than
attacks on specific versions.

1 CubeHash

Bernstein’s CubeHash is a hash function family submitted to the NIST Hash
Competition. A CubeHash function is parametrized by a number of rounds r,
a block byte size b, and a digest bit length h; the 1024-bit internal state of
CubeHash is viewed as a five dimensional hypercube. The submissions to NIST
recommends r = 8, b = 1, and h ∈ {224, 256, 384, 512}.

CubeHash computes a message digest as follows:
� Supported by the Swiss National Science Foundation under project no. 113329.

�� Supported by GEBERT RÜF STIFTUNG, project no. GRS-069/07.
� � � Supported in part by the French Agence Nationale de la Recherche under contract

ANR-06-SETI-013-RAPIDE.

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 202–213, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Inside the Hypercube 203

• initialize a 1024-bit state as a function of (h, b, r)
• append to the message a 1 bit and enough 0 bits to reach a multiple of 8b

bits
• for each b-byte message block:

• xor the block into the first b bytes of the state
• transform the state through the r-round T function

• xor a 1 bit with the 993rd bit of the state
• transform the state through 10r-round T

• output the first h bits of the state

Let x[0], . . . , x[31] represent the 1024-bit state as an array of 32-bit words. The
transform function T makes r identical rounds, where each round computes (see
also Fig. 1):

for i = 0, . . . , 15: x[i + 16] = x[i + 16] + x[i]
for i = 0, . . . , 15: y[i ⊕ 8] = x[i]
for i = 0, . . . , 15: x[i] = y[i] ≪ 7
for i = 0, . . . , 15: x[i] = x[i] ⊕ x[i + 16]
for i = 0, . . . , 15: y[i ⊕ 2] = x[i + 16]
for i = 0, . . . , 15: x[i + 16] = y[i]
for i = 0, . . . , 15: x[i + 16] = x[i + 16] + x[i]
for i = 0, . . . , 15: y[i ⊕ 4] = x[i]
for i = 0, . . . , 15: x[i] = y[i] ≪ 11
for i = 0, . . . , 15: x[i] = x[i] ⊕ x[i + 16]
for i = 0, . . . , 15: y[i ⊕ 1] = x[i + 16]
for i = 0, . . . , 15: x[i + 16] = y[i]

See [5] for a more detailed description of CubeHash.
This paper presents the first external analysis of CubeHash, with

• improved standard generic attacks for collisions and preimages
• a multicollision attack that exploits fixed points
• a study of the round function symmetries
• a preimage attack that exploits these symmetries
• a practical collision attack on a weakened version of CubeHash
• a study of fixed points and an example of nontrivial fixed point
• high-probability truncated differentials over the 10-round transform

After the first publication of this article [2], Dai, Peyrin, et al. presented
a series of collision attacks [1, 8, 7, 6] on reduced versions of CubeHash. Their
best results (as of Feb. 6) are an example of collision on CubeHash3/64 and a
collision attack on CubeHash4/3 in about 2207 simple operations [6]. Our results,
however, are more general, since they apply to any choice of the parameters, and
show intrinsic properties of the CubeHash design, rather than attacks on specific
versions.

204 J.-P. Aumasson et al.

Fig. 1. Schematic view of a CubeHash round

2 Improved Standard Generic Attacks

The author of CubeHash presented [3] the following “standard preimage attack”:

• from (h, b, r) compute the initial state S0

• from the h-bit image plus some arbitrary (1024−h) bits, invert 10r rounds
and the “xor 1” to get a state Sf before finalization

• find two n-block sequences that map S0 (forward) and Sf (backward),
respectively, to two states that share the last (1024 − 8b) bits

There are 2nb possible n-block inputs and one looks for a collision over (1024−8b)
bits. For a success chance 1− 1/e ≈ 0.63 one thus requires 2512−4b trials in each

Inside the Hypercube 205

direction, that is, 2nb > 1024 − 8b, i.e., n > 512/b − 4. In total the number of
evaluations of T is approximately

2 ×
(

512
b

− 4
)
× 2512−4b ≈ 2522−4b−log b .

Furthermore, [3] estimates that each round of T needs 211 “bit operations”; the
above formula gives about 2533−4b−log b+log r bit operations.

A speed-up of the above attack can be obtained by searching a collision not
only in the states resulting of a n-block computation, but in every distinct state
reached (i.e. also with the intermediate states). This is made possible by the
absence of message length padding. Each call to T gives a new candidate for the
collision search; we thus get rid of the (512/b − 4) multiplicative factor in the
cost estimate. This gives a cost of

2 × 2512−4b = 2513−4b

evaluations of T , i.e. 2524−4b+log r bit operations.
The proposed CubeHash-512 has (h, b, r) = (512, 1, 8), our attack thus makes

2523 bit operations, against 2532 with the original attack. If r = 8, our attack
needs b > 3 to make less than 2512 bit operations, against b > 5 with the original
preimage attack. It is to note that these estimates exclude the non-negligible
communication costs.

One can use the same trick to speed-up the standard collision attack [3]; the
cost in T evaluations then drops from 2521−4b−log b to 2512−4b.

3 Narrow-Pipe Multicollisions

Based on the “narrow-pipe” attacks in [4], we show a multicollision attack on
CubeHash faster than Joux’s [10] or birthday [9,12] methods (for large b’s). Our
attack requires the same amount of computation as narrow-pipe collisions. It
exploits the fact that the null state is a fixed point for the compression function
T (regardless of r), and that the message padding does not include the message
length.

Starting from an initial state S0 derived from (h, b, r), one finds two n-block
sequences m and m′ that map S0 (forward) and the zero state (backward),
respectively, to two states that share the last (1024 − 8b) bits. One finds a
connection of the form

S0 ⊕ m1
T−→ S1

S1 ⊕ m2
T−→ · · ·
· · ·

· · · T−→ S′
1

S′
1 ⊕ m′

2
T−→ 0 ⊕ m′

1

206 J.-P. Aumasson et al.

Once a path to the zero state is found, one can add an arbitrary number of zero
message blocks to maintain a zero state. Colliding messages are of the form

m‖m′‖0‖0‖ . . .‖0‖m̄,

where m̄ is an arbitrary sequence of blocks.
Using the technique of §2, this multicollision attack requires approximately

2513−4b evaluations of T . In comparison, a birthday attack finds a k-collision in
(k!×2n(k−1))1/k trials, and Joux’s attacks in log k×24(128−b). For example, with
h = 512 and b = 112, our attack finds 264-collisions within 265 calls to T , against
> 2512 for a birthday attack and 270 for Joux’s.

4 State Symmetries

The documentation of CubeHash mentions [5, p.3] the existence of symmetries
through the round function, and states that the initialization of CubeHash was
designed to avoid them. However [5] gives no detail on those symmetries. In
this section, we provide a reasoning that finds all symmetries inherent in the
transformation T . In total we are able to show 15 symmetry classes of 2512

states each, and show how to exploit these.

4.1 Symmetry Classes

If a 32-word state x satisfies x[0] = x[1], x[2] = x[3], . . . , x[30] = x[31], then this
property is preserved through the transformation T , with probability equal to
1, for any number of rounds. One can represent this symmetry with the pattern
(each letter stands for a 32-bit word):

AABBCCDD EEFFGGHH IIJJKKLL MMNNOOPP .

In total we found 15 classes of symmetry:

C1 : AABBCCDD EEFFGGHH IIJJKKLL MMNNOOPP
C2 : ABABCDCD EFEFGHGH IJIJKLKL MNMNOPOP
C3 : ABBACDDC EFFEGHHG IJJIKLLK MNNMOPPO
C4 : ABCDABCD EFGHEFGH IJKLIJKL MNOPMNOP
C5 : ABCDBADC EFGHFEHG IJKLJILK MNOPNMPO
C6 : ABCDCDAB EFGHGHEF IJKLKLIJ MNOPOPMN
C7 : ABCDDCBA EFGHHGFE IJKLLKJI MNOPPONM
C8 : ABCDEFGH ABCDEFGH IJKLMNOP IJKLMNOP
C9 : ABCDEFGH BADCFEHG IJKLMNOP JILKNMPO
C10 : ABCDEFGH CDABGHEF IJKLMNOP KLIJOPMN
C11 : ABCDEFGH DCBAHGFE IJKLMNOP LKJIPONM
C12 : ABCDEFGH EFGHABCD IJKLMNOP MNOPIJKL
C13 : ABCDEFGH FEHGBADC IJKLMNOP NMPOJILK
C14 : ABCDEFGH GHEFCDAB IJKLMNOP OPMNKLIJ
C15 : ABCDEFGH HGFEDCBA IJKLMNOP PONMLKJI

Inside the Hypercube 207

Each class contains 2512 states. If a state belongs to several classes, then its
image under T also belongs to these classes; for example if S ∈ (Ci ∩ Cj), then
T (S) ∈ (Ci ∩ Cj). We have

|Ci ∩ Cj | ≤ 2256 .

By the inclusion-exclusion principle, the number of distinct symmetric states is
∣∣∪15

i=1Ci

∣∣ = 15 × 2512 − 70 × 2256 + 120 × 2128 − 64 × 264 ≈ 2516 .

Note that symmetry is not preserved by the finalization procedure of CubeHash
(the “xor 1” breaks any of the above symmetries).

4.2 Finding All Symmetry Classes

Now we prove that the classes C1, . . . , C15 capture all the possible symmetries of
CubeHash’s transform T . A symmetry class can be represented as a set of pairs
(i, j), where each (i, j) means x[i] = x[j]. For example, C1 can be described by
the set

(0,1) (2,3) (4,5) (6,7) (8,9) (10,11) (12,13) (14,15)
(16,17) (18,19) (20,21) (22,23) (24,25) (26,27) (28,29) (30,31)

We want a symmetry class to propagate through one round of the scheme
with probability equal to one. It is easy to see that this condition imposes that
the equality constraints at the left and at the right branch of the scheme must
be the same (because of the intra-word rotations that are only present in the
left branch of the scheme). That is, for any relation (i, j) with 0 ≤ i, j ≤ 15, we
must also have the relation (i + 16, j + 16). In other words, a symmetry pattern
is the same for the left and for the right branch. We thus only need to consider
16-word symmetry patterns.

To describe all possible symmetries, we start by fixing (0, k), for a fixed k in
{1, . . . , 15}. We then compute T backwards to indentify the relations implied by
(0, k): the first substitution and xor encountered force us to have

(0, k) (4, k ⊕ 4).

Then, the second substitution and the modular addition force to have (note that
the intra-word rotations can be omitted since they leave the symmetry pattern
unchanged)

(0, k) (4, k ⊕ 4) (1, k ⊕ 1) (5, k ⊕ 5).

The third substitution and xor yield

(0, k) (4, k ⊕ 4) (1, k ⊕ 1) (5, k ⊕ 5)
(2, k ⊕ 2) (6, k ⊕ 6) (3, k ⊕ 3) (7, k ⊕ 7).

208 J.-P. Aumasson et al.

Finally, the last substitution and the modular addition imply

(0, k) (4, k ⊕ 4) (1, k ⊕ 1) (5, k ⊕ 5)
(2, k ⊕ 2) (6, k ⊕ 6) (3, k ⊕ 3) (7, k ⊕ 7)
(8, k ⊕ 8) (12, k ⊕ 12) (9, k ⊕ 9) (13, k ⊕ 13)

(10, k ⊕ 10) (14, k ⊕ 14) (11, k ⊕ 11) (15, k ⊕ 15).

Eventually, each symmetry that contains the relation (0, k)—i.e., x[0] =
x[k]—also has the relations (i, k ⊕ i), 1, . . . , 15. Therefore, we have 15 distinct
wordwise symmetry classes, of the form

(i, k ⊕ i), i = 0, . . . , 15

for k ∈ {1, . . . , 15}. Each class contains 2512 states. For example, the case k = 1
provides directly C1, and more generally k = i corresponds to Ci.

4.3 Exploiting Symmetric States for Finding Preimages

Given a target digest, one can make a preimage attack similar to that in §2, and
exploit symmetric states for the connection. The attack goes as follows:

• from the initial state, reach a symmetric state (of any class) by using
21024−516−8 = 2500 message blocks

• from a state before finalization, reach (backwards) another symmetric state
(not necessarily of the same class)

• from these two symmetric states in classes Ci and Cj , use null message
blocks in both directions to reach two states in Ci ∩ Cj

• find a collision by trying
√|Ci ∩ Cj | messages in each direction

Complexity of steps 1 and 2 is about 2501 computations of T . The cost of steps
3 and 4 depends on i and j; but it is upper bounded by 2 × 2256 operations.

Thus, in any case, the total complexity is about 2501 calls to T . This attack,
however, finds messages of unauthorized size (more than 2256 bytes!).

One can find preimages of reasonable size by using a variant of the above
attack: suppose b > 4, from the initial state reach a state in a given class Ci, do
the same backwards from a state before finalization. For a given b, the complexity
of reaching a symmetric state depends on the Ci considered. Then one seeks a
collision within Ci by trying messages preserving the symmetry: for example, if
b = 5 and Ci = C1, then one has to preserve the equality x[0] = x[1] and shall
thus pick 5-byte messages of the form X000X (each digit stands for a byte). Since
any Ci contains 2512 states, the cost of finding a collision within Ci is about 2256

trials in each direction.
Below we give a class example Ci that is the easiest to reach, depending on

the value of b:

• 5 ≤ b < 9: one of the best classes is C1, which gives (1024−2×4×8)/2 = 480
equations to verify

• 9 ≤ b < 17: one of the best classes is C2, which give (1024− 2× 8× 8)/2 =
448 equations to verify

Inside the Hypercube 209

• 17 ≤ b < 33: one of the best classes is C4, which gives (1024−2×16×8)/2 =
384 equations to verify

• 33 ≤ b < 65: one of the best classes is C8, which gives (1024−2×32×8)/2 =
256 equations to verify

If n equations have to be verified, the cost of reaching a symmetric state is about
2n evaluations of T . Compared to the preimage attack in §2, the best speed-up
obtained from a given Ci is when b = 4d + 1, where d is the number of 32-bit
words that separate the first repetition of two words.
To illustrate this attack, let’s study in more detail the case of C1:

• if b ≡ 0 mod 8, there are (1024 − 8b)/2 = 512 − 4b equations to satisfy,
thus about 2512−4b calls to T are necessary

• if b ≡ 4 mod 8, there are only (1024 − 8b − 32)/2 = 496 − 4b equations
to satisfy, because one has no condition on the first state word not xored
with the message block

• generalizing, when b mod 8 ≤ 4, about 2512−4(b+(b mod 4)) calls to T are
necessary

• when b mod 8 > 4, there are (1024− 8b− 32 + 8(b mod 4))/2 equations to
satisfy, which gives a cost 2496−4(b−(b mod 4))

The general formula for the number of equations is

512 − 32�b/8� − 32�(b mod 8)/4� − [(�(b mod 8)/4� + 1) mod 2] × 8(b mod 4) .

In the best case (b ≡ 4 mod 8), the attack is 215 times faster than that in §2 (in
the worst case, b ≡ 0 mod 8, it has the same complexity). Note that when b = 5,
the attack makes about 2481 calls to T , against 2493 with the attack in §2.

4.4 Exploiting Symmetric States for Finding Collisions

We present a technique to find collisions for a weakened version of CubeHash,
in which we modify the IV (initial state). The initialization of CubeHash never
leads to a symmetric initial state. Here we present a practical collision attack
that would apply if the initial state were symmetric, and in C1 ∩ C2 ∩ C4 ∩ C8.

Suppose that the initial state of CubeHashr/b-h is in C1 ∩ C8, i.e. is of the
form

AAAAAAAA AAAAAAAAA BBBBBBBBB BBBBBBBB .

If one hashes the b233-byte message that contain only zeros, then each of the 233

intermediate states is an element of C1 ∩ C2 ∩ C4 ∩ C8. Assuming that T acts
like a random permutation over this set, one will find two identical states with
probability about 0.63, which directly gives a collision.

210 J.-P. Aumasson et al.

5 On the Fixed Points of T

In this section we let T be the 1-round transform of CubeHash. A fixed point
for T r, r > 0, is a state x that is left unchanged by T r, i.e., T r(x) = x. Recall
that the average number of cycles of length k is 1/k for a random permutation.
If T were a random permutation, T would thus have one fixed point. Noting
that a cycle of length r gives r fixed points for T r, we have that T 2 would have
two fixed points (the one of T and one due to an average of 2× 1/2 fixed points
from cycles of length two); T 4 would have three fixed points (one for each cycle
length in 1, 2, 4), etc. More generally, the average number of fixed points for T n

would be the number of divisors of n, if T were a random permutation.
Note that each symmetry class represents a class of cycles of T , and that the

15 symmetry classes give 67 distinct subsets. Modeling T as a random permu-
tation over each of those subsets, one expects 67 fixed points. This gives for T 8

1+4×67 = 269 fixed points, where 4 is the number of divisors of 8, i.e., of cycles
length that give fixed points for T 8. Note that this results assumes a random
behavior of T with respect to fixed points over the 67 subsets considered.

Finding examples of fixed points seems difficult, however: the zero state
x[0] = · · · = x[31] = 0 is a trivial fixed point for T , and thus also for T n, n ≥ 0.
Among the states of the form x[0] = · · · = x[15], x[16] = · · · = x[31], the only
nontrivial fixed point is the state with x[0] = 54E5FC8A and x[8] = 84FE49D2.

6 Truncated Differentials over T

This section shows how to detect non-randomness over the 10-round T trans-
form. We start from a weight-64 difference to reach a weight-1 difference after 3
rounds with high probability; this nonlinear differential was discovered by simply
computing backwards from the weight-1 difference.

We consider the input difference 80000000 in x[16]. The word x[16] was
chosen because x[16] · · ·x[31] diffuse less in the first rounds than x[0] · · ·x[15].
We set a difference 80000000 to minimize the impact of carries.

We consider the following nonlinear differential. Input difference (weight-64):

18000000 10000000 08000000 30000000

00000040 00000080 00000000 00000000

00400000 00000000 00400000 01000404

00000003 80802002 00000001 81802004

40000000 08000000 00000000 E8020600

00000000 00000100 00000080 41F001C0

00400008 00000008 00400000 01000404

00000005 80802002 00000001 8080200C

Inside the Hypercube 211

Difference after one round (weight-26):
000E0000 00000000 00000000 00000000

00000000 00000040 00000080 00000040

01000004 00000000 00000004 00000000

00000000 00000000 00002000 00000000

800E0200 00000000 00000000 00000000

00000000 000000C0 00000080 000001C0

00000000 00000004 00000000 00000004

00000000 00002000 0000C000 00000000

Difference after two rounds (weight-9):

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 01000000

00000000 00002000 00000000 00002000

00000000 00000000 00000000 80000000

00000000 00000000 00000000 00100000

00000000 00000000 00000000 03000000

00000000 00002000 00000000 00002000

Difference after three rounds (weight-1):

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

80000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

which after another round gives with probability 1 the difference

80000000 00000000 80000000 00000000

00000400 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 80000000 00000000 80000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

212 J.-P. Aumasson et al.

This differential holds with negligible probability for a random input. But it
holds for the input

DFB7AA11 7B2872F1 2848B142 64CB0AF9

17DA36E7 320A7AB2 27621CD8 B6E23031

3BCE90DB 0E496C61 AF4156BD 0B4D857F

4379D4C0 D495EAC9 038BD6E5 72A114CC

29065395 824774C3 F0923C34 28F3B2DD

74251DF6 1A562265 BD8EE5E3 DEFDD839

2804D3BE 89417DC3 F001CE4A 6A5328A8

2BEC024E B2306F17 1F2A7C6C 14BC37B6

For 32 random bits in x[25] and x[26] (at positions 4, . . . , 19 in both), the differ-
ential is satisfied with probability approximately 0.985.

Note that in the linear model (i.e. when additions are replaced by xors),
a differential path starting from the weight-1 difference cycles over 47 rounds.
That is, it comes back to the difference 80000000 in x[16] after 47 rounds.

Based on the above differential, we empirically looked for high-probability
truncated differentials, based on the weight-64 input difference, and applying
to each output bit a frequency test similar to that in [11, §2.1], with decision
threshold 0.001 and 220 samples. We found 4 output bits with p-value less than
0.001, at positions 579, 778, 841, and 842. Over 11 rounds and more, no bias
was detected.

This observation is consistent with the fact that, when starting from the
weight-1 difference, we could detect non-randomness on up to 7 rounds (now
this difference is introduced three rounds later). Note that in a previous version
of this article [2], we reached 8 rounds by starting one round before the weight-1
difference.

These observations indicate that 10-round T does not act as a random permu-
tation, and that 10 rounds may not be overkill, as suggested in [4]. But note that
the settings used don’t correspond to a realistic attack scenario. Furthermore, if
we restrict ourselves to differences in the first state byte, and put random bits
in the rest of the state, then we observe non-randomness after up to 5 rounds.

References

1. Aumasson, J.-P.: Collision for CubeHash2/120-512. NIST mailing list (December
4, 2008), http://ehash.iaik.tugraz.at/uploads/a/a9/Cubehash.txt

2. Aumasson, J.-P., Meier, W., Naya-Plasencia, M., Peyrin, T.: Inside the hypercube.
Cryptology ePrint Archive, Report 2008/486, version 20081124:132635 (2008)

3. Bernstein, D.J.: CubeHash appendix: complexity of generic attacks. Submission to
NIST (2008)

4. Bernstein, D.J.: CubeHash attack analysis (2.B.5). Submission to NIST (2008)

5. Daniel, J.B.: CubeHash specification (2.B.1). Submission to NIST (2008)

http://ehash.iaik.tugraz.at/uploads/a/a9/Cubehash.txt

Inside the Hypercube 213

6. Brier, E., Khazaei, S., Meier, W., Peyrin, T.: Attack for CubeHash-2/2 and collision
for CubeHash-3/64. NIST mailing list (local link) (2009),
http://ehash.iaik.tugraz.at/uploads/3/3a/Peyrin_ch22_ch364.txt

7. Brier, E., Peyrin, T.: Cryptanalysis of CubeHash (2009),
http://thomas.peyrin.googlepages.com/BrierPeyrinCubehash.pdf

8. Dai, W.: Collisions for CubeHash1/45 and CubeHash2/89 (2008),
http://www.cryptopp.com/sha3/cubehash.pdf

9. Diaconis, P., Mosteller, F.: Methods for studying coincidences. Journal of the Amer-
ican Statistical Association 84(408), 853–861 (1989)

10. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

11. NIST. SP 800-22, a statistical test suite for random and pseudorandom number
generators for cryptographic applications (2001)

12. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday paradox for multi-
collisions. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 29–40.
Springer, Heidelberg (2006)

http://ehash.iaik.tugraz.at/uploads/3/3a/Peyrin_ch22_ch364.txt
http://thomas.peyrin.googlepages.com/BrierPeyrinCubehash.pdf
http://www.cryptopp.com/sha3/cubehash.pdf

	Inside the Hypercube
	CubeHash
	Improved Standard Generic Attacks
	Narrow-Pipe Multicollisions
	State Symmetries
	Symmetry Classes
	Finding All Symmetry Classes
	Exploiting Symmetric States for Finding Preimages
	Exploiting Symmetric States for Finding Collisions

	On the Fixed Points of T
	Truncated Differentials over T

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

