
The SPARC Architecture

Jingke Li

Portland State University

Jingke Li (Portland State University) CS322 SPARC Architecture 1 / 20

The SPARC Architecture

SPARC = Scalable Processor ARChitecture

• One of the ealiest RISC processor architectures, developed from
research at UC Berkeley (ca. 1980).

• Commercialized by SUN Microsystems, licensed freely to others.

Main Features:

Simple, uniform instruction set allowing fast cycle times.
(Goal — “One instruction per cycle.”)

• Up to 128 general-purpose registers

• All arithmetic ops are register-to-register

• Only simple load/store to memory

• Register windows

Jingke Li (Portland State University) CS322 SPARC Architecture 2 / 20

Versions of the SPARC Architecture

• V7 (1986) — 32-bit, the first published version.

• V8 (1990) — 32-bit, added hardware multiply and divide.

• V9 (1993) — 64-bit, extended the floating-point register file.

The UltraSPARC Processors:

• Implement the SPARC V9 — All arithmetic is performed to 64-bit
precision; 64-bit virtual memory addresses.

• Superscalar CPU — More than one instruction can be issued at a
time for execution.

Jingke Li (Portland State University) CS322 SPARC Architecture 3 / 20

Registers

Physical vs. Visible Registers:

• For CISC architectures — Typically all general-purpose physical
registers are directly addressable in the user program.

• For RISC architectures — There can be hundreds of general-purpose
registers on a processor. Directly addressing them in programs would
make instructions more complex (e.g. more bits are need to represent
each register) and register savings more expensive. So typically, only
a portion of the physical registers are made visible to a program at
any one time.

The SPARC has up to 128 general-purpose physical registers (actual
number depends on implementation). However, only 32 registers are
visible to a program at any time.

Jingke Li (Portland State University) CS322 SPARC Architecture 4 / 20

SPARC’s Visible Registers

SPARC provides 32 registers for each (active) subroutine, which are
organized into four sets:

• %g0-%g7 — for global data

• %l0-%l7 — for local data

• %i0-%i7 — for incoming arguments

• %o0-%o7 — for arguments to a subroutine

Register names look alike in each routine, but actual registers referred to
are different: the 8 global registers are mapped directly to 8 physical
registers; while the other 24 registers are mapped to one of many windows

on a large register file.

Jingke Li (Portland State University) CS322 SPARC Architecture 5 / 20

Register Windows

• A register file contains
many (overlapping)
windows; each consists
of 3 sets of registers
(24 registers in total).

• Only one window is
active (visible) at any
time.

• The active window
shifts by 2 sets (16
registers) each time a
procedure is called.

cwp →

wim →

in

local

out
cwp →

wim →

in

local

out

global

save ⇒

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

• When windows run out — Dumps window’s contents onto the stack
(expensive!). (Also, 64-byte space on the stack must be reserved for
each call at all times.)

Jingke Li (Portland State University) CS322 SPARC Architecture 6 / 20

The Shifting of Active Register Window

• Caller’s and
callee’s register
windows overlap
— they share one
set of registers.

• The shared
registers can pass
arguments
seamlessly from
caller to callee —
no additional data
copying needed.

BEFORE SAVE

AFTER SAVE

UN-MAPPED

0

%r31

%r30

%r29

%r28

%r27

%r26

%r25

%r24

%r23

%r22

%r21

%r20

%r19

%r18

%r17

%r16

%r15

%r14

%r13

%r12

%r11

%r10

%r9

%r8

%i7

%fp

%i5

%i4

%i3

%i2

%i1

%i0

%l7

%l6

%l5

%l4

%l3

%l2

%l1

%l0

%o7

%sp

%o5

%o4

%o3

%o2

%o1

%o0

%r31

%r30

%r29

%r28

%r27

%r26

%r25

%r24

%r23

%r22

%r21

%r20

%r19

%r18

%r17

%r16

%r15

%r14

%r13

%r12

%r11

%r10

%r9

%r8

%i7

%fp

%i5

%i4

%i3

%i2

%i1

%i0

%l7

%l6

%l5

%l4

%l3

%l2

%l1

%l0

%o7

%sp

%o5

%o4

%o3

%o2

%o1

%o0

%r7

%r6

%r5

%r4

%r3

%r2

%r1

%r0

%g7

%g6

%g5

%g4

%g3

%g2

%g1

%g0

IN

LOCAL

OUT IN

LOCAL

OUT

Jingke Li (Portland State University) CS322 SPARC Architecture 7 / 20

Benefits and Issues of Register Windows

The use of register windows provides the following benefits:

• It enables (up to 8) arguments to be passed from a caller to a callee
in registers automatically.

• It also enables the processor designer to independently decide how
many physical registers to implement.

The design works great as long as the physically registers do not run out.

However, studies show that long chains of procedure calls are not that
uncommon in modern (especially OOP) programs. Furthermore, many
procedures have none or few parameters. These findings question the
wisdom of dedicating 8 registers for every procedural call.

Improvements:

• Allowing the register windows to be of variable size (e.g. AMD 29k).

• Using the more powerful register renaming technique (e.g. IA-64).

Jingke Li (Portland State University) CS322 SPARC Architecture 8 / 20

SPARC Stack Organization

The runtime stack is for storing
procedure-call related dynamic data.
There are two key pointers:
%fp — frame pointer
%sp — stack pointer

Stack Frame Layout:

(The stack grows downward.)

• The 16 words just above the
frame pointer are reserved for
potential register-window
dumping.

• The slot at [%fp+64] is reserved
for pointer to aggregate return
value.

%fp-4 ->
%fp ->

struct ptr

struct ptr

%fp+64 ->

access link

%fp+68 -> access link
Current
 Frame

(old %sp)

%sp+n

%fp-n

%fp+n

%sp ->

arguments
to save
space

 24 bytes)

(minimum

 Unit
Allocation

 Frame
Future
Partial

local
variables

(minimum

window
register
to save
64 bytes

window
register
to save
64 bytes

arguments
to save
space

 24 bytes)

Jingke Li (Portland State University) CS322 SPARC Architecture 9 / 20

SPARC Stack Organization (cont.)

• Local variables are stored below the frame pointer and are accessed
with negative offsets; the first one starts at [%fp-4].

• The parameters start at [%fp+68]. The first six words are always
reserved for the first six parameters (even if there is no parameters at
all). If there are more than six parameters, the extra ones continue
from [%fp+92].

• There is no need to set up control links. The old stack pointer %sp
(i.e. %o6) automatically becomes the new frame pointer %fp (i.e.
%i6) when control is transferred from caller to callee.

• Minimum frame allocation size:

parameters: ≥ 24
saving register window: 64
struct pointer: 4
local variable: ≥ 0
total: ≥ 92 (rounds up to 96)

Jingke Li (Portland State University) CS322 SPARC Architecture 10 / 20

Pipelining

On modern processors, the execution of an instruction is decomposed into
a sequence of steps, for example:

• Instruction Fetch — Fetch and decode the instruction, obtain any
operands from the register file.

• Execute — Execute an arithmetic instruction; compute a memory
address for a branch, load, or store instruction.

• Memory Access — Access memory for a load or store instruction;
fetch the branch target instruction.

• Store Results — Write the results back to the register file.

While the steps from the same sequence must be executed in order, the
sequences from different instructions can often be executed in a pipelined

form.

Jingke Li (Portland State University) CS322 SPARC Architecture 11 / 20

Pipelining (cont.)

• Non-Pipelined Execution:

--

Fetch Execute Memory Store Fetch Execute Memory Store

--

1 2 3 4 5 6 7 8

Each of the four hardware components sits idle 75% of the time.

• Pipelined Execution:

--

Fetch Execute Memory Store

Fetch Execute Memory Store

Fetch Execute Memory Store

Fetch Execute Memory Store

Fetch Execute Memory Store

--

1 2 3 4 5 6 7 8

Except for the leading in and leading out sections, the hardware
components are fully utilized.

Jingke Li (Portland State University) CS322 SPARC Architecture 12 / 20

Issues with Load Instructions

The use of the loaded data must wait for the memory access of the load
instruction:

load [%o0], %o1

add %o1, %o2, %o2

--

Fetch Execute Memory Store

-- -- -- --

Fetch Execute Memory Store

--

Jingke Li (Portland State University) CS322 SPARC Architecture 13 / 20

Issues with Control-Transfer Instructions
The fetch of the target instruction must wait for the execution of the
branch instruction:

bl loop

or

call foo

--

Fetch Execute <-- fetch target addr

-- -- -- -- <-- delay slot

Fetch Execute Memory Store

--

The skipped cycle is called the branch delay slot, and it corresponds to an
explict instruction in the SPARC architecture — the next instruction after
the branch instruction.

call foo

nop <-- delay slot instruction

Jingke Li (Portland State University) CS322 SPARC Architecture 14 / 20

Delay Slot Instructions
SPARC has two program counters, PC and nPC, which hold next-inst and
next-next-inst pointers, respectively. The general instruction execution
model is:

Fetch an instruction with the address in PC, execute it;
copy nPC into PC; and update nPC to the next address.

For a control-transfer instruction, the instruction in the delay slot (which is
pointed to by nPC) will be executed before the actual control transfer:

order

call foo 2

mov 3, %0 1

foo:

save %sp, -112, %sp 3

...

Jingke Li (Portland State University) CS322 SPARC Architecture 15 / 20

Optimization Using Delay Slots

Source Code: if (a > b) c = a; else c = b;

• Unoptimized Target Code — 5 cycles

cmp a, b

mov b, c

ble L1

nop

mov a, c

L1:

• Optimized Target Code — 4 cycles

cmp a, b

ble L1

mov b, c

mov a, c

L1:

Jingke Li (Portland State University) CS322 SPARC Architecture 16 / 20

The Annul Bit

What if the branch with an instruction in its delay slot does not take?

Use the annul bit to control the execution of the delay-slot instruction:

bg,a L1

mov a,c

the annul bit “,a” causes the mov instruction not to be executed if the
branch is not taken, but still executed if the branch is taken.

Exception — ba,a L does not execute its delay-slot instruction.

Common Wisdom:

• Don’t use annul bit unless absolutely necessary

• Place nop after control-transfer instructions if not sure what to put

Jingke Li (Portland State University) CS322 SPARC Architecture 17 / 20

SPARC Instructions

• Arithmetic:

add, sub, smul, sdiv, ...

• Logical:

and, andn, or, orn, xor, xorn, ...

• Shifts:

sll, srl, sra, ...

• Loads and Stores:

ldsb, ldsh, ldub, lduh, ld, ldd, stb, sth, st, std, ...

• Branch:

ba, bn, bne, be, bg, ble, bge, bl, bgu, bleu, ...

• Controls:

save, restore, call, jmpl, ...

• Miscellaneous:

sethi, ...

Jingke Li (Portland State University) CS322 SPARC Architecture 18 / 20

SPARC Instruction Examples

• Simple arithmetics:

add %i1, 1, %o0

sll %o0, 2, %o0

srl %i0, 31, %g2

• Procedure call interface:

Caller:

jmpl %o0, %o7

or

call %o0

Write %pc to %o7 and

perform a delayed jump

to the address in %o0.

Callee:

save %sp, -112, %sp

...

jmpl %i7+8, %g0

or

save %sp, -112, %sp

...

ret

• An idiom for loading a 32-bit value to a register:

sethi %hi(0x123cf456), %o0

or %o0, %lo(0x123cf456), %o0

Jingke Li (Portland State University) CS322 SPARC Architecture 19 / 20

Assembly Code Example

int foo(int a) {

return a+1;

}

int main() {

int b = foo(3);

printf("%d\n",b);

return 0;

}

.section ".text"

foo:

retl

add %o0, 1, %o0

main:

save %sp, -112, %sp

call foo, 0

mov 3, %o0

mov %o0, %o1

sethi %hi(.LLC0), %o0

call printf, 0

or %o0, %lo(.LLC0), %o0

ret

restore %g0, 0, %o0

.section ".rodata"

.LLC0:

.asciz "%d\n"

Jingke Li (Portland State University) CS322 SPARC Architecture 20 / 20

