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Abstract

Many applied problems require a covariance matrix estimator that is not only invertible, but

also well-conditioned (that is, inverting it does not amplify estimation error). For large-

dimensional covariance matrices, the usual estimator—the sample covariance matrix—is

typically not well-conditioned and may not even be invertible. This paper introduces an

estimator that is both well-conditioned and more accurate than the sample covariance matrix

asymptotically. This estimator is distribution-free and has a simple explicit formula that is easy

to compute and interpret. It is the asymptotically optimal convex linear combination of the

sample covariance matrix with the identity matrix. Optimality is meant with respect to a

quadratic loss function, asymptotically as the number of observations and the number of

variables go to infinity together. Extensive Monte Carlo confirm that the asymptotic results

tend to hold well in finite sample.
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1. Introduction

Many applied problems require an estimate of a covariance matrix and/or of its
inverse, where the matrix dimension is large compared to the sample size. Examples
include selecting a mean–variance efficient portfolio from a large universe of stocks
(see Markowitz [16]), running generalized least squares (GLS) regressions on large
cross-sections (see e.g., Kandel and Stambaugh [12]), and choosing an optimal
weighting matrix in the general method of moments (GMM; see Hansen [10]) where
the number of moment restrictions is large. In such situations, the usual estimator—
the sample covariance matrix—is known to perform poorly. When the matrix
dimension p is larger than the number n of observations available, the sample
covariance matrix is not even invertible. When the ratio p=n is less than one but not
negligible, the sample covariance matrix is invertible but numerically ill-conditioned,
which means that inverting it amplifies estimation error dramatically. For large p; it
is difficult to find enough observations to make p=n negligible, and therefore it is
important to develop a well-conditioned estimator for large-dimensional covariance
matrices. If we want a well-conditioned estimator at any cost, we can always impose
some ad hoc structure on the covariance matrix to force it to be well-conditioned,
such as diagonality or a factor model. But, in the absence of prior information about
the true structure of the matrix, this ad hoc structure will be in general misspecified,
and the resulting estimator may be so biased that it bears little resemblance to the
true covariance matrix. To the best of our knowledge, no existing estimator is both
well-conditioned and more accurate than the sample covariance matrix. The
contribution of this paper is to propose an estimator that possesses both these
properties asymptotically. One way to get a well-conditioned structured estimator is
to impose the condition that all variances are the same and all covariances are zero.
The estimator we recommend is a weighted average of this structured estimator and
the sample covariance matrix. Our estimator inherits the good conditioning
properties of the structured estimator and, by choosing the weight optimally
according to a quadratic loss function, we ensure that our weighted average of the
sample covariance matrix and the structured estimator is more accurate than either
of them. The only difficulty is that the true optimal weight depends on the true
covariance matrix, which is unobservable. We solve this difficulty by finding a
consistent estimator of the optimal weight, and show that replacing the true optimal
weight with a consistent estimator makes no difference asymptotically. Standard
asymptotics assume that the number of variables p is finite and fixed, while the
number of observations n goes to infinity. Under standard asymptotics, the sample
covariance matrix is well-conditioned (in the limit), and has some appealing
optimality properties (e.g., it is the maximum likelihood estimator for normally
distributed data). However, this is a bad approximation of many real-world
situations where the number of variables p is of the same order of magnitude as the
number of observations n; and possibly larger. We use a different framework, called
general asymptotics, where we allow the number of variables p to go to infinity too.
The only constraint is that the ratio p=n must remain bounded. We see standard
asymptotics as a special case where it is optimal to put (asymptotically) all the weight
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on the sample covariance matrix and none on the structured estimator. In the general
case, however, our estimator is asymptotically different from the sample covariance
matrix, substantially more accurate, and of course well-conditioned. Note that the
framework of general asymptotics is related to the one of Kolmogorov asymptotics,
where it is assumed that the ratio p=n tends to a positive, finite constant.
Kolmogorov asymptotics is used by, among others, Aivazyan et al. [1] and Girko [5–
7]. High-dimensional problems, where the number of variables p is large compared to
the sample size n; are also studied by Läuter [13] and Läuter et al. [14], but from the
point of view of testing and inference, not estimation like in the present paper.
Extensive Monte-Carlo simulations indicate that: (i) the new estimator is more
accurate than the sample covariance matrix, even for very small numbers of
observations and variables, and usually by a lot; (ii) it is essentially as accurate or
substantially more accurate than some estimators proposed in finite sample decision
theory, as soon as there are at least ten variables and observations; (iii) it is better-
conditioned than the true covariance matrix; and (iv) general asymptotics are a good
approximation of finite sample behavior when there are at least 20 observations and
variables. The paper is organized as follows. The next section characterizes in finite
sample the linear combination of the identity matrix and the sample covariance
matrix which minimizes quadratic risk. Section 3 develops a linear shrinkage
estimator with asymptotically uniformly minimum quadratic risk in its class (as the
number of observations and the number of variables go to infinity together). In
Section 4, Monte-Carlo simulations indicate that this estimator behaves well in finite
samples, and Section 5 concludes. Appendix A contains the proofs of the technical
results of Section 3.

2. Analysis in finite sample

The easiest way to explain what we do is to first analyze in detail the finite sample
case. Let X denote a p � n matrix of n independent and identically distributed (iid)
observations on a system of p random variables with mean zero and covariance
matrix S: Following the lead of Muirhead and Leung [19], we consider the Frobenius
norm: jjAjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðAAtÞ=p

p
: (Dividing by the dimension p is not standard, but it does

not matter in this section because p remains finite. The advantages of this convention
are that the norm of the identity matrix is simply one, and that it will be consistent
with Definition 1 below.) Our goal is to find the linear combination S� ¼ r1I þ r2S
of the identity matrix I and the sample covariance matrix S ¼ XX t=n whose

expected quadratic loss E½jjS� 	 Sjj2
 is minimum. Haff [8] studied this class of linear
shrinkage estimators, but did not get any optimality results. The optimality result
that we obtain in finite sample will come at a price: S� will not be a bona fide

estimator, because it will require hindsight knowledge of four scalar functions of the
true (and unobservable) covariance matrix S: This would seem like a high price to
pay but, interestingly, it is not: In the next section, we are able to develop a bona fide

estimator S� with the same properties as S� asymptotically as the number of

ARTICLE IN PRESS
O. Ledoit, M. Wolf / Journal of Multivariate Analysis 88 (2004) 365–411 367



observations and the number of variables go to infinity together. Furthermore,
extensive Monte-Carlo simulations will indicate that 20 observations and variables
are enough for the asymptotic approximations to typically hold well in finite sample.
Even the formulas for S� and S� will look the same and will have the same
interpretations. This is why we study the properties of S� in finite sample ‘‘as if’’ it
was a bona fide estimator.

2.1. Optimal linear shrinkage

The squared Frobenius norm jj � jj2 is a quadratic form whose associated inner
product is: /A1;A2S ¼ trðA1At

2Þ=p: Four scalars play a central role in the analysis:

m ¼ /S; IS; a2 ¼ jjS	 mI jj2; b2 ¼ E½jjS 	 Sjj2
; and d2 ¼ E½jjS 	 mI jj2
: We do not
need to assume that the random variables in X follow a specific distribution, but we

do need to assume that they have finite fourth moments, so that b2 and d2 are finite.
The following relationship holds.

Lemma 2.1. a2 þ b2 ¼ d2:

Proof.

E½jjS 	 mI jj2
 ¼ E½jjS 	 Sþ S	 mI jj2
 ð1Þ

¼ E½jjS 	 Sjj2
 þ E½jjS	 mI jj2
 þ 2E½/S 	 S;S	 mIS
 ð2Þ

¼ E½jjS 	 Sjj2
 þ jjS	 mI jj2 þ 2/E½S 	 S
;S	 mIS: ð3Þ

Notice that E½S
 ¼ S; therefore, the third term on the right-hand side of Eq. (3) is
equal to zero. This completes the proof of Theorem 2.1. &

The optimal linear combination S� ¼ r1I þ r2S of the identity matrix I and the
sample covariance matrix S is the standard solution to a simple quadratic
programming problem under linear equality constraint.

Theorem 2.1. Consider the optimization problem:

min
r1;r2

E½jjS� 	 Sjj2


s:t:S� ¼ r1I þ r2S; ð4Þ

where the coefficients r1 and r2 are nonrandom. Its solution verifies:

S� ¼ b2

d2
mI þ a2

d2
S; ð5Þ

E½jjS� 	 Sjj2
 ¼ a2b2

d2
: ð6Þ
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Proof. By a change of variables, problem (4) can be rewritten as:

min
r;n

E½jjS� 	 Sjj2


s:t:S� ¼ rnI þ ð1	 rÞS: ð7Þ

With a little algebra, and using E½S
 ¼ S as in the proof of Lemma 2.1, we can
rewrite the objective as

E½jjS� 	 Sjj2
 ¼ r2jjS	 nI jj2 þ ð1	 rÞ2E½jjS 	 Sjj2
: ð8Þ

Therefore, the optimal value of n can be obtained as the solution to a reduced
problem that does not depend on r: minn jjS	 nI jj2: Remember that the norm of the
identity is one by convention, so the objective of this problem can be rewritten as

jjS	 nI jj2 ¼ jjSjj2 	 2n/S; ISþ n2: The first-order condition is: 	2/S; ISþ 2n ¼
0: The solution is: n ¼ /S; IS ¼ m: Replacing n by its optimal value m in Eq. (8),
we can rewrite the objective of the original problem as E½jjS� 	 Sjj2
 ¼ r2a2þ
ð1	 rÞ2b2: The first-order condition is: 2ra2 	 2ð1	 rÞb2 ¼ 0: The solution is:
r ¼ b2=ða2 þ b2Þ ¼ b2=d2: Note that 1	 r ¼ a2=d2: At the optimum, the objective is
equal to: ðb2=d2Þ2a2 þ ða2=d2Þ2b2 ¼ a2b2=d2: This completes the proof. &

Note that mI can be interpreted as a shrinkage target and the weight b2=d2 placed
on mI as a shrinkage intensity. The percentage relative improvement in average loss
(PRIAL) over the sample covariance matrix is equal to

E½jjS 	 Sjj2
 	 E½jjS� 	 Sjj2

E½jjS 	 Sjj2


¼ b2

d2
; ð9Þ

same as the shrinkage intensity. Therefore, everything is controlled by the ratio

b2=d2; which is a properly normalized measure of the error of the sample covariance
matrix S: Intuitively, if S is relatively accurate, then you should not shrink it too
much, and shrinking it will not help you much either; if S is relatively inaccurate,
then you should shrink it a lot, and you also stand to gain a lot from shrinking.

2.2. Interpretations

The mathematics underlying Theorem 2.1 are so rich that we are able to provide
four complementary interpretations of it. One is geometric and the others echo some
of the most important ideas in finite sample multivariate statistics. First, we can see
Theorem 2.1 as a projection theorem in Hilbert space. The appropriate Hilbert space

is the space of p-dimensional symmetric random matrices A such that E½jjAjj2
oN:

The associated norm is, of course,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½jj � jj2


q
; and the inner product of two random

matrices A1 and A2 is E½/A1;A2S
:With this structure, Lemma 2.1 is just a rewriting
of the Pythagorean Theorem. Furthermore, formula (5) can be justified as follows: In
order to project the true covariance matrix S onto the space spanned by the identity
matrix I and the sample covariance matrix S; we first project it onto the line spanned
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by the identity, which yields the shrinkage target mI ; then we project S onto the line
joining the shrinkage target mI to the sample covariance matrix S: Whether the
projection S� ends up closer to one end of the line ðmIÞ or to the other ðSÞ depends
on which one of them S was closer to. Fig. 1 provides a geometrical illustration.
The second way to interpret Theorem 2.1 is as a trade-off between bias and

variance. We seek to minimize mean squared error, which can be decomposed into
variance and squared bias:

E½jjS� 	 Sjj2
 ¼ E½jjS� 	 E½S�
jj2
 þ jjE½S�
 	 Sjj2: ð10Þ

The mean squared error of the shrinkage target mI is all bias and no variance, while
for the sample covariance matrix S it is exactly the opposite: all variance and no bias.
S� represents the optimal trade-off between error due to bias and error due to
variance. See Fig. 2 for an illustration. The idea of a trade-off between bias and
variance was already central to the original James and Stein [11] shrinkage
technique.
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Fig. 1. Theorem 2.1 interpreted as a projection in Hilbert space.

Fig. 2. Theorem 2.1 interpreted as a trade-off between bias and variance: Shrinkage intensity zero

corresponds to the sample covariance matrix S: Shrinkage intensity one corresponds to the shrinkage

target mI : Optimal shrinkage intensity (represented by �) corresponds to the minimum expected loss

combination S�:
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The third interpretation is Bayesian. S� can be seen as the combination of two
signals: prior information and sample information. Prior information states that the
true covariance matrix S lies on the sphere centered around the shrinkage target mI

with radius a: Sample information states that S lies on another sphere, centered
around the sample covariance matrix S with radius b: Bringing together prior and
sample information, S must lie on the intersection of the two spheres, which is a
circle. At the center of this circle stands S�: The relative importance given to prior vs.
sample information in determining S� depends on which one is more accurate.
Strictly speaking, a full Bayesian approach would specify not only the support of the
distribution of S; but also the distribution itself. We could assume that S is
uniformly distributed on the sphere, but it might be difficult to justify. Thus, S�

should not be thought of as the expectation of the posterior distribution, as is
traditional, but rather as the center of mass of its support. See Fig. 3 for an
illustration. The idea of drawing inspiration from the Bayesian perspective to obtain
an improved estimator of the covariance matrix was used by Haff [8].
The fourth and last interpretation involves the cross-sectional dispersion of

covariance matrix eigenvalues. Let l1;y; lp denote the eigenvalues of the true

covariance matrix S; and l1;y; lp those of the sample covariance matrix S: We can

exploit the Frobenius norm’s elegant relationship to eigenvalues. Note that

m ¼ 1
p

Xp

i¼1
li ¼ E

1

p

Xp

i¼1
li

" #
ð11Þ
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Fig. 3. Bayesian interpretation: The left sphere has center mI and radius a and represents prior
information. The right sphere has center S and radius b: The distance between sphere centers is d and
represents sample information. If all we knew was that the true covariance matrix S lies on the left sphere,
our best guess would be its center: the shrinkage target mI : If all we knew was that the true covariance

matrix S lies on the right sphere, our best guess would be its center: the sample covariance matrix S:

Putting together both pieces of information, the true covariance matrix S must lie on the circle where the
two spheres intersect; therefore, our best guess is its center: the optimal linear shrinkage S�:
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represents the grand mean of both true and sample eigenvalues. Then Lemma 2.1
can be rewritten as

1

p
E
Xp

i¼1
ðli 	 mÞ2

" #
¼ 1

p

Xp

i¼1
ðli 	 mÞ2 þ E½jjS 	 Sjj2
: ð12Þ

In words, sample eigenvalues are more dispersed around their grand mean than true
ones, and the excess dispersion is equal to the error of the sample covariance matrix.
Excess dispersion implies that the largest sample eigenvalues are biased upwards,
and the smallest ones downwards. See Fig. 4 for an illustration. Therefore, we can
improve upon the sample covariance matrix by shrinking its eigenvalues towards
their grand mean, as in

8i ¼ 1;y; p l�i ¼ b2

d2
mþ a2

d2
li: ð13Þ

ARTICLE IN PRESS

Fig. 4. Sample vs. true eigenvalues: The solid line represents the distribution of the eigenvalues of the

sample covariance matrix. Eigenvalues are sorted from largest to smallest, then plotted against their rank.

In this case, the true covariance matrix is the identity, that is, the true eigenvalues are all equal to one. The

distribution of true eigenvalues is plotted as a dashed horizontal line at one. Distributions are obtained in

the limit as the number of observations n and the number of variables p both go to infinity with the ratio

p=n converging to a finite positive limit. The four plots correspond to different values of this limit.
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Note that l�1;y; l�p defined by Eq. (13) are precisely the eigenvalues of S�:

Surprisingly, their dispersion E½
Pp

i¼1ðl
�
i 	 mÞ2
=p ¼ a2=d is even below the dispersion

of true eigenvalues. For the interested reader, the next subsection explains why.
The idea that shrinking sample eigenvalues towards their grand mean yields an
improved estimator of the covariance matrix was highlighted in Muirhead’s [18]
review paper.

2.3. Further results on sample eigenvalues

The following paragraphs contain additional insights about the eigenvalues of the
sample covariance matrix, but the reader can skip them and go directly to Section 3
if he or she so wishes. We discuss: (1) why the eigenvalues of the sample covariance
matrix are more dispersed than those of the true covariance matrix (Eq. (12));
(2) how important this effect is in practice; and (3) why we should use instead an
estimator whose eigenvalues are less dispersed than those of the true covariance
matrix (Eq. (13)). The explanation relies on a result from matrix algebra.

Theorem 2.2. The eigenvalues are the most dispersed diagonal elements that can be

obtained by rotation.

Proof. Let R denote a p-dimensional symmetric matrix and V a p-dimensional
rotation matrix: VV 0 ¼ V 0V ¼ I : First, note that ð1=pÞtrðV 0RVÞ ¼ ð1=pÞtrðRÞ:
The average of the diagonal elements is invariant by rotation. Call it r: Let vi

denote the ith column of V : The dispersion of the diagonal elements of V 0RV

is ð1=pÞ
Pp

i¼1ðvi
0Rvi 	 rÞ2: Note that

Pp
i¼1ðvi

0Rvi 	 rÞ2 þ
Pp

i¼1
Pp

j¼1
jai

ðvi
0RvjÞ2 ¼

tr½ðV 0RV 	 rIÞ2
 ¼ tr½ðR 	 rIÞ2
 is invariant by rotation. Therefore, the rotation V

maximizes the dispersion of the diagonal elements of V 0RV if and only if it

minimizes
Pp

i¼1
Pp

j¼1
jai

ðvi
0RvjÞ2: This is achieved by setting vi

0Rvj to zero for all iaj:

In this case, V 0RV is a diagonal matrix, call it D: V 0RV ¼ D is equivalent to R ¼
VDV 0: Since V is a rotation and D is diagonal, the columns of V must contain the
eigenvectors of R and the diagonal of D its eigenvalues. Therefore, the dispersion of
the diagonal elements of V 0RV is maximized when these diagonal elements are equal
to the eigenvalues of R: This completes the proof of Theorem 2.2. &

Decompose the true covariance matrix into eigenvalues and eigenvectors: S ¼
G0LG; where L is a diagonal matrix, and G is a rotation matrix. The diagonal
elements of L are the eigenvalues l1;y; lp; and the columns of G are the

eigenvectors g1;y; gp: Similarly, decompose the sample covariance matrix into

eigenvalues and eigenvectors: S ¼ G0LG; where L is a diagonal matrix, and G is a
rotation matrix. The diagonal elements of L are the eigenvalues l1;y; lp; and the

columns of G are the eigenvectors g1;y; gp: Since S is unbiased and G is

nonstochastic, G0SG is an unbiased estimator of L ¼ G0SG: The diagonal elements of
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G0SG are approximately as dispersed as the ones of G0SG: For convenience, let us
speak as if they were exactly as dispersed. By contrast, L ¼ G0SG is not at all an
unbiased estimator of G0SG: This is because the errors of G and S interact. Theorem
2.2 shows us the effect of this interaction: the diagonal elements of G0SG are more
dispersed than those of G0SG (and hence than those of G0SG). This is why sample
eigenvalues are more dispersed than true ones. See Table 1 for a summary.
We illustrate how important this effect is in a particular case: when the true

covariance matrix is the identity matrix. Let us sort the eigenvalues of the sample
covariance matrix from largest to smallest, and plot them against their rank. The
shape of the plot depends on the ratio p=n; but does not depend on the particular
realization of the sample covariance matrix, at least approximately when p and n are
very large. Fig. 4 shows the distribution of sample eigenvalues for various values of
the ratio p=n: This figure is based on the asymptotic formula proven by Marčenko
and Pastur [17]. We notice that the largest sample eigenvalues are severely biased
upwards, and the smallest ones downwards. The bias increases in p=n: This
phenomenon is very general and is not limited to the identity case. It is similar to the
effect observed by Brown [3] in Monte-Carlo simulations. Finally, let us remark that
the sample eigenvalues li ¼ gi

0Sgi should not be compared to the true eigenvalues
li ¼ gi

0Sgi; but to gi
0Sgi: We should compare estimated vs. true variance associated

with vector gi: By Theorem 2.2 again, the diagonal elements of G0SG are even less
dispersed than those of G0SG: Not only are sample eigenvalues more dispersed than
true ones, but they should be less dispersed. This effect is attributable to error in the
sample eigenvectors. Intuitively: Statisticians should shy away from taking a strong

stance on extremely small and extremely large eigenvalues, because they know that

they have the wrong eigenvectors. The sample covariance matrix is guilty of taking an
unjustifiably strong stance. The optimal linear shrinkage S� corrects for that.

3. Analysis under general asymptotics

In the previous section, we have shown that S� has an appealing optimality
property and fits well in the existing literature. It has only one drawback: it is not a
bona fide estimator, since it requires hindsight knowledge of four scalar functions of

the true (and unobservable) covariance matrix S: m; a2; b2 and d2: We now address
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Table 1

Dispersion of diagonal elements

G0SG ! G0SG

ww
G0SG g G0SG

This table compares the dispersion of the diagonal elements of certain products of matrices. The symbols

!; E; andg pertain to diagonal elements, and mean less dispersed than, approximately as dispersed as,

and more dispersed than, respectively.
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this problem. The idea is that, asymptotically, there exists consistent estimators for

m; a2; b2 and d2; hence for S� too. At this point, we need to choose an appropriate
asymptotic framework. Standard asymptotics consider p fixed while n tends to
infinity, implying that the optimal shrinkage intensity vanishes in the limit. This
would be reasonable for situations where p is very small in comparison to n:
However, in the problems of interest to us p tends to be of the same order as n and
can even be larger. Hence, we consider it more appropriate to use a framework that
reflects this condition. This is achieved by allowing the number of variables p to go to
infinity at the same speed as the number of observations n: It is called general

asymptotics. In this framework, the optimal shrinkage intensity generally does not
vanish asymptotically but rather it tends to a limiting constant that we will be able to
estimate consistently. The idea then is to use the estimated shrinkage intensity in
order to arrive at a bona fide estimator. To the best of our knowledge, the framework
of general asymptotics has not been used before to improve over the sample
covariance matrix, but only to characterize the distribution of its eigenvalues, as in
Silverstein [20]. We are also aware of the work of Girko [5–7] who employed the
framework of Kolmogorov asymptotics, where the ratio p=n tends to a positive, finite
constant. Girko proves consistency and asymptotic normality of so-called G-
estimators of certain functions of the covariance matrix. In particular, he
demonstrates the element-wise consistency of a G3-estimator of the inverse of the
covariance matrix.

3.1. General asymptotics

Let n ¼ 1; 2;y index a sequence of statistical models. For every n; Xn is a pn � n

matrix of n iid observations on a system of pn random variables with mean zero and
covariance matrix Sn: The number of variables pn can change and even go to infinity
with the number of observations n; but not too fast.

Assumption 1. There exists a constant K1 independent of n such that pn=npK1:

Assumption 1 is very weak. It does not require pn to change and go to infinity;
therefore, standard asymptotics are included as a particular case. It is not even
necessary for the ratio pn=n to converge to any limit. Decompose the covariance

matrix into eigenvalues and eigenvectors: Sn ¼ GnLnGt
n; where Ln is a diagonal

matrix, and Gn a rotation matrix. The diagonal elements of Ln are the eigenvalues

ln
1;y; ln

pn
; and the columns of Gn are the eigenvectors gn

1;y; gn
pn
: Yn ¼ Gt

nXn

is a pn � n matrix of n iid observations on a system of pn uncorrelated random
variables that spans the same space as the original system. We impose restrictions on

the higher moments of Yn: Let ðyn
11;y; yn

pn1
Þt denote the first column of the

matrix Yn:

Assumption 2. There exists a constant K2 independent of n such that
1
pn

Ppn

i¼1 E½ðyn
i1Þ
8
pK2:
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Assumption 3.

lim
n-N

p2n
n2

�
P

ði; j;k;lÞAQn
ðCov½yn

i1y
n
j1; yn

k1y
n
l1
Þ

2

Cardinal of Qn

¼ 0;

where Qn denotes the set of all the quadruples that are made of four distinct integers
between 1 and pn:

Assumption 2 states that the eighth moment is bounded (on average). Assumption
3 states that products of uncorrelated random variables are themselves uncorrelated
(on average, in the limit). In the case where general asymptotics degenerate into
standard asymptotics ðpn=n-0Þ; Assumption 3 is trivially verified as a consequence
of Assumption 2. Assumption 3 is verified when random variables are normally or
even elliptically distributed, but it is much weaker than that. Assumptions 1–3 are
implicit throughout the paper. We suggest to use a matrix norm based on the
Frobenius norm. The idea is that a norm of the pn-dimensional matrix A can be

specified as jjAjj2n ¼ f ðpnÞ trðAAtÞ; where f ðpnÞ is a scalar function of the dimension.
This defines a quadratic form on the linear space of pn-dimensional symmetric
matrices whose associated inner product is /A1;A2Sn ¼ f ðpnÞtrðA1At

2Þ: The
behavior of jj � jjn across dimensions is controlled by the function f ð�Þ: The norm
jj � jjn is used mainly to define a notion of consistency. A given estimator will be
called consistent if the norm of its difference with the true covariance matrix goes to
zero (in quadratic mean) as n goes to infinity. If pn remains bounded, then all positive
functions f ð�Þ generate equivalent notions of consistency. But this particular case
similar to standard asymptotics is not very representative. If pn (or a subsequence)
goes to infinity, then the choice of f ð�Þ becomes much more important. If f ðpnÞ is too
large (small) as pn goes to infinity, then it will define too strong (weak) a notion of
consistency. f ð�Þ must define the notion of consistency that is ‘‘just right’’ under
general asymptotics. Our solution is to define a relative norm. The norm of a pn-
dimensional matrix is divided by the norm of a benchmark matrix of the same
dimension pn: The benchmark must be chosen carefully. For lack of any other
attractive candidate, we take the identity matrix as benchmark. Therefore, by
convention, the identity matrix has norm one in every dimension. This determines
the function f ð�Þ uniquely as f ðpnÞ ¼ 1=pn:

Definition 1. Our norm of the pn-dimensional matrix A is: jjAjj2n ¼ trðAAtÞ=pn:

Intuitively, it seems that the norm of the identity matrix should remain bounded
away from zero and from infinity as its dimension goes to infinity. All choices of f ð�Þ
satisfying this property would define equivalent notions of consistency. Therefore,
our particular norm is equivalent to any norm that would make sense under general
asymptotics. An example might help familiarize the reader with Definition 1. Let An

be the pn � pn matrix with one in its top left entry and zeros everywhere else. Let Zn

be the pn � pn matrix with zeros everywhere (i.e. the null matrix). An and Zn differ in
a way that is independent of pn: the top left entry is not the same. Yet their squared
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distance jjAn 	 Znjj2 ¼ 1=pn depends on pn: This apparent paradox has an intuitive
resolution. An and Zn disagree on the first dimension, but they agree on the pn 	 1
others. The importance of their disagreement is relative to the extent of their
agreement. If pn ¼ 1; then An and Zn have nothing in common, and their distance is
1. If pn-N; then An and Zn have almost everything in common, and their distance
goes to 0. Thus, disagreeing on one entry can either be important (if this entry is the
only one) or negligible (if this entry is just one among a large number of others).

3.2. The behavior of the sample covariance matrix

Define the sample covariance matrix Sn ¼ XnX t
n=n: We follow the notation of

Section 2, except that we add the subscript n to signal that all results hold asymp-

totically. Thus, we have: mn ¼ /Sn; InSn; a2n ¼ jjSn 	 mnInjj2n; b2n ¼ E½jjSn 	 Snjj2n
;
and d2n ¼ E½jjSn 	 mnInjj2n
: These four scalars are well behaved asymptotically.

Lemma 3.1. mn; a
2
n; b

2
n and d2n remain bounded as n-N:

They can go to zero in special cases, but in general they do not, in spite of the
division by pn in the definition of the norm. The proofs of all the technical results of
Section 3 are in Appendix A. The most basic question is whether the sample
covariance matrix is consistent under general asymptotics. Specifically, we ask
whether Sn converges in quadratic mean to the true covariance matrix, that is,

whether b2n vanishes. In general, the answer is no, as shown below. The results stated
in Theorem 3.1 and Lemmata 3.2 and 3.3 are related to special cases of a general
result proven by Yin [25]. But we work under weaker assumptions than he does.
Also, his goal is to find the distribution of the eigenvalues of the sample covariance
matrix, while ours is to find an improved estimator of the covariance matrix.

Theorem 3.1. Define y2n ¼ Var½ 1
pn

Ppn

i¼1ðyn
i1Þ
2
: y2n is bounded as n-N; and we have:

limn-N E½jjSn 	 Snjj2n
 	
pn

n
ðm2n þ y2nÞ ¼ 0:

Theorem 3.1 shows that the expected loss of the sample covariance matrix

E½jjSn 	 Snjj2n
 is bounded, but it is at least of the order of
pn

n
m2n; which does not

usually vanish. Therefore, the sample covariance matrix is not consistent under
general asymptotics, except in special cases. The first special case is when pn=n-0:
For example, under standard asymptotics, pn is fixed, and it is well-known that the
sample covariance matrix is consistent. Theorem 3.1 shows that consistency extends
to cases where pn is not fixed, not even necessarily bounded, as long as it is of order

oðnÞ: The second special case is when m2n-0 and y2n-0: m
2
n-0 implies that most of

the pn random variables have vanishing variances, i.e. they are asymptotically
degenerate. The number of random variables escaping degeneracy must be negligible
with respect to n: This is like the previous case, except that the oðnÞ nondegenerate
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random variables can now be augmented with OðnÞ degenerate ones. Overall, a loose
condition for the consistency of the sample covariance matrix under general
asymptotics is that the number of nondegenerate random variables be negligible with
respect to the number of observations. If the sample covariance matrix is not
consistent under general asymptotics, it is because of its off-diagonal elements.
Granted, the error on each one of them vanishes, but their number grows too fast.
The accumulation of a large number of small errors off the diagonal prevents the
sample covariance matrix from being consistent. By contrast, the contribution of the
errors on the diagonal is negligible. This is apparent from the proof of Theorem 3.1.
After all, it should in general not be possible to consistently estimate pnðpn þ 1Þ=2
parameters from a data set of n pn random realizations if these two numbers are of
the same order of magnitude. For this reason, we believe that there does not exist
any consistent estimator of the covariance matrix under general asymptotics.
Theorem 3.1 also shows what factors determine the error of Sn: The first factor is the
ratio pn=n: It measures deviation from standard asymptotics. People often figure out
whether they can use asymptotics by checking whether they have enough
observations, but in this case it would be unwise: it is the ratio of observations to
variables that needs to be big. Two hundred observations might seem like a lot, but it
is not nearly enough if there are 100 variables: it would be about as bad as using two
observations to estimate the variance of 1 random variable! The second factor m2n
simply gives the scale of the problem. The third factor y2n measures covariance
between the squared variables over and above what is implied by covariance between

the variables themselves. For example, y2n is zero in the normal case, but usually
positive in the elliptic case. Intuitively, a ‘‘cross-sectional’’ law of large numbers

could make the variance of p	1
n

Ppn

i¼1 y2i1 vanish asymptotically as pn-N if the y2i1’s

were sufficiently uncorrelated with one another. But Assumption 3 is too weak to
ensure that, so in general y2n is not negligible, which might be more realistic
sometimes. This analysis enables us to answer another basic question: When does
shrinkage matter? Remember that b2n ¼ E½jjSn 	 Snjj2n
 denotes the error of the
sample covariance matrix, and that d2n ¼ E½p	1

n

Ppn

i¼1ðln
i 	 mnÞ2
 denotes the cross-

sectional dispersion of the sample eigenvalues ln
1 ;y; ln

pn
around the expectation of

their grand mean mn ¼ E½
Ppn

i¼1 ln
i =pn
: Theorem 2.1 states that shrinkage matters

unless the ratio b2n=d
2
n is negligible, but this answer is rather abstract. Theorem 3.1

enables us to rewrite it in more intuitive terms. Ignoring the presence of y2n; the error
of the sample covariance matrix b2n is asymptotically close to

pn

n
m2n: Therefore,

shrinkage matters unless the ratio of variables to observations pn=n is negligible with

respect to d2n=m
2
n; which is a scale-free measure of cross-sectional dispersion of sample

eigenvalues. Fig. 5 provides a graphical illustration.
This constitutes an easy diagnostic test to reveal whether our shrinkage method

can substantially improve upon the sample covariance matrix. In our opinion, there
are many important practical situations where shrinkage does matter according to
this criterion. Also, it is rather exceptional for gains from shrinkage to be as large as
pn=n; because most of the time ( for example in estimation of the mean) they are of
the much smaller order 1=n:
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3.3. A consistent estimator for S�
n

S�
n is not a bona fide estimator because it depends on the true covariance matrix

Sn; which is unobservable. Fortunately, computing S�
n does not require knowledge

of the whole matrix Sn; but only of four scalar functions of Sn: mn; a
2
n; b

2
n and d2n:

Given the size of the data set ðpn � nÞ; we cannot estimate all of Sn consistently,
but we can estimate the optimal shrinkage target, the optimal shrinkage intensity,
and even S�

n itself consistently. For mn; a consistent estimator is its sample
counterpart.

Lemma 3.2. Define mn ¼ /Sn; InSn: Then E½mn
 ¼ mn for all n; and mn 	 mn converges

to zero in quartic mean ( fourth moment) as n goes to infinity.

It implies that m2n 	 m2n �!q:m: 0 and mn 	 mn �!q:m: 0; where �!q:m: denotes convergence in
quadratic mean as n-N: A consistent estimator for d2n ¼ E½jjSn 	 mnInjj2n
 is also its
sample counterpart.

Lemma 3.3. Define d2n ¼ jjSn 	 mnInjj2n: Then d2n 	 d2n �!q:m: 0:
Now let the pn � 1 vector xn

�k denote the kth column of the observations matrix Xn;

for k ¼ 1;y; n: Sn ¼ n	1XnX t
n can be rewritten as Sn ¼ n	1Pn

k¼1 xn
�kðxn

�kÞ
t: Sn is the

average of the matrices xn
�kðxn

�kÞ
t: Since the matrices xn

�kðxn
�kÞ

t are iid across k; we can

estimate the error b2n ¼ E½jjSn 	 Snjj2n
 of their average by seeing how far each one of
them deviates from the average.
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Fig. 5. Optimal shrinkage intensity and PRIAL as function of eigenvalues dispersion and the ratio of

variables to observations: Note that eigenvalues dispersion is measured by the scale-free ratio d2n=m
2
n:
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Lemma 3.4. Define %b2n ¼ 1
n2

Pn
k¼1 jjxn

�kðxn
�kÞ

t 	 Snjj2n and b2n ¼ minð %b2n; d2n Þ: Then

%b2n 	 b2n �!q:m: 0 and b2n 	 b2n �!q:m: 0:
We introduce the constrained estimator b2n because b2npd2n by Lemma 2.1. In

general, this constraint is rarely binding. But it ensures that the following estimator

of a2n is nonnegative.

Lemma 3.5. Define a2n ¼ d2n 	 b2n: Then a2n 	 a2n �!q:m: 0:
The next step of the strategy is to replace the unobservable scalars in the formula

defining S�
n with consistent estimators, and to show that the asymptotic properties

are unchanged. This yields our bona fide estimator of the covariance matrix:

S�
n ¼ b2n

d2n
mnIn þ

a2n
d2n

Sn: ð14Þ

The next theorem shows that S�
n has the same asymptotic properties as S

�
n: Thus, we

can neglect the error that we introduce when we replace the unobservable parameters

mn; a
2
n; b

2
n and d2n by estimators.

Theorem 3.2. S�
n is a consistent estimator of S�

n; i.e. jjS�
n 	 S�

njjn �!q:m: 0: As a

consequence, S�
n has the same asymptotic expected loss (or risk) as S�

n; i.e.

E½jjS�
n 	 Snjj2n
 	 E½jjS�

n 	 Snjj2n
-0:

This justifies our studying the properties of S�
n in Section 2 ‘‘as if’’ it was a bona

fide estimator. It is interesting to recall the Bayesian interpretation of S�
n (see Section

2.2). From this point of view, S�
n is an empirical Bayesian estimator. Empirical

Bayesians often ignore the fact that their prior contains estimation error because it
comes from the data. Usually, this is done without any rigorous justification, and it
requires sophisticated ‘‘judgment’’ to pick an empirical Bayesian prior whose
estimation error is ‘‘not too’’ damaging. Here, we treat this issue rigorously instead:
We give a set of conditions (Assumptions 1–3) under which it is legitimate to neglect
the estimation error of our empirical Bayesian prior. Finally, it is possible to estimate
the expected quadratic loss of S�

n and S�
n consistently.

Lemma 3.6. E½ja
2
nb2n
d2n

	 a2nb
2
n

d2n
j
-0:

3.4. Optimality property of the estimator S�
n

The final step of our strategy is to demonstrate that S�
n; which we obtained as a

consistent estimator for S�
n; possesses an important optimality property. We already

know that S�
n (hence, S�

n in the limit) is optimal among the linear combinations of the
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identity and the sample covariance matrix with nonrandom coefficients (see Theorem
2.1). This is interesting, but only mildly so, because it excludes the other linear
shrinkage estimators with random coefficients. In this section, we show that S�

n is still

optimal within a bigger class: the linear combinations of In and Sn with random

coefficients. This class includes both the linear combinations that represent bona fide

estimators, and those with coefficients that require hindsight knowledge of the true
(and unobservable) covariance matrix Sn: Let S��

n denote the linear combination of

In and Sn with minimum quadratic loss. It solves:

min
r1;r2

jjS��
n 	 Snjj2n

s:t:S��
n ¼ r1In þ r2Sn: ð15Þ

In contrast to the optimization problem in Theorem 2.1 with solution S�
n; here we

minimize the loss instead of the expected loss, and we allow the coefficients r1 and r2
to be random. It turns out that the formula for S��

n is a function of Sn; therefore, S��
n

does not constitute a bona fide estimator. By construction, S��
n has lower loss than S

�
n

and S�
n almost surely (a.s.), but asymptotically it makes no difference.

Theorem 3.3. S�
n is a consistent estimator of S��

n ; i.e. jjS�
n 	 S��

n jjn �!q:m: 0: As a

consequence, S�
n has the same asymptotic expected loss (or risk) as S��

n ; that is,

E½jjS�
n 	 Snjj2n
 	 E½jjS��

n 	 Snjj2n
-0:

Both S�
n and S��

n have the same asymptotic properties as S�
n; therefore, they also

have the same asymptotic properties as each other. The most important result of this
paper is the following: The bona fide estimator S�

n has uniformly minimum quadratic

risk asymptotically among all the linear combinations of the identity with the sample
covariance matrix, including those that are bona fide estimators, and even those that
use hindsight knowledge of the true covariance matrix.

Theorem 3.4. For any sequence of linear combinations #Sn of the identity and the

sample covariance matrix, the estimator S�
n defined in Eq. (14) verifies:

lim
N-N

inf
nXN

ðE½jj #Sn 	 Snjj2n
 	 E½jjS�
n 	 Snjj2n
ÞX0: ð16Þ

In addition, every #Sn that performs as well as S�
n is identical to S�

n in the limit:

lim
n-N

ðE½jj #Sn 	 Snjj2n
 	 E½jjS�
n 	 Snjj2n
Þ ¼ 0 3 jj #Sn 	 S�

n jjn �!q:m: 0: ð17Þ

Thus, it is legitimate to say that S�
n is an asymptotically optimal linear shrinkage

estimator of the covariance matrix with respect to quadratic loss under general
asymptotics. Typically, only maximum likelihood estimators have such a sweeping
optimality property, so we believe that this result is unique in shrinkage theory. Yet
another distinctive feature of S�

n is that, to the best of our knowledge, it is the only

estimator of the covariance matrix to retain a rigorous justification when the number
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of variables pn exceeds the number of observations n: Not only that, but S�
n is

guaranteed to be always invertible, even in the case pn4n; where rank deficiency
makes the sample covariance matrix singular. Estimating the inverse covariance
matrix when variables outnumber observations is sometimes dismissed as

impossible, but the existence of ðS�
nÞ

	1 certainly proves otherwise. The following
theorem shows that S�

n is usually well-conditioned.

Theorem 3.5. Assume that the condition number of the true covariance matrix Sn is

bounded, and that the normalized variables yi1=
ffiffiffiffi
li

p
are iid across i ¼ 1;y; n: Then the

condition number of the estimator S�
n is bounded in probability.

This result follows from powerful results proven recently by probabilists [2].
If the cross-sectional iid assumption is violated, it does not mean that the
condition number goes to infinity, but rather that it is technically too difficult
to find out anything about it. Interestingly, there is one case where the estimator
S�

n is even better-conditioned than the true covariance matrix Sn: if the

ill-conditioning of Sn comes from eigenvalues close to zero (multicollinearity
in the variables) and the ratio of variables to observations pn=n is not negligible.
In this case, S�

n is well-conditioned because the sample observations do not

provide enough information to update our prior belief that there is no multi-
collinearity.

Remark 3.1. An alternative technique to arrive at an invertible estimator of the
covariance matrix is based on an maximum entropy (ME) approach; e.g., see Theil
and Laitinen [23] and Vinod [24]. The motivation comes from considering variables
subject to ‘‘rounding’’ or other measurement error; the measurement error
corresponding to variable i is quantified by a positive number di; i ¼ 1;y; p: The
resulting covariance matrix estimator of Vinod [24], say, is then given by Sn þ Dn;

where Dn is a diagonal matrix with ith element d2i =3:While this estimator certainly is
invertible, it was not derived having in mind any optimality considerations with
respect to estimating the true covariance matrix. For example, if the measurement
errors, and hence the di; are small, Sn þ Dn will be close to Sn and inherit its ill-
conditioning. Therefore, the Maximum Entropy estimators do not seem very
interesting for our purposes.

4. Monte-Carlo simulations

The goal is to compare the expected loss (or risk) of various estimators across a
wide range of situations. The benchmark is the expected loss of the sample
covariance matrix. We report the percentage relative improvement in average loss

of S�; defined as: PRIALðS�Þ ¼ ðE½jjS 	 Sjj2
 	 E½jjS� 	 Sjj2
Þ=E½jjS 	 Sjj2
 � 100:
The subscript n is omitted for brevity, since no confusion is possible. If the PRIAL is
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positive (negative), then S� performs better (worse) than S: The PRIAL of the
sample covariance matrix S is zero by definition. The PRIAL cannot exceed 100%.
We compare the PRIAL of S� to the PRIAL of other estimators from finite sample
decision theory.

4.1. Other estimators

There are many estimators worthy of investigation, and we cannot possibly study
all the interesting ones, but we attempt to compose a representative selection.

4.1.1. Empirical Bayesian

Haff [8] introduces an estimator with an empirical Bayesian inspiration. Like S�; it
is a linear combination of the sample covariance matrix and the identity. The
difference lies in the coefficients of the combination. Haff’s coefficients do not
depend on the observations X ; only on p and n: If the criterion is the mean squared
error, Haff’s approach suggests

ŜEB ¼ pn 	 2n 	 2
pn2

mEBI þ n

n þ 1 S ð18Þ

with mEB ¼ ½detðSÞ
1=p: When p4n we take mEB ¼ m because the regular formula
would yield zero. The initials EB stand for empirical Bayesian.

4.1.2. Stein–Haff

Stein [21] proposes an estimator that keeps the eigenvectors of the sample
covariance matrix and replaces its eigenvalues l1;y; lp by

nli n 	 p þ 1þ 2li
Xp

j¼1
jai

1

li 	 lj

0
B@

1
CA

,
i ¼ 1;y; p: ð19Þ

These corrected eigenvalues need neither be positive nor in the same order as
sample eigenvalues. To prevent this from happening, an ad hoc procedure
called isotonic regression is applied before recombining corrected eigenvalues
with sample eigenvectors.2 Haff [9] independently obtains a closely related

estimator. In any given simulation, we call ŜSH the better performing estimator
of the two. The other one is not reported. The initials SH stand for Stein and
Haff.3
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2 Intuitively, isotonic regression restores the ordering by assigning the same value to a subsequence of

corrected eigenvalues that would violate it. Lin and Perlman [15] explain it in detail.
3When p4n some of the terms *li 	 *lj in formula (9) result in a division by zero. We just ignore them.

Nonetheless, when p is too large compared to n; the isotonic regression does not converge. In this case, ŜSH
does not exist.
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4.1.3. Minimax

Stein [22] and Dey and Srinivasan [4] both derive the same estimator. Under a
certain loss function, it is minimax, which means that no other estimator has lower
worst-case error. The minimax criterion is sometimes criticized as overly pessimistic,
since it looks at the worst case only. This estimator preserves sample eigenvectors
and replaces sample eigenvalues by

n

n þ p þ 1	 2i
*li; ð20Þ

where sample eigenvalues l1;y; lp are sorted in descending order. We call this

estimator ŜMX; where the initials MX stand for minimax.

4.1.4. Computational cost

When the number of variables p is very large, S� and S take much less time to

compute than ŜEB; ŜSH and ŜMX; because they do not need eigenvalues and
determinants. Indeed the number and nature of operations needed to compute S� are
of the same order as for S: It can be an enormous advantage in practice. The only

seemingly slow step is the estimation of b2; but it can be accelerated by writing

b2 ¼ 1

pn

Xp

i¼1

Xp

j¼1

1

n
ðX42ÞðX42Þt

� �
ij

	 1
pn

Xp

i¼1

Xp

j¼1

1

n
XX t

� �42
" #

ij

; ð21Þ

where ½�
ij denotes the entry ði; jÞ of a matrix and the symbol 4 denotes elementwise
exponentiation, that is, ½A42
ij ¼ ð½A
ijÞ

2 for any matrix A:

4.2. Experiment design

The random variables used in the simulations are normally distributed. The true
covariance matrix S is diagonal without loss of generality. Its eigenvalues are drawn
according to a log-normal distribution. Their grand mean m is set equal to one
without loss of generality. The structure of the Monte-Carlo experiment is as
follows. We identify three parameters as influential on the results: (1) the ratio p=n of
variables to observations, (2) the cross-sectional dispersion of population eigenvalues

a2; and (3) the product p � n which measures how close we are to asymptotic
conditions. For each one of these three parameters we choose a central value, namely

1=2 for p=n; 1=2 for a2; and 800 for p � n: First, we run the simulations with each of
the three parameters set to its central value. Then, we run three different sets of
simulations, allowing one of the three parameters to vary around its central value,
while the two others remain fixed at their central value. This enables us to study the
influence of each parameter separately. To get a point of reference for the shrinkage
estimator S�; we can compute analytically its asymptotic PRIAL, as implied by

Theorems 2.1, 3.1 and 3.2: it is p=n

p=nþa2 � 100: This is the ‘‘speed of light’’ that we
would attain if we knew the true parameters m; a2; b2; d2; instead of having to
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estimate them. In the real world, we can never get this much improvement, and how
close we get depends on how valid the asymptotic approximations are.

4.3. Main results

When all three parameters are fixed at their respective central values, we get the
results in Table 2.
‘‘Risk’’ means the average loss over 1000 simulations. For the central values of the

parameters, the asymptotic PRIAL of S� is equal to 50%, and its simulated PRIAL
is 49:3%: Therefore, asymptotic behavior is almost attained in this case for p ¼ 20
and n ¼ 40: S� improves substantially over S and ŜEB; and moderately over ŜSH

and ŜMX:

4.3.1. Influence of ratio p=n

When we increase p=n from zero to infinity, the asymptotic PRIAL of S� increases
from 0 to 100% with an ‘‘S’’ shape. Fig. 6 confirms this.4

S� always has lower risk than S and ŜEB: It usually has slightly lower risk than ŜSH

and ŜMX: ŜSH is not defined for high values of p=n: ŜMX performs slightly better than
S� for the highest values of p=n: This may be due to the fact that S� does not attain
its asymptotic performance for values of n below 10.

4.3.2. Influence of dispersion a2

When we increase a2 from zero to infinity, the asymptotic PRIAL of S� decreases
from 100% to 0% with a reverse ‘‘S’’ shape. Fig. 7 confirms this.

S� has lower mean squared error than S always, and than ŜEB almost always. S�

always has lower mean squared error than ŜSH and ŜMX:When a2 gets too large, ŜSH
and ŜMX perform worse than the sample covariance matrix. The reason is that true
eigenvalues are very dispersed, and they shrink sample eigenvalues together too

much. This may be due to the fact that ŜSH and ŜMX were originally derived under
another loss function than the Frobenius norm. It is very reassuring that, even in a
case where some of its competitors perform much worse than S; S� performs at least
as well as S:
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Table 2

Result of 1000 Monte-Carlo simulations for central parameter values

Estimator S S�
ŜEB ŜSH ŜMX

Risk 0.5372 0.2723 0.5120 0.3076 0.3222

Standard error on risk (0.0033) (0.0013) (0.0031) (0.0014) (0.0014)

PRIAL 0.0% 49.3% 4.7% 42.7% 40.0%

4Corresponding tables of results are available from the authors upon request. Standard errors on

simulated risk have the same order of magnitude as in Table 2.
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4.3.3. Influence of product p � n

When we increase pn from zero to infinity, we should see the PRIAL of S�

converge to its asymptotic value of 50%. Fig. 8 confirms this.

S� always has lower risk than S and ŜEB: It has moderately lower risk than ŜSH

and ŜMX; except when n is below 20. When n is below 20, S� performs slightly worse

than ŜSH and moderately worse than ŜMX; but still substantially better than S

and ŜEB:
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Fig. 6. Effect of the ratio of number of variables to number of observations on the PRIAL: ŜSH is not

defined when p=n42 because the isotonic regression does not converge.

Fig. 7. Effect of the dispersion of eigenvalues on the PRIAL.
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4.3.4. Other simulations

Simulations not reported here study departures from normality. These departures

have very little impact on the above results. In relative terms, S and ŜEB appear to

suffer the most; then ŜSH and ŜMX; and S� appears to suffer the least.

4.3.5. Summary of main results

We draw the following conclusions from these simulations. The asymptotic theory
developed in Section 3 approximates finite sample behavior well, as soon as n and p

become of the order of 20. S� improves over the sample covariance matrix in every

one of the situations simulated, and usually by a lot. It also improves over ŜEB in
almost every situation simulated, and usually by a lot too. S� never performs

substantially worse than ŜSH and ŜMX; often performs about as well or slightly

better, and in some cases does substantially better. In the cases where ŜSH or ŜMX do
better, it is attributable to small sample size (less than ten).5

4.4. Complementary results on the condition number

This section studies the condition number of the estimator S� in finite sample. The
procedure for the Monte-Carlo simulations is the same as in Section 4.3, except that

we do not compute the other estimators ŜEB; ŜSH and ŜMX: Figs. 9–11 plot the

behavior of the condition number when p=n varies, when a2=m2 varies, and when pn

varies, respectively. The graphs show the average condition number over 1000
replications for the sample covariance matrix S and for the improved estimator S�:
They also show the condition number of the true covariance matrix for comparison.
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Fig. 8. Effect of the product of variables by observations on the PRIAL.

5We acknowledge that ŜSH and ŜMX were designed with another criterion than the Frobenius norm in

mind. Our conclusions say nothing about performance under any other criterion. Nonetheless, the

Frobenius norm is an important criterion.
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We can see that the sample covariance matrix is always worse-conditioned than
the true covariance matrix, while our estimator is always better-conditioned.
This suggests that the asymptotic result proven in Theorem 3.5 holds well in finite
sample.

5. Conclusions

In this paper, we have discussed the estimation of large-dimensional covariance
matrices where the number of (iid) variables is not small compared to the sample

ARTICLE IN PRESS

Fig. 9. Effect of the ratio of number of variables to number of observations on the condition number.

Fig. 10. Effect of the dispersion of eigenvalues on the condition number: Even for small dispersions, the

condition number of S is 3–10 times bigger than the true condition number, while the condition number of

S� is 2–5 times smaller than the true one.
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size. It is well-known that in such situations the usual estimator, the sample
covariance matrix, is ill-conditioned and may not even be invertible. The approach
suggested is to shrink the sample covariance matrix towards the identity matrix,
which means to consider a convex linear combination of these two matrices. The
practical problem is to determine the shrinkage intensity, that is, the amount of
shrinkage of the sample covariance matrix towards the identity matrix. To solve this
problem, we considered a general asymptotics framework where the number of
variables is allowed to tend to infinity with the sample size. It was seen that under
mild conditions the optimal shrinkage intensity then tends to a limiting constant;
here, optimality is meant with respect to a quadratic loss function based on the
Frobenius norm. It was shown that the asymptotically optimal shrinkage intensity
can be estimated consistently, which leads to a feasible estimator. Both the
asymptotic results and the extensive Monte-Carlo simulations presented in this
paper indicate that the suggested shrinkage estimator can serve as an all-purpose
alternative to the sample covariance matrix. It has smaller risk and is better-
conditioned. This is especially true when the dimension of the covariance matrix is
large compared to the sample size.
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Appendix A. Proofs of the technical results in Section 3

For brevity, we omit the subscript n; but it is understood that everything
depends on n: The notation is as follows. The elements of the true covariance
matrix S are called sij: S can be decomposed into S ¼ GLG0; where L is a diagonal
matrix, and G is a rotation matrix. We denote the elements of L by lij ; thus lij ¼ 0
for iaj; and the eigenvalues of S are called lii: This differs from the body of the
paper, where the eigenvalues are called li instead, but no confusion should be
possible. We use the matrix U to rotate the data: Y ¼ UtX is a p � n matrix of n iid
observations on a system of p random variables with mean zero and covariance
matrix L:

A.1. Proof of Lemma 3.1

Since the Frobenius norm is invariant by rotation, we have

jjSjj2 ¼ jjLjj2 ¼ 1
p

Xp

i¼1
E½y2i1


2p
1

p

Xp

i¼1
E½y4i1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p

Xp

i¼1 E½y8i1

s

p
ffiffiffiffiffiffi
K2

p
;

where the constant K2 is defined by Assumption 2. Therefore, the norm of the true
covariance matrix remains bounded as n goes to infinity. This implies that m ¼
/S; ISnpjjSjj is bounded too (remember that Definition 1 assigns norm one to the
identity). Also, a2 ¼ jjS	 mI jj2 ¼ jjSjj2 	 m2 remains bounded as n goes to infinity.
Furthermore, we have:

E½jjS 	 Sjj2
 ¼ 1
p

Xp

i¼1

Xp

j¼1
E

1

n

Xn

k¼1
xikxjk 	 sij

 !22
4

3
5

¼ 1
p

Xp

i¼1

Xp

j¼1
E

1

n

Xn

k¼1
yikyjk 	 lij

 !22
4

3
5

¼ 1
p

Xp

i¼1

Xp

j¼1
Var

1

n

Xn

k¼1
yikyjk

" #

¼ 1
p

Xp

i¼1

Xp

j¼1

1

n
Var½yi1yj1


p
1

pn

Xp

i¼1

Xp

j¼1
E½y2i1y2j1
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p
1

pn

Xp

i¼1

Xp

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
E½y4i1


q ffiffiffiffiffiffiffiffiffiffiffiffi
E½y4j1


q

p
p

n

1

p

Xp

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
E½y4i1


q !2

p
p

n

1

p

Xp

i¼1
E½y4i1


 !

p
p

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p

Xp

i¼1 E½y8i1

s

pK1
ffiffiffiffiffiffi
K2

p
;

where the constants K1 and K2 are defined by Assumptions 1 and 2, respectively. It

shows that b2 remains bounded as n goes to infinity. Finally, by Lemma 2.1,

d2 ¼ a2 þ b2 also remains bounded as n goes to infinity. &

A.2. Proof of Theorem 3.1

We have

m2 þ y2 ¼ E
1

p

Xp

i¼1
y2i1

" # !2
þVar 1

p

Xp

i¼1
y2i1

" #

¼E
1

p

Xp

i¼1
y2i1

 !22
4

3
5

¼ 1
p2

Xp

i¼1

Xp

j¼1
E½y2i1y2j1


p
1

p2

Xp

i¼1

Xp

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
E½y4i1


q ffiffiffiffiffiffiffiffiffiffiffiffi
E½y4j1


q

p
1

p

Xp

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
E½y4i1


q !2

p
1

p

Xp

i¼1
E½y4i1


p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p

Xp

i¼1 E½y8i1

s

p
ffiffiffiffiffiffi
K2

p
:
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Therefore, y2 remains bounded as n goes to infinity. We can rewrite the expected
quadratic loss of the sample covariance matrix as

b2 ¼ 1
p

Xp

i¼1

Xp

j¼1
E

1

n

Xn

k¼1
yikyjk 	 lij

 !22
4

3
5

¼ 1

pn

Xp

i¼1

Xp

j¼1
E½ðyi1yj1 	 lijÞ2


¼ 1

pn

Xp

i¼1

Xp

j¼1
E½y2i1y2j1
 	

1

pn

Xp

i¼1

Xp

j¼1
l2ij

¼ p

n
ðm2 þ y2Þ 	 1

pn

Xp

i¼1
l2ii:

The last term on the right-hand side of the last equation verifies

1

pn

Xp

i¼1
l2ii ¼

1

n

1

p

Xp

i¼1
E½y2i1


2

 !
p
1

n

1

p

Xp

i¼1
E½y4i1


 !

p
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p

Xp

i¼1 E½y8i1

s

p
1

n

ffiffiffiffiffiffi
K2

p
;

therefore, the difference b2 	 p
n
ðm2 þ y2Þ converges to zero as n goes to infinity. &

A.3. Proof of Lemma 3.2

The proof of the first statement is

E½m
 ¼ E½/S; IS
 ¼ /E½S
; IS ¼ /S; IS ¼ m:

Consider the second statement:

E½ðm 	 mÞ4
 ¼E
1

p

Xp

i¼1

1

n

Xn

k¼1
ðy2ik 	 liiÞ

( )42
4

3
5

¼E
1

n

Xn

k¼1

1

p

Xp

i¼1
ðy2ik 	 liiÞ

( )42
4

3
5

¼ 1
n4

Xn

k1¼1

Xn

k2¼1

Xn

k3¼1

Xn

k4¼1
E

1

p

Xp

i¼1
ðy2ik1 	 liiÞ

( )
1

p

Xp

i¼1
ðy2ik2 	 liiÞ

( )"

� 1

p

Xp

i¼1
ðy2ik3 	 liiÞ

( )
1

p

Xp

i¼1
ðy2ik4 	 liiÞ

( )#
: ðA:1Þ

In the summation on the right-hand side of Eq. (A.1), the expectation is nonzero
only if k1 ¼ k2 or k1 ¼ k3 or k1 ¼ k4 or k2 ¼ k3 or k2 ¼ k4 or k3 ¼ k4: Since these six
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conditions are symmetric, we have:

E½ðm 	 mÞ4


p
6

n4

Xn

k1¼1

Xn

k3¼1

Xn

k4¼1
E

1

p

Xp

i¼1
ðy2ik1 	 liiÞ

( )2
1

p

Xp

i¼1
ðy2ik3 	 liiÞ

( )2
4

������
� 1

p

Xp

i¼1
ðy2ik4 	 liiÞ

( )35
������

p
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n4

Xn
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

1

p
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i¼1 ðy
2
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	 liiÞ
� �4" #vuut
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

1

p

Xp

i¼1
ðy2ik3 	 liiÞ

( )2
1

p

Xp

i¼1
ðy2ik4 	 liiÞ

( )22
4

3
5

vuuut

p
6

n4

Xn

k1¼1

Xn

k3¼1

Xn

k4¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

1

p

Xp

i¼1 ðy
2
ik1

	 liiÞ
� �4" #vuut

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

1

p

Xp

i¼1
ðy2ik3 	 liiÞ

( )42
4

3
54

vuuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

1

p

Xp

i¼1
ðy2ik4 	 liiÞ

( )42
4

3
54

vuuut
p
6

n
E

1

p

Xp

i¼1 ðy
2
i1 	 liiÞ

� �4" #
:

Now we want to eliminate the lii’s from the bound. We can do it by using the
inequality:

E
1

p

Xp

i¼1
ðy2i1 	 liiÞ

( )42
4

3
5

¼
X4
q¼0

ð	1Þq 4

q

� �
E

1

p

Xp

i¼1
y2i1

( )q" #
E
1

p

Xp

i¼1
y2i1

" #4	q

p
X4
q¼0

4

q

� �
E

1

p

Xp

i¼1
y2i1

( )42
4

3
5q=4

E
1

p

Xp

i¼1
y2i1

( )42
4

3
5ð4	qÞ=4

p24E
1

p

Xp
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y2i1

( )42
4

3
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Therefore, we have

E½ðm 	 mÞ4
p96
n

E
1

p

Xp

i¼1
y2i1

( )42
4

3
5p96

n
E
1

p

Xp

i¼1
y8i1

" #
p
96K2

n
-0:

This shows that the estimator m converges to its expectation m in quartic mean. &

A.4. Proof of Lemma 3.3

We prove this lemma by successively decomposing d2 	 d2 into terms that are
easier to study.

d2 	 d2 ¼ ðjjS 	 mI jj2 	 jjS 	 mI jj2Þ þ ðjjS 	 mI jj2 	 E½jjS 	 mI jj2
Þ: ðA:2Þ

It is sufficient to show that both terms in parentheses on the right-hand side of
Eq. (A.2) converge to zero in quadratic mean. Consider the first term. Since mI is the
orthogonal projection for the inner product /�; �S of the sample covariance matrix
S onto the line spanned by the identity, we have: jjS 	 mI jj2 	 jjS 	 mI jj2 ¼
jjmI 	 mI jj2 ¼ ðm	 mÞ2; therefore, by Lemma 3.2 it converges to zero in quadratic
mean. Now consider the second term:

jjS 	 mI jj2 ¼ m2 	 2mm þ jjSjj2: ðA:3Þ

Again it is sufficient to show that the three terms on the right-hand side of Eq. (A.3)

converge to their expectations in quadratic mean. The first term m2 is equal to its
expectation, so it trivially does. The second term 2mm does too by Lemma 3.2,

keeping in mind that m is bounded by Lemma 3.1. Now consider the third term jjSjj2:

jjSjj2 ¼ 1
p

Xp

i¼1

Xp

j¼1

1

n

Xn

k¼1
yikyjk

 !2

¼ p

n2

Xn

k1¼1

Xn

k2¼1

1

p

Xp

i¼1
yik1yik2

 !2

¼ p

n2

Xn

k¼1

1

p

Xp

i¼1
y2ik

 !2
þ p

n2

Xn

k1¼1

Xn

k2¼1
k2ak1

1

p

Xp

i¼1
yik1yik2

 !2
: ðA:4Þ

Again it is sufficient to show that both terms on the right-hand side of Eq. (A.4)
converge to their expectations in quadratic mean. Consider the first term:

Var
p

n2

Xn

k¼1

1

p

Xp

i¼1
y2ik

 !22
4

3
5 ¼ p2

n3
Var

1

p

Xp

i¼1
y2i1

 !22
4

3
5
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p
p2

n3
E

1

p

Xp

i¼1
y2i1

 !42
4

3
5

p
1

n

� �
p

n

# $2 1

p

Xp

i¼1
E½y8i1


 !

p
K2
1K2

n
-0:

Therefore, the first term on the right-hand side of Eq. (A.4) converges to its
expectation in quadratic mean. Now consider the second term:

Var
p

n2

Xn

k1¼1

Xn

k2¼1
k2ak1

1

p

Xp

i¼1
yik1yik2

 !22
64

3
75

¼ p2

n4

Xn

k1¼1

Xn

k2¼1
k2ak1

Xn

k3¼1

Xn

k4¼1
k4ak3

Cov
1

p

Xp

i¼1
yik1yik2

 !2
;
1

p

Xp

i¼1
yik3yik4

 !22
4

3
5: ðA:5Þ

The covariances on the right-hand side of Eq. (A.5) only depend on

ðfk1; k2g-fk3; k4gÞ#; the cardinal of the intersection of the set fk1; k2g with the
set fk3; k4g: This number can be zero, one or two. We study each case separately.

ðfk1; k2g-fk3; k4gÞ# ¼ 0 :

In this case ð1
p

Pp
i¼1 yik1yik2Þ

2 and ð1
p

Pp
i¼1 yik3yik4Þ

2 are independent, so their

covariance is zero.

ðfk1; k2g-fk3; k4gÞ# ¼ 1 :

This case occurs 4nðn 	 1Þðn 	 2Þ times in the summation on the right-hand side of
Eq. (A.5). Each time we have

Cov
1

p

Xp

i¼1
yik1yik2

 !2
;
1

p

Xp

i¼1
yik3yik4

 !22
4

3
5

¼ Cov 1

p

Xp

i¼1
yi1yi2

 !2
;
1

p

Xp
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yi1yi3

 !22
4

3
5
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p
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p
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yik1yik2

 !2
;
1

p
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i¼1
yik3yik4

 !22
4

3
5

¼ 	Cov 1

p
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yi1yi2

 !2
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p
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yi1yi3
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p
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p
1

p

1

p

Xp

i¼1
E½y2i1


2

 !2

p
1

p2
1

p

Xp

i¼1
E½y8i1


 !

p
K2

p2
:

Therefore, in this case the absolute value of the covariance on the right-hand side of

Eq. (A.5) is bounded by K2=p2:

ðfk1; k2g-fk3; k4gÞ# ¼ 2 :

This case occurs 2nðn 	 1Þ times in the summation on the right-hand side of
Eq. (A.5). Each time we have:

Cov
1

p

Xp

i¼1
yik1yik2

 !2
;
1

p

Xp

i¼1
yik3yik4

 !22
4

3
5

������
������

¼ Cov
1

p

Xp

i¼1
yi1yi2

 !2
;
1

p

Xp

i¼1
yi1yi2

 !22
4

3
5

������
������

p
1

p4

Xp

i¼1

Xp

j¼1

Xp

k¼1

Xp

l¼1
jCov½yi1yi2yj1yj2; yk1yk2yl1yl2
j: ðA:6Þ

In the summation on the right-hand side of Eq. (A.6), the set of quadruples
of integers between 1 and p can be decomposed into two disjoint subsets:

f1;y; pg4 ¼ Q,R; where Q contains those quadruples that are made of four
distinct integers, and R contains the remainder. Thus, we can make the following
decomposition:

Cov
1

p

Xp

i¼1
yik1yik2

 !2
;
1

p

Xp

i¼1
yik3yik4

 !22
4

3
5

������
������

p
1

p4

X
ði; j;k;lÞAQ

jCov½yi1yi2yj1yj2; yk1yk2yl1yl2
j

þ 1

p4

X
ði; j;k;lÞAR

jCov½yi1yi2yj1yj2; yk1yk2yl1yl2
j:

Let us express the first term of this decomposition as a function of the quantity

that vanishes under Assumption 3: v ¼ p2

n2
�
P

ði; j;k;lÞAQ
ðCov½yi1yj1;yk1yl1
Þ2

Cardinal of Q
: First, notice
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that the cardinal of Q is pðp 	 1Þðp 	 2Þðp 	 3Þ: Also, when iaj and kal; we have
E½yi1yj1
 ¼ E½yk1yl1
 ¼ 0; therefore,

jCov½yi1yi2yj1yj2; yk1yk2yl1yl2
j

¼ jE½yi1yi2yj1yj2yk1yk2yl1yl2


	 E½yi1yi2yj1yj2
E½yk1yk2yl1yl2
j

¼ jE½yi1yj1yk1yl1
2 	 E½yi1yj1
2E½yk1yl1
2j

¼ E½yi1yj1yk1yl1
2

¼ ðCov½yi1yj1; yk1yl1
 þ E½yi1yj1
E½yk1yl1
Þ2

¼ ðCov½yi1yj1; yk1yl1
Þ2:

This enables us to express the first term of the decomposition as:
n2ðp	1Þðp	2Þðp	3Þ

p5
v:

Now consider the second term of the decomposition. The summation over R only
extends over the quadruples ði; j; k; lÞ such that i ¼ j or i ¼ k or i ¼ l or j ¼ k or j ¼ l

or k ¼ l: Since these six conditions are symmetric, we have:

1

p4

X
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p
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
E½y4k1


q ffiffiffiffiffiffiffiffiffiffiffiffi
E½y4l1


q

p
6

p

1

p

Xp

i¼1
E½y4i1


 !
1

p

Xp

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
E½y4i1


q !2

p
6

p

1

p

Xp

i¼1
E½y4i1


 !2

p
6

p

1

p

Xp

i¼1
E½y8i1


 !

p
6K2

p
:
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This completes the study of the decomposition, and also of the three possible cases.
We can now bring all the results together to bound the summation on the right-hand
side of Eq. (A.5):

p2

n4

Xn

k1¼1

Xn

k2¼1
k2ak1

Xn

k3¼1

Xn

k4¼1
k4ak3

Cov
1

p

Xp

i¼1
yik1yik2

 !2
;
1

p

Xp

i¼1
yik3yik4

 !22
4

3
5

������
������

p
p2

n4
4nðn 	 1Þðn 	 2ÞK2

p2
þ 2nðn 	 1Þn

2ðp 	 1Þðp 	 2Þðp 	 3Þ
p5

v

�

þ 2nðn 	 1Þ 6K2
p

�

p
4K2ð1þ 3K1Þ

n
þ 2v-0:

Backing up, the second term on the right-hand side of Eq. (A.4) converges to its

expectation in quadratic mean. Backing up again, the third term jjSjj2 on the right-
hand side of Eq. (A.3) converges to its expectation in quadratic mean. Backing up
more, the second term between parentheses on the right-hand side of Eq. (A.2)

converges to zero in quadratic mean. Backing up one last time, d2 	 d2 converges to
zero in quadratic mean. For future reference note that, since jjS 	 mI jj2 converges to
its expectation d2 in quadratic mean and since d2 is bounded, E½jjS 	 mI jj4
 is
bounded. &

A.5. Proof of Lemma 3.4

We first prove that the unconstrained estimator %b2 is consistent. As before, we do

it by successively decomposing %b2 	 b2 into terms that are easier to study.

%b2 	 b2 ¼ 1

n2

Xn

k¼1
jjx�kxt

�k 	 Sjj2 	 E½jjS 	 Sjj2

( )

þ 1

n2

Xn

k¼1
jjx�kxt

�k 	 Sjj2 	 1

n2

Xn

k¼1
jjx�kxt

�k 	 Sjj2
( )

: ðA:7Þ

It is sufficient to show that both bracketed terms on the right-hand side of Eq. (A.7)
converge to zero in quadratic mean. Consider the first term:

E½jjS 	 Sjj2
 ¼ 1
p

Xp

i¼1

Xp

j¼1
E

1

n

Xn

k¼1
xikxjk 	 sij

 !22
4

3
5

¼ 1
p

Xp

i¼1

Xp

j¼1
Var

1

n

Xn

k¼1
xikxjk

" #
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¼ 1
p

Xp

i¼1

Xp

j¼1

1

n2

Xn

k¼1
Var½xikxjk


¼ 1

pn

Xp

i¼1

Xp

j¼1
Var½xi1xj1


¼ 1

pn

Xp

i¼1

Xp

j¼1
E½ðxi1xj1 	 sijÞ2


¼E
1

n
jjx�1x

t
�1 	 Sjj2

� �

¼E
1

n2

Xn

k¼1
jjx�kxt

�k 	 Sjj2
" #

:

Therefore, the first bracketed term on the right-hand side of Eq. (A.7) has
expectation zero. For k ¼ 1;y; n let y�k denote the pn � 1 vector holding the kth
column of the matrix Y :

Var
1

n2

Xn

k¼1
jjx�kxt

�k 	 Sjj2
" #

¼ 1
n
Var

1

n
jjx�1x

t
�1 	 Sjj2

� �

¼ 1
n
Var

1

n
jjy�1y

t
�1 	 Ljj2

� �

¼ 1

p2n3

Xp

i¼1

Xp

j¼1

Xp

k¼1

Xp

l¼1
Cov½yi1yj1 	 lij ; yk1yl1 	 lkl 


¼ 1

p2n3

Xp

i¼1

Xp

j¼1

Xp

k¼1

Xp

l¼1
Cov½yi1yj1; yk1yl1


p
1

p2n3

Xp

i¼1

Xp

j¼1

Xp

k¼1

Xp

l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½y2i1y2j1
E½y2k1y2l1


q

p
1

p2n3

Xp

i¼1

Xp

j¼1

Xp

k¼1

Xp

l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½y4i1
E½y4j1
E½y4k1
E½y4l1


4

q

p
p2

n3
1

p

Xp

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
E½y4i1


4

q !4
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p
p2

n3
1

p

Xp

i¼1
E½y4i1


 !

p
p2

n3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p

Xp

i¼1 E½y8i1

s

p
K2
1

ffiffiffiffiffiffi
K2

p

n
:

Therefore, the first bracketed term on the right-hand side of Eq. (A.7) converges to
zero in quadratic mean. Now consider the second term:

1

n2

Xn

k¼1 jjx�kxt
�k 	 Sjj2 	 1

n2

Xn

k¼1
jjx�kxt

�k 	 Sjj2

¼ 1

n2

Xn

k¼1
2ðS 	 SÞ; x�kxt

�k 	
S þ S
2

� �* +

¼ 2

n
ðS 	 SÞ; 1

n

Xn

k¼1
x�kxt

�k 	
S þ S
2

 !* +

¼ 2

n
ðS 	 SÞ; S 	 S þ S

2

� �) *

¼ 1
n
jjS 	 Sjj2:

E½jjS 	 Sjj4
 is bounded since E½jjS 	 mI jj4
 and jjS	 mI jj are bounded. Therefore,
the second term on the right-hand side of Eq. (A.7) converges to zero in quadratic

mean. Backing up once more, %b2 	 b2 converges to zero in quadratic mean. Now let
us turn to the constrained estimator b2 ¼ minð %b2; d2Þ:

b2 	 b2 ¼ minð %b2; d2Þ 	 b2p %b2 	 b2pj %b2 	 b2jpmaxðj %b2 	 b2j; jd2 	 d2jÞ

a.s. Furthermore, using d2Xb2; we have

b2 	 b2 ¼minð %b2; d2Þ 	 b2

¼minð %b2 	 b2; d2 	 b2Þ

Xminð %b2 	 b2; d2 	 d2Þ

Xminð	j %b2 	 b2j;	jd2 	 d2jÞ

X 	maxðj %b2 	 b2j; jd2 	 d2jÞ
a.s. Therefore,

E½ðb2 	 b2Þ2
pE½maxðj %b2 	 b2j; jd2 	 d2jÞ2
pE½ð %b2 	 b2Þ2
 þ E½ðd2 	 d2Þ2
:
On the right-hand side, the first term converges to zero as we have shown earlier in
this section, and the second term converges to zero as we have shown in Lemma 3.3.

Therefore, b2 	 b2 converges to zero in quadratic mean. &
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A.6. Proof of Lemma 3.5

Follows trivially from Lemmata 2.1, 3.3, and 3.4. &

A.7. Proof of Theorem 3.2

The following lemma will be useful in proving Theorems 3.2 and 3.3 and
Lemma 3.6.

Lemma A.1. If u2 is a sequence of nonnegative random variables (implicitly indexed by

n, as usual) whose expectations converge to zero, and t1; t2 are two nonrandom scalars,

and u2

dt1dt2p2ðd2 þ d2Þ a.s., then

E
u2

dt1dt2

� �
-0:

Proof of Lemma A.1. Fix e40: Recall that the subscript n has been omitted to make
the notation lighter, but is present implicitly. LetN denote the set of indices n such

that d2pe=8: Since, d2 	 d2-0 in quadratic mean, there exists an integer n1 such

that 8nXn1 E½jd2 	 d2j
pe=4: For every nXn1 inside the set N; we have

E
u2

dt1dt2

� �
p2ðE½d2
 þ d2Þp2ðE½jd2 	 d2j
 þ 2d2Þp2 e

4
þ 2 e

8

# $
¼ e: ðA:8Þ

Now consider the complementary of the set N: Since E½u2
-0; there exists an
integer n2 such that

8nXn2 E½u2
p et1þt2þ1

24t1þ3t2þ1
:

Let 1f�g denote the indicator function of an event, and let Prð�Þ denote its probability.
From the proof of Lemma 3.1, d2 is bounded by ð1þ K1Þ

ffiffiffiffiffiffi
K2

p
: Since d2 	 d2

converges to zero in quadratic mean, hence in probability, there exists an integer n3
such that

8nXn3 Pr jd2 	 d2jX e
16

# $
p

4e
16ð1þ K1Þ

ffiffiffiffiffiffi
K2

p
þ e

:

For every nXmaxðn2; n3Þ outside the set N; we have:

E
u2

dt1 dt2

� �
¼E

u2

dt1dt2
1fd2pe=16g

� �
þ E

u2

dt1dt2
1fd24e=16g

� �

pE 2ðd2 þ d2Þ1fd2pe=16g
+ ,

þ 16

e

� �t1 8

e

� �t2

E½u21fd24e=16g
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p 2 ð1þ K1Þ
ffiffiffiffiffiffi
K2

p
þ e
16

n o
Pr jd2 	 d2jX e

16

# $
þ 16

e

� �t1 8

e

� �t2

E½u2


p 2 ð1þ K1Þ
ffiffiffiffiffiffi
K2

p
þ e
16

n o 4e
16ð1þ K1Þ

ffiffiffiffiffiffi
K2

p
þ e

þ 16

e

� �t1 8

e

� �t2 et1þt2þ1

24t1þ3t2þ1

p e: ðA:9Þ

Bringing together the results inside and outside the setN obtained in Eqs. (A.8) and
(A.9) yields

8nXmaxðn1; n2; n3Þ E
u2

dt1dt2

� �
pe:

This ends the proof of the lemma. &

Consider the first statement of Theorem 3.2:

jjS� 	 S�jj2 ¼ b2

d2
ðm 	 mÞI þ a2

d2
	 a2

d2

� �
ðS 	 mIÞ

����
����

����
����
2

¼ b4

d4
ðm 	 mÞ2 þ a2

d2
	 a2

d2

� �2
jjS 	 mI jj2

þ 2
b2

d2
ðm 	 mÞ a2

d2
	 a2

d2

� �
/S 	 mI ; IS

¼ b4

d4
ðm 	 mÞ2 þ a2

d2
	 a2

d2

� �2
d2

p ðm 	 mÞ2 þ ða2d2 	 a2d2Þ2

d2d4
: ðA:10Þ

It is sufficient to show that the expectations of both terms on the right-hand side of
Eq. (A.10) converge to zero. The expectation of the first term does by Lemma 3.2.

Now consider the second term. Since a2pd2 and a2pd2; note that

ða2d2 	 a2d2Þ2

d2d4
pd2p2ðd2 þ d2Þ a:s:

Furthermore, since a2 	 a2 and d2 	 d2 converge to zero in quadratic mean, and
since a2 and d2 are bounded, a2d2 	 a2d2 ¼ ða2 	 a2Þd2 	 a2ðd2 	 d2Þ converges to
zero in quadratic mean. Therefore, the assumptions of Lemma A.1 are verified by

u2 ¼ ða2d2 	 a2d2Þ2; t1 ¼ 2 and t2 ¼ 4: It implies that

E
ða2d2 	 a2d2Þ2

d2d4

" #
-0:
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The expectation of second term on the right-hand side of Eq. (A.10) converges to
zero. Backing up, jjS� 	 S�jj converges to zero in quadratic mean. This completes
the proof of the first statement of Theorem 3.2. Now consider the second statement:

E½jjjS� 	 Sjj2 	 jjS� 	 Sjj2j
 ¼E½j/S� 	 S�;S� þ S� 	 2SSj


p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½jjS� 	 S�jj2


q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½jjS� þ S� 	 2Sjj2


q
: ðA:11Þ

As we have shown above, the first term on the right-hand side of Eq. (A.11)

converges to zero. Given that E½jjS� 	 Sjj2
 is bounded, it also implies that the
second term on the right-hand side of Eq. (A.11) is bounded. Therefore, the product
of the two terms on the right-hand side of Eq. (A.11) converges to zero. This
completes the proof of the second and final statement. &

A.8. Proof of Lemma 3.6

We have:

a2b2

d2
	 a2b2

d2

����
���� ¼ ja2b2d2 	 a2b2d2j

d2d2
:

Let us verify that the assumptions of Lemma A.1 hold for u2 ¼ ja2b2d2 	 a2b2d2j;
t1 ¼ 2 and t2 ¼ 2: Notice that:

a2b2

d2
	 a2b2

d2

����
����pa2b2

d2
þ a2b2

d2
pa2 þ a2pd2 þ d2p2ðd2 þ d2Þ

a.s. Furthermore,

E½ja2b2d2 	 a2b2d2j


¼ E½jða2b2 	 a2b2Þd2 	 a2b2ðd2 	 d2Þj


¼ E½jða2 	 a2Þðb2 	 b2Þd2 þ a2ðb2 	 b2Þd2 þ ða2 	 a2Þb2d2 	 a2b2ðd2 	 d2Þj


p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ða2 	 a2Þ2


q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðb2 	 b2Þ2


q
d2 þ a2E½jb2 	 b2j
d2 þ E½ja2 	 a2j
b2d2

	 a2b2E½jd2 	 d2j
:

The right-hand side converges to zero by Lemmata 3.1, 3.3, 3.4, and 3.5. Therefore,

E½u2
-0; and the assumptions of Lemma A.1 are verified. It implies that

E
a2b2

d2
	 a2b2

d2

����
����

� �
-0: &
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A.9. Proof of Theorem 3.3

Define a2 ¼ /S;SS	 mm: Its expectation is E½a2
 ¼ jjSjj2 	 m2 ¼ a2: We have:

ja2j ¼ j/S;SS	 mmj ¼ j/S	 mI ;S 	 mISj

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjS	 mI jj2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjS 	 mI jj2

q
pdd: ðA:12Þ

Let us prove that a2 	 a2 converges to zero in quadratic mean:

Var½a2
 ¼Var½/S;SS	 mm


¼Var½/S;SS
 þ Var½mm
 	 2 Cov½/S;SS; mm


p 2 Var½/S;SS
 þ 2 Var½mm


p 2m2 Var½m
 þ 2 Var½/S;SS
: ðA:13Þ

The first term on the right-hand side of Eq. (A.13) converges to zero, since m is
bounded by Lemma 3.1, and since Var½m
 converges to zero by Lemma 3.2. Consider
the second term:

/S;SS ¼ 1
p
trðSStÞ

¼ 1
p

Xp

i¼1

Xp

j¼1
sijsij

¼ 1
p

Xp

i¼1

Xp

j¼1
sij

1

n

Xn

k¼1
xikxjk

 !

¼ 1
p

Xp

i¼1

Xp

j¼1
lij

1

n

Xn

k¼1
yikyjk

 !

¼ 1
p

Xp

i¼1
lii

1

n

Xn

k¼1
y2ik

 !
:

Therefore,

Var½/S;SS
 ¼Var 1
p

Xp

i¼1
lii

1

n

Xn

k¼1
y2ik

 !" #

¼Var 1
n

Xn

k¼1

1

p

Xp

i¼1
liiy

2
ik

 !" #

¼ 1
n2

Xn

k1¼1

Xn

k2¼1
Cov

1

p

Xp

i¼1
liiy

2
ik1
;
1

p

Xp

i¼1
liiy

2
ik2

" #
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¼ 1
n2

Xn

k¼1
Var

1

p

Xp

i¼1
liiy

2
ik

" #

¼ 1
n
Var

1

p

Xp

i¼1
liiy

2
i1

" #

p
1

n
E

1

p

Xp

i¼1
liiy

2
i1

 !22
4

3
5

p
1

n
E

1

p

Xp

i¼1
l2ii

 !
1

p

Xp

i¼1
y4i1

 !" #

p
1

n

1

p

Xp

i¼1
E½y2i1


2

 !
1

p

Xp

i¼1
E½y4i1


 !

p
1

n

1

p

Xp

i¼1
E½y4i1


 !2

p
1

n

1

p

Xp

i¼1
E½y8i1


 !

p
K2

n
:

It implies that the second term on the right-hand side of Eq. (A.13) converges to

zero. Backing up, a2 	 a2 converges to zero in quadratic mean. Now let us find an
explicit formula for the solution S�� to the optimization problem in Eq. (15). This
problem is very similar to the one in Theorem 2.1 but, instead of solving it with
calculus as we did then, we will give an equivalent treatment based on geometry. The
solution is the orthogonal projection according to the inner product /�; �S of the
true covariance matrix S onto the plane spanned by the identity matrix I and

the sample covariance matrix S: Note that /S 	 mI ; IS ¼ 0; therefore, ðI ; S	mI
jjS	mI jjÞ

forms an orthonormal basis for this plane. The formula for the projection has a
simple expression in terms of the orthonormal basis:

S�� ¼/S; ISI þ S;
S 	 mI

jjS 	 mI jj

) *
S 	 mI

jjS 	 mI jj

¼ mI þ/S;SS	 mm

jjS 	 mI jj2
ðS 	 mIÞ

¼ mI þ a2
d2
ðS 	 mIÞ:

From now on, the proof is the same as for Theorem 32:

jjS� 	 S��jj2 ¼ mI þ a2

d2
ðS 	 mIÞ 	 mI 	 a2

d2
ðS 	 mIÞ

����
����

����
����2
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¼ ðm 	 mÞI þ a2 	 a2
d2

ðS 	 mIÞ
����

����
����

����2

¼ðm 	 mÞ2 þ ða2 	 a2Þ2

d4
jjS 	 mI jj2 þ 2ðm 	 mÞa

2 	 a2
d2

/S 	 mI ; IS

¼ðm 	 mÞ2 þ ða2 	 a2Þ2

d2
: ðA:14Þ

It is sufficient to show that the expectations of both terms on the right-hand side of
Eq. (A.14) converge to zero. The expectation of the first term does by Lemma 3.2.
Now consider the second term:

ða2 	 a2Þ2

d2
¼ a4 þ a22 	 2a2a2

d2

p
2a4 þ 2a22

d2

p 2d2 þ 2d2;

where we have used Eq. (A.12). Furthermore, since a2 	 a2 and a2 	 a2 both
converge to zero in quadratic mean, a2 	 a2 also does. Therefore, the assumptions of
Lemma A.1 are verified by u2 ¼ ða2 	 a2Þ2; t1 ¼ 2 and t2 ¼ 0: It implies that

E
ða2 	 a2Þ2

d2

" #
-0:

The expectation of the second term on the right-hand side of Eq. (A.14) converges to
zero. Backing up, jjS� 	 S��jj converges to zero in quadratic mean. This completes
the proof of the first statement of Theorem 3.3. Now consider the second statement:

E½jjjS� 	 Sjj2 	 jjS�� 	 Sjj2j
 ¼E½j/S� 	 S��;S� þ S�� 	 2SSj


p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½jjS� 	 S��jj2


q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½jjS� þ S�� 	 2Sjj2


q
:

ðA:15Þ

As we have shown above, the first term on the right-hand side of Eq. (A.15)

converges to zero. Given that E½jjS� 	 Sjj2
 is bounded, it also implies that the
second term on the right-hand side of Eq. (A.15) is bounded. Therefore, the product
of the two terms on the right-hand side of Eq. (A.15) converges to zero. This
completes the proof of the second and final statement. &

A.10. Proof of Theorem 3.4

lim infðE½jj #S	 Sjj2
 	 E½jjS� 	 Sjj2
ÞX infðE½jj #S	 Sjj2
 	 E½jjS�� 	 Sjj2
Þ

þ limðE½jjS�� 	 Sjj2
 	 E½jjS� 	 Sjj2
Þ:
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By construction of S��; we have jj #S	 Sjj2 	 jjS�� 	 Sjj2X0 a.s.; therefore, the first
term on the right-hand side is nonnegative. The second term on the right-hand side is
zero by Theorem 3.3. Therefore, the left-hand side is nonnegative. This proves the
first statement of Theorem 3.4. Now consider the second statement:

limðE½jj #S	 Sjj2
 	 E½jjS� 	 Sjj2
Þ ¼ 03 limðE½jj #S	 Sjj2
 	 E½jjS�� 	 Sjj2
Þ ¼ 0

3 lim E½jj #S	 Sjj2 	 jjS�� 	 Sjj2
 ¼ 0

3 lim E½jj #S	 S��jj2
 ¼ 0

3 lim E½jj #S	 S�jj2
 ¼ 0:

This completes the proof of the second and final statement. &

A.11. Proof of Theorem 3.5

Let lmaxðAÞ ðlminðAÞÞ denote the largest (smallest) eigenvalue of the matrix A: The
theorem is invariant to the multiplication of all the eigenvalues of S by a positive
number. Therefore, we can normalize S so that m ¼ 1 without loss of generality.
Then the assumption that the condition number of S is bounded is equivalent to the
existence of two constants %l and

%
l independent of n such that:

0o
%
lplminðSÞplmaxðSÞp%loN: First, let us prove that the largest eigenvalue of

S� is bounded in probability. Let Z ¼ L	1=2Y denote the normalized variables that
are assumed to be cross-sectionally iid. We have

lmaxðS�Þ ¼ lmax
b2

d2
mI þ a2

d2
S

� �

¼ b2

d2
m þ a2

d2
lmaxðSÞ

p
b2

d2
lmaxðSÞ þ

a2

d2
lmaxðSÞ

p lmaxðSÞ

p lmax
1

n
L1=2ZZtL1=2

� �

p lmax
1

n
ZZt

� �
lmaxðLÞ

p lmax
1

n
ZZt

� �
%l

a.s. Assume with loss of generality, but temporarily, that p=n converges to some
limit. Call the limit c: Assumption 1 implies that cpK1: In this case, Yin et al. [26]
show that

lmax
1

n
ZZt

� �
-ð1þ

ffiffiffi
c

p
Þ2 a:s: ðA:16Þ
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It implies that:

Pr lmax
1

n
ZZt

� �
p2 1þ

ffiffiffi
c

p/ 02� �
-1;

Pr lmaxðS�Þp2 1þ
ffiffiffiffiffiffi
K1

p# $2
%l

� �
-1: ðA:17Þ

Therefore, in the particular case where p=n converges to a limit, the largest
eigenvalue of S� is bounded in probability. Now consider the general case where p=n

need not have a limit. Remember that p=n is bounded by Assumption 1. Take any
subsequence along which p=n converges. Along this subsequence, the largest
eigenvalue of S� is bounded in probability. Notice that the bound in Eq. (A.17) is
independent of the particular subsequence. Since Eq. (A.17) holds along any
converging subsequence, it holds along the sequence as a whole. This proves that the
largest eigenvalue of S� is bounded in probability. Now let us prove that the smallest
eigenvalue of S� is bounded away from zero in probability. A reasoning similar to
the one above leads to: lminðS�ÞXlminðZZt=nÞ

%
l a.s. Again assume with loss of

generality, but temporarily, that p=n converges to some limit c: First consider the
case cp1=2: Bai and Yin [2] show that

lmin
1

n
ZZt

� �
- 1	

ffiffiffi
c

p/ 02
a:s: ðA:18Þ

It implies that:

Pr lmin
1

n
ZZt

� �
X
1

2
1	

ffiffiffi
c

p/ 02� �
-1;

Pr lminðS�ÞX1
2
1	

ffiffiffi
1

2

r !2
%
l

8<
:

9=
;-1: ðA:19Þ

Now turn to the other case: c41=2: In this case, we use

lminðS�Þ ¼ b2

d2
m þ a2

d2
lminðSÞX

b2

d2
m:

Fix any e40: For large enough n; p=nX1=2	 e: Also, by Theorem 3.1, for large
enough n; b2Xðp=nÞðm2 þ y2Þ 	 eX1=2	 2e: In particular, b2X1=4 for large enough
n: As a consequence, d2X1=4 for large enough n: We can make the following
decomposition:

b2

d2
m 	 b2

d2
m ¼ b2

d2
ðm 	 mÞ þ b2 	 b2

d2
m þ b2m

1

d2
	 1

d2

� �
: ðA:20Þ

We are going to show that all three terms on the right-hand side of Eq. (A.20)
converge to zero in probability. The first term does as a consequence of Lemma 3.2

since b2=d2p1: Now consider the second term. For large enough n:

E
jb2 	 b2j

d2
m

� �
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðb2 	 b2Þ2


q ffiffiffiffiffiffiffiffiffiffiffiffi
E½m2


p
1=4

:
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In the numerator on the right-hand side, E½ðb2 	 b2Þ2
 converges to zero by Lemma
3.4, and E½m2
 is bounded by Lemmata 3.1 and 3.2. Therefore, the second term on
the right-hand side of Eq. (A.20) converges to zero in first absolute moment, hence in

probability. Now consider the third and last term. Since d2 	 d2 converges to zero in
probability by Lemma 3.3, and since d2 is bounded away from zero, d	2 	 d	2

converges to zero in probability. Furthermore, m and b2 are bounded in probability
by Lemmata 3.1, 3.2, and 3.4. Therefore, the third term on the right-hand side of
Eq. (A.20) converges to zero in probability. It implies that the left-hand side of
Eq. (A.20) converges to zero in probability. Remember that, in the proof of Lemma

3.1, we have shown that d2pð1þ K1Þ
ffiffiffiffiffiffi
K2

p
: For any e40; we have:

Pr
b2

d2
mX

b2

d2
m	 e

� �
-1;

Pr lminðS�ÞXb2

d2
m	 e

� �
-1;

Pr lminðS�ÞX b2

ð1þ K1Þ
ffiffiffiffiffiffi
K2

p 	 e
� �

-1;

Pr lminðS�ÞX
1
2
	 2e

ð1þ K1Þ
ffiffiffiffiffiffi
K2

p 	 e
� �

-1:

There exists a particular value of e40 that yields

Pr lminðS�ÞX 1

4ð1þ K1Þ
ffiffiffiffiffiffi
K2

p
� �

-1:

Bringing together the results obtained in the cases cp1=2 and c41=2; we have

Pr lminðS�ÞXmin 1

2
1	

ffiffiffi
1

2

r !2
%
l;

1

4ð1þ K1Þ
ffiffiffiffiffiffi
K2

p

0
@

1
A

8<
:

9=
;-1: ðA:21Þ

Therefore, in the particular case where p=n converges to a limit, the smallest
eigenvalue of S� is bounded away from zero in probability. Again notice that the
bound in Eq. (A.21) does not depend on p=n: Therefore, by the same reasoning as for
the largest eigenvalue, it implies that the smallest eigenvalue of S� is bounded away
from zero in probability, even in the general case where p=n need not have a limit.
Bringing together the results obtained for the largest and the smallest eigenvalue, the
condition number of S� is bounded in probability. &
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