

LEARNING GAMES FOR PROGRAMMING

A MASTER THESIS
	

	

by	

Henrike	
 Lode	

Giuseppe	
 Enrico	
 Franchi	

Niels	
 Gamsgaard	
 Frederiksen	

	

	

	

Supervisors:	
 Prof.	
 Rilla	
 Khaled	
 and	
 Pippin	
 James	
 Barr	

	

A	
 Thesis	
 Submitted	
 in	

Partial	
 Fulfillment	
 of	
 the	

Requirements	
 for	
 the	
 Degree	
 of	

	

Master	
 of	
 Science	
 of	

Media	
 Technology	
 and	
 Games	

at	
 IT	
 University	
 Copenhagen,	
 September	
 2012	

	

ACKNOWLEDGMENTS
	

	

	

	

	

We	
 would	
 like	
 to	
 thank	

Samatha	
 Fern	
 and	
 Kristian	
 Jespersen	

from	
 Copenhagen	
 International	
 School	

for	
 enabling	
 tests	
 with	
 our	
 target	
 audience	

and	

Peter	
 Blanchfield,	
 James	
 Paul	
 Gee,	
 Peter	
 Mozelius,	
 Ole	
 Pedersen,	
 	

Ilse	
 Schmiedecke	
 and	
 Thomas	
 Wernbacher	

for	
 their	
 feedback	
 on	
 our	
 game	
 Machineers	

and	

Café	
 Analog	
 for	
 the	
 coffee	
 and	
 the	
 comfy	
 sofas.	

Learning Games for Programming

Page 1

ABSTRACT

Many scholars, talking about both educational games and general educational practice, argue

that principles such as ‘agency’, ‘immersion’, ‘intrinsic motivation’ and ‘fantasy’ are paramount

for the pupils to actively engage with the learning activity. Games have the power of stripping

the pressure coming from judgement, evaluation, intra-classroom comparison and competition,

creating a safe environment where the principles mentioned above can enable the player to

undergo a deep and valuable learning experience. And yet, educational games often fall short

when it comes to apply those principles and engage their players.

Especially learning games that teach programming often lack immersive settings, are weak in

terms of compelling game-play and sometimes even require prior knowledge of syntax or coding.

The more that computers and programming have become a part of everyday life, the more a

profound literacy in computer science has become necessary and therefore it should be

introduced at an early age, using suitable visual metaphors and providing adequate intrinsic

motivation.

In this thesis we present the design and evaluation of a learning game based on the concept of

‘stealth learning’ and the theory of constructivism, which provides an early introduction to basic

programming concepts and procedural literacy to children from 10 years upwards, attempting to

provide the highest possible degree of immersion. The evaluation involves a number of tests

verifying usability, immersion and motivation, and an attempt to test the transferability of the in-

game acquired knowledge to reading pseudocode, the results of which, triggered further

reflection on the possibility of adding new layers of complexity and embedding evaluation of

learning within the game experience.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 2

Content

1 Introduction ... 5

1.1 Research Question(s).. 5

1.2 Motivations for this work ... 6

1.3 Synopsis ... 8

2 Background .. 10

2.1 Previous research.. 10

2.1.1 Three Generations of Learning Games ... 10

2.1.2 Further research on learning games .. 12

2.1.3 Programming-teaching tools ... 14

2.2 Constructivist learning and scaffolding.. 17

2.3 Experiential Learning ... 20

2.4 Procedural Literacy .. 20

2.5 Design Principles.. 23

2.5.1 Agency .. 23

2.5.2 Immersion .. 25

2.5.3 Narrative/Fantasy ... 26

2.5.4 Intrinsic Motivation ... 26

2.5.5 Visual Stimuli .. 28

2.5.6 Clear Goals ... 29

2.5.7 Community ... 30

2.6 Design Challenges .. 31

2.6.1 Paradox of deep learning .. 31

2.6.2 Informal Learning Context ... 32

2.6.3 Constraints .. 33

2.7 Summary .. 35

3 Design .. 36

3.1 Game Genre.. 36

3.2 Setting and Narrative .. 37

Learning Games for Programming

Page 3

3.3 Play agency .. 39

3.4 Positive feedback.. 40

3.5 First design iteration ... 42

3.6 Puzzle elements and concept mapping ... 44

3.6.1 User Input - Value ... 44

3.6.2 User Input - Do While... 45

3.6.3 RobOmeter: Case Switch .. 46

3.6.4 Method Call - With Parameter: gearOmeter ... 48

3.6.5 Method Call - Without Parameter ... 50

3.6.6 For Loop.. 52

3.6.7 Sequence / Loop .. 52

3.6.8 Synchronization .. 53

3.7 Puzzles and learning curve ... 54

3.7.1 Zima, the Owl Puzzle .. 55

3.7.2 The DJ Machine .. 56

3.7.3 Lorry, the Bar Puzzle .. 57

3.7.4 Ivan, the Cart Puzzle ... 58

3.7.5 Ruby, the Crane Puzzle ... 60

3.8 Scaffolds ... 62

3.9 User Interface ... 66

3.9.1 Adventure mode .. 66

3.9.2 Puzzle mode .. 66

3.9 Summary .. 67

4 Usability Test ... 69

4.1 Preparation ... 69

4.2 Navigation .. 70

4.3 Interface .. 70

4.4 Puzzle Elements ... 72

4.5 Help Options and Feedback ... 73

4.6 General User Feedback .. 74

4.7 Conclusion .. 75

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 4

5 Preliminary Test with Target Audience... 76

5.1 Preparation ... 76

5.2 Navigation .. 77

5.3 Interface .. 77

5.4 Dialogues and Rewards .. 78

5.5 Interaction with Puzzle Elements ... 78

5.6 Conclusion .. 79

6 Final Test with Target Audience ... 80

6.1 Preparation ... 80

6.2 Metrics .. 81

6.3 Questionnaire ... 81

6.4 Programming Test .. 81

6.5 Results .. 87

6.5.1 General results .. 87

6.5.2 Immersion-Related Results ... 90

6.5.3 Usability and Scaffolds ... 94

6.5.4 Programming Test Results .. 100

6.5.5 Interesting Player Profiles ... 101

6.6 Reflection ... 102

7 CONCLUSION ... 106

7.1 Future Work ... 106

7.2 Conclusion .. 107

BIBLIOGRAPHY ... 109

Learning Games for Programming

Page 5

1 Introduction

1.1 Research Question(s)

The low production quality in edutainment titles compared to commercial video games as well as

the less engaging gameplay has lead to a general public aversion to the term ‘edutainment’ and a

negative mindset during play which possibly affects the learning experience and results in a

resistance to pretests and posttests (Egenfeldt-Nielsen 2007, Honey & Hilton 2011). It seems like

many children, who have experienced disappointments in the classroom develop a negative

attitude towards learning in general and dismiss learning games as a ‘trick’ to fool them into

enjoying something they know for a fact is not fun (Honey & Hilton 2011). On the other hand,

concealing the learning purpose of the game can hinder the learning experience and the

transformation of spontaneous concepts into scientific concepts (Papert 1998, Egenfeldt-Nielsen

2007).

Can we create a positive mindset for the learner and provide a base for experiential

learning, if we present a learning game that does not advertise its purpose and is not

distinguishable from commercial games in terms of gameplay and visual quality?

After some initial attempts in the 80s, there is still only marginal teaching of computer literacy

and programming in schools. Specifically, there are only a few learning games teaching

programming, none of which are free from shortcomings in the gameplay design. Not only is it

important for children to achieve a proficient literacy in reading, writing, math and natural

sciences, but considering the increasing use of computers and programming in different

professions, it is vital for them to develop procedural literacy, “the ability to read and write

processes, to engage procedural representation and aesthetics, to understand the interplay

between the culturally-embedded practices of human meaning-making and technically-mediated

processes” (Mateas 2005, p.1) as early as possible.

This project is aimed at identifying and practically applying a series of design principles

relevant to our case, then analyzing the process of children dealing with procedures in an

immersive and engaging learning environment created for this specific purpose.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 6

1.2 Motivations for this work

The lack of experience-based learning is evident in the educational system when we

consider history, geography, citizenship or religion. We are not actually basing the

learning in school on concrete experiences with a given topic, but are primarily relying

on students reading or hearing about topics mostly represented by abstract information

and concepts with little connection to an actual experience base. This is not a criticism of

reading or hearing, as these are strong teaching tools, but rather a challenge of the

balance between these and other approaches in education. The educational system seems

to entertain the fantasy that we can skip the concrete experiences altogether. (Egenfeldt-

Nielsen 2007, p.94-95)

Learning games are generally unhesitating about their purpose, which makes them easy to

advertise to parents and schools, but not necessarily to children, the intended target audience. As

we will further explain in section 2.5.6 Clear Goals, attaining game goals is a tangible need for

children when they are engaged with them, while receiving verbal and out-of-context

information when learning about abstract topics is seen as something with little impact on their

life, and therefore not really relevant. If the learning content is not carefully woven into the

design of a learning game, the tangible need of playing the game might be overshadowed by the

feeling of practicing some abstract and irrelevant skill in just a different form. For these reasons,

our learning content is not explicitly presented to the player, but embedded in the game

challenge.

Investing into a positive mindset by enabling the player to immerse themselves into a game

world gives educational games the potential to overcome many great learning obstacles. We

assume that players are more likely to engage themselves deeply with the learning content if they

can chose the learning pace which they are most comfortable with without being compared to

their classmates or being observed and possibly evaluated by their teachers.

Defending and resisting learning may be as much social as it is cognitive; children who

see themselves as failing may “drop out” of the enterprise because they no longer see

themselves as members of the class or group. Whether they are sidelined by themselves

or by others the result may be a complete unwillingness to try. (Olson 2007, p.41)

Learning Games for Programming

Page 7

Following the line of thought that attempting to measure and compare learning outcomes of their

students restrains the learning process, we steer away from the traditional school approach. In

order to create fertile ground for learning, the learners must first and foremost immerse

themselves in a playful and secure learning environment, build up self-esteem and a sense of

accomplishment and start perceiving themselves as empowered learners. To accomplish this

within our project we want to use the stealth learning approach, which means that we attempt to

engage the learner in a puzzle adventure game world to establish intrinsic motivation and absorb

the players attention so much, they would almost not realize that they are learning. We anticipate

that once the player has the right motivation and a real purpose for applying their knowledge,

they will understand the need to learn the content, so the learning purpose can be slowly revealed

in order to enable transferability of knowledge. This way we would integrate stealth learning

with experience-based learning.

Commercial games are good at delivering a learning experience in a limited time period that is

individualized by each player (Papert 1998). It is important that not only regular gamers are

taken into account as potential players, but also people who never play videogames at all and

who might need more confirmation and help. Learning games need to work for every player type

to be used successfully in a classroom or as a tool designed to help children on their own. It is

important to make sure that girls feel comfortable playing the game as well as boys.

Learning is related to self-esteem and personal interests in a way that children avoid possible

situations of failure as it lowers their self-esteem and refrain from engaging with content they

have no personal relation to or interest in. But failure is a part of learning - it shows the learner

the flaws in their mental model and helps them to adjust it. Learners must “experience success

and failure not as reward and punishment, but as information” (Bruner 2006, p.62). Failing

helps us to fully understand how something works in its specific way, therefore learning games

need to present failures as a learning opportunity without judgment, punishment, or other

negative attributes. Carefully balancing game challenges and rewards is an important part of this.

If a game is not challenging enough, the players will not experience a feeling of great

achievement which could potentially feed intrinsic motivation; on the other hand, if the game is

too hard there is a chance players can get stuck, experiencing personal failure and eventually

leave a game with a deteriorated self-image and confidence.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 8

We chose to use programming concepts as inspiration for our game-design to show that any

subject, no matter how abstract, can be integrated into good game design and engaging gameplay

suitable for any player type without placing initial barriers (e.g. prior knowledge to play). Most

people start to learn programming in college and experience it as a very tedious and time-

consuming process. But learning how to program simultaneously teaches how to learn, how

one’s thought processes work and how they differ from computers, and to embrace failure as

means to deeper understanding. The world we live in relies to a large extent on the use of

computers, and virtually all professions of higher education involve computer technology and

programming to a certain degree. Considering the great impact computer technology has on our

daily lives, procedural literacy needs to be introduced to students as early as possible.

The product we create is aimed to demonstrate how good game design can constitute a beneficial

“preparation for future learning” (Bransford & Schwartz, 2001). With this project we also want

to establish an appropriate balance for a broad audience by providing the players with a selection

of on-demand scaffolds in order to cater for the more ambitious player, who might try to solve

problems without accessing any help options, while more cautious and self-aware players will be

guided as closely as possible, to avoid game-stopping experiences.

1.3 Synopsis

The contents of this thesis are presented in three parts: the theoretic background to this project,

the design of a learning game that combines good game design principles with learning content,

and in the third part the test and evaluation of this learning game.

The theoretic chapter focuses on existing literature. In the first part we cover general research

about educational games and existing programming-teaching tools. We outline the foundations

of constructivism and scaffolding, then we proceed exposing what procedural literacy is and why

it is relevant in modern education. We proceed outlining a number of prominent design

principles that emerge from play theory, as well as how we can use play theory to understand

how these principles can facilitate the learning process.

The next chapter discusses in detail how we used the learning principles described in the first

part to design an educational computer game, its scaffolds and intended learning curve, as well

Learning Games for Programming

Page 9

as how we use high qualitative graphics and an enthralling storyline to provide a proper level of

immersion and motivation.

The third part describes in detail how we planned and conducted tests to evaluate our learning

game, discusses how some design features needed to be adjusted to improve usability and

immersion, and concludes with a thorough evaluation of successes and failures of our approach.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 10

2 Background

2.1 Previous research

This chapter deals with previous work concerning learning games, learning theories in general as

well as procedural literacy and game design principles that can affect the learning experience in

educational titles.

2.1.1 Three Generations of Learning Games

Egenfeldt-Nielsen (2007) is the father of the three generations of educational computer games

model, which we will use as a base to start the discussion. The first generation mainly involves

drill-and-practice games that use a behaviorist approach to condition the player, while the second

generation games enhance the motivation of the learner by incorporating player attention, focus,

curiosity and fantasy. They require the player to develop deeper understanding in accordance

with the cognitivist approach. Egenfeldt-Nielsen presents then a third generation of instructional

games, which are based on a constructivist approach, meaning the player creates knowledge

through experiences and interaction with social communities.

The construction of knowledge, as meaningful through orientation in a social context,

becomes paramount in the third generation. Instead of conceiving content, skills and

attitudes as residing within the user, knowledge is transferred to culture, tools and

communities. [...] One learns new things by participating in these communities,

appreciating and negotiating what counts as knowledge, skills and attitudes. (Egenfeldt-

Nielsen 2007, p.88)

In ‘Overview of research on the educational use of computer games’ (2006), Egenfeldt-Nielsen

analyzes edutainment titles based on a behaviorist approach, usually using a drill-and-practice

approach and relying on extrinsic rewards. Discussing the game ‘Math Missions Grades 3-5: The

Amazing Arcade Adventure’ he demonstrates an example of this approach and its gap between

gameplay and educational content. In this game, players earn points for correctly answered math

questions which they can spend on playtime in an arcade. Egenfeldt-Nielsen grants success to

this approach e.g. for health games, talking about a study from Debra Lieberman that compared

enjoyment and learning outcome (everyday health management) after watching a 30-minute long

Learning Games for Programming

Page 11

video or playing a 30-minute video game about asthma and found that the testers learned the

same while enjoying the game more, therefore repeating it multiple times (Lieberman, 2001).

Still, these type of games are strongly criticized by children, parents, educators and researchers

for non-satisfactory gameplay, learning principles and graphics. The nature of drill-and-practice

games lead to mechanical memorization of content or actions, not to a deeper understanding or

transferable knowledge (Egenfeldt-Nielsen, 2006).

Educational games that use the cognitivist approach attempt to integrate learning and game

experience and therefore establish intrinsic motivation, which is a person’s self-motivation to

pursue a task for which no external reward is necessarily granted. For the cognitivist approach it

is important to present the learning content in different ways, while considering limitations and

potentials of the human mind by providing multiple meaningful contextualized activities,

visualization, manipulation, feedback, etc. Cognitivism focuses more on learned skills than

content, as well as on meta-skills like problem-solving which have received much attention from

researchers. Egenfeldt-Nielsen argues that transfer of these skills to other areas then computer

games is difficult. Studies from a cognitivist perspective are limited, but the math teaching

games Super Tangrams and Phoenix have been proven very effective in motivating and teaching

math to students (Egenfeldt-Nielsen 2006).

The constructionist approach to teaching has been brought forward by Seymour Papert, building

up on Jean Piaget’s constructivism, as demonstrated by the programming language Logo

(Feurzeig & Papert 1967), which is used to enable students to computer-generate drawings using

mathematical concepts. For constructionism it is important that the learner actively creates

knowledge using external artifacts. Educational games using the constructivist approach are

commonly called microworlds and constitute open-ended universes or sandboxes, more

simulations than games. Through manipulation of and interaction with objects, the learner

discovers their properties, connections and applications. The focus lies again not so much on

content, as on skills like problem-solving, critical-thinking, sequential planning and creativity.

Rather than transfer, educational games should focus on helping the player to engage with

material, talk and think about it. Constructivism ultimately aims to turn the learners into creators

of content by enabling them to e.g. design games and thus, acquire knowledge about math and

programming (Egenfeldt-Nielsen, 2006). The need to integrate the learning content into the

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 12

world makes it impossible to use a universal design formula, but instead learning games

following this approach have to be designed anew for every topic.

The socio-cultural approach relies on the Vygotskian concept of proximal development which

will be explained in more details in a later section. In the “proximal development” metaphor, the

learner is guided “from an actual point of development to a potential point of development”

(Egenfeldt-Nielsen 2006, p.199), thus focusing on the activity and on “the possibility for the

player to invest something of himself in the game” (Egenfeldt-Nielsen 2006, p.200). The

learning goal should be reached by exploration of relationships between objects. Scholars

recognize the power of constructivist and experience-based approaches applied to learning

games: for example Gee (2005c, p.14) when arguing that humans “think through experiences

they have had and imaginative reconstructions of experience”. Games are tools for constructing

experiences, as “video games are interesting not for their content but for the way new

explorations initiate negotiations, constructions, and journeys into knowledge” (Egenfeldt-

Nielsen 2006, p.200).

2.1.2 Further research on learning games

In ‘Learning Science Through Computer Games and Simulations’ (Honey & Hilton, 2011) the

National Research Council presents a review of the research work on educational games and

simulations. The report identifies a number of goals and design features that influence science

learning and need to be considered when creating computer games teaching science topics.

Motivation of players is mostly based on identity, play, immersion, social relationships, and a

strong narrative. To date there is little research concerned with the question if computer games

actually can affect the players ability to lead scientific discourse, but it indicates that when

proper scaffolds are provided, they are well suited for enabling players to engage in serious

argumentations and reasoning, and to understand and use scientific terminology correctly.

Further research claims that computer games can even provide a new identity for players with

low self-efficacy in terms of science skills which alters their mindset in a way that enables

deeper engagement and motivation (Barab & Dede, 2007). This is consistent with Gee’s concept

of identity and authentic professionalism (Gee, 2005b). However, there is no proof that this

identification with a scientific professional persists for a longer time.

Learning Games for Programming

Page 13

As a general critique on existing research about computer games, Honey and Hilton state that it

is mostly insufficient, as it often has not been conducted very systematically. Frequent and

significant changes in technology and platforms lead to games and simulations changing fast,

making it hard to establish a shared research approach. Also the context is not always clear -

what is unique about that game, how does it contribute to the learning process, is it designed for

a home or school setting? Studies hardly ever inquire about prior knowledge of the testers and

experiences with computer games, the tested groups often have little diversity, so results cannot

be generalized. Studies show a wide range of focus, methods and theoretical learning

perspectives, that they are based on. There is no ground for a coherent base of research across

studies and over time. Egenfeldt-Nielsen also strongly criticized basically all of the studies he

analyzed for a lack of proper test methods (e.g. some studies tried to compare 40 minutes of

teaching to 20 minutes of gameplay) and not basing their studies on sufficient prior research,

thus constantly “re-inventing the wheel”.

In ‘Does Easy Do It? Children, Games and Learning’ Seymour Papert (1998) argues that

edutainment titles often replace the positive features of games with the negative ones of

traditional schooling, resulting in a product which convinces maybe parents and teachers, but not

the children whose learning experience is supposed to be ‘easier’ through playing those titles.

His point is that the term ‘easy’ is never a good selling point for games, as the challenge is what

makes them fun. He further argues that such an approach is immoral, “to trick children into

learning and doing math when they think they are just playing an innocent game” (Papert 1998,

p.2), as well as contradicting, because their learning experience would be much more effective if

they were aware of the hidden agenda. As mentioned by Simon Egenfeldt-Nielsen, a conflict

arises here between a predetermined mindset that might interfere with the receptiveness of the

learner and the transferability of learned content (Egenfeldt-Nielsen, 2007). To circumvent both

problems, we suggest to keep the learning purpose of the game hidden until the intrinsic

motivation of the player is strong enough to value the learning content, as the learner then has a

useful application for their knowledge available. By slowly revealing the learning content

embedded, the risk of losing players who are biased against learning games can be reduced.

Papert’s message to learning game developers is “forget about making games to teach children

multiplication or spelling or any of those old-fashioned basic skills. The really basic skill today is

the skill of learning, and the best use of games is to leverage their tendency to enhance it.”

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 14

(Papert 1998, p.2). He further recommends to debrief children after game experiences and

engage them in conversations about learning as much as possible, as well as turn them into game

designers themselves, and advises game designers to empower children as independent learners.

2.1.3 Programming-teaching tools

The Logo programming language (Feurzeig & Papert, 1967) is considered the first real attempt

at teaching computer programming to a young audience. Children would use Logo to draw

shapes by programming a cursor to move around on a display leaving a trail wherever it went.

This cursor was referred to as the ‘turtle’, and would later be implemented as a physical robot,

drawing lines on the floor. Being able to see exactly how the turtle behaved made it easy for

children to debug their program and they could easily verify their code visually. Logo also

encourages users to think procedurally since many shapes require multiple executions of the

same lines of code. For example drawing a pentagram would require the turtle to go forward a

set amount and turn 144 degrees five times.

Image 2.1 and 2.2 - The Logo turtle graphics and its implementation as a robot.

Even though Logo syntax is not case-sensitive it still requires the user to learn the correct syntax

in order to begin programming. Later, games like Scratch (Lifelong Kindergarten Group, 2006)

and Alice (Carnegie Mellon University, 1999) have taken what is good about Logo but have

Learning Games for Programming

Page 15

exchanged the writing of code with a drag and drop visual programming language, thereby

eliminating the need for understanding syntax.

Image 2.3- Scratch visual programming

The toy company Lego also created a line called Lego Mindstorms (The LEGO Group, 1998)

named after the book “Mindstorms: Children, Computers, and Powerful Ideas” by Seymour

Papert. With Lego Mindstorms children can build robots out of lego and then program them on a

computer much like the old Logo robots, but Mindstorms uses a visual programming language

similar to that of Alice and Scratch.

Image 2.4 - The Lego Mindstorms visual programming

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 16

Even though Lego Mindstorms, Scratch and Alice are good tools for teaching programming to

children, we cannot really call them games. They do not have a specific goal and they act more

like an environment for the children to play around in.

Lightbot (Armor Games, 2008) is a puzzle game that takes the drag and drop programming

concept and puts it in a game with specific goals. In this game the player has to direct a robot

through a series of levels using a limited set of commands. The player drags a series of

commands into the main method and starts the program, and the robot then executes these

commands in the order they were placed.

As the player progresses in the game, new commands become available, and eventually the

player also gets the ability to define and call up to two functions. The player defines what the

functions do, but since the main method can only hold a finite number of commands the player is

forced to think of ways to place repeating series of commands into functions to save space in the

main method. In the sequel Lightbot 2.0 (Armor Games, 2010) they added a feature showing

where, in the series of commands, the robot is currently at which helps a lot in understanding

flow control. Lightbot 2.0 also introduces concepts like recursion and conditionals.

Joe Rheaume talks about LightBot in his article: “Light Bot: Learning Objectives and Game

Elements” where he claims that LightBot is does a good job at teaching programming because

“Learning should come from the game elements themselves” (Rheaume 2009) and this is exactly

what LightBot does. The game seems to have received little attention from scholars.

Learning games for programming keep evolving and a new game called Code Hero is currently

under development by Primer Labs. Code Hero will be a first person shooter in which the player

has to navigate and manipulate the game world using code. Equipped with a “code gun”, the

player can write the code that the gun will apply to the objects it hits, manipulating them in

funny and creative ways. The learning potential is still unknown since the game is currently

under development but it is interesting to see new and innovative approaches to the genre.

Learning Games for Programming

Page 17

2.2 Constructivist learning and scaffolding

Pedagogy must be oriented not to the yesterday, but to the tomorrow of the child’s

development. Only then can it call to life in the process of education those processes of

development which now lie in the zone of proximal development (Vygotsky 1993, p.251-

252).

Developed from Jean Piaget’s model of intellectual development, the constructivist approach to

learning assumes that the nature of knowing relies in adapting received knowledge with

experience. In a process that is active rather than passive, learners adapt their inner mental

models to accommodate new informations received, constructing their own inner knowledge

(Bodner 1986). Heavily influenced by Piaget, Jerome Bruner, a founder of Constructivism,

clearly states that “a principal task of intellect is in the construction of explanatory models for

the ordering of experience” (Bruner 2006, p.113). Olson summarizes Bruner’s view in saying

that “knowledge and intelligence are indistinguishable. Intelligence is not thought of as an

inborn talent but rather as a description of an educated mind” (Olson 2007, p.35). Acquiring

new structures allows for a better basis for understanding and therefore learning new concepts, in

a virtuous circle. Knowledge is more viewed as process rather than content.

Born in 1896, the same year as Jean Piaget, Lev Vygotsky’s interest was focused around the

social system in which learning takes place and how it influences the learning process (Daniels,

2001), but he was also an influential constructivist and the creator of the metaphor of the Zone of

Proximal Development (ZPD).

The ZPD is one of the most fascinating and renowned concepts of constructivist learning, “often

cited as Vygotsky’s most profound contribution to educational debate” (Daniels 2001, p.56).

Such a metaphor represents the distance between the set of tasks the learner is able to handle

alone and the ones they cannot complete by themselves yet, but which are just within reach if

supported by a tutor. As defined by the author, the ZPD is the “actual developmental level as

determined by independent problem solving and the higher level of potential development as

determined through problem solving under adult guidance or in collaboration with more capable

peers” (Vygotsky 1978, p.33).

This concept, as later explained by the author, implies that ”instruction is only useful when it

moves ahead of development. When it does, it impels or wakens a whole series of functions that

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 18

are in a stage of maturation lying in the zone of proximal development” (qtd. in Daniels 2001,

p.58). It is only when learners get instructed in something they are not yet capable of mastering

on their own that their skills mature and potential knowledge becomes actual knowledge: in

order to develop skills, learners tackle tasks that are beyond their current capabilities (Verenikina

2003).

One of the most important roles of the teacher, according to Vygotsky, is therefore to support the

learners in their problem-solving tasks. A major pedagogical implication of this concept is that

the focus of the educational effort and assessment should be placed on the potential level rather

than the actual level of performance (Daniels, 2001). The concept of an expert - an adult or a

more capable peer - guiding an apprentice into mastering new skills will be the foundation of

Bruner’s theory of scaffolding. Vygotsky was more interested in “assessing the ways in which

learners make progress” (Daniels 2001, p.58) rather than providing precise guidelines about how

to help learners achieve such a result.

Simon Egenfeldt-Nielsen contributes in explaining constructivist learning process in more detail

by mentioning Vygotsky’s differentiation between scientific concepts and spontaneous concepts.

These two terms refer to “concepts learned through education and concept that emerge more

spontaneously in any setting” (Egenfeldt-Nielsen 2007, p.100). “Spontaneous concepts”, in fact,

defines concepts that form “from the bottom-up, the spontaneous ordering of experience”, while

“scientific concepts make the student capable of higher mental functioning and are characterized

by being systematic, general, abstract and organized” (Egenfeldt-Nielsen 2007, p.100). When

marking the difference between spontaneous and scientific concepts, Egenfeldt-Nielsen stresses

how there is no difference in relevance between the two, and how Vygotsky found “scientific

concepts to be ahead of spontaneous concepts if instruction is appropriately based on an

experience base” (Egenfeldt-Nielsen 2007, p.100). In this sense, the effort of the teacher

following the constructivist approach is to facilitate the transformation, and avoid forcing the

mere scientific facts upon the students:

With no experience base to build the scientific concepts, students will merely learn

‘parrot-like repetition’. [...] The important point is that it is not hard to teach a student

the word mercantilism or to give some rudimentary understanding of it relating to trade.

Learning Games for Programming

Page 19

However, the underlying concept and, in particular, the transfer to other situations

becomes hard. (Egenfeldt-Nielsen 2007, p.100)

The assistance to be given in relation with Vygotsky’s concept of ZPD was labeled scaffolding

by Jerome Bruner. As in the construction of a building a scaffold is an external support that

allows a structure to be raised or improved, an instructional scaffold is defined as follows:

Scaffolding consists essentially of the adult "controlling" those elements of the task that

are initially beyond the learner's capacity, thus permitting him to concentrate upon and

complete only those elements that are within his range of competence. (Wood et al. 1976,

p.90)

Guidelines for the scaffolding process are then outlined. Recruitment is introducing the task and

getting the learner interested in it. Reduction in degrees of freedom is defined as “simplifying the

task by reducing the number of constituent acts required to reach solution” (Wood et al. 1976,

p.98). It is important to underline how this does not imply simplifying the task as a whole.

Rather, a scaffold allows the learner to initially have a smaller subset of tasks to focus upon, that

can be autonomously solved (Daniels, 2001). The adult provides flexible support, and control has

to be gradually passed on to the learner when making progress. Direction maintenance, keeping

the learner on track, both keeping the learner focused towards the goal and providing

motivational support. Marking critical features helps the learner identifying the crucial points of

the task, while frustration control keeps motivation high, but with the necessary precaution of

avoiding the learner to depend too much on the instructor. Finally, the last principle is

demonstration, which is modelling and presenting a task’s solution.

The scaffolding technique applied to computer-based learning environment has received an

increasing amount of attention from scholars and researchers in the last decade (Azevedo &

Hadwin 2005). Providing external scaffolding is listed amongst the design features that influence

learning in Honey and Hilton (2011), given that clear learning goals are outlined. Identifying

clear learning goals is in fact the prime condition for applying good scaffolding techniques, as

reinforced by Gee (2005a) when calling for well-ordered problems instead of giving complete

freedom to explore a broader problem space. A good learning game will not leave the player

unguided in their exploration of the game but present them with well-ordered problems so they

are optimally scaffolded during their learning experience. Help options in a learning game should

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 20

be provided just-in time (when the player can understand and use it) and on-demand (when they

want it). Keeping in mind the constructivist approach, Gee also calls for meaningful scaffolds,

warning about providing support in the form of ‘words for words’. Describing a concept and its

implications in mere words leads to a poor understanding if the learner cannot connect them to

their experiences. Good video games explain terminology with images, actions and provide a

context for situated meaning, which is explaining what a concept stands for and implies by

placing it in a meaningful situation.

2.3 Experiential Learning

Experiential learning focuses more on the process and feedback than the outcome of learning.

“In its simplest form, experiential learning means learning from experience or learning by

doing.” (Lewis & Williams 1994, p.5). Learners are encouraged to immerse themselves in an

experience, then develop new skills by reflecting on the process.

Kolb defines learning as “the process whereby knowledge is created through the transformation

of experience” (Kolb 1984, p.38) and shapes a four-stages model called the ‘experiential

learning model’. Such model starts from the concrete experience and continues with observation

and reflection, abstract conceptualization, and active experimentation of the new concept in new

situations. “This in turn leads to another set of concrete experiences and another round of

learning at a more sophisticated level” (Lewis & Williams 1994, p.6).

In this context, educational games can offer experiences for subjects which usually do not allow

for experiential learning in school settings, such as history, geography or religion, where learning

activities are mostly passive and involve reading or hearing.

2.4 Procedural Literacy

Michael Mateas defines procedural literacy as “the ability to read and write processes, to engage

procedural representation and aesthetics, to understand the interplay between the culturally-

embedded practices of human meaning-making and technically-mediated processes.” (Mateas

2005, p.1). Ian Bogost suggests that “procedural literacy entails the ability to reconfigure basic

concepts and rules to understand and solve problems, not just on the computer, but in general”

(Bogost 2005, p.32).

Learning Games for Programming

Page 21

Learning how computers read and execute code and thinking in terms of procedures are

becoming important skills for more and more people as computers are continually being

introduced into professional workflows. Today we use a wide range of technologies in our

everyday lives and if we want to be comfortable with them and use them in an optimal way, then

we have to become procedurally literate. Unfortunately the education of procedural literacy is

not keeping up with this constantly increasing demand for procedurally literate people and

Mateas has argued that we should start teaching procedural literacy as a mandatory part of the

curriculum earlier in the educational process and as a part of all higher education. Mateas

suggests that: “To achieve a broader and more profound procedural literacy will require

developing an extended curriculum that starts in elementary school and continues through

college” (Mateas 2005, p.14).

The term ‘procedural literacy’ comes from a presentation by B. A. Sheil at the Xerox Palo Alto

Research Center in 1980. Here Sheil talked about how beginners in programming have an easier

time understanding certain concepts of programming because the concepts have similar

properties to concepts they know from other aspects of life.

The beginning programming student brings a rich structure of semi-procedural

knowledge, based on previous experience with instructions, directions for getting places,

recipes, etc. which can be used as a basis for teaching procedural skills.” (Sheil 1980,

p.125)

Similarly Ian Bogost talks about how children's toys like Lego and Playmobil can also help teach

the basis of procedural literacy to children at a very young age.

[...] playing with Legos gives children exposure to procedural literacy. Lego bricks are a

bit like the “basic building blocks” Wise and Bauer relegate exclusively to the terrain of

language. Legos recombine in multiple multiples to create new, previously unpredictable

meaning. (Bogost 2005, p.35)

Both Sheil and Bogost seem to think that early exposure to procedural thinking can help a child

develop the groundwork for procedural literacy and improve their learning process when they get

older. In his paper “Procedural Literacy: Problem Solving with Programming, Systems, & Play”

Bogost looks at procedural literacy in a new light. Procedural literacy is not only the ability to

program a computer, but instead an essential set of skills that can be used to solve any logical

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 22

problem. Bogost compares it to the study of Latin which is encouraged in classical education

because of its strict set of rules which train the mind to think in a more structured and systematic

way. He also talks about how certain games can teach procedural literacy.

[some games] suggest that procedural literacy can be cultured not only through

authorship, such as learning to program, but also through the consumption or enactment

of procedural artifacts themselves. In other words, we can become procedurally literate

through play. (Bogost 2005, p.34-35)

Papert observed that children can have a very good understanding of the subject even when they

are lacking the proper vocabulary to express themselves, which is often superior to knowledge

learned at school (Papert 1998). Jerome Bruner as well believed that a topic can be approached

and learned by a student of any age. In a famous statement he talks about “Readiness for

Learning”, claiming that “any subject can be taught effectively in some intellectually honest form

to any child at any stage of development” (Bruner 1960, p.33), acknowledging this to be a bold

hypothesis, although “no evidence exists to contradict it”. There is no intrinsic difficulty in a

particular topic: specifically, Bruner argues that delaying the teaching of certain subjects seems

arbitrary and even incorrect: fundamental notions of Euclidean geometry or physics are

“perfectly accessible to children of seven to ten years of age” (Bruner 1960, p.33) given the

fundamental premise that “they are divorced from their mathematical expression and studied

through materials that the child can handle himself” (Bruner 1960, p.33). The teaching material

has to be based upon the learner’s experience; the right questions - what he calls “medium

questions”, need to be presented to the child. Intuitive understanding of the logical foundations

proper of a certain subject can to be established, or at least introduced before the body of

knowledge is presented to the learner. If we accept Bruner’s point of view, it is easy to see a

strong argument in promoting procedural literacy. The logical foundations of computer

programming can be introduced at an early age, given that the learning material is put in a form

that the learner can grasp.

Learning Games for Programming

Page 23

2.5 Design Principles

In this section we are going to outline some of the design principles for educational games we

found particularly relevant in our design approach.

2.5.1 Agency

James Paul Gee suggests that in order to create a basis for a good learning experience the players

have to connect with the character they are playing in a way that allows them to take on a new

identity in order to internalize the actions and achievements of their avatar. All actions and

terminology are situated in an “interactive relationship between the player and the world” (Gee,

2005a, p.5). The player should be encouraged to experiment and take risks without having to

face the severity of consequences those actions would have if they failed in the ‘real world’

(Gee, 2005a).

In ‘What would a state of the art instructional video game look like’, Gee (2005b) reinforces this

idea by explaining the term ‘authentic professionalism’ as a play experience where the learner is

able to connect to their virtual character in a manner that allows them to take on their identity

and internalize their skills, knowledge and values in order to understand and empathise with the

way they think, behave, and solve problems from their perspective as a professional.

With authentic professionalism, ‘knowing’ is not merely the mastery of facts; rather

knowing involves participation in the complex relationships between facts, skills, and

values in the service of performing a specific identity. Here, word and deed are united

and the knower is a knower of a specific kind - a type of active professional, not just a

generic recipient of knowledge. (Gee, 2005b)

Gee explains that games can give the player more realistic experiences than e.g. role-play

exercises within a school setting. For example the experience of campaigning to become a mayor

in an online multiplayer game world enables the player to realistically experience a powerful

identity. Furthermore, the player should be enabled to customize the game according to their

needs and preferred learning and playing styles. Being able to identify with their character and

having control of their actions creates a strong feeling of agency, which facilitates the learning

process (Gee, 2005b).

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 24

Video games based on the training of socially-valued practitioners let us begin to build

an educational system in which students learn to work (and thus think) as doctors,

lawyers, architects, engineers, journalists, and other important members of the

community - not in order to train for these pursuits in the traditional sense of vocational

education but rather because developing those epistemic frames provides students with

an opportunity to see the world in a variety of ways that are fundamentally grounded in

meaningful activity and well aligned with the core skills, habits, and understanding of a

postindustrial society. (qtd. in Gee 2005a, p.12)

Allowing the player of a video game to assume the role of a professional and to work on ‘real’

tasks, or tasks with relevance in the context of the game world, partly reflects the cognitive

apprenticeship approach. This approach is defined by Daniels as follows.

An instructional model informed by the social situation in which an apprentice might

work with a master craftsperson in traditional societies. [...] The cognitive

apprenticeship approach proposes that learners should engage in meaningful learning

and problem solving whilst working on authentic tasks. (Daniels 2001, p.116)

Obviously, playing an educational game cannot be considered equivalent to working with a

‘master craftsperson’. The lack of such a figure could be partially compensated with the presence

of a teacher and/or good automatic scaffolds, but the principle that game scholars tend to

emphasize is working on ‘authentic tasks’. In fact, this principle is also suggested in ‘Video

games and the future of learning’, where Shaffer (et al., 2005) talk about how computers games

can be used as a constructive force in schools, homes, and at work. A learning activity is most

effective when it is meaningful, experiential, social, and epistemological at the same time.

Games let players think, talk, and act in a rich virtual world in a way that lets them inhabit roles

which would otherwise not be accessible.

In virtual worlds, learners experience the concrete realities that words and symbols

describe. Through such experiences, across multiple contexts, learners can understand

complex concepts without losing the connection between abstract ideas and the real

problems they can be used to solve. (Shaffer et al. 2005, p.4)

The balancing between agency and learning content needs to be careful. In ‘Learning Science

Through Computer Games and Simulations’ it is stated that the optimal degree of user control is

Learning Games for Programming

Page 25

closely related to reaching intended learning goals. To some degree autonomy is engaging and

motivating, but if it is open-ended, learners tend be confused and overwhelmed by it, an effect

which is similar to Gee’s ‘deep learning paradox’ which will be explained later. A certain

amount of control and guidance through feedback during the play experience enhances learning

of sciences processes and science content. Navigating according to personal preferences leads to

higher cognitive outcome and positive attitudes (Honey & Hilton, 2011).

A strong feeling of control is often originated in a highly responsive environment, providing

many choices and effective feedback for the user (Malone & Lepper 1987, Egenfeldt-Nielsen

2007). This does not necessarily imply actually providing the highest possible degree of choice,

but giving players the feeling of choice by providing alternatives with tangible effects.

2.5.2 Immersion

We are going to talk about two factors that relate to immersion in computer games, both

important in captivating the imagination of players: flow and identification.

There is an established interest in Csikszentmihalyi’s theory of flow. According to

Csikszentmihalyi’s research, flow is a condition that comes in many forms.

Some people reported to Csikszentmihalyi that they reached flow through the rigors of

perfecting an assembly line work task, or through the immersive problem-solving of law

library research. Others say they achieved flow during the solitary exertion of rock

climbing or through the exacting vocation of surgery. [...] [Flow] is a feeling of being in

control of our actions, masters of our own fate. Although rare, when we achieve a state of

flow we are deeply exhilarated. Csikszentmihalyi refers to this phenomenon as an optimal

experience. (Salen & Zimmerman 2004, chapter 24)

Flow is a state of deep engagement in the activity that brings a sense of achievement,

accomplishment, even a “greater sense of self” (Salen & Zimmerman, 2004). In order to provide

the most motivating mindset that would help players reach this state, a game needs to offer the

player clear goals, fast feedback, a sense of control and concrete possibility of completing the

task at hand. Concentration, an altered sense of time and disappearing self-awareness are also

conditions for reaching the state of flow (Egenfeldt-Nielsen, 2007). A good balance of challenge

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 26

and frustration, so that the game will be a pleasantly frustrating experience, is paramount for

reaching this state of deep engagement (Gee, 2005a).

Gee also argues that identification with a virtual character is beneficial for immersion in games

for learning (Gee 2005a). This does not mean that players need to directly and completely

identify with their avatar, becoming the in-game character. Players are in fact “fully aware of the

character as an artificial construct” (Salen & Zimmerman, 2004), but nonetheless they can and

will use the character as a projection to access the gameworld and its narrative.

2.5.3 Narrative/Fantasy

In ‘Learning Science Through Computer Games and Simulations’ narrative or fantasy of a

computer game is considered extremely important, as it is the feature that determines how

engaging and immersive an experience is. The narrative provides often the mission, question or

problem that requires the learner to learn the content. On the other hand, there is a concern that

‘too much’ narrative will distract from learning content, because this makes it difficult to tell

fantasy and learning content apart. This means, the designers have to carefully balance context

and content (Honey & Hilton, 2011). If the learning content is properly integrated in the learning

game, virtually all of the fantasy should be part of the learning content.

Wilson (et al. 2009, p.13) indicate fantasy to be an attribute that removes “fear of real-life

consequences but also has the added benefit of making users feel immersed in the game”, while

Malone and Lepper believe that a fantasy environment, “one that evokes mental images of

physical or social situations not actually present” (Malone & Lepper 1987, p.240) contributes

greatly to the intrinsic motivation of the player. They differentiate between endogenous and

exogenous fantasies, whereas an exogenous fantasy is one-sidedly dependent on the performance

of the player, while the endogenous fantasy and player performance influence each other

likewise. Malone and Lepper suppose that the former is more interesting and more educational

than the latter.

2.5.4 Intrinsic Motivation

Bruner is an advocate for intrinsic motivation: love for learning must be “based as much as

possible upon the arousal of interest in what there is to be learned” (Bruner 1960, p.80).

Teachers are also responsible for keeping such interest “broad and diverse in expression”

Learning Games for Programming

Page 27

(Bruner 1960, p.80). The importance of intrinsic motivation when facing an intellectual

challenge is emphasized by many other scholars (Egenfeldt-Nielsen 2007, Gee 2005a, Malone

1980). Sedighian and Sedighian (1996) argue that intrinsic motivation is best achieved when the

task has some relevance for the child. Abstract topics such as mathematics and procedural

literacy have almost no impact on the child’s everyday life: they are not perceived as something

having any useful application in the short term. Therefore the difficulty to encourage intrinsic

motivation: the task at hand has to be invested with some tangible importance for the child to

care about learning it. One way to achieve such a result is by “placing children in situations in

which learning mathematics becomes a tangible need”. (Sedighian & Sedighian 1996, p.2).

When playing well-designed CBMGs [Computer Based Mathematical Games] (i.e., ones

in which the mathematics is used as a continual and natural part of the game rather than

as incidental diversions from the main activity), children gradually develop the need to

learn the embedded mathematical content in order to satisfy their need to play the game.

(Sedighian & Sedighian 1996, p.2)

In ‘What makes things fun to learn?’ (Malone 1980) and ‘Making learning fun: A taxonomy of

intrinsic motivations for learning’ Malone and Lepper (1987) provide a framework intended to

enable designers of instructional computer games developing more engaging learning games

using ‘common-sense’ principles and a general taxonomy of ‘intrinsic motivation’. Interesting

challenges can be maintained by providing an appropriate level of difficulty through meaningful

short-term and long-term goals, gameplay with an uncertain outcome and encouraging

performance feedback (Malone 1980).

A good game should inspire the players curiosity by presenting complex and unknown

information in order to encourage exploration and organization, while maintaining a level of

familiarity that intrigues the player to make assumptions on what outcome their actions will

provoke (Egenfeldt-Nielsen 2007, Malone 1980).

Malone also underlines the difference between intrinsic and extrinsic motivation. Intrinsic

motivation is induced by the task itself, while extrinsic motivation comes from expectation of an

extrinsic reward, which can under certain circumstances contradict the former (Lepper et al.

1973). Educational games that are purely based on extrinsic motivation are assumed to be less

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 28

effective as they lead the player to focus more on the reward than to engage in the learning

activity itself.

Malone and Lepper pointed out that a long list of educational computer games has

extrinsic game elements which can get in the way of the learning experience. These

correspond to the heavily criticized edutainment titles, where there is no connection

between the computer game and the learning part. The game is mainly used as a reward

for doing some learning activity. (Egenfeldt-Nielsen 2007, p.60)

Egenfeldt-Nielsen criticises existing edutainment titles for failing to create intrinsically

motivating learning experiences because of a lacking connection between rewards and learning

content and therefore creating weak learning experiences like memorization of practices instead

of deep understanding of skills or content. On the other hand, the strong focus on making

educational games mainly a pleasant and fun experience might be counterproductive to the goal

of improving learning, as frustration is part of learning. A conflict arises between stealth learning

and transferability of knowledge - giving away the learning purpose might deter children from

playing the game with an open mind, while hiding it could results in inferior learning experience,

as the player is not aware of what they learned (Egenfeldt-Nielsen 2007).

2.5.5 Visual Stimuli

Following Honey and Hilton (2011), many studies are concerned with how different people

benefit from different visual stimuli (e.g. images compared to text; detailed/realistic compared to

stylized/abstract). General findings indicate that “idealized graphics enhance learning and

transfer when compared with highly realistic graphics.” (Honey & Hilton 2011, p.49).

Furthermore, the form of representation is connected to learning goals: “when designing

simulations, it is important that the salient features of the simulation are ones that will be most

productive in terms of the targeted learning goals” (Honey & Hilton 2011, p.49). This means

that features that are visually more prominent will catch the player’s focus resulting in a higher

chance that they will be learned.

A young audience is especially less prone to overlook the shortcomings of a game lacking in

visual and auditory stimuli: “any effort to introduce games designed for informal science

learning will have to compete with the production and marketing of commercial games for young

Learning Games for Programming

Page 29

people’s attention” (Honey & Hilton 2011, p.76). The principles of association through pleasure

and attraction argued by Sedighian and Sedighian (1996) justify the amount of work necessary

for the process of polishing visual and audio in an educational game. Children need sensorial

stimuli to associate the learning of a concept with a pleasant memory and to keep engagement

high.

At the initial stage of our research several of the computer games which we installed for

the children had minimal sensory stimuli. Many children were not particularly approving

of these games because they had no fancy graphics, their images were in black and white,

their animations were very simple, their sound effects were primitive, and they had no

background music. We have found that for children such sensory stimuli add to the fun of

playing the game and make the learning of mathematics more enjoyable and memorable.

(Sedighian & Sedighian 1996, p.6)

2.5.6 Clear Goals

In ‘Learning and Games’, Gee (2008) describes how experiences can be used to facilitate

learning. Experiences need to be structured in specific goals, so the learner can measure and

compare if and how well those goals were achieved. The experiences need to be interpreted by

relating the goals to the thought process that led to the actions taken to achieve them. Immediate

feedback helps the player to adjust their thought process and expectations, and should provide

encouraging alternatives to point the player in the right direction (Gee 2008).

The same conclusion is reached by Honey and Hilton (2011). As already mentioned both when

introducing the conditions for providing good scaffolding and for keeping players in flow, game

goals need to be clearly defined in the game design and clearly presented to the player.

Optimally, goals are defined before other design features and in accordance with the learning

objectives, while avoiding information that distracts or possibly misleads the player. Test results

show less progress when a game draws focus on other content than the intended learning goal

(Plass et al. 2009).

Another crucial feature in design that helps directing the learner towards the learning goals is

feedback. Graphical feedback with short explanations leads to better results than textual only.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 30

Explanatory feedback better contributes to the learning experience than only corrective feedback,

as it proves to evoke increased retention and transfer (Honey & Hilton 2011).

2.5.7 Community

One strong characteristic of gamers is that they commonly participate in big social gaming

communities, often from all over the world, which can be an advantage for the learning process.

As a matter of fact students can and should assume a more proactive role, searching for

information over the internet and getting in touch with classmates. Encouraging students to

interact and communicate with a broad social group sharing interests and questions, as an

example of the principle ‘effective social practices’ enables learners to help each other. In player

communities players share strategies, exchange files, collaborate, compete, advise each other,

etc. and thereby develop shared values (Shaffer et al. 2005).

In Honey and Hilton (2011) emerges the argument that in a classroom is often only the teacher

guiding and mentoring to the learners, while when using educational games, mentorship can be

distributed among other adults, family members, and peers. A study using the game Digital Zoo

found that “players who reported that the adult mentors (design advisors and clients) helped

them to think about their design or themselves and their job differently were significantly more

likely to demonstrate an increased understanding of the engineering frame” (Honey & Hilton

2011, p.73). Another advantage of distributed mentorship is the opportunity to differentiate roles

and expertise of different players: “Informal science learning contexts can support the co-

construction of learning goals between learners and designers” (Honey & Hilton 2011, p.74).

These games can cater for learners with different levels of prior knowledge and offer different

learning goals and roles in collective participation. Players evolve on their learning trajectory

from beginner to expert and can take on unique identities.

Malone and Lepper (1987) state that interpersonal motivations such as competition against,

collaboration with, as well as recognition from peers greatly enhance intrinsic motivations.

Enabling those forms of interactions with other children involves either a classroom setting, a

multiplayer mode within the game, or an online platform which connects the players over forums

and social networks. The other side of the coin is the possible discouragement coming from

competition and comparison: not being able to solve the problem as fast as their peers, or not

Learning Games for Programming

Page 31

being able to solve it at all might have a negative effect on motivation and self-esteem of the

learners.

Bruner already warns about the “danger signs of meritocracy and a new form of

competitiveness” (Bruner 1960, p.80). Echoing Bruner’s warning about the extensive use of

extrinsic motivation in the ecosystem of the classroom, Sedighian and Sedighian also argue that

“children want and need to be successful in the social environment of their class. (...) Therefore,

we should place them in environments of learning mathematics that provide this sense of

success.” (Sedighian & Sedighian 1996, p.4), explicitly indicating computer games as this

environment. Malone and Lepper (1987) recognize the tradeoff between these two aspects,

admitting that competition can be encouraging for self-confident or more skilled players, but also

discouraging for players who are less confident or skilled.

2.6 Design Challenges

In this section we discuss problematic conflicts that commonly arise when developing and

testing educational games and need to be considered during design.

2.6.1 Paradox of deep learning

Gee describes domains of knowledge, within which players can integrate facts and information

into an immersive activity or experience, as a balancing act which leads to the ‘central paradox

of all deep learning’ (Gee 2005b). Since any knowledge domain will be unlocked only through

observation, actions, and actualisation, providing too much information will undermine the

learning process, while providing too little will leave them unguided and force them to ‘re-invent

the wheel’. Gee claims that games can resolve this paradox by providing an appropriate

immersive setting and supporting the player with knowledge distributed in other characters,

tools, objects, and the game world itself, as well as by providing information just-in-time and

situated in the proper context (Gee 2005b). This way the player will be guided and steered

towards the learning goal without losing control over their avatars development and being

deprived of the learning experience itself.

Simon Egenfeldt-Nielsen (2007) explains a similar problem, namely ‘learning vs. playing’ which

concerns balancing user control and guidance. The more the player is guided, supported,

scaffolded and debriefed, the better they learn, but the less control they experience. The author

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 32

then raises another concern about learning games in general: the more we push the game to be

fun, the more we send out the message that learning always has to be fun and is not worth

sweating for. (Egenfeldt-Nielsen, 2007) This interesting statement seems to imply that whenever

one is having fun there can be no difficulty involved, opposing “fun” and “sweat”. While this

might be true for many activities, it is an unsafe assumption if applied to computer games.

Csikszentmihalyi's theory of Flow explains that games have to be difficult and challenging but at

the same time interesting enough, so players will be intrinsically motivated. Lazzaro (2004) also

explains that certain categories of players finds enjoyment in hard challenges. Many players go

through a lot of effort to learn and actually do “sweat” to become better at playing games, when

they are following a higher goal.

2.6.2 Informal Learning Context

Honey and Hilton emphasize the benefits of using educational computer games in an ‘informal

learning context’ outside of school setting (after school clubs, individually at home, etc.). They

discuss which opportunities are opened up in informal learning contexts as well as constraints,

and how to overcome those constraints, “so that simulations and games can serve as a bridge,

linking science learning across and between informal and formal contexts” (Honey & Hilton

2011, p.69). The great diversity in learning goals over different projects provides opportunities as

well as challenges.

One advantage is the freedom to pursue diverse learning goals, as demonstrated by games that

link for example biology and ecology. Their nature makes it difficult to place the game in one

school subject (Honey & Hilton, 2011). Egenfeldt-Nielsen (2007) calls this the ‘one subject vs.

cross-subjects’ problem. Linking across diverse topics is easier done in an informal learning

setting. On the other hand, assessment is more difficult, as students who voluntarily engage in

gaming activities in their spare time are less inclined to answer pretests and posttests than when

assessed in school settings where tests are regular activities, as Honey and Hilton point out

listing a number of studies from DeVane, Durga and Squire, Hayes and King, Steinkuehler and

King (as in Honey & Hilton 2011, p.78). Because of this, developers put more focus on keeping

the player’s interest and motivation than on the educational content, but this also gives them the

opportunity to focus on very different goals than formal educators. Individualized learning is

encouraged in informal learning settings: players often develop deep interest and expertise in

Learning Games for Programming

Page 33

specific areas, participate in or even create communities (a common practice in gaming culture),

where members are valued on their expertise, not on grades or academic credentials (Honey &

Hilton 2011).

Egenfeldt-Nielsen mentions the conflict of ‘depth vs. superficiality’, which compares the

information load contained in a book or a video to a computer game. Games cannot present the

same material without game play and rules suffering from it, whereas a richer learning

experience may be facilitated through the social context. Games can deliver what the student is

able to fully understand and support information in multiple ways, which is more valuable than

providing a large amount of information that the learner cannot fully engage in (Egenfeldt-

Nielsen, 2007).

Another tension area explained by Egenfeldt-Nielsen is ‘Teacher intervention vs. no teacher

intervention’. Teachers are an important part of the learning process as they direct the learner and

can debrief them to ensure a more effective learning experience. In edutainment the role of the

teacher is mostly neglected, although the socio-cultural approach stresses the importance of

teachers (Egenfeldt-Nielsen, 2007). As Vygotsky claims, all the social parts of learning,

competition, explanations from peers, etc. are important. In order to properly process learned

content, children need to be debriefed and engaged in conversation about the topics encountered

in the game (Papert, 1998).

Honey and Hilton emphasize the importance of so-called middle spaces: recreational spaces or

after school programs, that can help integrating informal learning games because they are less

rigid than schools, but provide more guidance and structure than home settings. Children can be

empowered as learner when e.g. modding a game or simulation. Those environments can provide

more control which leads to more engagement and better learning. Further, they can provide

better technical infrastructure than available in many home settings. Content learned at school

can be individually explored and delved into while more advanced students can mentor others,

collaborate and share their experiences (Honey & Hilton, 2011).

2.6.3 Constraints

There are of course also a number of constraints for the use of games in informal learning

settings, e.g. social, cultural, and technical constraints. Informal learning environments are for

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 34

most children found with their family and at home, rarer at gaming clubs and communities, and

in this context they often play games that are popular among their peers. “The presence of

educational games or other types of learning software in their homes does not enhance the social

standing of children and youth in their peer networks. [...] Generally, both parents and children

view gaming as an activity in opposition to academic learning” (Honey & Hilton 2011, p.76)

The industry itself is a constraint, as informal educational games will have to compete with

purely recreational commercial games - there is no robust market for public interest games.

Games like chess or scrabble are regarded as valuable enrichment activities, and since the 80’s

also some edutainment titles, e.g. Civilization. This is a game which is entertainment-oriented

but has been approved by parents and educators, and then crossed over to be used in schools.

Some children welcome their parents guidance, but some, especially when they become

teenagers, resist their parents attempt to dictate media choices. This is why the market usually

targets a younger audience, and games that have a strict learning agenda are less accepted among

adolescents (Honey & Hilton, 2011).

Development constraints are based on the fact that most science games are developed and tested

in classroom settings, and not played differently in informal settings. To enable this there should

be more open-ended play options that invite exploration, and more collaborative problems that

link the game universe with real science world. One common problem is the matter of

successfully integrating interest and learning. A number of studies from the 90’s found that

“players rarely oriented to the scientific content of the game without the explicit intervention of

an educationally minded adult.” (Honey & Hilton 2011, p.80). When playing a game outside of a

learning context, players tend to focus more on beating the game or engaging with incidental

content than learning content.

Alternative approaches involve addressing constraints by using mobile technology (e.g. internet,

mobile phones) to overcome social, cultural and technical constraints, familiarizing teachers with

technology, re-integrating those games in the classroom, providing secure online platforms for

children to interact while being monitored by teachers and parents, so they can use them in their

spare time and in informal settings while guidance and external control is provided. Additionally

they provide voluntary activities for children who want to pursue personal interests. Students

learn because they know that their knowledge and skills is directly related to their game identity

and has an impact on the game world (Honey & Hilton, 2011).

Learning Games for Programming

Page 35

2.7 Summary

In preparation for designing an educational game, we covered prior research and the influence of

relevant learning theories on existing educational titles, the term procedural literacy and its

relevance to this thesis, as well as a selection of design principles that have been proven to affect

the learning experience in educational games.

Mateas' call for introducing procedural literacy at an early age, is compatible with Bruner's

principle of readiness for learning. While keeping in mind the constructivist and experiential

learning theories, as well as the scaffold theory to support learners in their process, we marked

some relevant and synergetic design principles that emerge from the literature.

Agency is central to the principle of authentic professionalism and to flow. Immersion is also

beneficial for flow and identification. Narrative and fantasy can be used as a reinforcing frame

for agency and for intrinsic motivation, which in turn is emphasized as being greatly beneficial

for the learning process. Visual stimuli are necessary to keep the attention of a young audience.

Clear goals are a basic condition for flow and for providing adequate scaffolds.

Some challenges for the design process are underlined. These are the paradox of deep learning

and the pros and cons of informal learning settings, including the absence of a teacher that could

debrief the learning content after the play activity. The latter is especially related to our

production, as our game is designed for an informal learning setting.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 36

3 Design

In this chapter we will delve into the design process of Machineers, the vertical slice of the

learning game that was developed for this thesis. At first we will expose the early design

decisions: game genre, setting, and general design principles such as immersion, agency and

positive feedback. Then we will outline the evolution of our design approach, followed by the

description of the game elements and their mapping to procedural literacy concepts, the game

puzzles and the difficulty curve, a description of the scaffolds provided to the player, and a brief

excursion into the UI design.

3.1 Game Genre

Students are to be led to see that the great ideas in a discipline are solutions to

intellectual puzzles and that solving them is an extremely satisfying experience. Scientists

routinely describe the intellectual excitement that accompanies insights into and

understandings of how things work and there is no need for children to be deprived of

those experiences. (Olson 2007, p.39)

Olson’s metaphor of intellectual challenges as puzzles alone could give a good idea of the

reasons why we chose this production to be a puzzle game, but there is more to it. Being able to

present the player with a well ordered series of increasingly complex problems (Gee 2005a) is a

fundamental condition not only for them to develop skills, but also for us to provide adequate

scaffolds. The ability of ‘reading processes’, as we explained above, is a central goal in learning

procedural literacy. In this sense, we created a series of processes with a limited amount of

constituent elements and clear goals for the player to explore and complete.

Framing those challenges within a virtual world allows us to give importance to the activity of

facing and solving them. Therefore, we settled for a puzzle-adventure game. Presenting the

player with this game type also enables us to easily incorporate the stealth learning approach.

We aimed for creating a modular puzzle structure, for implementing a sandbox mode for

children to play in after completing the game, to allow them exploring the relationships between

components as the constructivist approach would suggest. Unfortunately, such a feature turned

out to be unfeasible within the scope of this project.

Learning Games for Programming

Page 37

3.2 Setting and Narrative

Learning a new domain, whether it be physics or furniture making, requires the learner

to take on a new identity: to make commitment to see and value work and the world in the

ways in which good physicists and good furniture makers do. Good video games capture

players through identity. (Gee 2005a, p.34)

Image 3.1 - in-game screenshot - town center

Machineers’ backdrop is quirky and industrial. We decided on a world ruled by machines with a

life of their own, using them as a metaphor for programs and software. The city in which the

game takes place is on the outskirt of an amusement park, visible in the background, and its

inhabitants are all robots. By placing robot characters in an amusement-park setting we aim to

create a familiar game world which possibly stimulates experimentation and exploration. Every

house and object is artificial, metallic and a bit worn out: the feeling that this world is a little old

and rusty, subtly emphasizes the importance of the player’s role, which is going to be a repair

technician. Engineers and repair technician are the ‘programmers’ of this world. Initially, we had

a metaphor for the learning process as well, a journey from town to town, each one as a different

game level; the production of this vertical slice was boiled down to a single location for scope

issues, but ideally the concept of Machineers still aims for a journey between different levels.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 38

The player assumes a protagonist’s role: the young girl Zola, a repair shop apprentice. Zola is a

flat character, in the sense that she has no strong distinctive traits. Some personality will

transpire from the available answer options in the dialogue system, from polite, light-hearted, to

sometimes sarcastic; but we avoid imposing a personality frame on players, allowing them to

play freely - as Frasca argues, “the more freedom the player is given, the less personality the

character will have” (Frasca 2001, p.2). The intent is to letting players identify with the role of

the apprentice, reducing the main character to “a “cursor” for the player’s actions” (Frasca

2001, p.2). Still, Zola’s appearance is happy and spirited, as an invitation for players to enjoy the

process and identify with the praise she will receive.

Image 3.2 - Introductory screen to the game.

The game narrative is introduced in a very simple way: an initial screen (image 3.2) shows the

avatar, giving players basic information about ‘who’ and ‘where’ their digital identity is going to

be. This small piece of information helps the player not to feel alienated when the first game

scene appears (image 3.3). No further information is automatically provided. Control is left

entirely in the players’ hands, who is in charge of finding out what this place is and what they are

supposed to do.

Learning Games for Programming

Page 39

Image 3.3 - The first scene: the repair shop

Polishing everything, from visuals to outsourcing to a professional sound designer for the audio,

has been an important part of the process. As we emphasized in section 2.5.5 Visual Stimuli, a

young audience is less prone to overlook the shortcomings of a game lacking in visual and

auditory stimuli (Honey & Hilton 2011, Sedighian & Sedighian 1996): to make sure our game

would captivate their attention and let our educational content pass through, especially given the

informal context in which Machineers is meant to be played, we needed to make an effort in this

direction.

3.3 Play agency

The game is divided into two different modes: adventure and puzzle. In the adventure mode, the

player moves the avatar in the virtual world by clicking on points of interest (doors, objects or

other robots) and on the ground. The avatar will walk up to the selected location by moving on a

predefined path. When exploring, the player can interact with other robots, gets tasks assigned,

discovers informations about the game world and the narrative through a dialogue system. When

clicking on other robots, Zola will start a conversation with them; an animation of the robot face

pops up, providing sound and visual stimuli.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 40

Image 3.4 - Dialogue with answer options

Oftentimes the player can choose between a different set of possible answers to give, triggering

various responses. Several options in the dialogues, including timid, absurd, and comical replies,

give the player the chance for identification with the character-apprentice, and some choice. The

consequences of such choices are minimal, limited to one or two different lines in the next part

of the dialogue. Even so, giving players a choice about what to say prevents the dialogues to be a

passive process, something that unfolds while the player is relegated to the role of mere witness.

Having alternatives empowers agency and a feeling of control (Gee 2005a, Honey & Hilton

2011).

When a puzzle starts, the set of possible interactions changes completely. This is the puzzle

mode, where the player actually faces a challenge. We will discuss interactions and puzzles in

section 3.7.

3.4 Positive feedback

Image 3.3 shows Hayden in his office; he is the owner of the repair shop and Zolas employer. He

is initially very cold: he does not believe Zola has what it takes to become a good Machineer and

dismisses her (“Geary or Bent might have some work for you”). This approach makes it easier to

Learning Games for Programming

Page 41

give more positive feedback later on: as puzzles are solved, Hayden will become more and more

aware of Zola’s skills and eventually will start treating her better. This is a principle we apply to

all characters: the customers will thank the player and recognize her skill upon puzzle

completion. The more advanced the puzzle, the more the dialogues underline how complicated

the task was. Dialogues aim to give positive reinforcement to the activity of solving other robots

problems, which in turn transmits a sense of mastery and advancement.

Robots will ask for help in many different ways: the DJ will literally beg the player to fix his

machine, Lorry will show perplexity because of Zola’s young age and gender, Ivan will treat her

as a professional, while Ruby will simply assume that she will fix her problem right away. Still,

the importance of her role will always be emphasized: the characters do care about their problem

and need someone to solve them. Repair works are not mere drill and practice but are invested

with importance in the game narrative, in the attempt of giving the feeling of working on real

tasks and fostering a sense of success every time a challenge is beaten, following Gee’s (2005b)

principle of authentic professionalism explained in section 2.5.1 Agency. This should provide the

proper intrinsic motivation for the learner to understand relations between the machine parts.

Mistakes are not underlined, unless strictly necessary. Negative feedback is provided in two

scenarios only, in both cases to prevent a usability issue. The first case is when players try an

illegal element placement, like overlapping gears or belts. The UI will already signal that the

action is not possible before it is attempted. For example, when players try to place a gear in the

scene, a preview will follow the mouse around, showing them where the gear would be placed if

they clicked in that moment. For an illegal placement, the preview would turn red (image 3.5). A

low-tone buzz sound accompanies the click, indicating that the desired action is not possible. The

second case is a stalling gears situation, which happens when two adjacent gears are connected

with a belt. The belt transmits movement to rotate the gears in the same direction, while the cogs

transmit movement to rotate in opposite directions. When set in motion, the gears will start

shaking and a dialogue will pop up, warning the player. This is the only time we give explicit

feedback about a wrong action, but also providing the player with a solution to it (image 3.6).

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 42

Image 3.5 and 3.6 - Negative feedback scenarios

Following Sedighian and Sedighian, “an important factor in feeling successful is how children

perceive their mistakes. We found that since children could recover from their mistakes in the

game without forfeiting much they would not feel threatened by making mistakes” (Sedighian &

Sedighian 1996, p.4). Trial and error is a perfectly acceptable strategy for solving puzzles and it

is even encouraged in some of them, as it would be for a student engaging in a programming

exercise. The mindset we try to set the player into is to embrace failure as means to deeper

understanding. Puzzles are not meant to be easy, but nonetheless we intend to cater for

interesting challenges within our game by offering different help options which can be accessed

on-demand: following the principle of Individual Learners Differences, it is important “to

include adaptive features that modify the pace and type of informations, based on user response”

(Honey & Hilton 2011, p.52). Players in Machineers are able to set their own goals and level of

difficulty by choosing how fast and with how many hints to solve the puzzle, while not facing

the danger of being completely discouraged.

3.5 First design iteration

The first step in designing our puzzle game, after the robotic setting had been decided upon, was

to find out which building blocks were the constituent components of our puzzles. Tightly

coupling puzzle elements with programming logics was initially a central focus in the design

activity: following Honey and Hilton, we tried to find meaningful metaphors to associate each

Learning Games for Programming

Page 43

puzzle element with a programming concept, as “all the elements of a simulation (game) should

be directly related to the learning goals, avoiding extraneous informations that could distract the

learner, disrupt the learning process, or seduce them in incorrect understanding" (Honey &

Hilton 2011, p.46). Ideally, this would mean that every interaction with the game is directed

towards a learning goal. If every puzzle element represents a programming concept, then, solving

puzzles would mean solving actual programming problems, a certain degree of abstraction given,

depending on how close the metaphors and the concepts are.

To enhance gameplay we increased the abstraction level of our metaphors over several design

iterations. In fact, we found that strictly adhering to the principle mentioned above was leading

us to design a tool for drawing flowcharts, or a visual programming language - which should not

be surprising, given the premises. Initially, all machine parts would be placed and connected,

then their internal logics, featuring loops and conditional structures, would be specified.

Different machine parts would contain little robots operating on and exchanging variables in

different forms (oil cans, numeric values, lengths, angles, etc.) that would in turn empower other

machine parts. Figure 3.7 shows an early interface mockup for building a walking vehicle. Such

a machine provides space for ‘instantiating’ four legs, and a ‘walk’ method for controlling them.

In this method, a small robot would calculate the number of steps necessary to cover a certain

‘input’ distance. Then a loop would activate the four legs ‘counter’ times.

Image 3.7 and 3.8 - Early interface mockup and drawing for a method design

While the coupling of game mechanics and educational content was strong, this design had two

major flaws. First and foremost, the prior knowledge required in order to approach the game

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 44

included elements of mathematics that we were not certain our intended target audience would

already master. The second reason is, mathematical concepts were not part of our learning goals,

in contrast with the very principle we tried to follow.

If we take another look at image 3.8, given an overall distance to be covered and the length of a

single step, the goal is to calculate a counter that would specify how many times the legs need to

be activated to cover that distance. It is but a division, and that could be very simple if the length

of a single step was unitary; nonetheless, this design carries the legacy of mathematics. Bruner

(1960), as mentioned above, underlines that the material has to be in a form the learner can

understand, based on his previous experience. Players need to understand that formula: what the

purpose of that operation is and how the resulting value is calculated. Providing scaffolds for

them to make sure they would understand that structure would deviate from our teaching

purposes.

The concept of variables, upon which we initially put much effort, implies storing data for later

manipulation and use, which in turn implies that the player has to be exposed to some data to be

manipulated. We decided to remove this layer of complexity by sacrificing variables, in favor of

a simpler puzzle structure: one of the focus points of teaching procedural literacy is the ability

“to read and write processes” (Mateas 2005, p.1), so we gave priority to exposing logical

processes rather than data manipulation.

3.6 Puzzle elements and concept mapping

As we translated programming concepts using the machine metaphor, we needed to create a

completely new, simple and visual terminology, which would constitute the building blocks of

our puzzles. The intention is to map puzzle elements to "the more general tropes and structures

that cut across all languages" (Mateas 2005, p.1).

3.6.1 User Input - Value

Given the premise that we did not want the user to manipulate data, we still wanted machines to

have different statuses according to some form of user input.

On any kind of device, a knob usually allows the user to select a single option out of many,

instructing an electronic or analog device to perform different operations (like the direction of

Learning Games for Programming

Page 45

the air flow on a car’s air conditioner), or influencing an operation by controlling a parameter

(like the heat level on a stove, a radiator, or the volume knob on a computer’s speakers).

Likewise in Machineers, where knobs are used to set different values in an intuitive form. The

value is represented by the inclination of the arrow.

Image 3.9 - Puzzle element - Knob

// Pseudocode representation

Knob.Value = Input;

This actually means that even if we did not implement the metaphor of variable as such, we still

have some information handled inside the machine’s logics. This data is purely instrumental in

attaining an immediate result: it is not stored anywhere, but it exerts control on the machine -

much like an input value, which has little meaning if it is not used to exert some control on the

process. Therefore, a knob has to be connected to another component, a case switch in order to

function. The case switch is explained below.

3.6.2 User Input - Do While

Another important concept in the control flow of a computer program is a do-while loop. This

statement keeps executing a series of instructions as long as a logical condition is met. This

condition usually comes in the form of a boolean variable, or a comparison between values.

Given that in Machineers there is no storing of data, that condition must come straight from a

user’s action. An on/off button is the metaphor we chose to represents this concept. As long as

the button is activated, we consider the logical condition to be true, and keep powering a part of

the machine.

One can argue that this is still a choice between two different values (on/off), and wonder why

we did not use the same metaphor as above, with a two values knob. While that is certainly true,

there are two good reasons for using a different metaphor. First and foremost, buttons are more

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 46

common than knobs for activating modern electronic devices. That is not a secondary aspect,

given the young age of our target audience. Another reason is that an on/off button allows for

two different behaviours: a machine could be continuously activated or triggered for a one-shot

action. The two different buttons are distinguished by color: a do-while button is bright red,

while a one-shot activation button is yellow.

While the button is pressed, the gear beneath keeps rotating. A one-shot activation removes the

while condition, reducing the logical structure to a single activation instruction.

Image 3.10 - Puzzle element - Button

version (A) - start/stop button

while (Button.IsActive)

{

 Gear.Activate()

}

version (B) - perform once button

Gear.Activate()

Button.IsActive = false;

3.6.3 RobOmeter: Case Switch

The knob, as explained above, allows the user to specify different values without being forced to

handle any data. This value can be checked through a robOmeter, the in-game representation of a

switch structure.

As the value set by a knob is represented by the inclination of the knob arrow, the switch shows a

number of meters with different arrow inclinations. When connected properly, a knob can

control which gear placed underneath a robOmeter will be activated.

Learning Games for Programming

Page 47

Image 3.11 - puzzle element - robOmeter

switch (RobOmeter.Value){

 case left:

 LeftGear.Activate()

 break

 case right:

 RightGear.Activate()

 break

}

There is an apparent inconsistency between the behaviour of the knob and the button that we

need to clarify. In fact, the knob will keep transmitting its parameter to any robOmeter connected

to it, causing the matching robOmeter gears to continuously rotate. In programming, a switch

instruction normally checks for a value, executes the corresponding action, then moves on with

the code. Our puzzle element behaves as if the switch was included in a continuous while loop.

while (true){

 switch (RobOmeter.Value){

 case left:

 LeftGear.Activate()

 break

 case right:

 RightGear.Activate()

 break

 }

}

We justify the omission of the loop in terms of better usability and reduced complexity. We

could have placed an activation button at the root of every machine to simulate the loop, but in

all the puzzles we implemented this would have been an unnecessary formalism, as the controls

are always situated at the root. The knob is the representation of the user giving an input value to

the machine: by automatically changing the machine status in response of this operation,

implicitly assuming the loop, we can immediately show to the user the consequences of their

action.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 48

There is a particular type of gear that can be connected only to a robOmeter: the gear on rail.

This gear is placed on a structure allowing it to slide: when activated, the gear will slide to the

other side of the rail and start rotating there. This is not intended as the representation of a

specific programming concept; rather, it is a structure born out of necessity from the constituent

elements of the puzzles, necessary to allow machines to perform some operations. For example,

if we look at the pseudocode related to picture 3.12. It is a switch activating Gear1 for one value,

Gear2 for another, and both gears for the middle switch value. To represent this logic in one of

our machines we needed a component that would activate Gear1 and Gear2 for the middle value.

Simply connecting them together would not have sufficed: the basic concept upon which we base

the entire game is that connected parts move together. Therefore, Gear1 and Gear2 had to be

separated. We needed a removable link, something that would slide into place, connect and

activate the other moving parts only when necessary. The sliding gear was created to solve this

specific problem.

Image 3.12 - Gear on Rail

switch (RobOmeter.Value){

 case one:

 Gear1.Activate()

 break

 case two:

 Gear2.Activate()

 break

 case three:

 Gear1.Activate()

 Gear2.Activate()

 break

}

3.6.4 Method Call - With Parameter: gearOmeter

Given their nature of value-setter and value-checker, a knob and a robOmeter are meaningful

only when connected. This connection might be direct, or across two different methods.

Different methods are represented by different machine parts. Machine parts are linked by a wire

that represents a method call.

Learning Games for Programming

Page 49

Image 3.13 - Method hierarchy

Connecting a knob and a robOmeter across two methods simulates a method call with parameter.

A value is set in one method, then passed on to another method which will perform different

actions accordingly.

Image 3.14 - Method call with parameter

public Cart () {

 function main (){

 engine(Knob.Value)

 }

 function engine (valueParameter){

 switch (valueParameter){

 case left:

 LeftGear.Activate()

 case right:

 RightGear.Activate()

 case middle:

 MiddleGear.Activate()

 }

 }

}

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 50

The element on the top end of the wire (the gear integrated with a meter) is specifically created

for passing a knob value to another function. We called this component the gearOmeter. The

gearOmeter has the same appearance as the robOmeter, to emphasize the link between these two

components. To visualize the connection, the gearOmeter will light up when it is properly

connected with a knob set to a corresponding value. The corresponding value on the robOmeter

will light up as well.

Image 3.15 - gearOmeter transmitting a value to a robOmeter

3.6.5 Method Call - Without Parameter

In computer programming, one method can call another without the need of passing a parameter.

Therefore, the combination of knob and robOmeter becomes unnecessary to represent this

concept. We already discussed a metaphor for a single activation instruction, namely the one-

shot activation button: at this point, we need to implement the same logic, but with different

actors. It is not the user activating a command anymore, but a function calling another function.

We had different design possibilities here. One of them would have been having an output gear

in the calling method, an input gear in the called method, and a wire connecting them. As long as

the output gear would keep turning, the gear on the other end of the wire would keep turning as

well. This very straightforward and simple approach would have suited well the puzzle structure,

but it was too mechanical: it lacked the idea of calling a method as an explicit action. Given that

the player could not (and should not) activate method calls manually, we decided to create

another entity that would perform this action: a little robot placed on a gear.

Learning Games for Programming

Page 51

Since the robot is rotating on a gear, the most natural device we could envision for it to activate

was a lever. The robot pulls the lever to call the function on the other end of the wire. A method

call without parameter can either activate a gear that will start rotating, or activate an external

machine part - for example, the ‘wing up’ action in the first puzzle.

Image 3.16 - Method call without parameters, activating a

gear

Image 3.17 - Method call without parameters, activating an

external machine part

public Owl {

 function main () {

 activateLeftWing()

}

 function

activateLeftWing() {

 Gear.Activate()

 // if the belt

is connected

 WingUp()

 }

}

This latter case is especially powerful in representing a call to an external function, as for

example a call to a function included in a library. The user has not programmed said function and

does not need to understand or even access its inner logics. He just needs to know how to call

that function, and what the output will be. Equivalently, when activating the ‘wing up’ machine

part, our player does not know and does not need to know the inner functioning of the

mechanism raising the wing. Knowing that activating that function will produce the desired

output is enough.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 52

3.6.6 For Loop

A for loop is represented by a counter placed on a method call. To execute an action a specific

number of times, the design had to fall back to showing numbers.

Image 3.18 - puzzle element - counter

int counter = 6 // set by user

for (int x = counter; x>0; x--;)

{

 functionXY();

}

In the image above, the counter will progressively decrement each time the robot pulls the lever.

When the counter reaches zero, the method on the other side of the wire will not be activated

anymore. This visual representation is actually quite close to the programming concept.

3.6.7 Sequence / Loop

This element is perhaps a more direct and easier noticeable representation of a programming

structure. A programmable knob is a mix of machine parts in a monolithic and rather complex

structure, which is by no coincidence introduced in the last puzzle of the game.

A programmable knob consists of an auto-incrementing knob, which will automatically change

its value over time. A ‘power on’ button activates it. The knob is connected to a row of

robOmeters, to check its value and perform different operations accordingly. We decided to use

existing components in the hope that by aggregating elements already known to the players, the

functioning of this new machine part would be easier to grasp for them.

Learning Games for Programming

Page 53

Image 3.19 - puzzle element - programmable knob

while (Button.IsActive) {

 Knob.Value++

 if (Knob.Value > max)

 Knob.Value = 1;

 switch(Knob.Value){

 case 1:

 Gear1.Activate()

 case 2:

 Gear2.Activate()

 case 3:

 Gear3.Activate()

 case 4:

 Gear4.Activate()

 case 5:

 Gear5.Activate()

 case 6:

 Gear6.Activate()

 }

}

This is the first element introducing a control that is not executed in real-time. The knob and the

on/off buttons, operate in fact under the user’s direct control, while the programmable knob

executes a series of predefined instructions. This machine part is designed to introduce the

concept of sequentiality. A computer program like a game is obviously made to react to user’s

real-time input, but it still executes a series of predefined instructions. Especially in the early

stages of learning how to program, the process often consists of specifying a short series of

commands, launch them, and see what happens: that is the process we tried to recreate when the

player approaches this machine part.

3.6.8 Synchronization

The representation of the different order in which commands can be executed, on the other hand,

is perhaps the most abstract metaphor of the game. The small robots placed on fixed gears will

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 54

rotate with them, activating a method call through a lever when a certain position is reached. If

the gear keeps rotating, that method call will be activated repeatedly.

Although quite far from its pseudocode representation, this approach has two major positive

aspects. First and foremost, the possibilities for synchronizing the commands are limited to four

options. Once the player understands that robots starting at different positions execute commands

at different times, synchronizing the robots inside a single method is very intuitive. Obviously

the other way around is also valid: robots starting in the same position will activate the levers at

the same time, allowing for simultaneous method calls.

Image 3.20 and 3.21 - Robots on gears - v(1) left and v(2) right

version (1)

FunctionA()

FunctionB()

version (2)

FunctionB()

FunctionA()

3.7 Puzzles and learning curve

The principles in the skill development category focus on the player’s developing mastery

of a skill. This is an important component in a gamer’s positive game experience. It is

not, however, merely the development of a skill, but rather it is the pacing of learning

that skill that divides a good game from a bad one (Desurvire & Wiberg 2009, p.8)

We designed and implemented five puzzles, each focusing on a different challenge and

increasing in difficulty. The aim of the puzzle design is to allow children to play inside their zone

of proximal development, giving them a challenge they would hardly be able to complete

without any help, while keeping them from falling into frustration; the design aims for the

‘pleasantly frustrating’ principle to keep the flow.

To almost all of [the children] being challenged in a game meant that they would not be

bored. In contrast, they frequently referred to school mathematics as boring. [...]

Learning Games for Programming

Page 55

Children need to be constantly challenged and seem to thrive on it. (Sedighian &

Sedighian 1996, p.5)

Scholars argue that a good level of challenge is not only beneficial for children’s engagement,

but also for the transfer of educational concepts. Wilson (et al. 2009, p.36) for example, propose

that “as the challenge feature in a game increases, so will declarative knowledge and learner’s

retention of that knowledge”, but at the same time warn against the counterproductive effects of

an excessively high level of challenge, resulting in hindrance for the learning progress. Adequate

scaffolding can potentially prevent such a scenario from happening, as it can cater for the needs

of different players.

The number of elements players need to understand is constantly increasing, as we introduce

something new in every puzzle. The number of actions available to the player is quite limited

(placing and removing gears, belts and wires, reposition robots, operate buttons and knobs) but

constantly changing scenarios and the introduction of new elements prevent the feeling of

repetitiveness.

Following Gee’s principle of ‘system thinking’ (2005c, p.14) claiming that “people learn skills,

strategies, and ideas best when they see how they fit into an overall larger system to which they

give meaning”, each puzzle is designed as a complete machine, to show how relationships

between game components work. Even if players do not need to understand the functioning of

the entire machine in the first puzzles, when they are confined to work on smaller sub-tasks, they

will always be able to see the bigger picture, so to have the chance to understand the interplay of

all the puzzle elements and how their interactions affect the machine as a whole.

3.7.1 Zima, the Owl Puzzle

Rummaging through a pile of scrap metal while waiting for work, Zola will find Zima, a robotic

owl with a broken wing. Bent will challenge the player to fix it: the goal of the puzzle is to get

Zima’s wings flapping at the same time.

In this first puzzle we introduce the controls and the game interface. A very short scripted

tutorial given through the standard dialogue system precedes the actual problem-solving phase.

Bent will guide the player in the very simple tasks of moving the visual around and using the

zoom function, allowing them to familiarize with the controls.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 56

Image 3.22 - Owl Puzzle - solved state (parts initially missing or misplaced are marked red)

To solve this puzzle, the player needs to learn how to place elements like gears and belts, and

interact with fixed elements in the scene (the top knob and the robots on gears). By operating on

the knob, players will also be exposed to its functioning logic, although they do not need to fully

grasp it to solve the puzzle. What they do need to understand are the following concepts. Belts

connect gears to transmit movement. Two belts are missing, the player needs to connect the

isolated gears. Robots on gears can be moved around to synchronize actions. The robots on gears

in Zima’s right wing are misplaced and the two wings don’t flap together. The player needs to

synchronize them. The knob activates the machine and different positions allow for different

actions.

3.7.2 The DJ Machine

The second puzzle is the first actual task assigned by the repair shop. The DJ robot will complain

about some missing parts: in fact, this puzzle is all about placing belts and wires. The structure of

the machine is centered around the main control method and its four knobs. One knob allows

selecting which one between two or three speakers in another method will be powered. The goal

Learning Games for Programming

Page 57

of the puzzle is to connect the knobs to the speakers so that for different knob positions different

sound loops play.

Image 3.23 - DJ Puzzle - solved state

The concepts players need to understand to solve this puzzle are the following: Knobs are

meaningful when connected to a gearOmeter. Wires allow communication between a

gearOmeter and a robOmeter placed in another part of the machine, effectively connecting two

methods. Once the machine is fixed, the player can play around with the knobs to mix different

loops of voice, beat, melody and ambient sound.

3.7.3 Lorry, the Bar Puzzle

The next puzzle takes place in Lorry’s bar. Lorry, the owner, will ask Zola to fix the blinking

signboard, setting it so all letters will blink at the same time.

This puzzle is all about synchronism inside a single method and between methods calling each

other sequentially. All the belts are initially missing, but by now players know what a belt does:

placing them gives players a sense of familiarity and success to start the puzzle with.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 58

Image 3.24 - Bar or Glowing Letters puzzle - solved state

We introduce a new element, the activation button that starts the machine. A series of methods

controlling the blinking of different letters must be connected with a wire. The synchronism

between actions we introduced in the owl puzzle is taken to a higher order of difficulty. In fact,

the player has to coordinate 9 action calls spread across 3 different methods. Those methods are

called at different times: the robot on the gears calling the next method in the L-O-R and the R-

Y-S methods are in fact fixed, in order to draw the player’s attention to how the wires determine

the order in which the methods are called, and also to increase the puzzle difficulty.

3.7.4 Ivan, the Cart Puzzle

The fourth puzzle is a repair commissioned by Ivan, the owner of the roller coaster. Zola will be

asked to fix the self-propellent roller coaster cart. The cart has an engine and can travel at

different speeds: the knob is supposed to activate a different number of wheels for each distinct

Learning Games for Programming

Page 59

value. A shovel is installed in the front, to push potential obstacles out of the way. Another red

button represents an emergency off button: when activated, it removes the gear connecting the

knob and the engine.

When this puzzle was originally designed, the intent was allowing the player, once the repairs

were made, to drive the cart on the rollercoaster track in a mini game scenario: therefore we

integrated the emergency stop button and the shovel. Unfortunately, implementing the mini

game turned out to be out of scope, and it had to be dropped.

Image 3.25 - Rollercoaster cart puzzle - solved state

In this puzzle we introduce a new element, the shovel activation button, which is a one-shot

button. The complexity of this puzzle does not consist of understanding the functioning of this

new element: in fact, the one-shot button is a simple variation of a very natural concept - the

activation button). The shovel itself is a repetition of the owl wing structure. The real challenge

of this puzzle resides entirely in how the elements in the engine are arranged.

To separately activate one, then two, then all three wheels at a time the player is forced to

understand the functioning of the gear on rail. The same elements form a combination that the

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 60

player has never seen before, forcing them to think ‘outside the box’: a precious skill in problem

solving.

3.7.5 Ruby, the Crane Puzzle

The last puzzle is the repair of a robotic crane. The goal of the puzzle is to fetch a teddy bear

with its claws and drop it in a shaft. The machine has many sub methods that need to be

coordinated to achieve this, each taking care of a different action: moving the crane left and

right, up and down, opening and closing the claws.

Specifically for the purpose of triggering different actions in a predetermined sequence, we

designed and introduced the programmable knob. Because of this component, this is the puzzle

that gets the closest to an actual programming exercise, as it has sequentiality.

The player can connect the robOmeter gears to different outputs and place the wires in the right

part of the machine, deciding the order of the actions; but they have no control over the fact that

the crane has to be programmed in advance to execute a series of actions, then activated in order

to observe the outcome.

The idea behind the design of this puzzle came partly from looking at Logo’s turtle graphics.

One of the great features about Logo was that user was easily able to observe if the program was

performing as expected, just from looking at the drawing the turtle was making. This made it

possible for children to debug their own code without the help of a teacher. We believe the crane

puzzle shares this feature, but instead of turtle graphics it uses the movement and action

sequence of the crane. By observing how the crane behaves we anticipate that the children can

understand how the machine works and how to fix it.

Learning Games for Programming

Page 61

Image 3.26 - Crane puzzle - solved state

The mirrored puzzle structure as a scaffold for solving the puzzle that we implemented in the

first two machines here works against the player. The wires on the left side of the main method

are in fact already linked to the commands in the right sequence: at first the machine will go left,

then down, then the claw will grab. If the player does not pause to think about how the cables on

the right side should be connected, they might just replicate the same structure: top output to top

method (‘right’), middle output to middle method (‘up’), bottom output to bottom method

(‘release’). If so, and assuming that the belts in the main method are connected as in the image,

the machine will release the object right after grabbing it, making it impossible to carry the teddy

bear to the shaft.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 62

In the main control machine we also introduce decrementing ‘for loops’. Movements need to be

repeated a certain number of times to reach exactly the position for grabbing the teddy bear, then

to move back to the shaft. As in Lorry’s puzzle, this forces a trial and error approach.

Image 3.27 - Detail Crane Puzzle - Main method

3.8 Scaffolds

Designers should always consider the target audience when designing and include adaptive

features to adjust pace and type of information, according to individual learner differences

(Honey & Hilton, 2011). Given that we cannot assume that any teacher or tutor would

necessarily be present in an informal playing setting, the following help options play a crucial

role in the overall balance of the game. The ‘instant feedback’ system. When the player performs

a particular action for the first time, like clicking a button or a particular component, a dialogue

speech bubble will pop up providing introductory information about it. This will happen only

once to avoid a constant interruption of the game flow; we designed another on-demand help

option (the Owl) in case they need more informations later on about a particular component. The

list of actions designed to trigger an instant feedback include clicking on interface controls (gear,

wire, belt and delete buttons), elements in the scene (gears, gearOmeters, robOmeters, belts,

wires, buttons, knobs, programmable knob and loop counters) and some particular cases, like

when the player creates a group of stalling gears.

Learning Games for Programming

Page 63

Image 3.28 - Instant feedback - Belt mode

Another help option is represented by Zima the owl, also called the information-on-demand

system. By clicking on the owl in the top bar, then on some machine part in the puzzle scene,

Zima will give some information about it. The list of parts for which help is designed includes

gear, gear on rail, robOmeter, belt, wire, gearOmeter, robot on gear, and knob. This option will

be available only after the first puzzle is completed, in which the player fixes Zima the owl.

Ideally, Zima knows exactly the same as the player, as it cannot solve puzzles or give hints about

how to do so, but provides some informations about isolated parts. Providing the player with

‘smart tools’ enables them to store the knowledge they acquired in-game within game artifacts

and characters; in other words, distribute their knowledge (Gee 2005c).

Bent, and occasionally Hayden will appear in the top bar with hints for the player. These are

predefined, short sentences that will be given through a speech bubble after a certain amount of

time has passed from the start of the puzzle. Providing the player with ‘smart tools’ enables them

to store the knowledge they acquired in-game within game artifacts and characters (Bent and

Hayden in our case). Once they are provided, these hints remain accessible through the same

interface. Given the problems we observed in the early testing phases for players to notice this

help option, the availability of a new hint is indicated through a blinking light bulb, a sound and

a sparkle effect. Players can see another smaller light bulb next to the character with the new hint

and read it by clicking on them.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 64

Image 3.29 - Hint system

The hints in the first puzzles are as short and clear as possible, aiming to instruct the player on

how to interact with the puzzle elements: “Click the arrow KNOB on top of the machine to make

the wings move”, “Click on the little ROBOTS to reposition them”. When proceeding into the

game, hints orient more towards directing the player’s focus on a subset of the puzzle, limiting

the range of the task at hand (“It is best if you start fixing the OIL machine on the right and work

your way over the middle to the left”), clarifying the puzzle ultimate goal (“The cart needs to

speed up, break and push things out of the way with the shovel to be allowed on the roller

coaster”) and providing encouragement (“Don't give up yet, I'm sure you will figure it out”).

The symmetric setup of the first puzzles is also a scaffold. In the first puzzle, the wing that needs

to be repaired is an exact copy of the other one, but mirrored. We point this out immediately

through the hint system in a subtle way: Zima will offer a hint after 10 seconds of playing time

(“my LEFT WING moves fine, but I can’t move the RIGHT WING at all!”). Later on, after five

minutes, we explain this in a more explicit way through Bent (“Copy the structure of the left

wing into the right wing. That should do the trick.”). This intrinsic help is also present in the

second puzzle, where not all the belts are missing. The player can observe and mimic the

structure of the existing parts. Once again, the first hint points out this aspect - “Check out the

parts that seem to be working. There are BELTS connecting the GEARS and the SPEAKERS.”

Although the indication of what to do is quite clear, this support cannot be considered sufficient

for every player to solve the puzzle. In the first puzzle especially, players might still have

Learning Games for Programming

Page 65

difficulties interacting with the interface, trying to understand how to place belts, reposition

robots on gears, activate the knob, and understanding the consequences of their actions. The hint

might reach them at the wrong time, when they are focused on something else, so they might

decide to ignore it altogether. This scaffold is removed from the third puzzle on.

After all hints have been given, a certain amount of time passes so players have a chance to keep

trying and eventually solve the puzzle. If that is not the case, Hayden will provide the machine’s

blueprint. The blueprint is a schematic representation of the puzzle in its solved state that

overlaps the current scene. Players can see the solution, then close the blueprint and implement it

in the machine. The blueprint is accessible through an icon appearing in the top bar.

Image 3.30 - Blueprint for the owl puzzle

Ideally, children are playing in their ZPD throughout the entire game, therefore we never fade

away the scaffolds. An exception is made for the instant feedback, which is triggered just-in-

time; the other help options (once available) can be accessed on demand and they are not

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 66

progressively taken away. The lightbulb is meant to attract the player’s attention, notifying them

that a new hint is available, but it does not force the player to read it. Following Gee’s principle

of customization (2005a), players can choose the scaffolds and help options they want to use.

Talking about customized styles of play, Machineers allows for some freedom. Many of the

puzzles have multiple ways of solving them; often players can also quit a puzzle if they find it

too hard, go back to the repair shop and ask Hayden for another task to unlock the next puzzle.

Originally we designed two different main characters with the idea of letting the player choose

between a boy’s (Mylo) and girl’s (Zola) avatar. In the end, we decided to only use Zola,

focusing our development time on other features. The intention was that boys would not be

annoyed by playing a girl, while girls would be encouraged in identifying with their new virtual

identity and her successes.

3.9 User Interface

Preventing usability issues was the focus of the whole interface design process. At the same

time, an effort was made to provide a good number of visual stimuli as well, with further focus

on those elements of the user interface related to the help scaffolds.

3.9.1 Adventure mode

In adventure mode, the only element of the user interface is the mouse. The top priority is to

communicate which elements in the scene can be interacted with, and which ones cannot. When

hovering over a door, a robot, or any object with a function, the mouse cursor will change and

the object itself will be highlighted. When the dialogue system pops up, players need to be given

two basic informations. The first is which robot is talking, which is represented by an animation.

The second is, when multiple answers appear on the screen, which answer is actually selected,

which is represented by an arrow appearing next to the selected answer on mouseover.

3.9.2 Puzzle mode

Inspired by the simple user interface of the game Machinarium (Amanita Design, 2009), we

decided to use a pop-down menu on top of the screen, called top bar, which is partly visible and

extends to full size once the mouse cursor hovers over it. The top bar contains icons of the other

game characters who provide access to hints and blueprints, as well as a button for leaving the

Learning Games for Programming

Page 67

puzzle. A small light bulb next to the characters head indicates that a new piece of information is

available. To further indicate the availability of hints when the top bar is closed, a bigger light

bulb appears on the edge of the closed top bar.

Image 3.31 - In-game screenshot - Owl puzzle

For installing puzzles elements, players need a tool menu. To keep the screen as clean and well-

arranged as possible, we initially decided not to integrate the context menu in the interface, but

instead bring it up on right-click. This would further enable the free positioning of the menu

according to the players preference. Due to usability issues we later decided to go back to a static

interface. The on-screen menu is placed on the lower left corner on the screen, from where

players can select the elements to be placed in the scene, and access the erase mode to remove

them.

3.9 Summary

In this chapter we covered the main focus areas of the design of Machineers. First, capturing the

player’s attention by framing the challenge in a rich adventure world, providing plenty of stimuli,

play agency, and positive feedback in accordance with the design principles outlined in chapter 2

Background. Second, translating procedural concepts into game puzzle elements and creating

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 68

meaningful scenarios where players could get introduced to and explore the metaphors and their

logical connections. Third, providing an adequate number and variety of help options and

anticipating usability problems to prevent as many players as possible from being discouraged

and dropping the game prematurely. The choice of implementing a girl as the main character was

also made in the attempt to facilitate identification of female players.

The exclusion of variables from the procedural literacy concepts included in the design was

based on the decision to spare the young audience from the logics of data manipulation. In the

shaping of the basic puzzle elements, a major focus was put on the play experience. More

complex parts, with a more direct link to the programming concept they represent, such as the

programmable knob and the for loop counter, are introduced later in the game.

The informal learning context in which Machineers is meant to be played, informed design

decisions regarding graphics and sound polishing, and scaffolds. We were planning on

implementing a sandbox mode for children to play in after completing the game, in accordance

with Egenfeldt-Nielsen’s approach to constructivism in educational games, but such a feature

turned out to be unfeasible within the scope of this project.

Learning Games for Programming

Page 69

4 Usability Test

The key value of the playtest, however, lies in identifying problem areas. We think of playtests

as a tool to help designers understand an issue, so they can think up a workable solution.

Importantly, if a designer makes substantial changes to the game based on playtest results, we

can iterate to ensure the changes were effective in improving the game. (Davis et al. 2005, p.10)

This chapter deals with the first of three test phases, which were conducted at the end of the first

production phase when all the basic game elements (adventure mode, dialogue system, hints) and

the DJ puzzle were implemented. This evaluation mainly focuses on interface elements, controls

and overall usability issues. After solving them we will be able to analyze problems concerning

immersion and learning process in further tests unbiased.

4.1 Preparation

For the first testing phase we conducted a qualitative assessment with four other game design

students, who were asked to playtest the early version of our game while following the Think-

Aloud protocol (Hoonhout 2008). Since the testers we chose are well accustomed to participating

in playtest sessions, they delivered a very thorough examination of the game, e.g. attempting to

break it and perform undesired actions, while expressing their intentions and annoyances in as

much details as possible. All issues were recorded with pen and paper or noted down digitally.

We intended to use a new unconventional test method called peer play, which we designed for

the next test phase, in order to obtain as much information as possible from our younger and

possibly more hesitant testers. We tested this approach with two students who were less

accustomed to gaming and playtesting in a comfortable environment and screen-recorded the

session.

The peer play method is inspired by Jettie Hoonhout, talking about a number of studies that used

an alternative to the Think-Aloud protocol. They let their testers play in pairs while recording all

utterances: “the participants, children between nine and eleven years old, were not specifically

asked to think aloud, but since they were playing in pairs, and depended on each other for good

game results, it was inevitable that they had to discuss game options and tactics” (Hoonhout

2008, p.71).

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 70

4.2 Navigation

At this point the navigation for both modes involved moving the mouse cursor to the sides of the

screen, which would then start panning. We realized during this test session that players did not

find it very intuitive to navigate the way we intended them to. Instead, players would e.g. try to

click-drag to move around - obviously a habit from navigation in other games. We discussed

several different options of how to solve this issue, but did not have the time to implement any of

them before the next test phase two weeks later. We wanted to observe how our target audience

would behave with the current controls in the next test session, because even if they were as

comfortable using computers as our fellow student testers, they might have different expectations

and reactions towards navigation and controls in games.

4.3 Interface

We initially used a radial context menu which appeared on right-click, because we wanted to

keep the screen as clean as possible in order to not overwhelm the player. Players showed

difficulties when trying to access the context menu per right-click: keeping the screen clean, in

fact, came at the cost that players needed at least three clicks to place an element: open the menu,

select the component, place it. This been observed, we decided to fall back to a static on-screen

control panel. By keeping the menu on the screen not only did we streamline the most recurring

game function, we also made the interface more intuitive, as controls for element placing are

immediately visible. Knowledge is placed ‘in the world’ so there is no need for a tutorial

explaining players how to bring the toolbar on screen (therefore placing the knowledge ‘in their

head) (Norman 2002). Also, by removing this functionality from the right mouse button we were

able to use that control for another basic function, namely navigation.

As it turned out that players did not perceive the screen as too crowded, but rather did not notice

the toolbar immediately. This is why we decided to give the tool menu a hazard-striped frame to

visually emphasize it. After the preliminary test with the target audience which is described in

the next chapter, we decided to limit the number of puzzle elements (gears, belts, electric wires)

to help directing the player towards the correct solution, we added a label next to the puzzle

elements displaying the number of available elements (image 4.3). At this point we also removed

puzzle elements from the toolbar that the user was not able to manipulate or include

Learning Games for Programming

Page 71

(robOmeters, rails), although for further designing the game we were still planning on enabling

the player to control these features. These design decisions reflect Gees approach to tackle the

‘paradox of deep learning’ (2005b) mentioned in Chapter 2.

Image 4.1,4.2 and 4.3 - Context Menus - Initial version, after Test Phase 0, and Phase 1

Another issue the players mentioned, concerned the dialogue system. One player pointed out that

the visual appearance of the dialogue boxes was not conform with the general visual style of the

game, so we agreed to replace them with an old-school computer-inspired screen and use a light-

green, retro computer font. The different answer options were displayed without a clear visual

indicator, so by many testers they were perceived only as text. We added dots to emphasize the

different options and an arrow to indicate which answer was selected.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 72

Image 4.4 and 4.5 - Dialogue Boxes - before and after Test Phase 0

4.4 Puzzle Elements

At this stage, players were allowed to adjust the arrows on the robOmeters by click-dragging

them. The robOmeter, as explained in section 3.6.3, is the device that checks the input value for a

method call with parameter. By dragging the arrow around, players were able to manually

specify the activation value for each robOmeter.

As we found out, this created some issues. Not only did players not notice the possibility of

doing so, we also realized that this gave them the opportunity to modify the puzzles in a way that

could make them very hard to solve later on, so we decided to keep the meters at a fixed state.

This meant we had to take away some control from the player to prevent them from wasting time

and motivation on a problem that is not relevant for the learning experience. Once again, this

decision reflects a counter-strategy to avoid the ‘paradox of deep learning’ (Gee, 2005b) and also

the concept from Honey and Hilton (2011) that content not instrumental for the learning

experience can and should be removed from the game.

Initially the robOmeters were simply named as switches according to their use as a programming

concept - a name which indicated to the user that they were interactive, while their visual

appearance did not invite for interaction. This conflict confused players, so we renamed the

switches to robOmeters (many meters connected with screws to gears that can activate different

parts of the machine) and differentiate them from gearOmeters (indicating that the meter is

combined with and could be manipulated by a gear).

Learning Games for Programming

Page 73

Image 4.6 and 4.7 - RobOmeters and GearOmeters

4.5 Help Options and Feedback

 As most players were overwhelmed with the information from the hints available in the

top bar, we chose to reduce the number of hints and rewrite them to make sure they were as short

and precise as possible. We also felt players would benefit from a clear statement at the start of

each puzzle, specifying the objective of the puzzle, and providing a clear goal (Gee 2008).

We further noticed that some players chose not to access the hints at all, partly because they tried

to solve the puzzles without any help, and we agreed that there was some information about the

puzzle elements and the use of the tools which was crucial and therefore decided to implement

another scaffold we called ‘instant feedback’. Information would appear when the player enters

another mode (e.g. belt mode, erase mode) or clicked an important puzzle element for the first

time. This scaffold was intended to prevent impatient players from getting stuck entirely,

prioritizing the ‘just-in-time’ over the ‘on-demand’.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 74

Image 4.8 - Instant Feedback for electric wires

Other feedback we received after all test phases were completed, indicates that a few number of

players would still ignore all written information and get stuck in puzzles because e.g. they did

not know that they could reposition the robots on gears or that they could delete elements.

4.6 General User Feedback

Although we did not specifically look for feedback on motivation and immersion, our players

reported that they enjoyed the game very much and that they were looking forward to solving

more puzzles, as soon as they were available. They expressed a great deal of appreciation

towards funny and absurd dialog options even though most players generally picked the most

polite answer option.

The DJ puzzle relies heavily on the player understanding the audio feedback, which is a much

harder task for some people than for others. One playtester who was less musical than the others

could not tell merely from the audio feedback if he was performing well. We realized that

displaying the name of each method visually would help players like him understand the

information from hints and the objective much better, and we were able to implement this feature

after the next test phase.

Learning Games for Programming

Page 75

4.7 Conclusion

We were positively surprised by the test results, as most of the problems that occurred were

issues we were already aware of. The playtesters feedback gave us an idea of the best way to

amend them, as they performed the action that seemed most natural to them and we were able to

use this for developing solutions. This evaluation provided us with the necessary information to

eliminate a number of major usability issues and helped us to improve our scaffolds so they

would support the player better when solving puzzles. The data that had been gathered was then

used to inform the design of further puzzles, dialogues, and scaffolds.

This test also confirmed the effectiveness of the peer-play approach for playtesters who are not

used to speak out their mind while playing - with the peer-play method they were forced to

discuss strategies, which also helped them understand the objective better and how to solve the

puzzle. Unfortunately it also requires unanimous cooperation and a similar level of prior

knowledge in order to provide a beneficial and balanced experience for both players, as long as it

is applied to games like Machineers, that are designed purely as a single-player game. Possible

risks when using this technique include that the less skilled or outgoing player might be

dominated by the other one, and that communication might die down when one player takes over

control. This problem was luckily not very prominent during our next test phase.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 76

5 Preliminary Test with Target Audience

This chapter concerns the second test phase, which was conducted about two weeks after

usability evaluation with a build containing two puzzles and improved usability. The main focus

of this test phase was to examine how well the children were immersed into and motivated by the

game when looking at dialogues, narrative and graphical style. Since usability issues, as well as

game-stopping factors affect immersion and motivation, we also included them within our focus,

assuming that our target group might show different preferences than our previous testers.

We contacted the director of Copenhagen International School about a collaboration for our tests

early on and were able to acquire 12 testers from our target audience (ages 10 - 14) from an after

school activity and the friday computer club.

5.1 Preparation

At the first attempt we were working with four children, two boys and two girls around the age

of 10, who stayed at school for a regular after school activity. We introduced ourselves and our

project properly and stated clearly that the goal of this test was to improve the game, not to

evaluate how well they were playing it. Due to technical problems we could only use one

computer to test the game using the peer-play method with the two boys while taking notes. One

of the girls had to leave before they were finished, so we attempted to playtest the game with the

remaining girl using the Think-Aloud protocol, but we noticed that our presence and intense

observation were making her uncomfortable which affected the play experience negatively.

We arranged for another test session during Friday computer club where we could test with

another 9 players, this time exclusively boys. We screen-captured the session so we would not

miss any information. Again we introduced ourselves as Master students from ITU Copenhagen

and asked them to help us to “make learning fun” by testing an educational game for us. Openly

admitting to the purpose of the game led to an interesting reaction of one of the boys, who kept

complaining about the graphics and setting of the game (“Why is this robots? Why?”, “This game

should not have those type of graphics.”), and expressed he felt tricked because “learning will

never be fun”. His behaviour fortunately did not seem to affect the other players.

Learning Games for Programming

Page 77

5.2 Navigation

During this test phase we observed once again that players had trouble navigating in adventure

mode as well as in puzzle mode. Our approach did not turn out to be very intuitive to use, so we

decided to exchange this control scheme in adventure mode by implementing a path for the main

character that could be clicked. In the puzzle mode we decided to replace panning with

navigation per right-click and dragging, as some of the testers had intuitively attempted.

Also, the players did not realize how to zoom in and out during puzzle mode. When the puzzle

started, we had zoomed into the puzzle in order not to overwhelm the player with too much

visual information. Once they had examined all the single parts up close, they would need to

zoom out and try to grasp the whole picture of the puzzle in order to understand how the

different parts were connected. We decided to solve this issue by including a little initial tutorial,

inviting the player to exercise the basic controls before entering the puzzle.

5.3 Interface

The problem with navigation also influenced the perception of the top bar: A small part of it

would be visible on the top of the screen, and to expand and collapse it again the player would

need to click it. While moving the mouse towards the screen, the panning navigation would be

activated. We solved this issue by reversing the controls as mentioned above, and expanding the

top bar when the mouse hovers over it. During the play session it turned out that most players did

not even notice the top bar even though we used a light bulb icon on it to attract the players

attention. Our solution was to add black and yellow, so called ‘hazard stripes’, to make it more

noticeable, as well as animate the lightbulb to appear blinking. Since we changed the controls for

navigation, we decided to expand the top bar on mouse hover instead of left-click to simplify its

access.

Image 5.1 and 5.2 - Top bar - early and later version

Since many players had trouble using the eraser tool, we decided to exchange its icon and

increase the size of the colliders on belts in order to alleviate the usability.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 78

Image 5.3 and 5.4 - Eraser mouse icon - early and later version

5.4 Dialogues and Rewards

With the initial instructive dialogues the players were well informed of what they had to do, but

some complained afterwards that they did not have the feeling that they achieved anything and

were generally lacking a proper reward for their efforts and achievements. We agreed to add a

rewarding dialogue after solving each puzzle, displaying respect and gratitude from the person

that was helped, as well as generally improving all other dialogues gradually, the more puzzles

are solved until Hayden promotes Zola to be employed as a proper Machineer.

5.5 Interaction with Puzzle Elements

Players had trouble identifying which objects could be interacted with. To solve this we replaced

the mouse cursor from an arrow to a wrench in adventure mode, and highlighted elements in

puzzle mode, whenever the mouse hovers over interactable objects or characters.

One element that players had difficulties understanding was the gear on the rail, as it moved

relatively slowly due to a programming restriction and did not necessarily catch the players

attention fast enough. We decided to emphasize it by adding visual effects resembling sparks and

adding an appropriate sound effect.

Each puzzle contained partly broken as well as fully functional parts, which were initially set to

the correct state and provided a visual reference to guide the player. We observed during this

session that sometimes when players were uncertain what to do to solve the puzzle, they started

to manipulate all the puzzle elements in a way that made it harder or impossible for them to solve

the puzzle. To protect them from making their challenge more difficult we decided to lock all the

puzzle elements that were initially set so the user could not delete or manipulate the original

puzzle elements.

Learning Games for Programming

Page 79

5.6 Conclusion

Some players took a long time to realize that they were looking at the insides of the owl during

the owl puzzle, so it seemed important to add another image of the closed body of the owl on

top, which the player would open by clicking on it. This should also help keeping the player

immersed during the transition from adventure mode to puzzle mode. Generally players seemed

to be confused about the purpose of the different machine parts and invisible parts that were

activated by levers, so we agreed to label all machines and levers accordingly, as well as

surround machine parts with a yellow frame to emphasize them visually.

None of the players got completely stuck in any of the puzzles, but this might have been because

our presence prevented the situation. After discussing the chance of this happening and possible

ways to avoid it, we decided to implement the blueprint scaffold. As described in the design

chapter, the blueprint provides a complete solution for each puzzle after a certain amount of time

has passed, giving the players a chance to solve the puzzle without this extensive help. Not being

able to solve the puzzle at all would detach the players from their immersion and interrupt the

feeling of flow. This scaffold is not to be compared with the option to skip the puzzle entirely -

performing the correct actions without fully understanding them can still have an impact on the

players learning experience the same way as memorization is used in school settings. If the

actions are repeated in different contexts with different stimuli and explanations, we can assume

that the learner will eventually grasp the meaning of the action.

The most important finding of this test, as we found out, is that conducting a pilot test is not

enough, but we as testers needed to have a test run as well. Inviting the children to help us ‘make

learning fun’ was very well intended, but gave away the ‘stealth’ of our ‘stealth learning’

concept and provoked at least one player’s strong resistance. Furthermore, all of us were

physically too present, standing right behind the players, observing their behaviour closely and

helping out with problems too soon in some cases. We noted that for the final test in order to

produce valid data we would have to let the testers play in as much of an uninfluenced manner as

possible.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 80

6 Final Test with Target Audience

Our final testing session took place once again at Copenhagen International School during their

summer school program. With the help of the director we were able to test the game with 21

children aged from 9 to 14 years, 12 boys and 9 girls. The children played the final version of

Machineers, with changes implemented from the two previous test phases and including all five

puzzles. The main focus of this test phase was to analyze learning process of the participants and

also to determine whether they had fun, were motivated and immersed while playing.

6.1 Preparation

The game was installed on all of the computers in the schools computer lab, and the computers

were equipped with headphones in order to enable players to play individually with minimal

outside interference. We had prepared an online questionnaire for the participants to fill out after

playing the game, in which the children had to answer a few personal questions and were asked

to solve some logic problems relating to the game. Using a timestamp and computer

identification number we were able to link the information of the questionnaire with the metrics

data. Before the test started, we introduced ourselves shortly, instructed the children not to talk to

and help each other during the playtest, and raise their hand once they were finished so we could

direct them to the questionnaire. We did not give away the learning purpose of the game.

Before actually carrying out the test we conducted a pilot-test with a 12 year-old boy to make

sure the questionnaire was understandable, the programming test was not too complicated, and

that there were no major bugs left in the game. The pilot test worked out better than expected;

our tester solved all the puzzles without even once consulting the blueprints, and fixed some of

the machines without testing them. He enjoyed playing the game very much, and did not criticize

any aspect of it, but we have to consider the fact the he plays a lot of computer games in his

spare time and might be more advanced than the majority of the children in our target group.

The different methods we used and their results will be described in detail in the next sections.

Learning Games for Programming

Page 81

6.2 Metrics

We implemented a metric data collection system that would log some of the player’s actions in a

file while they were playing. With this system we were able to measure how long the testers took

to complete the different puzzles, and how many times they accessed hints and blueprints. We

used the data to get an overview of how differently player would use scaffolds and if they

catered to their needs in the way we designed them. The outcome is discussed in section 6.5

Results.

6.3 Questionnaire

The final dialogues in the game instructed the playtesters to raise their hand so we could direct

them to the online questionnaire, which had been created using Google forms.

We asked the players about general personal information: age, gender, and how often they

played computer games and analog games (board or card games) to gather some general

information about them which might have an effect on how they perceive the game.

Furthermore we inquired about how much the test subjects enjoyed playing Machineers, whether

they thought it was fun, too challenging or too easy, and if and under which circumstances they

would like to keep playing. We also asked them which puzzle they thought was most fun/most

challenging and which help options our players found helpful, used often or if they were even

aware of them.

We encouraged the children to state aspects they did not like about the game and asked them to

mark any puzzle element they were confused about or did not exactly know how to use, as well

as state any usability problems they had with the top bar. Further questions were concerned with

the programming test and will be specified in the section below.

6.4 Programming Test

The programming tests we presented to the children consisted of a number of pictures showing

machines similar to the ones they had encountered within the game, as well as pseudocode

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 82

examples. The children were then prompted to link the pictures to the correct piece of

pseudocode or the other way around.

The aim of this test was to determine whether the children would be able to understand and solve

logical problems that were thematically connected to the game they had just played, but

presented differently, therefore analyzing the transfer value of their problem-solving skills.

Instead of using the visual representations from the game we presented them with a pseudocode

text version of those same programming concepts.

a ‘transfer’ of ideas from one context to another that is elusive, rare, and powerful. It

happened not because the students learned more information, but because she learned it

in the context of a new way of thinking - an epistemic frame - that let her see the world in

a new way. (Shaffer et. al 2005, p.15)

Since children of this age group are usually not familiar with pseudocode, and because we did

not want to provoke a hostile attitude towards our game, we decided against presenting the

children with a pretest similar to this posttest. This makes us unable to show exactly how much

the game improved the children’s ability to interpret pseudocode.

We attempted to create a smooth transition from the game to the test by taking a puzzle most

players enjoyed and understood well in the previous test phases, the DJ machine - simplifying it

by cutting it in half and translating it partly to pseudocode. The code snippets were placed

exactly where the puzzle elements had been, but there was no visual representation of the DJ

machine to view since the game was closed, so they had to recall that visual from their memory.

Learning Games for Programming

Page 83

Image 6.1 - Programming test 01 - DJ machine

The question related to image 6.1 is as follows: “Look at the knobs and try to figure out what

kind of music is playing at the moment.”

The answer options are 1A “voice loop A and beat loop A”, 1B “no voice loop and no beat loop

(no music at all)”, 1C “no voice loop and beat loop A”, 1D “voice loop A and no beat loop” we

also included an “I don’t know” option to make sure that tester would not randomly select an

answer and falsify the test results. The correct answer is 1c), “no voice loop and beat loop A”.

The second question involves a machine that the players had not interacted with during the game,

the waving clown machine. In this question we presented a complete pseudocode version of the

machine (image 6.2) and asking the testers to select the matching visual representation from a

choice of pictures (image 6.3).

“Which of the images is an exact match of the text version of the Waving Clown machine?”

The answer options are 2(A), 2(B), 2(C), 2(D) and “I don’t know”. The correct answer is 2(B).

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 84

Image 6.2 - Programming Test 02 - Waving Clown machine - pseudocode

Image 6.3 - Programming Test 02 - Waving Clown machine - answer options

Learning Games for Programming

Page 85

The third question involved a more complex machine, composed of similar elements as the crane

machine, but simplified to some degree, the hot dog machine. For this part of the test the children

were provided with three images: one showing the hot dog machine in the visual representation

as it would have been used within the game (image 6.4), another image showing the simplified

pseudocode representation of the same machine but partly broken (image 6.5), and a third image

with a selection of pseudocode pieces that could replace the broken part in order to exactly

resemble the first image (image 6.6).

The question is “Which piece of the text fits into the text version of the hot dog machine?‘ and the

answer options are Text 3(A), 3(B), 3(C), 3(D) and “I don’t know”. The correct answer is 3(D).

Image 6.4 - Programming Test 03 - Hot Dog machine - textured version

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 86

Image 6.5 - Programming Test 03 - Hot Dog machine - pseudocode

Image 6.6 - Programming Test 03 - Hot Dog machine - pseudocode answer options

Learning Games for Programming

Page 87

As a final part of the test and the questionnaire we asked the children answer the open-ended

task: “Pick the picture of your favorite machine and explain how it works in as much detail as

possible”. Unfortunately most children strongly resisted completing this task or possibly

misunderstood it, as many just stated the name of their favorite machine (“DJ machine”) or typed

in random letters. We were able to assist some testers in answering this question producing quite

good results, but because this process was very time-consuming and our resources limited, it was

not possible to collect enough data this way for a proper analysis.

6.5 Results

Relying on our experience from the immersion test phase, where all children had a excellent

english literacy whether they were native english speakers or not, we assumed that the attendees

of the summer school would have equally good english reading skills, which our game

Machineers requires. As it turned out, the children attending summer school represented a

broader variety of age, gender and nationality than our previous testers, but unfortunately their

english proficiency was considerably lower.

This meant that many of the children had problems understanding the text based information

which our game relies on to a large extent. Surprisingly this fact did not imply that they were

unable to play the game; instead they had to be supported with more explanations from us, but

performed unexpectedly well regardless.

6.5.1 General results

Out of 21 participants, 15 completed the game within the time we had available for the test, with

an average completion time of 65 minutes and 14 seconds.

Number of participants 21

Completion rate 15 (71,43%)

Average completion time: 65 min 14 sec

Table 6.1 - Average completion time of all players

The fact that our game was capable of capturing the attention of the children for such a long time

is remarkable and points towards a deep immersion of the players. During this time the majority

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 88

of players were deeply engaged with the game and only a few of our testers showed signs of

boredom, being overwhelmed and the desire to quit.

We had 12 male and 9 female testers in the ages 9 to 14. The male testers showed a better

completion rate than the females with 10 out of 12 boys (83%) completing the game against only

5 out of 9 girls (55%) doing the same.

 boys girls

Participants: 12 9

Completion ratio: 10 (83,33%) 5 (55,56%)

Table 6.2 - Average completion ratio divided by gender

When looking at the completion rate divided on the different ages we can see a slight increase

for the older testers, but for unknown reasons none of the three 14 year old testers were able to

complete the game. The participants aged 11-13 did particularly well with only 1 person unable

to complete in time, and their average completion time was much lower than 9-10 year olds.

Ages: Participants: Completion rate: Average completion time:

9 or younger 2 (9,52%) 1 (50,00%) 72 mins 55 secs

10 3 (14,29%) 2 (66,67%) 77 mins 49 secs

11 2 (9,52%) 2 (100,00%) 66 mins 29 secs

12 5 (23,81%) 4 (80,00%) 60 mins 57 secs

13 6 (28,57%) 6 (100,00%) 60 mins 48 secs

14 or older 3 (14,29%) 0 (0,00%) -

Table 6.3 - Average completion time ratio divided by age

With the metric data we collected, we were able to calculate the average completion times of the

different puzzles along with the amount of hints and blueprints used.

Learning Games for Programming

Page 89

Puzzle: Completion

rate

Completion time

(average)

of hints

in puzzle

Hints used

(average)

Blueprint

use

Own Puzzle: 100,00% 9 min 37 sec 8 5,57 23,81%

DJ Puzzle: 100,00% 7 min 25 sec 6 3,95 52,38%

Bar Puzzle: 95,24% 9 min 32 sec 6 5,05 65,00%

Cart Puzzle: 90,48% 9 min 16 sec 8 6,89 47,37%

Crane Puzzle: 71,43% 17 min 4 sec 6 4,13 86,67%

Table 6.4 - Average completion time and hint/blueprint access per puzzle

The average completion time for the owl puzzle seems too long considering it is the first puzzle

in the game. Due to the language barrier, many of the children did not understand that they could

zoom and scroll inside the puzzle, and this may have further increased the completion time of the

puzzle.

Gaming habits, both digital and analog, were one of the aspects we inquired about in the

questionnaire, and the male testers answered that they were playing video games more often than

the female testers. More frequent video game habits showed a higher completion rate, but

surprisingly, of the children who completed the game, the ones who answered that they played

video games only a few times a month had the lowest average completion time.

Video Game Habits Answers Completion rate Boys Girls Completion time (average)

never 3 2 (66,67%) 1 2 74 min 24 sec

a few times a month 6 3 (50,00%) 1 5 56 min 32 sec

a few times per week 11 9 (81,82%) 9 2 65 min 52 sec

everyday 1 1 (100,00%) 1 0 58 min 59 sec

Table 6.5 - Video Game Habits in relation to gender and completion time

On the other hand, analog gaming habits did not seem to have any effect on completion time and

since only one of our testers was playing analog games on a daily basis we cannot make

assumptions from the completion rate statistics of that habit group. Both completion rate and

time was very similar over the different analog gaming habits and there was an even distribution

across genders.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 90

Analog Game

Habits

Answers Completion

rate

Boys Girls Completion time

(average)

never 3 2 (66,67%) 1 2 63 min 29 sec

a few times a month 10 7 (70,00%) 5 5 65 min 51 sec

a few times per week 7 5 (71,43%) 5 2 64 min 2 sec

everyday 1 1 (100,00%) 1 0 62 min 6 sec

Table 6.6 - Analog Gaming Habits in relation to gender and completion time

6.5.2 Immersion-Related Results

In the following we inquired about how much the test subjects enjoyed playing Machineers,

whether they thought it was fun, too challenging or too easy, and if and under which

circumstances they would like to keep playing (note that participants were able to choose more

than one answer).

Answer: Answers % of testers

I would like to keep playing and solve more puzzles 11 52,38%

I would like to build my own machines 3 14,29%

I would ask my parents to get this game for me 5 23,81%

I would not play this game at home 4 19,05%

I would enjoy playing this game in school 8 38,10%

Table 6.7 - Questionnaire answers to the question “Keep on playing?”

Just over half of our players answered that they would like to keep playing, and this is after they

had already been playing for one hour. This shows that the game was fun and engaging for many

of the children and the general attitude towards the game was good. 4 of the 21 test subjects

answered that they would not play the game at home which we consider to be quite a low

number taking into account the diversity of the testers.

Learning Games for Programming

Page 91

Answer: # of answers % of testers

It was very tricky and challenging 10 47,62%

It was ok. 9 42,86%

It was a lot of fun 8 38,10%

It was too hard for me 2 9,52%

It was a little boring 1 4,76%

I did not like it at all 0 0,00%

Table 6.8 - Questionnaire answers to the question

“How would you describe how you felt when playing this game?”

In response to the question how they felt when playing Machineers, most testers answered

positively. This question provided a list of answers were the testers could choose as many as they

liked. Almost half of the players described the games as being tricky and challenging and only a

few found it too hard or boring. None of the children showed complete dislike of the game. The

answer “It was very tricky and challenging” can be viewed as both positive and negative

depending on the tester.

The fact that out of 10 players who selected “it was very tricky and challenging” five also

selected “it was a lot of fun”, indicates that they appreciated the challenge. This is oriented

towards the ‘hard fun’ concept expressed by Lazzaro (2004). Players appreciating this kind of

gameplay thrive under compelling challenges that allow for multiple strategies and the

expression of skill and mastery. “The challenge focuses attention and rewards progress to create

emotions such as Frustration and Fiero (an Italian word for personal triumph)” (Lazzaro 2004

p.3). The body postures of the children during the play session ranged from holding their fingers

crossed, over raised shoulders, to hands covering mouth or eyes and after solving the puzzles

almost all the children had both arms raised over their heads as a sign of victory.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 92

Image 6.7 - Children solving the crane puzzle

In the following we asked in more detail about which puzzle they thought was most fun and

which one was most challenging. Almost two thirds of the children thought the DJ machine was

the most fun, and as shown in Table 6.4, this was also the puzzle that the children solved the

fastest. It should also be noted that the DJ puzzle had a nice audio feedback compared to the

other puzzles, and that this might have made it more memorable to the children. Only a single

tester answered that none of the puzzles were fun.

Graph 6.1 - Pie Chart showing percentage of most fun puzzle

Learning Games for Programming

Page 93

We were surprised that none of the testers chose the cart puzzle as the most fun, since Table 6.4

shows a decline in blueprint use, which could have indicated a greater sense of accomplishment.

We suppose that because the visual feedback in the cart puzzle was not as exciting as in the other

puzzles, it may have been less memorable to the testers.

The hardest puzzle was the Crane puzzle, which the children spent an average of 17 minutes 4

seconds completing. It should be noted however, that solving the puzzle relied very much on trial

and error, and that the crane spent plenty of time moving back and forth while the children could

only observe if the crane performed correctly. This must have added to the completion time of

the puzzle. From a design perspective, this puzzle and the Bar puzzle are the most trial and error

oriented: the complexity of the structure of those two puzzles forces players to approach them

one step at a time. Based on our observation of test subjects, players tend to focus on single

methods, then proceed to attempt synchronization between methods. This behavior is exactly

what we had in mind when designing those puzzles and we feel that a this approach fits well and

resembles how many approach problem solving and programming.

Time is not the only factor that indicates the Crane as the most complex puzzle: in fact, this is

where we can see the highest percentage of blueprint use, which indicates that the children did in

fact have a hard time solving it. The Crane puzzle is wider in terms of the number of actions

needed to solve it, and also introducing the most complex component of the game, the

programmable knob.

Graph 6.2 - “Which puzzle was the hardest and most annoying?”

Three testers answered that none of the puzzles were hard, but interestingly two of these testers

did not manage to complete the game in time which puts the seriousness of their answers in

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 94

question. No one answered that the owl puzzle was the hardest which is unexpected considering

it had the second highest average completion time of all five puzzles. Testers may have hesitated

choosing the owl because it was the first puzzle and they felt that they should not have struggled

with it.

6.5.3 Usability and Scaffolds

We encouraged our testers to state aspects they did not like about the game. This was also a

multiple-answers, multiple-choice question.

Answer: # of answers % of testers

there was too much text 6 28,57%

the puzzles were too hard 4 19,05%

I did not like that I was playing a girl robot 3 14,29%

there was not enough help 2 9,52%

I did not like the robots 1 4,76%

It was too boring 1 4,76%

Nothing (no option selected) 7 33,33%

Table 6.9 - “Things I did not like about the game”

The most chosen reply was “There was too much text”. 6 testers or ~28% chose this answer

which may point back to the aforementioned lack of fluency in english. We also offered them the

option to state other observations, which was only used by one tester, stating: “I LIKE ALL THE

PUZZLE” (sic).

We further inquired which help options our players found helpful, used often or if they were

even aware of them. This question allowed only for a single answer.

Learning Games for Programming

Page 95

Answer: # of

answers

% of

testers

The best help was the blueprints 12 57,14%

The best help was the tips and hints from the robot Bent 4 19,05%

The best help was the owl explaining things to me 3 14,29%

The best help was when information just appeared when I clicked

on things

2 9,52%

Table 6.10 - “What help option worked best for you?”

Our metrics data shows that the owl scaffold has been used much less and perceived as less

helpful than other help functions, which can be caused by several reasons. Answers to the

questionnaire showed that many players were simply not aware of this help option, others did not

find it very useful since we had written many explanations for different puzzle elements, but not

implemented all of them. Having to read a lot of text that contains general information but no

specific hints towards solving puzzles is clearly not very appealing to our target audience.

Three players indicating that “the best help was the owl” is an unexpected result, given the

virtually nonexistent usage of the on-demand owl help emerged from the metrics. The question

might have been misunderstood: perhaps players were thinking of the owl as a character here,

rather than a help option. More than half the testers found the blueprint to be the best help feature

which is not surprising. The blueprint consisted of a picture of the machine in its solved form and

therefore the language problems would have had no influence on this scaffold in contrast to the

other help methods.

 To evaluate our game externally we asked a number of professionals in the field to watch

a commented walkthrough (which can be found on the DVD) and received the following

feedback, confirming good usability of the game: “The design is simple, but effective and

consistent. I had no problems while navigating through the game. I encountered no usability

issues or game stoppers.” (Thomas Wernbacher, personal communication, August 14, 2012)

In order to obtain more information about how the different players used scaffolds individually

and how their behaviour developed over the course of the game, we crossed individual hint and

blueprint access data for each puzzle and all players. Below is a graph for each puzzle showing

how many hints and blueprints the individual test subjects used. The graphs are sorted by the test

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 96

subject’s completion time of the puzzle and a red line shows the point in time where the

blueprint became available.

Graph 6.3 - Hint and Blueprint use of all players in the Owl puzzle

Looking at the owl puzzle we can see that only a few players used the blueprint and many

accessed neither hints nor blueprints. Since this was the first puzzle, many of the testers may not

have been aware of the existence of the blueprint. It could be argued that the low hints and

blueprint use was the result of the players own desire to complete the puzzle without help, but

the increasing use of help in the later puzzles (which had a lower average completion time)

suggests otherwise.

Learning Games for Programming

Page 97

Graph 6.4 - Hint and Blueprint use of all players in the DJ puzzle

The DJ puzzle shows an increase in blueprint use compared to the owl. The two fastest solvers

did not use any hints in contrast to the others but since the hints were made available sequentially

after certain time intervals, some subjects may have completed the puzzle before all hints were

available. It is interesting to see that test subject #9 and #21, who took a long time to solve the

owl, were so fast solving the DJ puzzle. We can see that they both solved the owl without the use

of the blueprint and this may have helped them understand the puzzle elements better. Following

subject #21 we can see that he does not use the blueprint until the last puzzle which makes it

seem like a conscious decision to try and beat the game without help.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 98

Graph 6.5 - Hint and Blueprint use of all players in the Bar puzzle

The bar puzzle has the second highest blueprint use after the crane puzzle and all the test subjects

who used the blueprint had to consult it several times. This makes sense considering that the

puzzle required setting the position of nine different gear robots correctly, and remembering all

the settings from just one look at the blueprint would be hard. It also indicates that all testers who

used the blueprints failed to solve the logic task this puzzle involved and probably did not fully

understand what was being taught. In this case, presenting the blueprint at a later point might

give the player more time for another attempt to solve this puzzle using hints and logic.

It is interesting to see that test subject #18 refused to use any help in this and the following two

puzzles. Test subject #18 used both hints and blueprint in the DJ puzzle so he must have been

aware that help options were available.

Learning Games for Programming

Page 99

Graph 6.6 - Hint and Blueprint use of all players in the Cart puzzle

The use of scaffolds in the cart puzzle was a little surprising. The number of players accessing

the blueprint is lower than in the previous puzzle, and the average completion time is also lower.

According to these results, the difficulty curve seems to decrease instead of increasing, although

this is the second most difficult puzzle by number of votes (if we look at graph 6.2). This can be

caused by many factors. The Cart puzzle requires a small number of components to be placed,

while the Bar puzzle requires to manipulate a higher number of elements, which could

potentially introduce an underestimated factor of complexity. Another possible explanation could

be that the hints in the Cart puzzle are clearer, reducing the need for consulting the blueprint. The

hints in this puzzle were directly instructing the player on how to fix the engine and this may

have inspired some testers to try and solve the puzzle without the blueprint.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 100

Graph 6.7 - Hint and Blueprint use of all players in the Crane puzzle

The Crane puzzle was the one most of our testers chose as the most challenging puzzle. Looking

at the graph we can see that almost all testers used the blueprint and subject #2 consulted it 26

times before completing the puzzle. During testing we noticed that some of the players did not

understand how the wires in the crane were crossed on the right side in contrast to the left side,

even when looking at the blueprint, and this may been the reason for subject #2 consult it so

many times.

6.5.4 Programming Test Results

As mentioned earlier, the data from the programming test will have to be analyzed with great

cautiousness since the missing pretest does not allow us to make any assumptions regarding

learned content and the quality of the test itself. Exactly like anticipated by Honey and Hilton

(2011), the informal learning setting our game was tested in and its combination with the

language barrier possibly resulted in a strong resistance of players to complete the programming

tests, assuming that players who answered “I don’t know” to all test questions were resisting the

test. Honey and Hilton’s (2011) suggestion to use the technology available and incorporate the

test within the game, was not feasible to implement within the scope of this project. The test

Learning Games for Programming

Page 101

clearly showed us that this approach would be significant for playtests in informal learning

settings.

 Correct: Incorrect: Don't know:

Picture 1: 14,29% 33,33% 52,38%

Picture 2: 19,05% 4,76% 76,19%

Picture 3: 28,57% 19,05% 52,38%

Table 6.11 - Programming test results

Many of the children had problems understanding the questions, and when it came to writing,

even more of them gave up.

6.5.5 Interesting Player Profiles

In this section we have selected a few interesting representatives of our test group to get a

general idea of how different testers experienced the game.

Test subject #13

Test subject #13 is interesting since she was the only tester to answer all three programming test

questions correctly. At the same time she also had the fastest completion time of all the testers

with 48 minutes and 54 seconds. When asked to describe one of the machines from the

programming tests in the questionnaire she gave a good description of the hot dog machine: “Hot

Dog machine: you click on the red button, and the knob starts on gear 1 once (gives buns), and

then it goes to the next gear once (gives sausages) and then the rest.” This description shows that

she completely understood how the hot dog machine worked and also points towards good

english literacy. She thought the best help was the hints from the robot Bent but said she only

used the help when she was stuck, which corresponds with what the metric data shows. Her

computer gaming habits were “few times a month” so it is unlikely this is the cause of her

success.

Test subject #11

Test subject #11 solved the first 3 puzzles very fast but had the slowest completion time in the

last two puzzles. She spent 16 minutes in the cart puzzle and almost 25 minutes in the crane, and

only used the blueprint in the last. She answers that she only used the help when she was stuck

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 102

which is backed up by the generally low hint use in the metric data, but as her favorite help

feature she choose the owl even though the metrics show she never used it. She may be

confusing the owl’s on demand help with when the owl sometimes speaks to the player in the

beginning of a puzzle.

In the programming test she answered “I don’t know” to all three questions and she did not try to

explain any of the machines. This indicates to us that she resisted answering the test.

Test subject #21

Test subject #21 is interesting because he is a 9 year old boy who used almost no help but still

managed to complete the game. He only used the blueprint in the crane puzzle and in the other

puzzles he used almost no hints. His answers in the questionnaire show that this was conscious

decision, but since he also said the game had too much text, he might have had trouble reading

and understand the hints.

In the programming test he tried to answer question 1 and 3 but got none of them right. He was

unable to write his own explanation of one of the machines, but with one of us writing while he

explained he managed to show he had a good understanding of the hot dog machine.

6.6 Reflection

Our results show that the low english literacy we encountered during the third test phase did not

have a harmful effect on immersion and enjoyment of our test subjects during playtest. However,

as most of our scaffolds involved textual information, it is difficult to determine how helpful they

were to our players. This triggered the assumption that we could expand our target audience to

include younger and less literate children if we reduce the text to a minimum and provide more

explanatory pictures as well as audio recordings as a support for textual information. More

feedback from a professional, this time an assistant professor for programming, Ilse

Schmiedecke, indicated another option of expanding our target group:

there is another group of kids i am considering, namely those from so-called ‘precarious’

homes. this game could be so good for them to train their creativity and logic, but even

when they are older, they oftentimes lack the reading skills required. apart from that, the

mood and graphics of the game would definitely appeal to them, and i would love to

Learning Games for Programming

Page 103

introduce that to such schools. (Ilse Schmiedecke, personal communication, July 23,

2012)

We can assume that the amount of puzzles available were not sufficient to establish a circle of

repetition and mastery. The initially planned sandbox mode would have provided better grounds

for determining the development of skills and enable learners to actively construct knowledge,

than the task to verbally describe one of the machines. Implementing the sandbox mode would

have been the final step to incorporate the constructivist approach (Egenfeldt-Nielsen 2007) into

our game design, but this was unfortunately not feasible within the scope of this production.

From the reactions of the players towards the programming test and the resulting data from the

questionnaire, we can assume that the informal learning context that we tested our game in,

resulted in a strong resistance towards the test, as predicted by Honey & Hilton (2011). Due to an

inadequate introduction of testers to the programming test, an insufficient level of assistance

from us during the task, and the absence of a pretest, no meaningful conclusions can be drawn

about the learning outcome. Judging from the results we achieved when asking a few children to

verbally describe the hot dog machine, a more qualitative approach including a post test

interview would be a better approach to determine how well players understood them. We

presume that implementing Honey and Hilton’s recommendation to use the technology available

and incorporate the assessment within the game in a playful way would produce better results

and simultaneously eradicate conflicts with the stealth learning approach.

Assessments are often designed to measure conceptual understanding alone, rather than

other learning goals, and generally rely on paper and pencil tests, rather than taking

advantage of digital technology to embed assessments in simulations or games (Honey &

Hilton 2011, p.53).

The game in its current state was not meant to give its learning purpose away just yet, but to

prepare the player for this step by providing them with a positive mindset and an interesting

context for applying the learned content, using stealth learning. Through interaction and

manipulation of puzzle elements representing the procedural concepts, the players should have

been able to form spontaneous concepts, which later need to be transformed into scientific

concepts (Egenfeldt-Nielsen, 2007). Without proper debriefing, engaging and conversation

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 104

within a social group, the learned content of the game is unlikely to be fully understood and

transferable to other contexts.

As mentioned earlier, we received feedback from professionals about the practical use of our

game Machineers, amongst others from James Paul Gee, who stresses the need for providing a

network of other media and peers: “For me, a game needs to be embedded in a whole learning

system connecting to other media, curriculum, and social media. Games like this one, it seems to

me, are good for what has been called ‘preparation for future learning’ (a form of transfer). [...]

The game does look promising” (Gee, personal communication, July 31, 2012).

What our results do show, considering the extensively long playtime and the high amount of

players stating that they would want to keep playing, is that our testers were deeply immersed

into the activity and enjoyed the game, indicating that they were under the impression of playing

a commercial title that was not related to any learning purpose. The expressions of emotions of

the children during the playtest (Image 6.7) resemble very much the atmosphere we were trying

get across from an actual programmer or programming learner whose ways of solving problems

similarly consists of a mixture of experimenting, guessing, calculating and predicting. Solving

puzzles in Machineers involves observing the system, making assumptions and hypotheses on

how placing a certain component will affect it, observing the outcome, and adjusting one's

mental model with every experience, constructing “explanatory models for the ordering of

experience” (Bruner 2006, p.113) which in turn allow for solving later more complicated

puzzles. The more difficult the problem, the greater is the sense of achievement is after it has

been solved (‘hard fun’).

The data shows that our audience was well targeted. The very low number of players who stated

that they were bored or that the challenge was too hard for them compared to the large amount of

players stating that the game was fun, ok and/or tricky and challenging implies that the majority

of the children were challenged, well-guided and in a state of flow. This is encouraging in terms

of the design points concerning agency, immersion, narrative, intrinsic motivation and stimuli we

outlined and followed. A few children also produced interesting solutions to the cart puzzle,

which we did not anticipate when designing the puzzle, pointing towards a stimulation of

creativity for some players.

Learning Games for Programming

Page 105

A minor percentage of our players stated that they did not like the protagonist to be a girl.

Surprisingly enough, two of them are boys and the third one is a girl herself. We can only

speculate about the reasons behind her dislike. Being able to choose between a boy and a girl to

play as protagonist as we initially planned would encourage customization, removing this

possible source of annoyance.

Data shows that scaffolds have been used differently by different player types, as we intended

them to do when designing them (despite the problem that they were not as literate in english as

expected). This shows that our scaffolds are suitable for catering to a broad range of player types.

Some players, as described in section 6.5.4 Interesting Player Profiles, are more ambitious and

try to solve puzzles with as little help as possible, while other players access the help options

more often. When trying to correlate other data about the different learner groups, we could not

find any commonalities in age, gender or gaming habits. This leads us to the assumption that, in

analyzing the target audience for a learning game, emphasis should be put on their playing

behaviour rather than their personal data or gaming habits. In this sense, a taxonomy of learning

game players might help in order to ensure that all types of players will be catered for when

designing scaffolds.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 106

7 CONCLUSION

7.1 Future Work

In order to provide an actual circle of repetition and mastery, Machineers would benefit from

implementing more puzzles, while gently increasing challenge and complexity, and reducing or

delaying help options. Also, the learning curve should be softened in the beginning, giving the

younger players more time to familiarize with the controls. It became clear to us after the test

that the game needed more introductory tutorials on how the different elements worked and how

to interact with them. Using the owl puzzle as their first introduction to the puzzle system was

too overwhelming, as too many components were introduced at the same time. Some very simple

puzzles, going through all the basic interactions step by step without all the interface and

different elements that might confuse them, would have been a better way to ease them into the

system and reduce confusion and frustration.

To build upon the logical skills introduced in the initial levels and emphasize the connection with

the actual programming concepts laying behind the game, more levels would need to be

designed, introducing different layers of abstraction. For example, we speculated about

introducing a pseudocode layer, where the matching code parts are positioned exactly where the

visual parts are, and eventually an actual code layer, where everything is written top-down. To

integrate this in the game, our blueprint scaffold with the solution could be replaced by a

pseudocode document and the player could either change the visual layer or the real code layer

according to the pseudocode layer.

Placing counters on activation buttons could open up for a design revision of the do-while

button, eliminating the distinction between red button (do-while) and the yellow button (do-

once), allowing to manually specify the number of calls that would follow the activation of the

button - from 1 to infinite. This not only to ensure a more consistent design, but also to

emphasize the ‘for loop’ metaphor.

Testing confirmed that some players would appreciate a sandbox mode where they can build

their own machines, as in the early phase of this production we were hoping to be able to

implement, but eventually were lacking the time. Since the idea of a built-in mini-game worked

Learning Games for Programming

Page 107

so well in the DJ puzzle, we would implement this concept in every puzzle, so that players

receive audiovisual feedback on how well the machine behaves. It would be very interesting to

examine how this game could be used in a context of a social community of programming

learners, connected to other activities and peers as stated by Malone, Gee, and Egenfeldt-

Nielsen. Enabling competition using the sandbox mode to find which player builds the most

effective, fastest, most complicated, simplest, or prettiest machine would put further emphasis on

the constructivist approach to procedural literacy.

To cater for individual player differences as suggested in ‘Learning Science Through

Simulations and Games’ (Honey & Hilton 2011), the optimal solution would be to present the

players with customized scaffolds. As of now, we provide hints based only on the time spent on

the puzzle, which is sub-optimal in terms of “just in time” (Gee 2005a). The ideal approach

would be to “read” the puzzle situation before giving out the hint: the game should be able to

point out specific situations, like when the player is missing a certain piece, or a machine part is

wrongly assembled or isolated.

The test of transferability would have to performed before the beginning of the actual game, as

well as afterwards, in order to produce comparable data and assess the learning outcome. One

possible solution on how to integrate testing into the game without interrupting the game play

could be Hayden asking Zola to perform tests on a regular basis, claiming to determine what

kind of salary she deserves or if she is ready to be promoted, but only after properly introducing

the player to the story and other characters to make sure that this test will not interrupt the

immersion or create a biased mindset. Those tests would work as a quick multiple-choice-with-

images assessment and give the player only vague and encouraging performance feedback.

7.2 Conclusion

Investing in creating a positive mindset and fostering intrinsic motivation in the learner are

proven to be paramount factors for the learning process. The first purpose of this work was to

explore whether or not such an approach is encouraged if we present a young audience with a

learning game that does not advertise its purpose and is not distinguishable from commercial

games in terms of gameplay, visual and sound quality.

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 108

The subject of procedural literacy has been chosen for several reasons: First, because of its

relevance in modern society; second, because this subject is commonly not taught to children

younger than 16 years; third, because we wanted to introduce the topic to learners who perceive

science negatively and as irrelevant, e.g. girls, minorities, children from single parent homes, etc.

(Honey & Hilton 2011).

Computer based educational games can offer a good platform for empowering beneficial

learning principles related to immersion and motivation. This work also aimed at identifying and

applying a series of design principles such as ‘agency’, ‘immersion’, ‘narrative’ and ‘fantasy’,

‘visual stimuli’, and ‘clear goals’.

With this in mind, we produced Machineers, the vertical slice of a learning game based on the

constructivist and experiential learning theories and analyzed usability, immersion and learning

process in various test phases using different qualitative methods.

By analyzing the process of children playing Machineers we found both positive and negative

aspects resulting from our approach, our design decisions and testing methodologies. The biggest

difficulty was to evaluate the transferability of the learned skills, both resulting from our choice

not to introduce a pretest, and from the ‘stealth learning’ approach.

The results show positive aspects of Machineers in terms of immersion and intrinsic motivation.

Given that players were immersed, this is encouraging in terms of the design points we identified

and followed. Playtesters generally developed a positive mindset and by stealthily familiarizing

them with programming concepts, they formed spontaneous concepts which later can be

transformed into scientific concepts (Egenfeldt-Nielsen 2007) with the help of an “educationally

minded adult” (Honey & Hilton 2011, p.80).

In the light of this we can encourage other projects aiming to create educational games as

‘preparation for future learning’ in an informal learning environment, to use stealth learning,

align content, mechanics and narrative. Such an approach can captivate the players’ attention and

introduce them stealthily to the learning experience. The educational content embedded in the

gameplay can then be made progressively more explicit to facilitate transfer. Not only would this

prevent players from having a biased mindset towards the content to be learned; on the contrary,

experiencing possible scenarios for the application of such knowledge might increase motivation

to learn it.

Learning Games for Programming

Page 109

BIBLIOGRAPHY

Amanita Design (2009). Machinarium. Daedalic Enternainment.

Armor Games (2008). Lightbot. http://armorgames.com/play/2205/light-bot

Armor Games (2010). Lightbot 2.0. http://armorgames.com/play/6061/light-bot-20

Azevedo, R. Hadwyn, A. F. (2005). Scaffolding self-regulated learning and metacognition - Implications

for the design of computer-based scaffolds. Instructional Science (2005) 33: 367–379

Barab, S.A., and Dede, C. (2007). Games and immersive participatory simulations for sience education:

An emerging type of curricula. Journal of Science Education and Technology, 16(1), 1-3.

Bodner, G. M. (1986). Constructivism: A theory of knowledge. Journal of Chemical Education, 63, 873-

878.

Bogost, I. (2005). Procedural Literacy: Problem Solving with Programming, Systems, & Play. The

Journal of Media Literacy 52, no. 1-2.

Bransford, J.D. & Schwartz, D.L. (2001). Rethinking transfer: A simple proposal with multiple

implications. In Iran-Nejad, A. & Pearson, P. D., Eds. Review of Research in Education. (24) pp.

61-100. American Educational Research Association (AERA): Washington, DC.

Bruner, J. (1960). The Process of Education. Harvard University Press.

Bruner, J. (1966). Toward a Theory of Instruction. Harvard University Press.

Bruner, J. (2006). In Search of Pedagogy Volume 1: The Selected Works of Jerome Bruner, 1957-1978.

Routledge.

Carnegie Mellon University (1999). Alice. http://www.alice.org/

Daniels, H. (2001). Vygotsky and Pedagogy. Routledge.

Davis, J. P., Steury, K. & Pagulayan, R. (2005). A survey method for assessing perceptions of a game:

The consumer playtest in game design. Game Studies, Vol. 5, Issue 1.

Desurvire, H., Wiberg, C. (2009). Game Usability Heuristics (PLAY) for Evaluating and Designing Better

Games: The Next Iteration. In Proceedings of the 3rd International Conference on Online

Communities and Social Computing: Held as Part of HCI International 2009 (OCSC ‚09), A. Ant

Ozok and Panayotis Zaphiris (Eds.) (557 - 566). Berlin, Heidelberg: Springer-Verlag.

Egenfeldt-Nielsen, S. (2006). Overview of research on the educational use of video games. Digital

Kompetanse, 3-2006, Vol. 1, p.184 - 213.

Egenfeldt-Nielsen, S. (2007). Educational Potential of Computer Games. Continuum International

Publishing Group Ltd.

Feurzeig, W., Papert, S. (1967). The Logo Programming Language. http://el.media.mit.edu/logo-

foundation/

Frasca, G. (2001). Rethinking agency and immersion: video games as a means of consciousness-raising.

Essay presented at SIGGRAPH 2001.

http://www.siggraph.org/artdesign/gallery/S01/essays/0378.pdf (accessed Aug 27, 2012)

Gee, J. P. (2005a). Good Video Games and Good Learning. Phi Kappa Phi Forum, Vol. 85, No. 2.

Gee, J. P. (2005b). What would a state of the art instructional video game look like?. Innovate 1 (6).

http://www.innovateonline.info/index.php?view=article&id=80 (accessed Aug 26, 2012).

http://armorgames.com/play/2205/light-bot
http://www.siggraph.org/artdesign/gallery/S01/essays/0378.pdf
http://www.siggraph.org/artdesign/gallery/S01/essays/0378.pdf

Henrike Lode, Giuseppe Enrico Franchi, Niels Gamsgaard Frederiksen

Page 110

Gee, J.P. (2005c). Learning by Design: good video games as learning machines. E–Learning and Digital

Media, Volume 2, Number 1 (5-16).

Gee, J. P. (2008). Learning and Games. The Ecology of Games: Connecting Youth, Games, and

Learning. Edited by Katie Salen. The John D. and Catherine T. MacArthur Foundation Series on

Digital Media and Learning. Cambridge, MA: The MIT Press (21 - 40).

Honey, M. A. & Hilton, M. L. (Eds). (2011). Learning science through computer games and simulations.

Committee on Science Learning: Computer Games, Simulations, and Education. Board on Science

Education, Division of Behavioral and Social Sciences and Education. Washington, D.C.: The

National Academies Press.

Hoonhout, H. C. M. (2008). Let the game tester do the talking: think aloud and interviewing to learn

about the game experience. In: Isbister, K. & Schaffer, N. (Eds), Game Usability: Advice from the

Experts for Advancing the Player Experience (65 - 77). Burlington, MA: Morgan Kaufman

Publishers.

Kolb, D. A (1984). Experiential Learning: Experience as the Source of Learning and Development.

Prentice Hall.

Lazzaro, N. (2004). Why we play games: Four Keys to More Emotion Without Story. XEODesign, Inc.

www.xeodesign.com/xeodesign_whyweplaygames.pdf (accessed Aug, 29).

LEGO group (1998). Lego Mindstorms. http://mindstorms.lego.com

Lewis, L. H. & Williams, C. J. (1994) Experiential learning: past and present. New Directions for Adult

and Continuing Education, 62, pp. 5–16.

Lepper, M. R., Greene, D., Nisbett, R.E. (1973). Undermining Children's Intrinsic Interest with Extrinsic

Reward: A Test of the "Overjustification" Hypothesis. Journal of Personality and Social

Psychology, 28, 1, 129-137.

Lieberman, D. A. (2001). Management of Chronic Pediatric Diseases with Interactive Health Games:

Theory and Research Findings. Journal of Ambulatory Care Management, 24(1), 26–38.

Lifelong Kindergarten Group (2006). Scratch. MIT Media Lab. http://scratch.mit.edu/

Malone, T. W. (1980). What makes things fun to learn? Heuristics for designing instructional computer

games. In Proceedings of SIGSMALL ’80 Proceedings of the 3rd ACM SIGSMALL symposium

and the 1st SIGPC symposium on small systems. New York, NY, USA: ACM.

Malone, T. W., Lepper, M. R. (1987). Making Learning Fun: A Taxonomy of Intrinsic Motivations for

Learning. Aptitude, Learning, and Instruction. Volume 3: Conative and Affective Process

Analyses. Lawrence Erlbaum Associates. Hillsdale, New Jersey.

Mateas, M. (2005). Procedural Literacy: Educating the New Media Practitioner. On The Horizon.

Special Issue. Future of Games, Simulations and Interactive Media in Learning Contexts, v13, n1

2005.

Moll, L. C. (1992). Vygotsky and Education: Instructional Implications and Applications of

Sociohistorical Psychology. Cambridge University Press.

Norman, D. (2002). The Design of Everyday Things. Basic Books.

Olson, D. R. (2007). Jerome Bruner: The Cognitive Revolution in Educational Theory. London:

Continuum International Pub. Group.

Papert, S. (1998). Does Easy Do It? Children, Games, and Learning. Game Developer, pp. 88.

http://www.xeodesign.com/xeodesign_whyweplaygames.pdf
http://www.xeodesign.com/xeodesign_whyweplaygames.pdf

Learning Games for Programming

Page 111

Plass, J.L., Homer, B.D., Milne, C., Jordan, T., Kalyuga, S., Kim, M., & Lee, H.J. (2009). Design Factors

for Effective Science Simulations: Representation of Information. International Journal of Gaming

and Computer-Mediated Simulations, 1(1), 16-35.

Primer Labs. Code Hero. http://primerlabs.com/codehero

Rheaume, J. (2009). LightBot: Learning Objectives and Game Elements.

http://www.gamescanteach.com/games/light-bot-learning-objectives-and-game-elements (accessed

Aug 28, 2012)

Salen, K. & Zimmerman, E. (2004). Rules of Play: Game Design Fundamentals. The MIT Press.

Sedighian, A. & Sedighian K. (1996). Can Educational Computer Games Help Educators learn About

The Psychology of Learning mathematics in Children? 18th Annual Meeting of the International

Group for the Psychology of Mathematics Education, Florida, USA.

Shaffer, D. W., Squire, K. R., Halverson, R. & Gee, J. P. (2005). Video games and the future of learning.

Phi Delta Kappan, 87 (2), (104 - 111). H.W. Wilson Company.

Sheil, B. (1980). Teaching Procedural Literacy. Proceedings of the ACM 1980 annual conference. New

York: ACM Press, 1980, pp. 125 – 126.

Son, J.Y., Goldstone, R.L. (2009). Fostering general transfer with specific simulations. Pragmatics and

Cognition, 17, 1-42.

Valsiner, J. (1988). Developmental psychology in the Soviet Union. Brighton: The Harvester Press.

Verenikina, I. (2003). Understanding Scaffolding and the ZPD in Educational Research. Conference

papers of AARE/NZARE, Auckland.

Vygotsky, L (1978). Interaction between learning and development. From: Mind and Society (pp.79-91).

Cambridge, MA: Harvard University Press.

Vygotsky, L. (1993). The collected works of L. S. Vygotsky, Vol. 2: 77 fundamentals of defect. Rieber,

Robert W.; Carton, Aaron S. (Eds.)

Wilson, K.A., Bedwell, W.L., Lazzara, E.H., Salas, E., Burke, C.S., Estock, J.L., Orvis, K.L., and

Conkey, C. (2009). Relationships between game attributes and learning outcomes: Review and

research proposals. Simulation Gaming, vol. 40 no. 2 217-266.

Wood, D, Bruner, J.S. Ross, G.. (1976). The Role of Tutoring in Problem Solving. Pergamon Press.

http://www.gamescanteach.com/games/light-bot-learning-objectives-and-game-elements
http://www.gamescanteach.com/games/light-bot-learning-objectives-and-game-elements

