
CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 1

8 Key Exchange and Authentication Protocols

8.1 Introduction
Introduction
In this section, we are going to explore protocols that solve two general problems:

• Entity Authentication

• Key-Exchange

An entity authentication protocol allows an entity to ensure that 1 or more other entities
are, in fact, who they say they are.
A key exchange protocol allows 2 or more entities to agree on a common key or keys
that can used for some communication.
We will describe security protocols in isolation, but in practice they will be part of
larger communications protocols that achieve some useful function (e.g., share files).

Introduction
In a typical scenario we might have 2 entities who wish to use a communications pro-
tocol to perform some task.
This communications protocol would have a number of phases:

1. Authentication Phase during which each entity securely establishes the identity
of the other entity.

2. Key-Exchange Phase during which the entities agree on a symmetric session key
to be used to encrypt the data during the remainder of the communication.

3. Data Transfer Phase in which the application data is encrypted using the agreed
key(s) and exchanged between the 2 entities.

Introduction
To define a security protocol we need:

1. A description of the objectives of the protocol, including:

• The entities involved.

• The types of cryptography to be used and the details of existing keys that
entities may possess.

• The security objectives to be achieved.

2. A rigorous description of the steps making up the protocol.

• For each step we will define the entities involved and the data exchanged.

• We will also describe what computations the entities need to perform.

3. An analysis of the security of the protocol, including:

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 2

• The general behaviour of the protocol.

– Here we will assume perfect cryptography.

• The key usage properties.

• What type(s) of cryptographic attacks does the protocol permit.

– We will not look at these attacks in any detail, but they may be impor-
tant when we are picking an actual cipher.

8.2 Notation
Notation
When describing protocols, we use the following abstract notation to represent data in
messages sent during protocol exchanges:

A,B, . . . The parties or entities taking part in a protocol.

K Symmetric Key

KA,S Symmetric Key shared between A and S

d1,d2, . . . ,dn Concatenated Data

{d1,d2, . . . ,dn}K Encrypted Data

H(d1,d2, . . . ,dn) Hashed Data

N Nonce

Notation
T Timestamp

P Password

K− Private Key

K−A Private Key for entity A

K+ Public Key

K+
A Public Key for entity A

{|d1,d2, . . . ,dn|}K−A
Signature

C[S, I] S’s certificate issued by I i.e. {|S, I,K+
S , . . .|}K−I

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 3

Notation
Each step in a protocol is represented as a message sent from one entity to another:

N. A→ B : Message

1. A→ B : A,NA

2. B→ A : B,NB,{NA}KA,B

8.3 Confidentiality
Confidentiality
Before looking at authentication and key-exchange protocols, we will look at some
simple protocols for the confidential transfer of data.
Protocol 1
Objectives:

• A (Alice) wishes to send a message M confidentially to B (Bob) using a symmet-
ric cipher.

• We assume that A and B share a secret key KA,B.

Protocol Steps:

1. A→ B : {M}KA,B

Confidentiality
General Analysis:

• In addition to A and B, we must consider other entities:

– E (Eve) - a malicious active attacker who is both reading and modifying
messages being transferred.

– T (Trevor) - a trusted third party not directly involved in the exchange.

• The only way that E can read or modify messages is by knowing the key KA,B.

• However, E can attack the protocol in a number of other ways:

– She can delete messages - denial of service.

– She can replay messages, i.e., she can capture a message and send it again.

– If the plaintext of messages does not contain a certain amount of redun-
dancy, she can send arbitrary data as a message.

• If B receives ciphertext {M}KA,B , and B did not produce it, then it must have been
produced by A.

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 4

Confidentiality
Does this provide entity authentication?

• It does provide message origin authentication.

• It does not provide entity authentication as E can replay messages.

Does this provide message non-repudiation?

• There is no way that B can prove to T that a particular message came from A.

• B could always have constructed the message and encrypted it himself.

Confidentiality
Key Usage Analysis:

• We assume that Alice and Bob have a shared key KA,B.

– How exactly, do Bob and Alice agree on a shared key?
– They need to use an out-of-band exchange or use some suitable key-exchange

protocol.

• If the key KA,B is compromised then all messages encrypted with KA,B can be
decrypted and messages can be falsified.

– This includes messages that were sent in the past.

• Protocols that use symmetric keys normally require separate keys for each pair
of users.

– If there are N users, we need N(N−1)
2 keys.

– As N grows, it becomes extremely difficult to manage all these keys.

Confidentiality
Cryptographic Analysis:

• This protocol allows a ciphertext only attack.

• However, if Eve can persuade Alice to reveal some messages and/or send partic-
ular messages, then various plaintext attacks may be possible.

Confidentiality
Protocol 2
Objectives:

• A (Alice) wishes to send a message M confidentially to B (Bob) using an asym-
metric cipher.

• We assume that B’s public key K+
B is available to A.

Protocol Steps:

1. A→ B : {M}K+
B

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 5

Confidentiality
General Analysis:

• The only way that Eve can read messages is by knowing Bob’s private key K−B .

– Even though Eve knows Bob’s public key K+
B , she still cannot read mes-

sages.

• As before, Eve can delete messages, replay messages etc..

• However, Eve can create new messages using Bob’s public key K+
B .

– Therefore, we have no authentication properties as anyone can produce
valid messages.

• It should also be noted that asymmetric cryptography is orders of magnitude
slower that symmetric cryptography.

Confidentiality
Key Usage Analysis:

• Public keys are intended to be known by everyone.

• However, we still need to ensure that the correct public key is associated with an
entity.

– If we don’t, E may be able to mount a man-in-the-middle attack.
– We can avoid this by using a PKI.

• With this protocol each entity must have a key-pair, but since every other entity
can use the same public key to communicate with (say) B, the key management
problem is much simpler.

– If there are N users we only need N public keys.

Cryptographic Analysis:

• Since we are using an asymmetric cipher, this protocol allows an adaptive chosen
plaintext attack.

8.4 Entity Authentication (Identification)
Entity Authentication (Identification)
The problem is for one entity (the verifier) to be sure that another entity (the claimant)
is who they say they are and hence prevent impersonation.
With Message Origin Authentication, a user can simply digitally sign data so that its
origin can be determined, but there is no way of knowing when the data was signed.
Here, however, we are interested in real-time communications and ensuring that we
have a valid channel to the other entity as we execute the protocol.

• In particular, we require the entity that is authenticated to be an active participant
in the protocol as it is executed.

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 6

Entity Authentication (Identification)
In general, authentication is based on the claimant supplying information to the verifier
which only the claimant knows or can compute.

• The obvious approaches would be for the claimant to use a password or to com-
pute information using a cryptographic key.

One-way or unilateral authentication is when only one entity authenticates itself to the
other entity.
With two-way or mutual authentication, each entity authenticates itself to the other
entity.

Entity Authentication (Identification): Goals
Consider an honest entity A authenticating itself to B and a dishonest entity E trying to
impersonate A:

1. A should be able to authenticate itself to B, i.e. B should accept A’s claim to be
A.

2. It should be computationally infeasible for E to have B accept its claim to be A,
i.e. B should reject the claim and terminate the protocol.

3. No matter how many exchanges between A and B that E witnesses, it should
remain computationally infeasible for E to impersonate A.

4. The information supplied to B by A should not allow B to impersonate A to a
third party T , i.e. authentication should not be transferable.

5. Any authentication protocol needs to exhibit computational and communication
efficiency.

Attacks on Authentication Protocols
The main purpose of attacking an authentication protocol is to allow a dishonest entity
to impersonate a legitimate user.
We will consider a number of different kinds of attacks and see examples of such
attacks on the protocols we describe.

1. Replay attacks in which information used in one instance of the protocol is cap-
tured and replayed at a later stage.

2. Reflection attacks in which an adversary sends information back to the originator
of the information.

3. Interleaving attacks in which an adversary combines information from a number
of interleaved instances of the protocol.

4. Chosen Plaintext cryptographic attacks in which an adversary can get one of
the entities to encrypt arbitrary pieces of text. This gives a cryptanalyst more
opportunity to discover a key.

5. Man-in-the-Middle attacks in which an adversary sits and (potentially) manipu-
lates all communications.

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 7

Attacks on Authentication Protocols
There are a number of other issues that we need to consider.

1. Typically, authentication occurs as the first steps of a larger protocol and is only
valid at a given instant of time. If ongoing assurance of identity is required, then
additional techniques (e.g. encrypting all subsequent data with a session key) are
required.

2. Since entity authentication takes place in real-time, the amount of computing
power available to an attacker is more limited than with an off-line attack. How-
ever, an adversary might be able to gather information during a successful au-
thentication and compute information off-line that can be used later.

3. An attacker may be able to mount a denial of service attack by simply delaying
protocol messages.

Weak Authentication using Passwords
The simplest way to implement authentication is to use passwords, i.e. knowledge of
the password is proof of identity.
A claimant simply supplies their identity and password, and the verifier compares this
with a stored copy of the password to authenticate the claimant.
Protocol 3
Objectives:

• A client C wishes to authenticate itself to a server S using a password.

Protocol Steps:

1. C→ S : C,PC

Weak Authentication using Passwords
Analysis: This protocol is extremely weak.

1. The password is passed as plaintext, therefore, unless we use a secure channel,
anyone can observe the password and capture it for future use.

2. Therefore, this protocol is subject to replay attacks.

3. S must maintain a table of passwords and these need to be protected from disclo-
sure. This is a problem with all password-based schemes.

Weak Authentication using Passwords
There are situations where simple passwords are widely used:

1. For logging onto computers.

2. For logging onto websites; typically using a confidential SSL connection.

Both of these uses are acceptable, provided some care is taken.

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 8

1. Passwords need to be chosen so as to avoid dictionary attacks.

2. The computer or website should only permit a small number of logon attempts
or take progressively longer to respond to logon attempts.

3. Users should change their passwords frequently.

4. Users should not use the same password with different computers and websites.

• If a user uses the same password with a number of computers or sites, then
a dishonest administrator could impersonate the user.

Weak Authentication using Passwords
Typically, passwords are used as one-way authentication mechanisms.

• A user (client) authenticates itself to a computer (server) and they are then granted
access rights on that computer (server).

In theory, we could extend the use of passwords to supply two-way authentication.

1. A→ B : A,PA

2. B→ A : B,PB

In situations where passwords are used, it is normally too difficult for both parties to
maintain lists of passwords.

Weak Authentication using Passwords
Instead of exchanging a password as plaintext, it is possible for the claimant to send a
digest of the password.
The verifier can then compute its own copy of the digest and compare it to the value
sent from the claimant.

1. C→ S : C,H(PC)

Of course, this is no more secure as an adversary could copy H(PC) and mount a replay
attack.
x.509 defines an authentication protocol which computes a new digest for every au-
thentication exchange. Freshness is guaranteed by using a timestamp and/or a nonce.

Nonces and Timestamps
A nonce is a value that is used only once.
The main use of a nonce is to distinguish one instance of a protocol message from
another.
In particular, if a message does not naturally contain information that varies from in-
stance to instance, then a nonce can be added as an extra field.
The value of a nonce does not matter; it only needs to be different from instance to
instance.
However, we may need some way of testing that a nonce has not been used before.
In particular, when we use a nonce to prevent a replay attack, we need some way of
knowing that we have handled a message with a particular nonce value already.

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 9

Nonces and Timestamps
There are a number of different ways of generating nonces:

1. Picking a random number.

• If we pick random numbers from a sufficiently large space (e.g. 0..264),
then the chances of using the same value twice are very small.

• However, if we need to detect reuse, then all previous nonces would need
to be stored.

2. Using a monotonically increasing sequence number, e.g. 0,1,2, . . ..

• Monotonically increasing ensures that each new nonce is greater than the
previous nonce.

• To detect reuse, we only need to remember the last sequence number used.

3. Using the time of day to a suitable accuracy.

• This requires the entities to have synchronized clocks.

• Times are monotonically increasing and detecting replays is relatively easy.

Nonces and Timestamps
In addition to nonces, we sometimes use timestamps.
Unlike a nonce (and indeed time used as a nonce), timestamps convey information
about when an event occurred, so the value is important.
Protocol 4: X.509 Protected Password Authentication
Objectives:

• A client C wishes to authenticate itself to a server S using a password.

Protocol Steps:

1. C→ S : C,T,N,H(C,T,N,PC)

Nonces and Timestamps
Analysis:

• Given this exchange, S computes the digest H(C,T,N,PC) using its copy of PC
and compares it with the value sent in the protocol message. In particular, S uses
the values T and N sent in the protocol message when computing its copy of the
digest.

• This protocol uses both a timestamp T and nonce N. Using only a timestamp
requires accurately synchronized clocks and using only nonces may require S to
store large numbers of old nonces.

• C must ensure that the timestamp T and nonce N are chosen in such a way as to
avoid the possibility of a replay.

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 10

• An adversary capturing the digest H(C,T,N,PC) is unable to replay the message
as S will detect the duplicated nonce or a timestamp that is too old.

• This protocol can easily be extended to support two-way authentication.

Authentication Using Cryptography
In the previous protocols a claimant’s ability to produce a password was used to au-
thenticate the claimant.
An alternative approach is to have the claimant demonstrate that they have access to a
cryptographic key. This is achieved by requiring the claimant to compute some value
using the key.
This can be done using a challenge-response protocol.
Protocol 5
Objectives:

• A client C wishes to authenticate itself to a server S.

Protocol Steps:

1. S→C : N

2. C→ S : C,{N}K

Authentication Using Cryptography
Analysis:

• The verifier S sends a challenge (nonce) N to the claimant and the claimant re-
turns {N}K , i.e. the challenge encrypted with some key K.

– Provided that C is the only user with access to K, then S knows that C is
participating in the protocol.

• Is there any need for C and/or S to record nonces so as to prevent a replay attack?

• How can the nonce be generated?

• Is this protocol subject to a man-in-the-middle attack?

• This basic challenge-response protocol can be extended to implement two-way
authentication.

Authentication Using Symmetric Ciphers
Protocol 6
Objectives:

• A client C wishes to authenticate itself to a server S using a shared secret key
KS,C.

Protocol Steps:

1. S→C : N

2. C→ S : C,{N}KS,C

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 11

Authentication Using Symmetric Ciphers
Analysis:

• Since S shares a key with C, it can decrypt the ciphertext received from C and
ensure it is valid.

• Like password-based schemes, S may need to maintain a database of shared keys.
As with passwords, this is vulnerable to disclosure.

• Again, like password-based schemes, if C was foolish enough to use the same
shared key with a number of servers, then S could impersonate C to other servers.

Authentication Using Symmetric Ciphers
Cryptographic Analysis:

• This protocol exposes the cipher to an adaptive chosen plaintext attack.

• Adaptive chosen plaintext attacks are a problem for challenge-response proto-
cols, i.e. the verifier can pick any nonce N that they want.

– An attacker could repeatedly perform steps 1 and 2 of the last protocol
above.

– Each time they would pick a value for N that would assist in attacking the
shared key.

Authentication Using Symmetric Ciphers
There are two ways of reducing this vulnerability:

• The claimant can add additional information to the data to be encrypted. This
means that the verifier has only partial control over what data is encrypted.

1. S→C : NS

2. C→ S : C,{NS,NC,S}KS,C

• The claimant can select the nonce. For example, the protocol presented earlier
for a protected password can be extended to use symmetric keys.

1. C→ S : C,T,N,{C,T,N,S}KS,C

Authentication Using Symmetric Ciphers
We can extend this protocol to allow mutual authentication.
Protocol 7
Objectives:

• Entities A and B wish to mutually authenticate each other using a shared secret
key KA,B.

Protocol Steps:

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 12

1. A→ B : A,NA

2. B→ A : B,NB,{NA}KA,B

3. A→ B : {NB}KA,B

Authentication Using Symmetric Ciphers
Analysis:

• Unfortunately, this protocol is subject to a reflection attack.

• Consider, a dishonest entity E who wishes to impersonate A to B.

– First E starts one instance of the protocol with B.

1. E(A)→ B : A,NA

2. B→ E(A) : B,NB,{NA}KA,B

– At this stage, E is stuck as she cannot encrypt NB.

– However, E can start a second instance of the protocol and get B to encrypt
NB.

3. E(A)→ B : A,NB

4. B→ E(A) : B,NB′ ,{NB}KA,B

– E abandons the second instance and resumes the first instance.

5. E(A)→ B : {NB}KA,B

• It is important to note that this is an attack on the protocol and not the cryptog-
raphy.

Authentication Using Symmetric Ciphers
There are a number of ways of preventing this attack.

• A and B could use different keys.

– Therefore, a nonce encrypted by B could not be sent back to B as it would
be encrypted with the wrong key.

• The initiator could prove its identity first:

1. A→ B : A

2. B→ A : B,NB

3. A→ B : NA,{NB}KA,B

4. B→ A : {NA}KA,B

In this case B does not encrypt anything until it has authenticated A.

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 13

Authentication Using Symmetric Ciphers

• The nature of the challenges produced by A and B could be different, i.e. a
challenge encrypted by B could not be confused as a challenge to be encrypted
by A.

• For example, this can be achieved by including different information in the ci-
phertext sent between the parties:

1. A→ B : A,NA

2. B→ A : B,NB,{NA,A}KA,B

3. A→ B : {NB}KA,B

Authentication Using Asymmetric Ciphers
A challenge-response protocol can also be used with asymmetric ciphers. There are
two basic modes of operation:

• The claimant encrypts the challenge with their private key.

• The verifier S encrypts a challenge using the claimant’s public key K+
C and the

claimant proves that they have the private key by decrypting the challenge and
returning it to the verifier.

Protocol 8
Objectives:

• A client C wishes to authenticate itself to a server S using its public key K+
C .

Protocol Steps:

1. S→C : N

2. C→ S : C,{N}K−C

Authentication Using Asymmetric Ciphers
Analysis:

• Since S knows C’s public key K+
C , it can decrypt the ciphertext received from C

and ensure it is valid.

• If we use a PKI, then key management becomes relatively simple, i.e. S just
needs to obtain a certified copy of C’s public key from the PKI.

• If required, certificates can be exchanged as part of the protocol.

• It is unwise to use key-pairs for more than one purpose.

– For this protocol, if S challenges C with a value H(m), then C will encrypt
it with its private key and hence produce a digital signature for m.

– Thus, if the same key-pair is used for producing digital signatures, C has
unwittingly signed some unknown document m.

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 14

Authentication Using Asymmetric Ciphers
Cryptographic Analysis:

• This protocol would allow an attacker E to mount an adaptive chosen plaintext
attack against encryption with a private key.

• We can use some of the techniques as described for symmetric ciphers to prevent
such attacks.

Authentication Using Asymmetric Ciphers
Protocol 9
Objectives:

• A client C wishes to authenticate itself to a server S using its public key K+
C .

Protocol Steps:

1. S→C : {N}K+
C

2. C→ S : N

Authentication Using Asymmetric Ciphers
Analysis:

• S encrypts the nonce N with C’s public key. Therefore if N is returned in step 2,
S knows that C must have participated in the protocol.

Cryptographic Analysis:

• This protocol would allow an attacker E to mount an adaptive chosen ciphertext
attack against encryption with a public key.

Needham-Schroeder Public-Key Protocol
There are two protocols due to Needham-Schroeder; this one is based on the use of
asymmetric encryption, the other one (which we will look at later) is based on sym-
metric encryption.
Protocol 10: Needham-Schroeder Public-Key (NSPK) Protocol
Objectives:

• Entities A and B wish to mutually authenticate each other using their public keys
K+

A and K+
B .

Protocol Steps:

1. A→ B : {NA,A}K+
B

2. B→ A : {NA,NB}K+
A

3. A→ B : {NB}K+
B

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 15

Needham-Schroeder Public-Key Protocol
Analysis:

• Since the ciphertext sent in step 1 is encrypted by B’s public key, only B can
discover NA.

• Therefore, if A finds NA in the message sent in step 2, she must be communicating
with B.

• Similarly, only A can discover NB and return it in step 3.

• If necessary, this protocol can be extended so that A and B exchange certificates.

Needham-Schroeder Public-Key Protocol
Cryptographic Analysis:

• In 1995, Gavin Lowe discovered an interleaving attack on the NSPK Protocol by
using a model checking tool called FDR.

• If A and B can be trusted, this protocol appears to be secure.

• However, E can interleave two runs (instances) of this protocol and transfer au-
thentication, i.e. she can impersonate A to B.

1. A→ E : {NA,A}K+
E

1′. E(A)→ B : {NA,A}K+
B

2′. B→ E(A) : {NA,NB}K+
A

2. E→ A : {NA,NB}K+
A

3. A→ E : {NB}K+
E

3′. E(A)→ B : {NB}K+
B

Needham-Schroeder Public-Key Protocol

• So at this point, A believes that she is communicating with E and that only she
and E share the nonces NA and NB.

• In fact, she is communicating with E, but the nonces NA and NB are also known
to B.

• B believes he is communicating with A, but he is in fact communicating with E.

• Note that this attack was achieved without attacking the cryptography, it is achieved
by simply manipulating the protocol.

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 16

Needham-Schroeder Public-Key Protocol
This protocol is fixed by Lowe to prevent this attack as follows:

1. A→ B : {NA,A}K+
B

2. B→ A : {NA,NB,B}K+
A

3. A→ B : {NB}K+
B

• The message modified by this new version of the protocol is the only one which
cannot be decrypted by E in the previous attack.

• So E will not be able to change B to E.

• A will now be able to see that the received message does not come from E but
from B, so will not send NB to E.

• Thus, E is unable to discover the value of NB.

8.5 Key-Exchange
Key-Exchange
The Problem:

• Symmetric cryptography is much more efficient than asymmetric cryptography.

– Therefore, when exchanging large amounts of data we prefer to use sym-
metric cryptography to provide confidentiality.

• Handling large numbers of symmetric keys is problematic.

• Therefore, we would like some way of establishing or exchanging session keys
that we can use for a limited period of time and then destroy.

– With real-time protocols we will not even want to store the session keys.

• Clearly we will want to protect the key agreement or exchange so that an observer
cannot determine the session keys.

The Diffie-Hellman Key-Agreement Protocol
For Diffie-Hellman, we select a large prime p and a generator g, then:

1. A chooses a random x such that 1 < x < p−1.

2. A→ B : gx (mod p)

3. B chooses a random y such that 1 < y < p−1.

4. B→ A : gy (mod p)

5. A computes K = (gy)x (mod p).

6. B computes K = (gx)y (mod p).

7. A and B now share the secret K.

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 17

User-Generated Keys
An alternative to key-agreement, is for one entity A to generate a session key K, which
is then transferred confidentially to another entity B.

• Of course, for this to work there must be existing keys that can be used to encrypt
this session key.

With an asymmetric cipher A can simply encrypt K with B’s public key.

1. A→ B : {K}K+
B

User-Generated Keys
With symmetric ciphers the situation is somewhat more complex.

• In particular, each entity will need existing symmetric keys and we have a poten-
tial key management problem.

• As we will see, this problem can be overcome by using a trusted server.

Allowing one entity to generate the session key is a potential weakness.

• The entity may use an existing key or generate a weak key.

• With the symmetric protocols we will consider, this problem is overcome by
having the session key generated by a trusted server.

8.6 Authentication and Key-Exchange
Authentication and Key-Exchange
Earlier we noted that an authentication protocol gave assurance of identity at a single
instant in time.
For a communications protocol we would like some sort of ongoing authentication that
lasts for the lifetime of a connection.
An obvious approach is to combine authentication and key exchange into a single pro-
tocol.

• Not only are the entities authenticated, but the session key is bound to the au-
thentication process.

• Then, provided future exchanges are encrypted with the session key, we have
ongoing authentication.

Symmetric Ciphers
Earlier we looked at how two entities A and B could perform mutual authentication
using a shared secret key.
This approach requires each distinct pair of users to share a separate key and with a
large community of users this becomes unmanageable. An alternative approach is to
use a trusted server S to authenticate users and issue session keys. With this approach:

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 18

• Each user need only maintain a single shared key with the server.

• The server generates the session key and is trusted to behave properly.

There a number of protocols that are based on this basic structure, we will consider the
Needham-Schroeder Secret-Key Protocol and Otway-Rees.
We will also look briefly at Kerberos, a complete system based on the Needham-
Schroeder Secret-Key Protocol.

Needham-Schroeder Secret-Key Protocol
Let us assume that:

• We have a trusted server S.

• Two users A and B who share secret keys KA,S and KB,S respectively with S.

Protocol 11: Needham-Schroeder Secret-Key (NSSK) Protocol
Objectives:

1. To allow A and B to be authenticated.

2. To allow S to generate a session key KA,B that is bound to the authentication
process and is only known to A, B and S.

Needham-Schroeder Secret-Key Protocol
Protocol Steps:

1. A→ S : A,B,NA

2. S→ A : {NA,B,KA,B,{KA,B,A}KB,S}KA,S

3. A→ B : {KA,B,A}KB,S

4. B→ A : {NB}KA,B

5. A→ B : {NB−1}KA,B

Needham-Schroeder Secret-Key Protocol

1. A sends its identity, the identity B of the entity it wishes to communicate with
and a nonce NA to the server S.

2. S performs the following steps:

• It generates a session key KA,B for use by A and B.

• It constructs B’s token {KA,B,A}KB,S that only B can decrypt.

• It constructs A’s token {NA,B,KA,B,{KA,B,A}KB,S}KA,S that contains B’s to-
ken and that only A can decrypt.

• It sends A’s token to A.

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 19

3. A performs the following steps:

• It decrypts its token received from S using the key KA,S that it shares with
S.

• It checks the nonce NA and name B in the token are the same as those sent
to S in step 1.

• It records the session key KA,B for future use.

• It relays B’s token to B.

Needham-Schroeder Secret-Key Protocol

4. B performs the following steps:

• It decrypts its token received from S via A using the key KB,S that it shares
with S.

• It records the session key KA,B for future use.

• It challenges A by sending a nonce NB encrypted using the session key KA,B.

5. A performs the following steps:

• It decrypts the message sent from B using the session key KA,B and checks
that the result is the nonce NB. Note that this requires NB to be redundant.

• It then encrypts the value NB−1 using the session key and sends it to B.

Finally, B decrypts the message sent by A in step 5 and checks that the result is NB−1.

Needham-Schroeder Secret-Key Protocol
Analysis:

• This protocol provides mutual authentication of A and B, and allows a session
key generated by S to be shared by A and B.

• The server S must be trusted; it has access to all keys.

• In step 1 we use a nonce NA to prevent a replay attack i.e. A checks that NA
appears in the token returned by S in step 2.

• In step 1, A identifies itself and the entity B it wishes to communicate with.
Since this message is not protected in any way, an attacker could substitute its
own identity for B. Provided the attacker could also intercept messages 3-5, it
could impersonate B to A.

– This attack is prevented by S including the identity of the other party in
A’s token i.e. A checks that S has supplied information that allows A to
authenticate B.

• After step 2, A knows that S has participated in this run of the protocol and that
KA,B is fresh.

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 20

Needham-Schroeder Secret-Key Protocol

• After step 3, A and B have a shared session key KA,B. Clearly, S knows this key,
but because it was protected using KA,S and KB,S, no other entity knows the key.
We trust S not to misbehave.

• After step 3, B knows that KA,B is a key shared by A and itself. However, B does
not know if KA,B is fresh.

• In steps 4 and 5, A and B perform mutual authentication i.e. they prove to each
other that they have the session key and that they are participating in this run of
the protocol.

– The nonce NB needs to be redundant so an attacker cannot replace the mes-
sage in step 4 with some arbitrary ciphertext.

– In step 5, A encrypts NB−1 since the encryption of NB is already available.

• Note that A can repeat steps 3-5 as often as it wants i.e. it can use the same
session key for multiple communications.

Needham-Schroeder Secret-Key Protocol
The Needham-Schroeder Secret Key Protocol was first published in 1978.
A significant feature is that it does not use timestamps and it is the basis for many of
the server-based authentication and key distribution protocols developed after 1978.
It has been shown that the double encryption of B’s token in step 2 is unnecessary.
However, this is not a big issue.
However, serious weaknesses with the freshness of keys have been uncovered.

Needham-Schroeder Secret-Key Protocol
Attack 1: Compromised Session Keys

• Assume that an adversary E observes a legitimate protocol exchange between A
and B.

• E can capture B’s encrypted token in step 3 of the protocol.

• If E can compromise the session key KA,B, then E can follow steps 3-5 of the
protocol and impersonate A to B.

– Note that E can take as long as it wants to compromise the session key.

– So even though determining the session key may be computationally hard,
the design of this protocol gives an adversary an unnecessarily long time to
attempt to find the key.

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 21

Needham-Schroeder Secret-Key Protocol
Attack 2: Compromised Server/User Keys

• If the key KA,S that a user A shares with the server S is compromised, then an
adversary E can use steps 1-2 of the protocol to obtain session keys and tokens
for as many other users as it wishes.

• E can then impersonate A to one of these users at any time by completing steps
3-5 of the protocol.

• Even if A determines that the key KA,S has been compromised and generates a
new key, E can still use the session keys and tokens that it obtained earlier.

Needham-Schroeder Secret-Key Protocol

• The problem with this protocol is that B has no way of knowing if the session
key is fresh.

• There are two ways of resolving this problem:

1. Have B interact with the server S so that it knows that the server is partici-
pating in the protocol.

– In the existing protocol, steps 1-2 effectively authenticate S to A since
S is encrypting fresh data with the shared secret key KA,S.

– This was done in an expanded version of the Needham-Schroeder pro-
tocol. However, we will look at an improved protocol due to Otway
and Rees.

2. Include timestamps so that B can ascertain the freshness of the session key.

– Kerberos does this by adding a validity period or lifetime for each
session key.

The Otway-Rees Protocol
Otway-Rees gives freshness guarantees without using synchronized clocks.
Again, let us assume that:

• We have a trusted server S.

• Two users A and B who share secret keys KA,S and KB,S respectively with S.

Protocol 12: Otway-Rees
Objectives:

1. To allow A and B to be authenticated.

2. To allow S to generate a session key KA,B that is bound to the authentication
process and is only known to A, B and S.

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 22

The Otway-Rees Protocol
Protocol Steps:

1. A→ B : N,A,B,{NA,N,A,B}KA,S

2. B→ S : N,A,B,{NA,N,A,B}KA,S ,{NB,N,A,B}KB,S

3. S→ B : N,{NA,KA,B}KA,S ,{NB,KA,B}KB,S

4. B→ A : N,{NA,KA,B}KA,S

Otway-Rees Protocol
Analysis:

• In this protocol both A and B perform mutual authentication with the server S
and S returns the session key KA,B to each.

• In the case of A we have:

– S can authenticate A by decrypting {NA,N,A,B}KA,S it receives in step 2.

– A can authenticate S and obtain its copy of the session key by decrypting
{NA,KA,B}KA,S in step 4.

– How does S ensure that the message from step 1 is not a replay?

∗ Actually it can’t!
∗ However, this is okay, because an attacker replaying the message will

be unable to recover the session key KA,B in step 4.

– In this protocol, B relays messages to/from A. However, since these mes-
sages are encrypted using KA,S, B cannot decrypt or modify them.

• In the case of B we have a similar argument with {NB,N,A,B}KB,S and {NB,KA,B}KB,S

Otway-Rees Protocol

• In step 1, A generates two nonces:

– NA which is used to prevent replay of S’s message back to A and guarantee
the freshness of the session key received from S.

– The nonce NB serves the same purpose for B.

– N which acts as a transaction identifier that binds the information sent by A
and B together:

∗ S can check that {NA,N,A,B}KA,S and {NB,N,A,B}KB,S have the same
value for N and therefore belong to the same transaction.

– After the protocol has completed, A and B will share the key KA,B.

∗ If A and B use KA,B to encrypt a communication, then they both have
ongoing mutual authentication.

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 23

Kerberos
Kerberos is a complete server-based authentication and key distribution system based
on the Needham-Schroeder protocol. The main differences lie in the use of timestamps
and lifetimes.
It was developed as part of project Athena at MIT and has been widely used in Unix
networks. The current version is 5.1.
It has been incorporated into Windows 2000.
As with Needham-Schroeder, entities share secret keys with a trusted Kerberos server.

Kerberos
Kerberos uses its own terminology:

• The trusted server S is known as a Key Distribution Centre (KDC).

• When a client A wishes to use a computing service B, the KDC issues a ticket
that can be used to access the services of B.

– As we will see, this is essentially B’s token in the original Needham-Schroeder
protocol.

• Tickets have a specific lifetime, but they can be renewed, post-dated, etc.

A significant use of Kerberos is to allow human users to logon to computer networks
and access computing services distributed throughout that network.
Kerberos also defines the precise syntax of the various protocols, but since we are only
interested in an abstract view of Kerberos, we will ignore such detail.

Kerberos
The following is a much simplified view of the basic Kerberos protocol.
Here A is a client, B is a computer service and S is the Kerberos Server.
The client A wishes to use the service B. It does so by getting a ticket from the Kerberos
server S. This ticket is then presented to the service B.

1. A→ S : A,B,NA

2. S→ A : ticketB,{KA,B,NA,L,B}KA,S

where ticketB = {KA,B,A,L}KB,S

and L is the validity period (lifetime) of the key KA,B.

3. A→ B : ticketB,authenticatorA
where authenticatorA = {A,TA}KA,B

4. B→ A : {TA}KA,B

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 24

Kerberos

1. This step is the same as Needham-Schroeder.

• As with Needham-Schroeder, S generates a session key KA,B for use by A
and B.

• It encrypts a copy of this key for A using their shared key.
• It also encrypts a copy for B and this produces a so-called ticket. This is

essentially the token used in Needham-Schroeder.
• Note that the shared key has a lifetime L which is included in the encrypted

information sent to both A and B.

2. This step is similar to Needham-Schroeder except that the ticket ticketB is con-
veyed separately and not as part of the ciphertext sent to A. A performs the
following steps:

• It decrypts its token using the key KA,S.
• It checks that the nonce NA and name B in the token are the same as those

sent to S in step 1.
• It records the session key KA,B for future use.
• It records the ticket ticketB so that it can send it to B whenever it wants to

use the service offered by B.
• A can use this ticket multiple times, but only during its lifetime L.

Kerberos

3. To access the services offered by B, A presents its ticket and an authenticator

• Since the ticket ticketB is encrypted by the key shared between B and S, B
can decrypt it, recover the session key KA,B , the lifetime L during which
the session key can be used and the identity A of the owner of the ticket.

• The authenticator authenticatorA allows B to authenticate A, i.e. that the
entity has access to the shared key KA,B.

• The timestamp provides a freshness guarantee.

4. Finally, A can authenticate B.

Kerberos
Notes:

• After completing this exchange, A and B use the session key KA,B to keep their
communications confidential.

• Since Kerberos is using timestamps and lifetimes, there is a need for secure,
synchronized clocks. On a local area network (Unix, Windows 2000, Netware,
...) this is relatively easy to implement.

• As you would expect, the authenticator authenticatorA and the ciphertext in step
4 have different formats.

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 25

Asymmetric Ciphers
The Needham-Schroeder Public-Key Protocol can be used to achieve both mutual au-
thentication and key exchange.
This can be done by exchanging key material instead of nonces.
Here we look at a Diffie-Hellman exchange embedded in the protocol.

1. A→ B : {gx (mod p),A}K+
B

2. B→ A : {gx (mod p),gy (mod p)}K+
A

3. A→ B : {gy (mod p)}K+
B

Signing and Public-Key Encryption
An obvious approach is to use digital signatures for authentication and public-key en-
cryption to protect session keys.
There are a number of ways this can be achieved.

i. The session key can be signed and then encrypted.

1. A→ B : {KA,B,TA,{|B,KA,B,TA|}K−A
}K+

B

The timestamp TA ensures freshness and including B in the signed data prevents
B from impersonating A to a third party.

ii. The session key can be encrypted and signed separately.

1. A→ B : {KA,B,TA,}K+
B
,{|B,KA,B,TA|}K−A

This only works if the signature scheme does not allow recovery, e.g. it uses a
hash function.

iii. The session key can be encrypted and then signed.

3. A→ B : TA, token,{|B,TA, token|}K−A

where token = {KA,B}K+
B

These protocols can be extended to implement two-way authentication.

X.509

• X.509 defines a number of strong authentication protocols.

• X.509 uses slightly different terminology. In particular, it uses the terms one-
way, two-way and three-way to specify the number of protocol steps.

• Like Kerberos, X.509 defines the detailed syntax of the protocol using ASN.1.
We will ignore such detail here.

• The X.509 protocols support the optional exchange of certificates, but we will
ignore this feature.

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 26

X.509 One-Way Authentication
Protocol 13: X.509 One-Way Authentication
Objectives:

1. To allow B to authenticate A, i.e. provide unilateral authentication.

2. To allow A to share a session key KA,B with B.

Protocol Steps:

1. A→ B : tokenA,{|tokenA|}K−A

where tokenA = TA,NA,B,dataA,{KA,B}K+
B

Notes:

• dataA is some optional signed data that A can send to B.

• This protocol uses both timestamps and nonces to ensure freshness and prevent
replays.

X.509 Two-Way Authentication
Objectives:

1. To allow A and B to mutually authenticate each other.

2. To allow A and B to establish or exchange session keys.

Protocol Steps:

1. A→ B : tokenA,{|tokenA|}K−A

where tokenA = TA,NA,B,dataA,{XA}K+
B

2. B→ A : tokenB,{|tokenB|}K−B

where tokenB = TB,NB,A,NA,dataB,{XB}K+
A

X.509 Two-Way Authentication
Notes:

• This protocol allows two shared values XA and XB to be exchanged.

– These could be symmetric keys to be used in different directions on the
connection.

– They could be combined into a larger key.

– They could be used with Diffie-Hellman.

• Note that tokenB contains the nonce NA sent by A.

Geoff Hamilton



CA547: CRYPTOGRAPHY AND SECURITY PROTOCOLS 27

X.509 Three-Way Authentication
Objectives:

1. To allow A and B to mutually authenticate each other.

2. To allow A and B to establish or exchange session keys.

Protocol Steps:

1. A→ B : tokenA,{|tokenA|}K−A

2. B→ A : tokenB,{|tokenB|}K−B

3. A→ B : token′A,{|token′A|}K−A

where token′A = NB,B

X.509 Three-Way Authentication
Notes:

• This also provides mutual authentication, but does so without the need for times-
tamps.

• Steps 1−2 are the same as for two-way authentication but the timestamps may
be set to zero and ignored.

• This protocol is now essentially a challenge-response protocol.

– In particular, both entities exhibit ownership of a private key by signing
data containing a nonce produced by the other entity.

Geoff Hamilton


	Key Exchange and Authentication Protocols
	Introduction
	Notation
	Confidentiality
	Entity Authentication (Identification)
	Key-Exchange
	Authentication and Key-Exchange


