
PROCEEDINGS

OF

SHARE XLI

August 13- 17, 1973

The Deauville Hotel

Miami Beach, Florida

Copyright by SHARE, 1973

Permission is hereby granted to reproduce information contained
herein for the internal distribution by SHARE members. Permission
for reproduction for public distribution ~<ill normally be granted
for educational and scientific purposes upon application to the
SHARE Secretary.

N ...
N

S E S S I 0 N REPORT

IF: An Interactive FORTRAN Compiler

August 15
Va.ie

BASIC Systems

D. A. Twyver

1:30
T <..me

Cha.-<..ILma.n

Riviera
Room

Michigan Terminal System

UBC
Inoi-. Code.

Computing Centre UBC, Vancouver, Canada (604) 228-3072
Addll.e.~~ a.nd Phone.

SPEAKER:
R. Hall (UBC)

ABSTRACT:

B402
Se~-6-<..0H Numbe.IL

Comm-<..iie.c.

University of British
Columbia

An Interactive FORTRAN compiler (IF) developed at the University of British
Columbia was described. IF is a highly interactive system for the development
and debugging of FORTRAN programs. It translates FORTRAN source statement by
statement to an internal code which is then interpretively executed. Input may be
free form and an immediate execution mode is provided. Access to the MTS editor
is provided for program revision, as well as the ability to monitor and control
executing programs using break-points and at-points. The system is operational
under tne MTS system and a live demonstration accompanied the presentation.

The following pages contain the text of Mr . Hall's presentation, a transcripti on
of the videotape accompanying the presentation, and a transcription of part of
t he question-and-answer exchange whi ch followed the presentation . ' ·

In April 1971, we began a project at, the University of British Columbia with
the purpose of designing and implementing a, system which would facilitate
FORTRAN program development. The Interactive FORTRAN (or IF) system which
emerged from this project was successfully released to general users in April
of this year, just under two years from the time the project was begun.

The IF project, we feel, has been a progressive step in the direction of
providing program development assistance, not only with FORTRAN, but with
higher level languages in general. The background gained in the implementation
of the IF system provides the basis for a uniform approach to this problem,
the significance of which will increase as more and more conversational
computing systems become available.

Let me briefly outline some of the design objectives of the user interface
to the IF system;

The first, and probably foremost consideration was that

1. programs would be uni formly transportable between the IF system and our
conventional FORTRAN batch compiler.

(A conversational front-end for a batch compiler is a simple solution to
this problem, but the followipg objectives make it evident that such a scheme
is out of the question).

As a second objective, we proposed the IF system be comprehensive in that it
would

2. provide facilities for compilation, execution, and editing. Each of these
processes would be carried out under stringent error monitoring; meaningful,
non-coded error diagnostics containing symbolic information would be produced
in the event of an error; and all errors would be fully recoverable . In
addition, the user would be given facilities for control of his program
during execution.

Thirdly, the IF system would, if possible

_3. present a non-complex face to the user.

In our implementation the first objective, that of program transportability,
has virtually been attained. This can be attributed primarily to the fact that
IF provides free access to the standard user program support; the FORTRAN I/0
package, the elementary FORTRAN function library, and probably most important
the general program library.

Our goal of obtaining a comprehensive program development package has also
been attained. Forming the framework of IF are facilit ies not only for
controlled execution, but for compilation and editing as well, with each
operating under close scrutinization for errors. Control of the system 1s
provided by a unique immediate execution process which will be described 1n
a moment .

2

The flexibility of the IF system can be illustrated by noting that each of the
traditionally disjoint development processes (compilation, execution, and
editing) are allowed to overlap almost entirely at will. This , combined with
t he immediate execution process, means that program errors may be corrected
"on the fly" -- that is, the source program may be immediately edited in the
event of an error, with the corresponding changes reflected in the running
program when execution is resumed . Often it is not necessary to begin all
over again when an error has been encountered, but rather the user may choose
to step from error to error until execution completes successfully. Of course,
t he user who prefers to start again from the beginning can do so with equal
ease .

Any system which is proposed to be an aid to interactive debugging must have a
facility for interrogating and altering the values of variables during
execution . IF fulfils this criterion in a very natural, but surprisingly
effective way. A running program may halt for any of several reasons -- we
call this interruption of execution a "suspension", for as implied earlier,
execution of the program remains pending. When a suspension is in effect, the
user may enter IF commands or FORTRAN statements for immediate execution .

FORTRAN statements used in this context are very much like commands -- their
function remains essentially the same with the difference that the action
represented by the statement is carried out immed·iately. For example, the
values of variables in a routine may be displayed by simply entering a list
directed PRINT statement; or values in the program may be changed by entering
a FORTRAN assignment statement. This facility extends to include almost all
FORTRAN statements -- CALL, READ, IF, RETURN and so on .

~ The benefits of such a scheme should be apparent:

1. the user works with a language with which he must already be familiar
(FORTRAN) and

2. changes can easily be made to a compiled program during its execution,
meaning the user does not need to include debugging statements (which
generally turn out to be inappropriate or inadequate anyway) prior to
compilation of his program. Instead he can adjust his debugging attack
according to the currently prevailing circumstances.

The major features included to provide the user with control of execution are
BREAK-points and AT-points, (which pre-specify locations in the program at
which a suspension is to occur) and commands which permit execution to proceed
in steps of one or more statements.

The third design objective, particularly in light of the versatility of the
IF system, has been difficult to attain . It is interesting to note that
features included to remove some of the tedious rigidity of programming can
contribute an unwholesome amount to the apparent complexity of a system such
as IF. The case in point is the provision for free-format FORTRAN - - it is the
only reasonable way to program conversationally, but nonetheless it can cause
difficulty for the uninitiated user.

In an effort to minimize the amount of work required on the part of the user in
l earning how to use the IF system, we have provided commands which closely
parallel MTS commands in both function and syntax, and as mentioned earlier,
immediate execution of FORTRAN statements. In addition, the MTS editor has
been incorporated, (with some changes) into the IF system , which again presents
a familiar facility to our MTS users.

3

There are a large number o~ commands provided by the IF system, but with just
a selected _ f~w the user ga1ns control of a versatile and powerful debugging
tool. Add1t1onal commands can be introduced as his knowledge and ability
to use the IF system increase.

Response to the IF system from our user community has generally been very
favora~l~, and usage ~as been steadily increasing since the date of release.
We ant1c1pate that th1s trend will continue as more and more users become
aware of the benefits that can be had by using Interactive FORTRAN.

1--# $run *if
EXECUTION BEGINS
* IFC(UN123)

VIDEO TAPE TRANSCRIPTION
4

2--* $compile prey.s
WARNING:$LIST IFC:NEWS - *IF NO\~ EDITS USER'S FILES (E.G; FILE "PREY.$'')
ROUTINE NAME: MAIN

3

ROUTINE NAME: TRACE
ROUTINE NAME: WFILE

* $run main

AUTHOR/SUBJECT REF . NO.

$endfil e
STOP

+ $release
4--* $compile

l 100
2-

i=l

ROUTINE NAME: MAINl
5 --* $compose

1 m=O
ROUTINE NAME: MAIN2

2 do 10 j=l,5
6----3- m=m+j=

M=M+J;;-
$

REPRINT SOURCE

ERROR: EXTRA CHARACTERS AFTER COMPLETE STATEMENT
7- -: print

3
alter 'j='j'

3
8--: stop

M=M+J=

M=M+J

4 10 continue
5- print,m
6- stop
7- end

9--* $lisCmain2
* l
* 2
* 3
* 4
* 5
* 6
* 7

10--* $run main2
15

STOP
11 -----+ $release

M=O
DO 10 J=l ,5
M=M+d

10 CONTiNUE
PRINT,M
STOP
END

12--* $break main2:4
* $run main2

AT LINE 4 OF ROUTINE MAIN2
13-- ***** BREAKPOINT
14--+ print,m

15--+ $step
AT LINE

16--+ $restart
AT LINE

3

4

OF ROUTINE MAIN2

OF ROUTINE MAIN2

VIDEO TAPE TRANSCRIPTION
***** BREAKPOINT

17--+ $remove main2:4
18- -+ $at main2:4

l print, ' m=' ,m
2- end

+·$restart
AT LINE 4 OF ROUTINE MAIN2

M= 6
AT LINE 4 OF ROUTH-IE MAIN2

19 M= 10
AT LINE 4 OF ROUTINE MAIN2

M= 15
15

STOP
+ $release

l_ subroutine x(a)

{

* $compose

20 ROUTINE NAME: X
2 a=clik(O)
3- return
4- end

21--* call x(y)
AT LINE 2 OF ROUTIN E X

22-- ERROR: ROUTINE CLIK IS UNDEFINED

+ MSG+ERROR: A ROUTINE MAY BE EXECUTED ONLY IF IT HAS BEEN DEFINED

{

+ $? +2

23 + TO THE "IF" SYSTEM . IT MAY BE DEFINED BY $COt~PILE' ING OR
+ $COMPOSE'ING IT OR BY $LOAD'ING IT; OR, IT IS DEFINED
+ AUTOMATICALLY IF IT APPEARS IN THE LIBRARY

{

+$edit x
: line 2
: 2 24 : alter 'ik'ock'
: 2
: stop

25--+ $restart

A=CLIK(O)

A=CLOCK(O)

REPEATING STATEMENT

26 23869.16
{

*y

* sqrt(y)
154.4965

27--* x:a=4; print,x :a
4.000000

28--* $display routines
* "X" RANG E=(l , 4) TYPE=SUBROUTINE STATUS=INITIALIZED
* "MAIN2" RANGE= (l , 7) TYPE=MAIN STATUS= INITIALIZED
* "MAINl II RANGE = (1 , l) TYP E=MAIN
* "WFILE" RANGE=(131 , 160) TYP.E=SUBROUTINE
* "TRACE" RANGE=(109 . , 130 .) TYPE=SUBROUTINE
* "MAIN" RANGE= (l , l 08) TYP E=MAIN STATUS= INITIALIZED

29 --* $explain $load
* $LOAD FDNAME
*
* LOAD THE ROUTINES CONTAINED AS OBJ ECT MODULES IN THE
* SPECIFI ED MTS FILE.

30--* $load *time
* call time(O)

CLOCK 17 :47 :15 DATE 08-07 -73
31--* $stop

EXECUTION TERMINATED

5

"'
"'

VIDEO TAPE TRANSCRIPTION 6

The characters *, +, and : appearing in the first column are issued by the
IF system to indicate the current mode to tbe user. Lines entered by the user
appear in lower case.

1. $RUN *IF causes execution of the IF system to begin.

2. The name PREY.S appearing as an operand on the $COMPILE command corresponds
to an MTS file containing the FORTRAN source for a MAIN routine and two
sub-programs. The main program is arbitrarily assigned the name MAIN.

3. Compilation and execution can be, as we see here somewhat similar to that
of a conventional compile and run. '

4. Entering a ~COMPILE command without operands indicates lines that are entered
at the term1nal are to be compiled. Compiled lines are always saved for
subsequent editing.

5. Normally we prefer to enter FORTRAN lines at the terminal in free format so
we use t~e :ount~rpart of the $COMPILE command $COMPOSE. The $COMPOSE '
c~mmand 1s 1dent1c~l to the $COMPILE command in every way, except FORTRAN
l1nes are entered 1n free format and automatically converted to IBM fixed
format before being saved.

6. In the event of an error we are presented with the Editor for immediate
correction of the routine.

7. The automatic invocation of the Editor is signified by the colon prefix.

8. Entering the STOP command in EDIT mode indicates editing has been completed
and the compilation should be resumed.

9. Having n~w successfully composed a routine we now request that it be listed
by enter1ng the $LIST command , speci!ying MAIN2 as the routine to be listed.

10. To cause execution o~ th!s ro~tine we again use the $RUN command specifyi ng
the name ~f the rout1ne 1n wh1ch execution is to begin. When execution flow
suspends 1n a particular routine, that routine becomes active .

11. The $RELEASE command simply causes the active routine to return to a non-active
state , and in so doing terminates execution.

Next we look at some of those features which distinguish IF from the conventional
approaches to execu;tion .. of FORTRAN programs.

12. Using the $BREAK command we have set a BREAK- point at line 4 of MAIN2.

13. The execution flow arrives at line 4 and a suspension immediately occurs.

14. Whe~ a suspe~sion has occurred we can interrogate and change the values of
v~nab:es us1ng ~ORTRAN statements. In this case, we use the HATFIV
l1st-d1rected pr1nt statement to print the current value of M.

15. We can.then use the $STEP command to step through the program one statement
at a t1me;

16. or allow execution to continue freely using the $RESTART command ;

VIDEO TAPE TRANSCRIPTION

17. BREAK-points may be removed with the $REMOVE command.

18. The $AT command is a close associate of the $BREAK command. AT points
allow the operations which are to be carried out to be prespecified.

7

19. When an AT-point is encountered during an execution flow, control does not
return to the terminal; instead the prespecified statements are executed,
following which normal execution flow is automatically resumed.

20. To demonstrate error handling during execution we will now compose a short
subroutine called X.

21:. To invoke this routine and to pass it an argument, we simply use a FORTRAN
CALL statement .

22. The execution flow suspends at line 2 of X when a reference is made to an
undefined routine. Here we have several options: we can assign a value to
A; define the missing routine; or change the name of the routine being
referenced. We will choose the latter, but first lets get some more information
about the error.

23. The $? command can be used to increase the level of explanation of the last
error encountered.

24. Now we will change the name oft~ routine being referenced.

25. The $RESTART command causes the statement in error to be repeated. This
time the statement executes successfully. The routine CLOCK is not one
which we have defined, but it was found in the General Library .

26. Entering Y and SQRT(Y) causes the value of Y and its corresponding sq.uare
root to be pri nte·d.

27 .. The statement beginning X:A ... demonstrates the ability to modify and
interrogate values of variables in various routines. The value 4 is
assigned to variable A in routine X and then printed.

28. ROUTINES is just one of the many parameters that may be placed on the
$DISPLAY command. In this case it prints out the routines which are currently
defined to the IF system.

29. The $EXPLAIN command can be used to obtain lists of all IF commands , or
to obtain information about individual commands. Here a brief explanation
of the $LOAD command is given.

30. $LOAD *TIME causes the object program in the file *TIME to be loaded
defining the entry point TIME. In this case a self-contained program was
loaded for demonstration purposes. Object modules which define subroutines
may be loaded also and these will interface with routines which are
compiled under the IF system.

31. Finally, a $STOP command causes execution of the IF system to be terminated.

8

THE IMPLEMENTATION OF IF

The implementation of the IF system wa s carried out using System/360 assem~ler
language under the Michigan Terminal System at UBC (model 67 duplex). In 1ts
present form, IF represents an investment of 8 man-years and approximately
one-quarter million dollars (with computing charges contributing to roughly
one-half).

We had an acceptable, but restrictive, program development system going at the
end of the first year. The second year was used to implement the more esoteric
features, finish off some of the rough edges, and to bring the system to a
degree of reliability which would be considered satisfactory to our users .

Although each of the components has the ability to produce specific debug
information, the development of the system was particularly assisted by a general
internal debug monitor which was developed in parallel with the overall
implementation. ~he debug monito~ which initi~lly allowe~ display~ng and .
altering of locat1ons, later prov1ded BREAK-po1nts, AT-po1nts and 1nstruct1on
stepping facilities for testing the IF system itself. It now inclu~es such
functions as allowing a newly deyeloped IF module to be loaded and 1nterfaced
with the shared-memory version of IF for testing purposes , and can graphically
illustrate where CPU time is being used within the IF system.

9

QUESTION-ANSWER EXCHANGE

Is the editor in the IF system as powerful as the CMS editor?

Answer

The editor used in the IF system is the same as the editor which handles all
conversational editing for the MTS system, a reasonably powerful editor . When
running under the IF system, the user is concerned with editing a particular
type of file - - namely one which contains FORTRAN source, and as such, a special
set of editing functions or capabilities (available with neither the MTS or
CMS editors) is desirable. We have found however, that the MTS editor is more
than satisfactory for our purposes, and it has the added advantage that it does
not require the MTS user to l~arn a new editor in order to use the IF system.

Is there any limitation on the size of a program which may be run under the
IF system?

Answer --

As mentioned in the talk, programs are completely transportable between our
conventional compiler and the IF system. The limitations on the size of
programs which may be run is essentially the same .

A difference between WATFIV and the IF system appears to be that WATFIV very
rigorously checks for program consistency, while the IF system is geared
to assisting in the location of errors i n program logic .

Answer --

It is true that IF is very beneficial in locating errors in program logic,
but IF also provides rigorous checking of program consistency which is equal
to that performed by WATFIV.

Do you support file operations from within IF and how do you communicate to
IF which files you want to attach?

Answer --

IF provides all facilities which the user has available when running in the
conventional manner. The user indicates which files are to be attached by
specifying the correspondence on the IF $RUN command, exactly the same as with
a conventional run under MTS.

Is IF an integral part of MTS or is it a separate entity?

Answer --

IF is completely separate from the MTS system. IF does, however, rely heavily
on support provided by the MTS system: direct access files, program interrupt
and attention interrupt control, and so on.

10

What i s the overhead in running under IF?

Answer --

IF executes approximately 10 times slower than WATFIV. We attribute this, to
a large extent, to the flexibility in the IF system. Also, the IF system was
implemented with a primary goal of getting the system working and to get it
working correctly. Now that this goal has been achieved, we will investigate
the possibilities for speeding up interpretation . In any event, we feel that
slow execution is well worth the trade-off for the excellent debugging facilities.

How do you distinguish between FORTRAN statement labels and MTS line numbers?

Answer - -

IF commands which accept an MTS line number or line range will, in general,
accept a statement label or statement label range as well. Statement labels
are indicated by appearing on a command with a hash-mark (#) prefix.

e.g. 20.25 is an MTS line number
#100 is a FORTRAN statement label .

Can you give a line number (as opposed to a statement label) on a GO TO
statement and cause execution to continue?

Answer --

No, because this would require a change to both the syntax and semantics of the
FORTRAN GOTO statement, a change which we felt was inappropriate. An IF
command, $RESTART, which allows either a line number or a statement label to be
specified is provided for the purpose of restarting execution .

Have you run across any class of bugs which IF does not help you to find?

Answer - -

The facilities provided by IF are sufficient to provide at least some assistance
in locating any type of FORTRAN bug . Areas in which specific help is not given
currently are program loops and program event conditions (e.g. when I becomes
equal to 1000), although future implementation will likely include assistance
in these areas also.

Have you experienced system degradation when running IF?

Answer --

Not a significant amount. The IF system, while being very large, does reside
in shared memory which means several users use the same copy. The individual
user's memory requirement with IF is dependent on the size of his FORTRAN program ,
and it is expected that a number of users with large FORTRAN programs could
cause a noticeable system degradation.

11

Why has response to IF been slow?

Answer --

It's not clear how fast we should be expecting IF to catch on . IF is still new
to our user's and IF does require a certain amount of familiarization before a
user feels comfortable with it .

Usage s~atistics indicate that approximately 10% of our users are using IF
and use counts indicate that IF is taking over a proportional amount of the
WATFIV usage .

How does one go about getting IF and how much does it cost?

Answer --

IF is currently available only to installati -ons running under MTS . Should a
conversion to another system be carried out, we would expect the IF system to
be available to non-commercial organizations at no charge.

Have you plans for running under any other system?

Answer --

The implementation of IF was carried out with some consideration to transportability
to other systems, but not so much as to comprnmise the MTS version. While it
would be possible to convert IF to run under VS2, TSS, or VM/370, UBC has no
current plans to carry out such conversions .

How difficult would it be to do the conversion?

Answer --

A proper conversion would take between 4 and 12 man-months . The length of time
required to do the conversion would depend heavily on the facilities and services
provided by target system .

If it was possible to implement IF under TSO taking a core commitment of 200 K
or less, we would be interested in having IF.

Answer --

Due to the size of the IF system (approx. 250 K) we think it would be unreasonable
to attempt to use the IF system on anything but a virtual storage system. An
overlay structure would be an alternative, but this would significantly increase
the amount of work required for conversion.

12

Would it be possible to look at the structure of IF to consider the conversion
of IF ourselves?

Answer --

A policy on a request such as this has not yet been established, but ·we expect
that this would be possible.

Enquiries regarding the IF system should be directed to:

Ronald H. Hall
Computing Centre
Civil Engineering Building
Univ~rsity of British Columbia
VANCOUVER, Canada

S E S S I 0 N REPORT

PROJECT WORKING SESSION (Model 44 Project) B50l
Se-6.6-<.0 it Nu.mbe.Jt

August 14, 1973
Da.-te.

BASIC SYSTEMS

10:30 - 5 : 00
T-<.me

Crown

Room

Model 44 Project
Comm-<.-t:tee.

John B. O' Loughlin WSA
Cha.-<.Jtma.n

State Univ., Wichita, Kansas 67208
one.

(316) . 689- 3630

The project reviewed installation reports, add- on core, and review of project

library software to be placed in SPLA . A visit to the Boca Raton IBM plant

for project members, a Sensor Based System onSystem/7, and a session on Graphics

and Film Making on a S360/44 were sponsored by the project . The project will

discuss the formation of a Sensor Based Systems Project at SHARE HOUSTON .

·Attendance:

Name

John Y. Ho
M. (Penny) Baggett
Steve Wineteer
John Golini
John Moulton
Joe Furnish
·R.L. Jones
George Gorsline, Jr.
John H. Barron
Bernie Schwartz
James McBride
Javier Albarran
David H. Lowell
Ted LoPresti
Richard L. Davis
Jerry Michiner
John B. O'Loughlin

Installation

Night Vision Labs
Purdue High Energy Physics Lab
HQ Strategic Air Command
New Mexico Tech
Clarkson College
Cessna Aircraft
Univ. of Maryland
Oberlin College
IBM
City Planning New York City
University of Toronto
Univ. of Maryland
Univ. of Houston
Univ. of Maryland
Ohio University
Univ. of Maryland
Wichita State University

NVL
PDP
SAC
NMI
CCT
CA
UMH
OBC
IBM

TY
UMH
UH
UMH
ou
UMH
WSA

