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Abstract

Modern modeling approaches in circuit simulation naturally lead to differential-algebraic
equations (DAEs). The index of a DAE is a measure of the degree of numerical difficulty.
In general, the higher the index is, the more difficult it is to solve the DAE. The modified
nodal analysis (MNA) is known to yield a DAE with index at most two in a wide class of
nonlinear time-varying electric circuits.

In this paper, we consider a broader class of analysis method called the hybrid analysis.
For linear time-invariant RLC circuits, we prove that the index of the DAE arising from
the hybrid analysis is at most one, and give a structural characterization for the index of a
DAE in the hybrid analysis. This yields an efficient algorithm for finding an hybrid analysis
in which the index of the DAE to be solved attains zero. Finally, for linear time-invariant
electric circuits which may contain dependent sources, we prove that the optimal hybrid
analysis by no means results in a higher index DAE than MNA.

1 Introduction

The hybrid analysis [15] is a common generalization of the loop analysis and the cutset analysis,
which are classical circuit analysis methods. Kron [18] proposed the hybrid analysis in 1939,
and Amari [1] and Branin [5] developed it further in 1960s. Among various analysis methods,
however, the modified nodal analysis (MNA) has been the most commonly used in recent years.
An advantage of MNA is to generate the model equations automatically. In contrast, the hybrid
analysis retains flexibility, which can be exploited to find a model description that reduces the
numerical difficulties.

Circuit analysis methods lead to differential-algebraic equations (DAEs), which consist of
algebraic equations and differential operations. DAEs present numerical and analytical diffi-
culties which do not occur with ordinary differential equations (ODEs).

Several numerical methods have been developed for solving DAEs. For example, Gear [11]
proposed the backward difference formulae (BDF), which were implemented in the DASSL code
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by Petzold (cf. [6]). Hairer and Wanner [13] implemented an implicit Runge-Kutta method in
their RADAU5 code.

The index concept plays an important role in the analysis of DAEs. The index is a measure
of the degree of difficulty in the numerical solution. In general, the higher the index is, the
more difficult it is to solve the DAE. While many different concepts exist to assign an index
to a DAE such as the differentiation index [6, 8, 13], the perturbation index [7, 13], and the
tractability index [19, 25], this paper focuses on the Kronecker index. In the case of linear DAEs
with constant coefficients, all these indices are equal [7, 23].

Consistent initial values of a DAE have to fulfill not only explicit constraints but also
hidden constraints, which are obtained by differentiation of certain equations and algebraic
transformations. Since DAEs with higher index than one have hidden constraints, it is difficult
to find consistent initial values of those DAEs.

For nonlinear time-invariant electric circuits containing independent sources, resistors, in-
ductors, and capacitors, Tischendorf [26] showed that the index of a DAE arising from MNA
does not exceed two. She also proved that MNA leads to a DAE with index one if and only if a
circuit contains neither L-I cutsets nor C-V loops, where an L-I cutset means a cutset consisting
of inductors and/or current sources only, and a C-V loop means a cycle consisting of capacitors
and voltage sources only. This means that the index of a DAE arising from MNA is determined
uniquely by the network. Furthermore, the results of Tischendorf [26] are generalized for non-
linear time-varying electric circuits that may contain a wide class of dependent sources [25].
Based on this structural characterization for DAEs with index one, some methods for finding
consistent initial values and some index reduction methods have been developed [2, 3, 4, 24].

While the procedure of MNA is uniquely determined, that of the hybrid analysis is not.
The hybrid analysis starts with selecting a partition of elements and a reference tree in the
network. This selection determines a system of equations, called the hybrid equations, to be
solved numerically. Thus it is natural to seek for an optimal selection that makes the hybrid
equations easy to solve, among the exponential number of possibilities. In fact, the problem
of obtaining the minimum size hybrid equations was solved [14, 17, 21] in 1968. Recently, for
linear time-invariant electric circuits which may contain dependent sources, an algorithm for
finding a partition and a reference tree which minimize the index of the hybrid equations was
proposed in [16].

In this paper, for linear time-invariant RLC circuits, we prove that the index of the hybrid
equations never exceeds one, which means that it is easy to find consistent initial values of the
hybrid equations. Moreover, we give a structural characterization of circuits with index zero.
This characterization brings an index minimization algorithm in the hybrid analysis. Focusing
on only linear time-invariant RLC circuits, this algorithm is much faster and simpler than the
previous one [16], which runs in O(n6) time, where n is the number of elements in the circuit.
The time complexity can be improved to O(n3) under a genericity assumption that the set of
nonzero entries coming from the physical parameters is algebraically independent. In contrast,
the new algorithm runs in O(n) time, without relying on the genericity assumption.

In addition, for linear time-invariant electric circuits which may contain dependent sources,
we prove that the optimal hybrid analysis never results in a higher index DAE than MNA.
This suggests that the hybrid analysis is superior to MNA in numerical accuracy.
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The organization of this paper is as follows. In Section 2, we explain matrix pencils and
the definition of the index. We describe the procedure of the hybrid analysis in Section 3.
Section 4 characterizes the index of the hybrid equations, which leads to an index minimization
algorithm in the hybrid analysis. In Section 5, we make comparisons of the optimal hybrid
analysis and MNA. Finally, Section 6 concludes this paper.

2 DAEs and Matrix Pencils

For a polynomial a(s), we denote the degree of a(s) by deg a, where deg 0 = −∞ by convention.
A polynomial matrix A(s) = (apq(s)) with deg apq ≤ 1 for all (p, q) is called a matrix pencil.
Obviously, a matrix pencil A(s) can be represented by A(s) = A0 +sA1 with a pair of constant
matrices A0 and A1. A matrix pencil A(s) is said to be regular if A(s) is square and detA(s)
is a nonvanishing polynomial.

Consider a linear DAE with constant coefficients

A0x(t) + A1
dx(t)

dt
= f(t), (1)

where A0 and A1 are constant matrices. In the case of detA1 6= 0, the DAE (1) reduces to an
ODE, and in the case of A1 = O, it reduces to algebraic equations. With the use of the Laplace
transformation, the linear DAE with constant coefficients in the form of (1) is expressed by the
matrix pencil A(s) = A0 + sA1 as A(s)x̂(s) = f̂(s) + A1x(0), where s is the variable for the
Laplace transform that corresponds to d/dt, the differentiation with respect to time.

Theorem 2.1 ([6, Theorem 2.3.1]). The linear DAE with constant coefficients (1) is solvable
if and only if A(s) is a regular matrix pencil.

The reader is referred to [6, Definition 2.2.1] for the precise definition of solvability. By
Theorem 2.1, we assume that A(s) is a regular matrix pencil throughout this paper. A regular
matrix pencil is known to have the Kronecker canonical form, which determines the index. Let
Nµ denote a µ× µ matrix pencil defined by

Nµ =




1 s 0 · · · 0

0 1 s
. . .

...

0 0
. . . . . . 0

...
. . . . . . 1 s

0 · · · 0 0 1




.

A matrix pencil A(s) is said to be strictly equivalent to A′(s) if A(s) can be brought into A′(s)
by an equivalence transformation with nonsingular constant matrices.

Theorem 2.2 ([10, Chapter XII, Theorem 3]). An n× n regular matrix pencil A(s) is strictly
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equivalent to its Kronecker canonical form:



sIµ0 + Jµ0 O O · · · O

O Nµ1 O · · · O

O O Nµ2

. . .
...

...
...

. . . . . . O

O O · · · O Nµb




,

where µ1 ≥ µ2 ≥ · · · ≥ µb, µ0 + µ1 + µ2 + · · ·+ µb = n, Iµ0 is a µ0 × µ0 unit matrix, and Jµ0

is a µ0 × µ0 constant matrix.

The matrices Nµi (i = 1, . . . , b) are called the nilpotent blocks. The maximum size µ1 of
them is the index, denoted by ν(A). Obviously, ODEs have index zero, and algebraic equations
have index one.

We denote by A[K,J ] the submatrix of A(s) with row set K ⊆ P and column set J ⊆ Q,
where P and Q are the row set and the column set of A(s), respectively. Let δr(A) denote the
highest degree of a minor of order r in A(s):

δr(A) = max
K,J

{deg det A[K, J ] | |K| = |J | = r,K ⊆ P, J ⊆ Q}.

The index ν(A) can be determined from δr(A) as follows.

Theorem 2.3 ([20, Theorem 5.1.8]). Let A(s) be an n × n regular matrix pencil. The index
ν(A) is given by

ν(A) = δn−1(A)− δn(A) + 1.

3 Hybrid Analysis

In this section, we describe the procedure of the hybrid analysis [16]. We focus on linear time-
invariant RLC circuits, which are composed of resistors, inductors, capacitors, independent
voltage/current sources.

Let Γ = (W,E) be the network graph with vertex set W and edge set E. An edge in Γ
corresponds to a branch that contains one element in the circuit. We denote the set of edges
corresponding to independent voltage sources and independent current sources by Eg and Eh,
respectively. We split E∗ := E \ (Eg ∪Eh) into Ey and Ez, i.e., Ey ∪Ez = E∗ and Ey ∩Ez = ∅.
A partition (Ey, Ez) is called an admissible partition, if Ey includes all the capacitances, and
Ez includes all the inductances.

We now explain the circuit equations for a linear time-invariant RLC circuit. Let ξ denote
the vector of currents through all branches of the circuit, and η the vector of voltages across
all branches. We denote the reduced cutset matrix by Ψ and the reduced loop matrix by Φ.
Using Kirchhoff’s current law (KCL), which states that the sum of currents entering each node
is equal to zero, we have Ψξ = 0. Similarly, using Kirchhoff’s voltage law (KVL), which states
that the sum of voltages in each loop of the network is equal to zero, we have Φη = 0. The
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physical characteristics of elements determine constitutive equations. In this paper, we assume
that the constitutive equations of a resistor, a capacitor, and an inductor are described by

ξ =
1
α

η, ξ = β
dη

dt
, and η = γ

dξ

dt
,

where ξ and η denote a current variable and a voltage variable, and α, β, and γ denote a
resistance, a capacitance, and an inductance, which are constant. Given an admissible partition
(Ey, Ez), we split ξ and η into

ξ =




ξg

ξy

ξz

ξh


 and η =




ηg

ηy

ηz

ηh


 ,

where the subscripts correspond to the partition of E. After the Laplace transformation, the
circuit equations, which consist of KCL, KVL, and constitutive equations, are described by




Ψ O

O Φ
O I O O O Y (s) O O

O O Z(s) O O O I O

O O O O I O O O

O O O I O O O O







ξg

ξy

ξz

ξh

ηg

ηy

ηz

ηh




=




0
0
0
0

g(s)
h(s)




, (2)

where Y (s) and Z(s) are diagonal matrix pencils. The degree of a diagonal entry of Y (s) is
equal to zero if its column corresponds to a variable for a resistor, and equal to one if its column
corresponds to a capacitor. Similarly, the degree of a diagonal entry of Z(s) is equal to zero if
its column corresponds to a resistor, and equal to one if its column corresponds to an inductor.
Thus the coefficient matrix A(s) of the circuit equations is a matrix pencil. The row set and
the column set of A(s) are denoted by P and Q, respectively.

We call a spanning tree T of Γ a reference tree if T contains all edges in Eg, no edges in Eh,
and as many edges in Ey as possible. Note that a reference tree T may contain some edges in
Ez. The cotree of T is denoted by T = E \ T .

Given an admissible partition (Ey, Ez), we denote the column sets of A(s) corresponding to
the current variables and the voltage variables for elements in Eg, Ey, Ez, Eh by Ig, Iy, Iz, Ih,
and Vg, Vy, Vz, Vh, respectively. Moreover, given a reference tree T , we denote the column sets
of A(s) corresponding to the current variables and the voltage variables for elements in Ey ∩T

and Ey ∩T by Iτ
y , Iλ

y , and V τ
y , V λ

y , respectively. The superscripts τ and λ designate the tree T

and the cotree T . We define Iτ
z , Iλ

z , and V τ
z , V λ

z in a similar way. We also use Iτ = Ig ∪ Iτ
y ∪ Iτ

z ,
Iλ = Iλ

y ∪ Iλ
z ∪ Ih and V τ = Vg ∪ V τ

y ∪ V τ
z , V λ = V λ

y ∪ V λ
z ∪ Vh for convenience. The column

sets corresponding to current variables and voltage variables are denoted by QI := Iτ ∪ Iλ and
QV := V τ ∪V λ. Let ie and ve denote the column corresponding to the current variable and the
voltage variable for an element e. For a set of elements F ⊆ E, we define QF

I := {ie | e ∈ F}
and QF

V := {ve | e ∈ F}.
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The row sets of A(s) corresponding to KCL, KVL, and constitutive equations are denoted
by PI , PV , and S, respectively. Given an admissible partition (Ey, Ez) and a reference tree T ,
let AT (s) be the coefficient matrix of the circuit equations, where Ψ is the fundamental cutset
matrix and Φ is the fundamental loop matrix with respect to T . This means that we transform
A(s) into AT (s) such that AT [PI , I

τ ] = I and AT [PV , V λ] = I by row operations in PI ∪ PV .
Note that PI and Iτ as well as PV and V λ have one-to-one correspondence. The row sets of
AT (s) corresponding to Ig, Iτ

y , Iτ
z , and V λ

y , V λ
z , Vh are denoted by Pg, P τ

y , P τ
z , and P λ

y , P λ
z ,

Ph. If K ⊆ P and J ⊆ Q have the same superscript and subscript, AT [K, J ] is the unit matrix.
Similarly, the row sets corresponding to Iy, Vz, Vg, and Ih are denoted by Sy, Sz, Sg, and Sh.
By the definition of a reference tree, AT (s) has the following property.

Lemma 3.1 ([16, Lemma 3.1]). For a reference tree T , we have AT [P τ
z , Iλ

y ] = O and AT [P λ
y , V τ

z ] =
O.

Thus AT (s) is in the form of

AT (s) =




Ig Iτ
y Iλ

y Iτ
z Iλ

z Ih Vg V τ
y V λ

y V τ
z V λ

z Vh

Pg I O ∗ O ∗ ∗ O O O O O O

P τ
y O I ∗ O ∗ ∗ O O O O O O

P τ
z O O O I ∗ ∗ O O O O O O

P λ
y O O O O O O ∗ ∗ I O O O

P λ
z O O O O O O ∗ ∗ O ∗ I O

Ph O O O O O O ∗ ∗ O ∗ O I

Sy
O

O

I

O

O

I

O

O

O

O

O

O

O

O

Y τ (s)
O

O

Y λ(s)
O

O

O

O

O

O

Sz
O

O

O

O

O

O

Zτ (s)
O

O

Zλ(s)
O

O

O

O

O

O

O

O

I

O

O

I

O

O
Sg O O O O O O I O O O O O

Sh O O O O O I O O O O O O




, (3)

where ∗ means a constant matrix and Y τ (s), Y λ(s), Zτ (s) and Zλ(s) are diagonal matrix
pencils. We can determine AT (s) only after being given both an admissible partition (Ey, Ez)
and a reference tree T .

Let us denote P∗ = P \ (P τ
y ∪ P λ

z ) and Q∗ = Q \ (Iλ
z ∪ V τ

y ). We transform AT into A′T by
row operations:

AT =

(
B G

H M

)
→ A′T =

(
I O

−HB−1 I

)(
B G

H M

)
=

(
B G

O M −HB−1G

)
, (4)

where B = AT [P∗, Q∗], G = AT [P∗, Q \Q∗],H = AT [P \ P∗, Q∗], and M = AT [P \ P∗, Q \Q∗].
We denote M −HB−1G by D.

Let B̌, Ǧ, Ȟ, M̌ , and Ď denote the matrices obtained by replacing s with d/dt in B, G,
H, M , and D, respectively. Consider the DAE

B̌x1(t) + Ǧx2(t) = f1(t), (5)

Ȟx1(t) + M̌x2(t) = f2(t). (6)
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By applying the transformation shown in (4), we obtain

B̌x1(t) = f1(t)− Ǧx2(t), (7)

Ďx2(t) = f2(t)− ȞB̌−1f1(t). (8)

We call the resulting DAE (8) the hybrid equations. Let us denote the vectors of currents
corresponding to Ig, Iτ

y , Iλ
y , Iτ

z , Iλ
z , Ih by ξg, ξτ

y , ξλ
y , ξτ

z , ξλ
z , ξh, and the vectors of voltages

corresponding to Vg, V τ
y , V λ

y , V τ
z , V λ

z , Vh by ηg, ητ
y , ηλ

y , ητ
z , ηλ

z , ηh. The procedure of the
hybrid analysis is as follows.

1. The values of ξh and ηg are obvious from the equations corresponding to Sh and Sg.

2. Compute the values of ξλ
z and ητ

y by solving the hybrid equations (8).

3. Compute the values of ξτ
z and ηλ

y by substituting the values obtained in Steps 1–2 into
the equations corresponding to P τ

z and P λ
y .

4. Compute the values of ξτ
y , ξλ

y , ητ
z , and ηλ

z by substituting the values obtained in Steps 1–3
into Sy and Sz.

5. Compute the values of ξg and ηh by substituting the values obtained in Steps 1–4 into
Pg and Ph.

In the case of Ey = ∅, the above procedure is called the loop analysis or the tieset analysis.
In the case of Ez = ∅, the procedure is called the cutset analysis.

All operations in Steps 3–5 are substitutions and differentiations of the obtained solutions.
This is because we can transform B into an upper triangular matrix pencil with diagonal ones
by permutations [16, Lemma 3.2]. Hence, the numerical difficulty is determined by the index
of the hybrid equations (8).

4 Index of Hybrid Equations

In this section, for linear time-invariant RLC circuits, we prove that the index ν(D) of the hybrid
equations is at most one, and we provide a necessary and sufficient condition for ν(D) = 0.

Given an admissible partition (Ey, Ez) and a reference tree T , consider the transformation
shown in (4). For each p ∈ P and q ∈ Q, let dpq denote the degree of detAT [P \ {p}, Q \ {q}].
The index ν(D) can be rewritten as follows.

Lemma 4.1 ([16, Lemma 4.1]). Given an admissible partition (Ey, Ez) and a reference tree
T , the index of D is given by

ν(D) = max
p,q

{dpq | p ∈ P \ P∗, q ∈ Q \Q∗} − deg det AT + 1. (9)

The index of the hybrid equations has the following property.

Lemma 4.2 ([16, Theorem 4.4]). Given an admissible partition (Ey, Ez), the index ν(D) is
the same for any reference tree.
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The generalized Laplace expansion applied to AT (s) results in

detAT =
∑

F

sgnF det AT [PI , Q
F
I ] detAT [PV , QF

V ] detAT [S,QF
I ∪QF

V ], (10)

where the summation is over every spanning tree F of Γ which contains all edges in Eg but no
edges in Eh, and sgnF is equal to +1 or −1. This is because AT [PI , Q

F
I ] and AT [PV , QF

V ] are
nonsingular due to the special structure of AT (s). It is known that detAT has the following
property.

Lemma 4.3 ([22, Theorem 2.5.1]). Each expansion term of det AT in (10) has the same sign.

For RLC circuits, we characterize deg detAT and dpq in terms of the number of inductors and
capacitors. Let R, L, and C denote the sets of resistors, inductors, and capacitors, respectively.
We introduce a normal reference tree as follows.

Definition 4.4. A reference tree is called normal if it contains as many edges in C and as few
edges in L as possible.

The value of deg detAT for a normal reference tree T is expressed as follows.

Theorem 4.5. Given an admissible partition (Ey, Ez) and a normal reference tree T , we have

deg detAT = |T ∩ L|+ |T ∩ C|. (11)

Proof. Each expansion term aF (s) of detAT corresponding to a spanning tree F which contains
all edges in Eg but no edges in Eh is given by

aF (s) = sgnF detAT [PI , Q
F
I ] detAT [PV , QF

V ] detAT [S, QF
I ∪QF

V ].

Since AT [S, QI ] and AT [S,QV ] are matrix pencils defined by (2), we have

deg aF (s) = |F ∩ L|+ |F ∩ C|.

By Definition 4.4, this implies that deg aF (s) ≤ deg aT (s) for any spanning tree F . Then
Lemma 4.3 ensures that deg detAT = deg aT (s). Thus we obtain (11).

We now introduce the Resistor-Acyclic condition for admissible partition (Ey, Ez), which is
proved in Theorem 4.9 to be a necessary and sufficient condition for ν(D) = 0.

[Resistor-Acyclic condition]

• Each e ∈ Ey ∩ R belongs to a cycle consisting of independent voltage sources,
capacitors, and e.

• Each e ∈ Ez ∩ R belongs to a cutset consisting of inductors, independent current
sources, and e.

8



O

O

I

I

QF
I QF

V

Pg

p

Sg

Sh

ikIg Ih Vg Vh

S

PV

PI

il = q vk vl

0

0

1

Figure 1: A nonzero expansion term of detAT [P \ {p}, Q \ {q}] for p ∈ P τ
y and q ∈ Iλ

z .

Let Γ = (W,E) be a connected network graph. For an edge e = (u, v) ∈ E, contracting e

means deleting e and identifying u and v. A coloop is an edge whose deletion makes the graph
disconnected. Let ΓR = (WR, R) denote the graph obtained from Γ = (W,E) by contracting
all edges in Eg ∪ C and deleting all edges in L ∪ Eh. The Resistor-Acyclic condition can be
expressed as follows by using ΓR.

Lemma 4.6. An admissible partition (Ey, Ez) satisfies the Resistor-Acyclic condition if and
only if the set of all the selfloops and the set of all the coloops in ΓR coincide with Ey ∩R and
Ez ∩R, respectively.

In order to characterize ν(D), we now adopt a normal reference tree T and analyze dpq for
p ∈ P \ P∗ and q ∈ Q \Q∗ in the following two cases:

(i) p ∈ P τ
y , q ∈ Iλ

z or p ∈ P λ
z , q ∈ V τ

y ,

(ii) p ∈ P τ
y , q ∈ V τ

y or p ∈ P λ
z , q ∈ Iλ

z .

We first consider the case (i).

Lemma 4.7. If p ∈ P τ
y , q ∈ Iλ

z or p ∈ P λ
z , q ∈ V τ

y , we have dpq ≤ deg detAT . If, in addition,
the Resister-Acyclic condition is satisfied, then dpq ≤ deg detAT − 2 holds.

Proof. We prove the claim in the case of p ∈ P τ
y and q ∈ Iλ

z . Let k denote the element such that
ik corresponds to p, and l denote the element such that il = q as shown in Figure 1. Then it
follows that k ∈ Ey∩T and l ∈ Ez∩T . Each nonzero expansion term of detAT [P \{p}, Q\{q}]

9



has one-to-one correspondence with spanning tree F of Γ such that F contains all edges in
Eg ∪ {k} but no edges in Eh ∪ {l}, and F \ {k} ∪ {l} is a spanning tree. Since AT [PI , {ik}] is a
unit vector with the (p, ik) entry being one, AT [PI \ {p}, QF

I \ {ik}] is nonsingular. Thus, with
respect to F , detAT [P \ {p}, Q \ {q}] has a nonzero expansion term

aF (s) = detAT [PI \ {p}, QF
I \ {ik}] detAT [PV , QF

V ∪ {vk} \ {vl}]
det AT [S, (QF

I ∪ {ik} \ {il}) ∪ (QF
V \ {vk} ∪ {vl})],

which is depicted in Figure 1. Let F maximize deg aF (s). Since aF (s) possibly disappears in
detAT [P \ {p}, Q \ {q}] due to numerical cancellations, we have

dpq ≤ deg aF (s) = |L ∩ (F ∪ {k} \ {l})|+ |C ∩ (F \ {k} ∪ {l})|.

Note that k ∈ Ey implies that k is not an inductor and l ∈ Ez implies that l is not a capacitor.
Hence we obtain

|L ∩ (F ∪ {k} \ {l})| = |L ∩ (F \ {l})| ≤ |L ∩ F | ≤ |L ∩ T |,

where T is a normal reference tree. Similarly |C ∩ (F \ {k} ∪ {l})| ≤ |C ∩ T | holds. Then it
follows from Theorem 4.5 that

dpq ≤ |L ∩ T |+ |C ∩ T | = deg detAT .

If (Ey, Ez) satisfies the Resistor-Acyclic condition, we have k ∈ Ey∩T ⊆ C and l ∈ Ez∩T ⊆
L, which implies that |L∩ (F \ {l})| = |L∩F |− 1 and |C ∩ (F \ {k})| = |C ∩F |− 1. Therefore,
dpq ≤ deg det AT − 2 holds.

In the case of p ∈ P λ
z , q ∈ V τ

y , the claim is proved in a similar way.

Next, we consider the case (ii).

Lemma 4.8. If p ∈ P τ
y , q ∈ V τ

y or p ∈ P λ
z , q ∈ Iλ

z , we have dpq ≤ deg detAT . If, in addition,
the Resister-Acyclic condition is satisfied, then dpq ≤ deg detAT − 1 holds.

Proof. We prove the claim in the case of p ∈ P τ
y and q ∈ V τ

y . Let k denote the element such
that ik corresponds to p, and l denote the element such that vl = q as shown in Figure 2.
Then it follows that k ∈ Ey ∩ T . Each nonzero expansion term of detAT [P \ {p}, Q \ {q}]
has one-to-one correspondence with spanning tree F of Γ such that F contains all edges in
Eg ∪ {k} but no edges in Eh ∪ {l}, and F \ {k} ∪ {l} is a spanning tree. With respect to F ,
detAT [P \ {p}, Q \ {q}] has a nonzero expansion term

aF (s) = detAT [PI \ {p}, QF
I \ {ik}] detAT [PV , QF

V ∪ {vk} \ {vl}]
det AT [S, (QF

I ∪ {ik}) ∪ (QF
V \ {vk})],

which is depicted in Figure 2. Let F maximize deg aF (s). Since aF (s) possibly disappears in
detAT [P \ {p}, Q \ {q}] due to numerical cancellations, we have

dpq ≤ deg aF (s) = |L ∩ (F ∪ {k})|+ |C ∩ (F \ {k})|.
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Figure 2: A nonzero expansion term of detAT [P \ {p}, Q \ {q}] for p ∈ P τ
y and q ∈ Iτ

y .

Note that k ∈ Ey implies that k is not an inductor. Hence we have

|L ∩ (F ∪ {k})| = |L ∩ F | ≤ |L ∩ T |,

where T is a normal reference tree. Similarly |C ∩ (F \ {k})| ≤ |C ∩ F | ≤ |C ∩ T | holds. Then
it follows from Theorem 4.5 that

dpq ≤ |L ∩ T |+ |C ∩ T | = deg detAT .

If (Ey, Ez) satisfies the Resistor-Acyclic condition, we have k ∈ Ey ∩ T ⊆ C, which implies
that |C ∩ (F \ {k})| = |C ∩ F | − 1. Therefore, dpq ≤ deg det AT − 1 holds.

In the case of p ∈ P λ
z , q ∈ Iλ

z , the claim is proved in a similar way.

By Lemmas 4.7 and 4.8, we obtain the following theorem concerning the index ν(D).

Theorem 4.9. For any admissible partition (Ey, Ez), the index ν(D) of the hybrid equations
is at most one. Moreover, for a given admissible partition (Ey, Ez), the index ν(D) is equal to
zero if and only if (Ey, Ez) satisfies the Resistor-Acyclic condition.

Proof. For any admissible partition (Ey, Ez), it follows from Lemmas 4.7 and 4.8 that dpq ≤
deg detAT for p ∈ P \ P∗ and q ∈ Q \Q∗, which implies that ν(D) ≤ 1 by Lemma 4.1.

If (Ey, Ez) satisfies the Resister-Acyclic condition, then it follows from Lemmas 4.7 and
4.8 that max{dpq | p ∈ P \ P∗, q ∈ Q \ Q∗} ≤ deg det AT − 1, which implies ν(D) = 0 by the
nonnegativity of the index.
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Figure 3: An RLC circuit that has hybrid
equations with index one (Example 4.10).

R1

R2

Figure 4: The graph ΓR of Example 4.10.

Conversely, we show that (Ey, Ez) satisfies the Resistor-Acyclic condition if ν(D) = 0. Let
m denote the size of D. Then deg detD = m holds. We assume that there exists a resistor
e ∈ Ey which does not belong to any cycle consisting of independent voltage sources, capacitors,
and e. Then, there exists a normal reference tree T containing e. The transformation (4) with
respect to T makes D[P \ P∗, {ve}] to be constant, which implies that deg detD ≤ m − 1.
This contradicts ν(D) = 0. Similarly, each resistor e ∈ Ez belongs to a cutset consisting of
inductors, independent current sources, and e.

For any admissible partition (Ey, Ez), the index ν(D) of the hybrid equations is at most
one by Theorem 4.9. We now describe an algorithm for finding the minimum index ν(D) and
an admissible partition (Ey, Ez) if ν(D) = 0. The correctness of this algorithm, as well as
the uniqueness of the admissible partition that attains ν(D) = 0, follows from Lemma 4.6 and
Theorem 4.9.

Algorithm for index minimization in RLC circuit

Step 1 Set Ey ← {e | e ∈ C} and Ez ← {e | e ∈ L}.

Step 2 Contract all edges in Eg ∪Ey and delete all edges in Ez ∪Eh from Γ = (W,E). Then
we obtain ΓR = (WR, R).

Step 3 If ΓR has a cycle except selfloops, then output ν(D) = 1 and halt.

Step 4 Set Ey ← Ey ∪ {e | e: selfloop} and Ez ← E∗ \ Ey. Output ν(D) = 0 and (Ey, Ez),
and halt.

We demonstrate Algorithm for index minimization in RLC circuit in some examples.

Example 4.10 (RLC circuit with index one [9, 20]). Consider a circuit depicted in Figure 3.
MNA results in a DAE with index two, because this circuit has a C-V loop. Algorithm for

index minimization in RLC circuit finds graph ΓR shown in Figure 4. Since ΓR has a cycle which
consists of R1 and R2, the hybrid analysis results in a DAE with index one for any admissible
partition.

12
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Figure 5: An RLC circuit that has hybrid
equations with index zero (Example 4.11).

R1

R2

Figure 6: The graph ΓR of Example 4.11.

Example 4.11 (RLC circuit with index zero). Consider another circuit given in Figure 5.
MNA results in a DAE with index one, because this circuit has neither C-V loops nor L-I
cutsets. Algorithm for index minimization in RLC circuit finds graph ΓR shown in Figure 6. Since
ΓR does not have any cycle except selfloops, the hybrid analysis results in a DAE with index
zero for admissible partition ({C, R1}, {L1, L2, R2}).

5 Comparison of Hybrid Analysis with MNA

In this section, for linear time-invariant electric circuits which may contain dependent sources,
we prove that the index of a DAE arising from the optimal hybrid analysis does not exceed
that from MNA.

We first extend the definition of an admissible partition to electric circuits which contain
dependent sources. A partition (Ey, Ez) of E∗ = E\(Eg∪Eh) is called admissible if Ey includes
all capacitors and dependent current sources, and Ez includes all inductors and dependent
voltage sources. Consider the hybrid analysis with admissible partition (Ey, Ez) such that Ey

includes all resistors. Let AT (s) denote the coefficient matrix with respect to this admissible
partition (Ey, Ez) and a reference tree T . We prove that this hybrid analysis never results in
a higher index DAE than MNA.

We now explain the procedure of MNA. Let us split vector ξ of current variables and vector
η of voltage variables with respect to independent voltage sources, dependent voltage sources,
capacitors, resistors, inductors, dependent current sources, and independent current sources as
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follows:

ξ =




ξVi

ξVd

ξC

ξR

ξL

ξId

ξIi




and η =




ηVi

ηVd

ηC

ηR

ηL

ηId

ηIi




.

The vector of node potentials except a reference node is denoted by ζ. Instead of the circuit
equations, consider the following DAE which consists of KCL, constitutive equations, and
relations between voltages and node potentials:




Ψ O O

O

O

O

O

O

I

O

O

O

O

O

I

O

O

O

O

O

I

O

O

Z(s) Y (s)

O

O

O

I

O

O

O

O

O

I

O

O

O

O

O

O

O O O O O O O I O O O O O O O

O O O O O O I O O O O O O O O

O I ∗







ξVi

ξId

ξC

ξR

ξL

ξVd

ξIi

ηVi

ηId

ηC

ηR

ηL

ηVd

ηIi

ζ




=




0
0
0
0
0
0

g(s)
h(s)
0




, (12)

where ∗ designates a constant matrix, and Y (s) and Z(s) are matrix pencils. We denote the
coefficient matrix of (12) by Ã(s) with row set P̃ and column set Q̃. The column set of Ã(s)
corresponding to ζ is denoted by QN . We denote the column sets of Ã(s) corresponding to
the current variables for inductors and independent/dependent voltage sources by IL and IV ,
respectively. The row sets corresponding to constitutive equations of inductors and indepen-
dent/dependent voltage sources are denoted by SL and SV . Recall that PI and S denote the row
set corresponding to KCL and constitutive equations. Similarly, PN denotes the row set corre-
sponding to relations between voltages and node potentials. Let us assume that Ψ[PI , Q

T
I ] = I

for the sake of simplicity, where T is a reference tree in the hybrid analysis.
Let us denote P̃∗ = P̃ \ (PI ∪SL∪SV ) and Q̃∗ = Q̃\ (IL∪ IV ∪QN ). In MNA, we transform

Ã(s) by (4) with B = Ã[P̃∗, Q̃∗]. The rest of the procedure of MNA is similar to that of the
hybrid analysis. We call the obtained equations corresponding to (8) the MNA equations.

Recall that an L-I cutset is a cutset consisting of inductors and/or current sources only,
and a C-V loop is a cycle consisting of capacitors and voltage sources only. For nonlinear
time-varying electric circuits, the index of the MNA equations has the following property.

Theorem 5.1 ([25, Theorem 4.1]). For nonlinear time-varying RLC circuits, MNA leads to

14



a DAE with index one if and only if the network contains neither L-I cutsets nor C-V loops.
Otherwise, MNA leads to a DAE with index two.

This theorem is generalized for nonlinear time-varying electric circuits containing dependent
sources which satisfy certain conditions [25]. Theorem 5.1 implies that the index of the MNA
equations is at least one. On the other hand, for RLC circuits, the index of the hybrid equations
is at most one by Theorem 4.9. Hence, the index of the hybrid equations does not exceed that
of the MNA equations for linear time-invariant RLC circuits. In the rest of this paper, we
generalize this for linear time-invariant electric circuits which may contain dependent sources.

For any square submatrix A[K, J ], we write w(K, J) = deg detA[K, J ], where w(∅, ∅) = 0
by convention. Then, w(K, J) enjoys the following property.

Lemma 5.2 ([20, pp. 287–289]). Let A(s) be a matrix pencil with row set P and column set
Q. For any (K, J) ∈ Λ, (K ′, J ′) ∈ Λ, where Λ = {(K,J) | |K| = |J |, K ⊆ P, J ⊆ Q}, both
(VB-1) and (VB-2) below hold:

(VB-1) For any k ∈ K \K ′, at least one of the following two statements holds:

(1a) ∃j ∈ J \ J ′ : w(K,J) + w(K ′, J ′) ≤ w(K \ {k}, J \ {j}) + w(K ′ ∪ {k}, J ′ ∪ {j}),
(1b) ∃h ∈ K ′ \K : w(K, J) + w(K ′, J ′) ≤ w(K \ {k} ∪ {h}, J) + w(K ′ \ {h} ∪ {k}, J ′).

(VB-2) For any j ∈ J \ J ′, at least one of the following two statements holds:

(2a) ∃k ∈ K \K ′ : w(K,J) + w(K ′, J ′) ≤ w(K \ {k}, J \ {j}) + w(K ′ ∪ {k}, J ′ ∪ {j}),
(2b) ∃l ∈ J ′ \ J : w(K, J) + w(K ′, J ′) ≤ w(K,J \ {j} ∪ {l}) + w(K ′, J ′ \ {l} ∪ {j}).

We denote d̃p̃q̃ = deg det Ã[P̃ \ {p̃}, Q̃ \ {q̃}] for p̃ ∈ P̃ and q̃ ∈ Q̃. Similarly to Lemma 4.1,
the index ν̃ of the MNA equations is given by

ν̃ = max
p̃,q̃

{d̃p̃q̃ | p̃ ∈ P̃ \ P̃∗, q̃ ∈ Q̃ \ Q̃∗} − deg det Ã + 1. (13)

In order to compare ν̃ with ν(D), we show the relation between Ã(s) and AT (s) in the
following lemma.

Lemma 5.3. For the matrix pencils Ã(s) and AT (s), it holds that det Ã(s) = ±detAT (s).
Moreover, we have dpq = d̃pq for p ∈ P \ P∗ and q ∈ Q \Q∗.

Proof. Let PV denote the column set such that PV ⊆ PN and Ã[PV , QT
V ] = I. We transform

Ã(s) into

Ã′(s) =

PI

S

PV

PN \ PV




Ψ O O O

constitutive eq. O

O O ∗ I O

O O ∗ O I




by elementary row operations on PN without adding multiples of rows in PV to any rows.
Then PV corresponds to KVL. Since it holds that Ã′[P̃ \ (PN \ PV ), Q̃ \ QN ] = AT , we have
det Ã(s) = ±det Ã′(s) = ±det AT (s). This transformation does not change the value of d̃pq

for any p ∈ PI ∪ PV and q ∈ Q̃ \ QN . Hence we have d̃pq = deg det Ã′[P̃ \ {p}, Q̃ \ {q}] = dpq

for p ∈ P \ P∗ and q ∈ Q \Q∗.
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Figure 7: The coefficient matrix Ã(s) of MNA equations.

In order to prove ν(D) ≤ ν̃, we make use of the following lemmas.

Lemma 5.4. For any p ∈ PI ∪SL ∪ SV and q ∈ V τ
y , there exists q̃ ∈ QN such that d̃pq ≤ d̃pq̃.

Proof. We apply (VB-2) in Lemma 5.2 to (PN , QV ) and (P̃ \ {p}, Q̃ \ {q}) with j = q. Since
PN ⊆ P̃ \ {p}, (2a) does not hold. Then there exists q̃ ∈ Q̃ \QV such that

deg det Ã[PN , QV ] + d̃pq ≤ deg det Ã[PN , QV \ {q} ∪ {q̃}] + d̃pq̃.

If d̃pq > −∞, it follows from Ã[PN , QI ] = O that q̃ ∈ QN . Since Ã[PN , QV ∪ QN ] is a
constant matrix, we have deg det Ã[PN , QV ] = deg det Ã[PN , QV \ {q} ∪ {q̃}] = 0, and hence
d̃pq ≤ d̃pq̃.

Lemma 5.5. For any p ∈ P λ
z and q ∈ Iλ

z ∪ V τ
y , there exists p̃ ∈ SL ∪ SV such that d̃pq ≤ d̃p̃q.

Proof. We apply (VB-1) in Lemma 5.2 to (P λ
z , V λ

z ) and (P̃ \ {p}, Q̃ \ {q}) with k = p. Since
V λ

z ⊆ Q̃ \ {q}, (1a) does not hold. Then there exists p̃ ∈ P̃ \ P λ
z such that

deg det Ã[P λ
z , V λ

z ] + d̃pq ≤ deg det Ã[P λ
z \ {p} ∪ {p̃}, V λ

z ] + d̃p̃q.

If d̃pq > −∞, it follows from Ã[P̃ \ (SL ∪ SV ∪ P λ
z ), V λ

z ] = O that p̃ ∈ SL ∪ SV . Since
deg det Ã[P λ

z , V λ
z ] = deg det Ã[P λ

z \ {p} ∪ {p̃}, V λ
z ] = 0 holds, we have d̃pq ≤ d̃p̃q.

We are now ready to prove the following theorem.

Theorem 5.6. For linear time-invariant electric circuits which may contain dependent sources,
let (Ey, Ez) be an admissible partition such that Ey includes all resistors. Then, the index ν(D)
of the hybrid equation with (Ey, Ez) never exceeds the index ν̃ of the MNA equations.

Proof. By (9), (13), and Lemma 5.3, it suffices to show that

max
p,q

{d̃pq | p ∈ P \ P∗, q ∈ Q \Q∗} ≤ max
p̃,q̃

{d̃p̃q̃ | p̃ ∈ P̃ \ P̃∗, q̃ ∈ Q̃ \ Q̃∗}. (14)
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Figure 8: A linear circuit that has hybrid equations with index two.

In Figure 7, the dark shadow region represents Ã[P \ P∗, Q \ Q∗], while the light shadow
region represents Ã[P̃ \ P̃∗, Q̃ \ Q̃∗]. Recall that P \ P∗ = P τ

y ∪ P λ
z , Q \ Q∗ = Iλ

z ∪ V τ
y and

P̃ \ P̃∗ = PI ∪ SL ∪ SV , Q̃ \ Q̃∗ = IL ∪ IV ∪QN .
Since P τ

y ⊆ PI and Iλ
z ⊆ IL ∪ IV , we have

max{d̃pq | p ∈ P τ
y , q ∈ Iλ

z } ≤ max{d̃p̃q̃ | p̃ ∈ PI , q̃ ∈ IL ∪ IV }
≤ max{d̃p̃q̃ | p̃ ∈ P̃ \ P̃∗, q̃ ∈ Q̃ \ Q̃∗}. (15)

Setting p ∈ P τ
y and q ∈ V τ

y in Lemma 5.4, we have

max{d̃pq | p ∈ P τ
y , q ∈ V τ

y } ≤ max{d̃pq̃ | p ∈ P τ
y , q̃ ∈ QN}

≤ max{d̃p̃q̃ | p̃ ∈ P̃ \ P̃∗, q̃ ∈ Q̃ \ Q̃∗}. (16)

Setting p ∈ P λ
z and q ∈ Iλ

z in Lemma 5.5, we have

max{d̃pq | p ∈ P λ
z , q ∈ Iλ

z } ≤ max{d̃p̃q | p̃ ∈ SL ∪ SV , q ∈ Iλ
z }

≤ max{d̃p̃q̃ | p̃ ∈ P̃ \ P̃∗, q̃ ∈ Q̃ \ Q̃∗}. (17)

Furthermore, it follows from Lemmas 5.4 and 5.5 that

max{d̃pq | p ∈ P λ
z , q ∈ V τ

y } ≤ max{d̃p̃q | p̃ ∈ SL ∪ SV , q ∈ V τ
y }

≤ max{d̃p̃q | p̃ ∈ P̃ \ P̃∗, q ∈ V τ
y }

≤ max{d̃p̃q̃ | p̃ ∈ P̃ \ P̃∗, q̃ ∈ QN}
≤ max{d̃p̃q̃ | p̃ ∈ P̃ \ P̃∗, q̃ ∈ Q̃ \ Q̃∗}. (18)

By (15)–(18), we obtain (14).

Theorem 5.6 implies that the hybrid analysis with minimum index by no means results in
a higher index DAE than MNA.

Example 5.7 (Electric circuit with index two [12]). Consider a circuit depicted in Figure 8,
which contains a dependent current source I. While MNA results in a DAE with index
three [12], the hybrid analysis with admissible partition

Eg = {V }, Eh = ∅, Ey = {C, I}, Ez = {L}
results in a DAE with index two [16], which is lower than MNA.
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6 Conclusion

For linear time-invariant RLC circuits, we have proved that the index of the hybrid equations
never exceeds one, and given a structural characterization of circuits with index zero. The proof
makes use of the special property of RLC circuits that the coefficient matrix of constitutive
equations consists of diagonal matrix pencils. Moreover, the structural characterization has
brought an index minimization algorithm, which is much faster and simpler than the previous
one developed in [16]. Finally, for linear time-invariant electric circuits which may contain
dependent sources, we have shown that the minimum index of hybrid equations does not exceed
the index of MNA equations, which suggests that the hybrid analysis is superior to MNA in
numerical accuracy. Extending these results to nonlinear/time-varying electric circuits is left
for future investigation.
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[2] S. Bächle: Index reduction for differential-algebraic equations in circuit simulation, MATH-
EON 141, Technical University of Berlin, 2004.
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