

temelsu international ENGINEERING SERVICES INC.

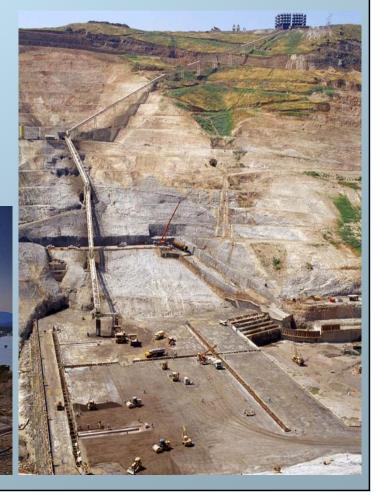
INTRODUCTION

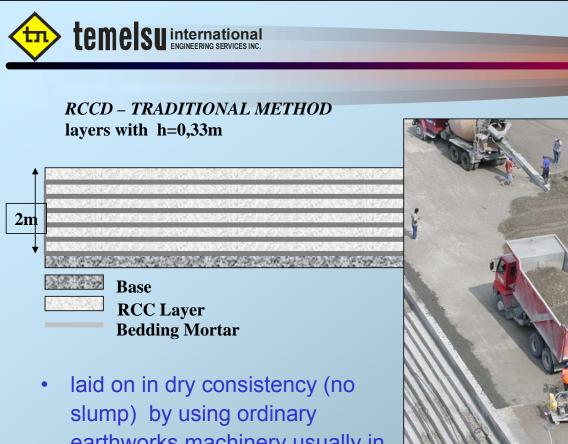
Roller Compacted Concrete Dam (RCCD) is an innovative way of constructing the gravity dams.

Roller Compacted Concrete (RCC) has been developed in the last 30 years and became very efficient and economical construction material for mass concrete structures as compared with conventional concretes in gravity dams.

RCC construction is based on simplicity:

It is a construction technique based on


making simple

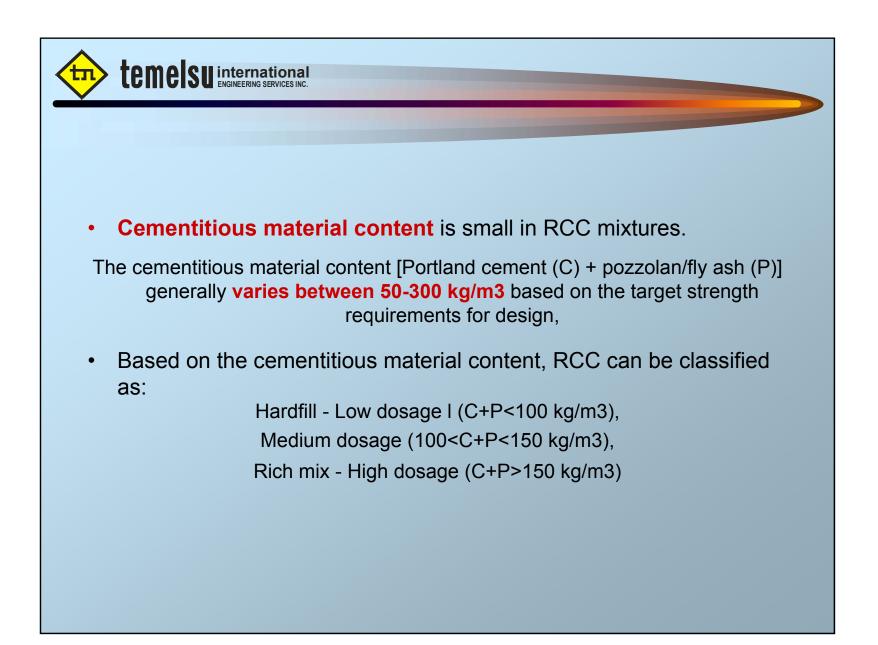

but not making poorly and not having a chance of ignoring certain quality procedures.

In the RCCD construction method,

- the fine and coarse aggregate, cement, pozzolanic material and other admixtures (if necessary) are mixed with water according to a mix design performed for the target strength requirements,
 - transported to the dam site (by conveyors or by trucks),

- earthworks machinery usually in layers of 0.30 -0.35 m and
- compacted with vibrated cylinders ٠ in layers.

RCC Dam Design is a kind of art of "Materials of Construction Science".


- Instead of designing the dam section for certain concrete classes, the method involves the geometrical design of the dam according to the stability and structural strength requirements;
- Evaluation of the related target strengths and performing RCC mix design in order to reach these strength values by using the local construction materials as much as possible.
- In the long term, the properties of hardened RCC will become similar to those of the conventional mass concrete if it is produced with convenient materials and following appropriate design and construction provisions.

Therefore, RCC can safely be used in mass concrete, large and thick foundations, continuous base floors, cofferdams, massive backfills and slope protection against overtopping in dams.

RCC dams have been applied increasingly in Turkey in the last 15 years in regard to the important advantages summarized below.

- RCC dam construction is faster and simpler as compared to other dam types,
- The cost of RCC dams are much lower than those of conventional concrete (CVC) dams, even than embankment dams,
- They are **safer than embankment dams**; economical seismic designs are possible in highly seismic earthquake regions and at locations close to active faults,
- They can be constructed on relatively weaker rock foundations. The elasticity modulus of the mixture can be adjusted according to the deformation characteristics of foundation rock,
- Washing of the aggregate is not necessary if the fine aggregate content smaller than 7.5 microns is lower than 10%,

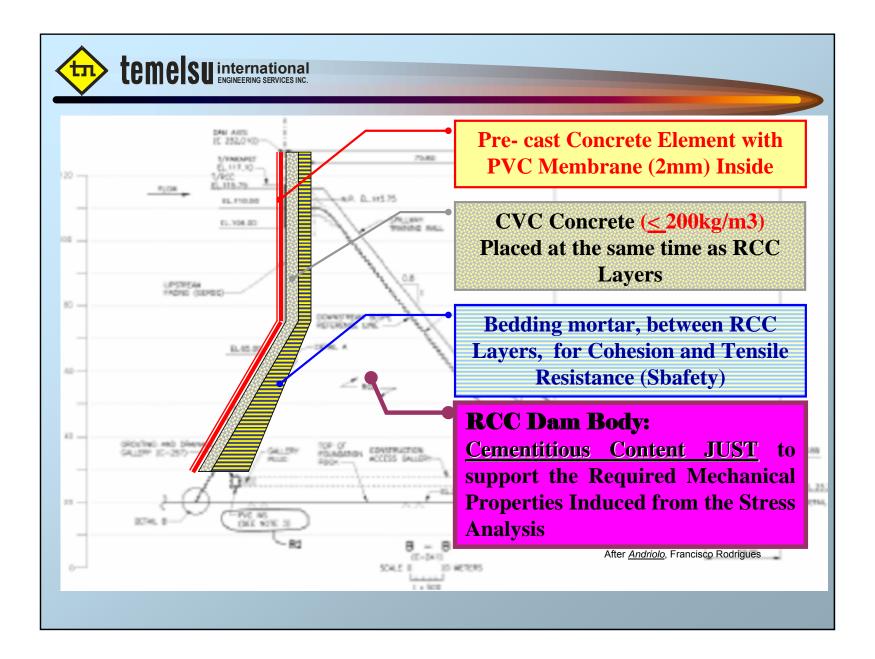
• The contraction joint spacings which are typically 12-15 m in conventional concrete dams may be greater up to 35 m,

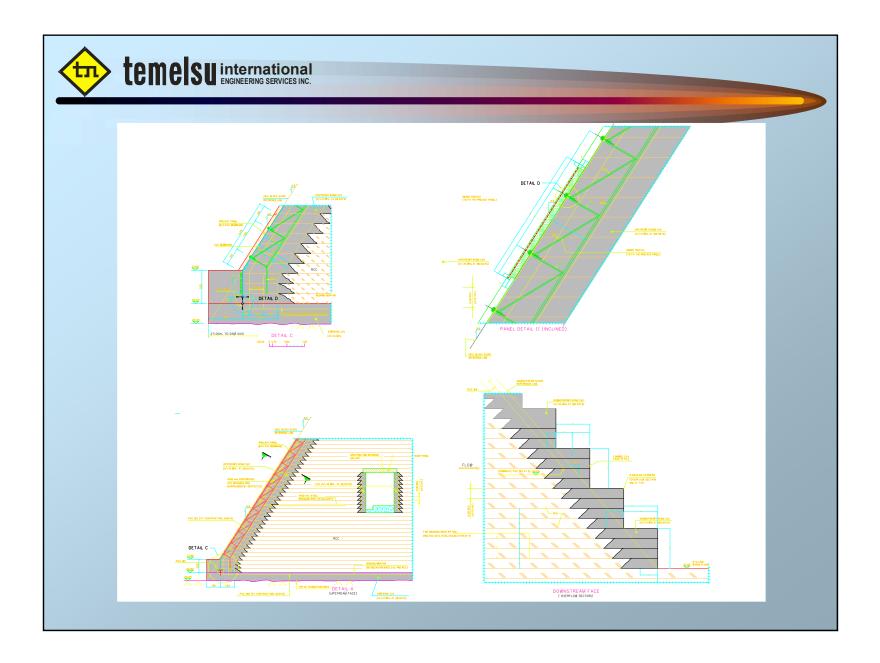
Average monthly temperature data (C°)		Aggregate stockpile temperature (C ^o)	Concrete placement temperature (C ^o)	Peak concrete temperature (C ^o)	Estimated crack spacing (m)
Jan	8.5	14.1	11.5	24.5	411.4
Feb	9.9	12.8	11.9	24.9	320.0
March	11.7	13.7	13.5	26.5	190.6
April	16.2	14.9	16.9	29.9	99.8
May	21.2	17.9	21.2	34.2	62.1
June	26.0	21.3	25.5	38.5	45.1
July	28.8	24.5	28.5	41.5	38.1
Aug	28.2	26.4	28.7	41.7	37.6
Sept	24.1	26.0	25.8	38.8	44.4
Oct	18.3	23.2	21.0	34.0	63.2
Nov	13.8	19.3	16.7	29.7	101.9
Dec	10.5	16.3	13.5	26.5	187.7
Annual	18.1		30.0	43.0	35.2

Results of the Thermal Analyses.

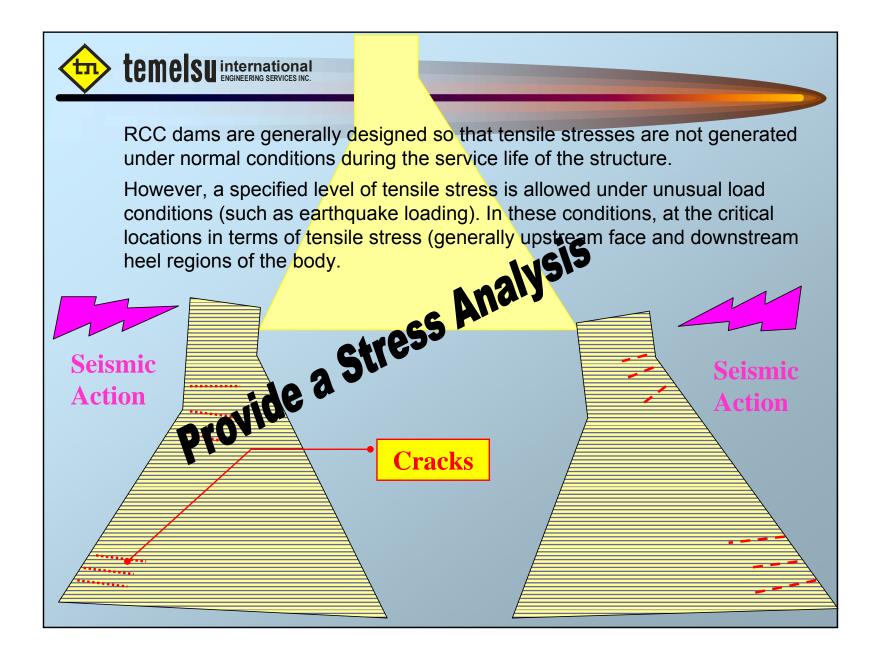
The minimum crack spacing is determined as 35.2 m. However, due to the arrangements and construction sequences of various elements, the spacings between the contraction joints have been designed less than 30 m.

temelsu international ENGINEERING SERVICES INC.


- Formwork workmanship is only necessary in upstream and downstream faces, and for some galleries
- The spillway may be constructed on the dam body and designed as controlled or uncontrolled according to downstream streambed conditions, therefore spillway excavation and construction which constitute an important cost in embankment dam projects are not necessary,
- The dimensions of the stilling basin may be reduced by making a stepped spillway for appropriate flow rates,
- The water retention may be started w dam construction is in progress.

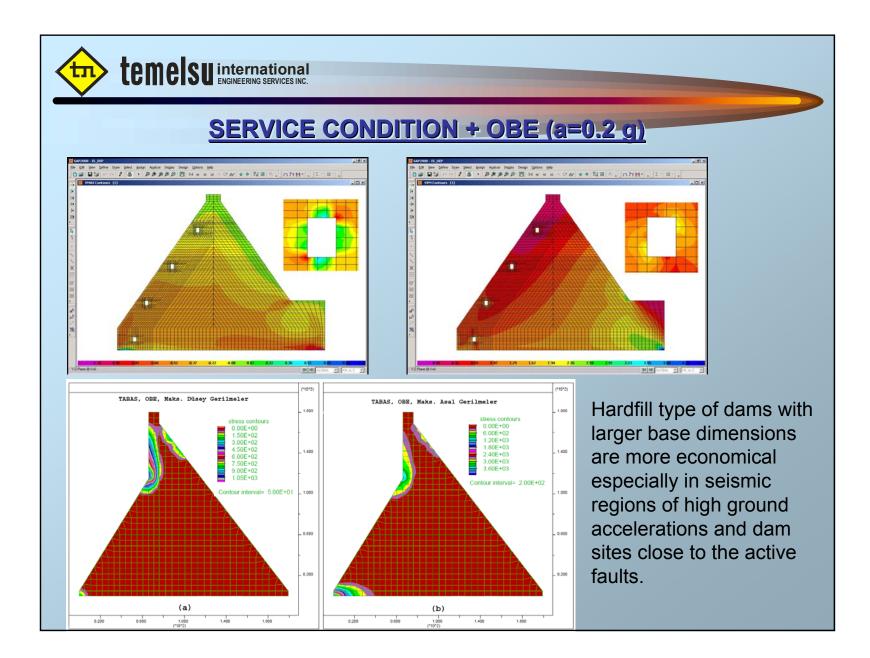


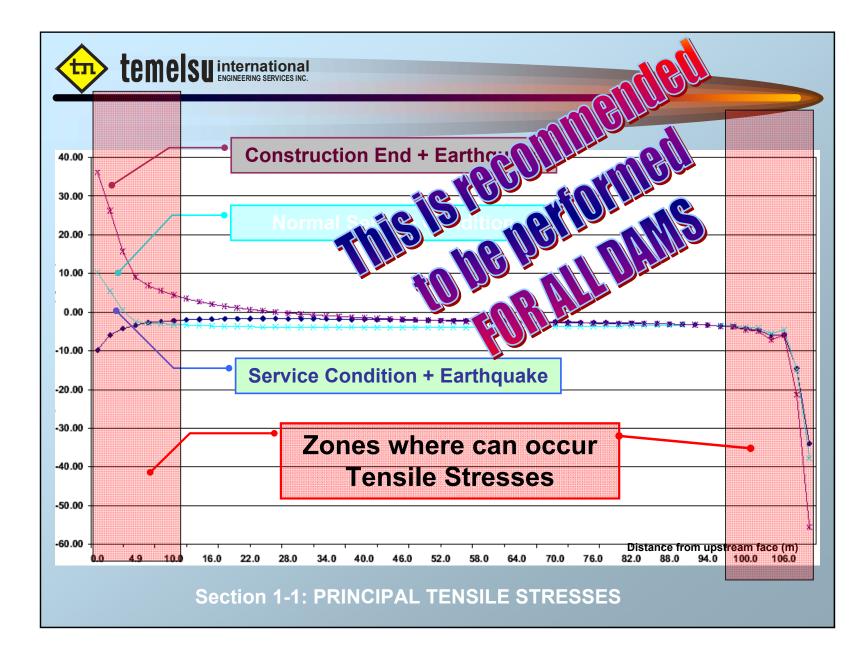
FACE TYPE	PRESENT USE	PERFORMANCE AND USE	COUNTRIES OF MAJOR USE	FACES
CVC AGAINST FORMWORK	55%	TRADITIONAL AND WITHOUT USE HAS INCREASED	JAPAN, SOUTH AFRICA AND	IACEO
			Ur 80%	ostream Face Types
RCC AGAINST FORMWORK	13%	ITS USE HAS DECREASED	70% \$ 60%	
CVC AGAINST PRECAST CONCRETE PANELS	5%	ITS USE REMAINS CONSTANT	P 40% + -△-RCC against -○-RCC against -○-RCC against 30% + -○-CVC against -○-CVC against	formwork + external geomembrane
RCC AGAINST FORMWORK + EXTERNAL GEOMEMBRANE	2%	ITS USE HAS INCREASED	10% 0% 1980 1985	1990 1995 2000 2001 20
CVC AGAINST PRECAST CONCRETE PANELS WITH GEOMEMBRANE	3%	HAS BEEN USED ADDITIONALLY	USA Atter And	<i>riolo</i> , Francisco Rodrigues



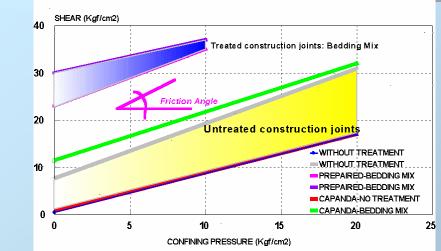
STRUCTURAL DESIGN

- Classical Gravity Analyses:
 - To optimize the volume of the dam body.
 - Different upstream and downstream slopes.
- Finite Element Analysis:
 - To estimate the strength requirements of the RCC material.
 - Pseudo-static earthquake analyses,
 - Non-linear approach to simulate strain softening and stress redistribution.

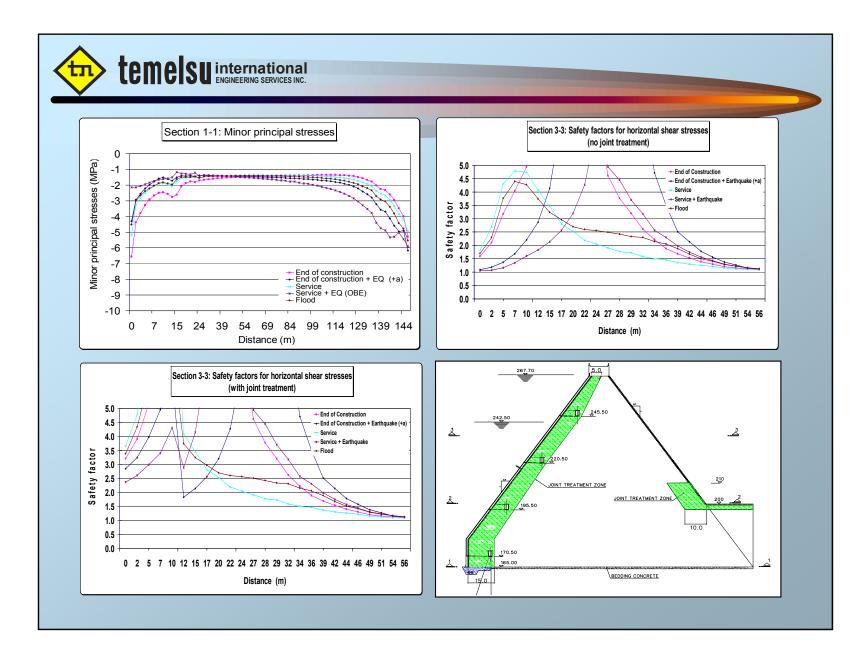




Results of the Stability Analyses (0.7 H : 1.0 V).


CLASSICAL GRAVITY ANALYSES	Load case	
(Slope Optimization)	End of construction	
NO UPSTREAM DOWNSTREAM 1. 0.7 H : 1.0 V 0.7 H : 1.0 V 2. 0.6 H : 1.0 V 0.8 H : 1.0 V	End of construction + EQ (OBE)	
3. 0.5 H : 1.0 V 0.9 H : 1.0 V	Service condition	
4. 0.4 H : 1.0 V 0.8 H : 1.0 V 5. 0.4 H : 1.0 V 0.9 H : 1.0 V 6. 0.4 H : 1.0 V 1.0 H : 1.0 V	Service condition + EQ (OBE)	
	Service	

Load case	SF overturn ing	SF sliding	Base pressure at toe (kPa)	Base pressure at heel (kPa)
End of construction	-	-	- 1681	- 1490
End of construction + EQ (OBE)	10. 04	2. 97	- 1198	- 1974
Service condition	2. 68	3. 86	- 1122	- 1312
Service condition + EQ (OBE)	2. 17	1. 40	- 638	- 1836
Service condition + EQ (MDE)	1. 97	1. 05	- 384	- 2111
Flood Case	2. 48	2. 90	- 1040	- 1440


SHEAR TESTS (IN SITU)- CONSTRUCTION JOINTS

Joint improvement is applied by using high dosage cement mortar (bedding mortar) and the tensile and shear strength between the layers are increased.

In this way, fairly economical designs can be made **by zoning of the dam body according to the expected stresses** and using RCC mixtures of different strengths required for each zone.

MATERIAL PROPERTIES

THE STRENGTH REQUIREMENTS in view of the analyses

Hardfill Mixture

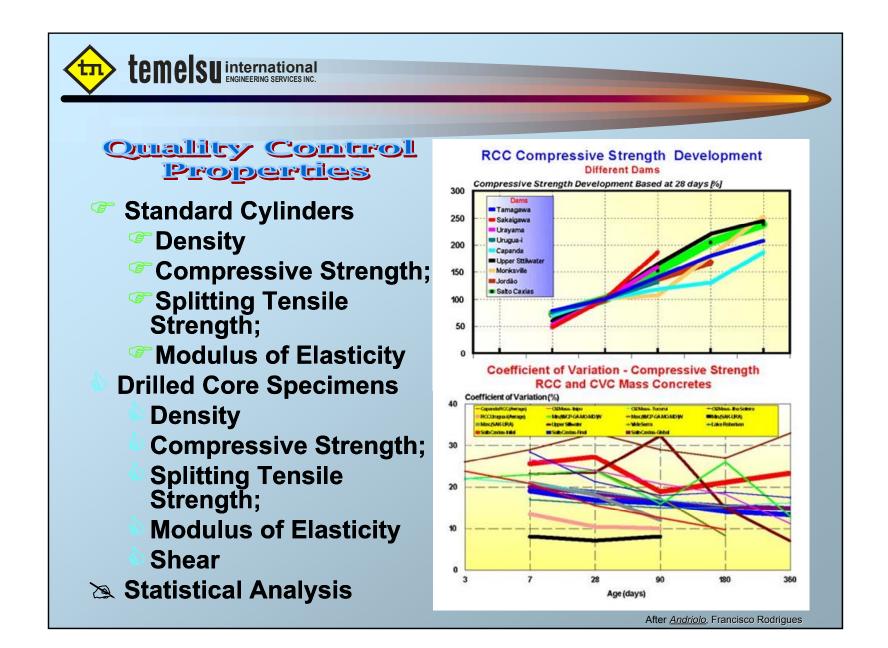
Target Compressive Strength (180 d)

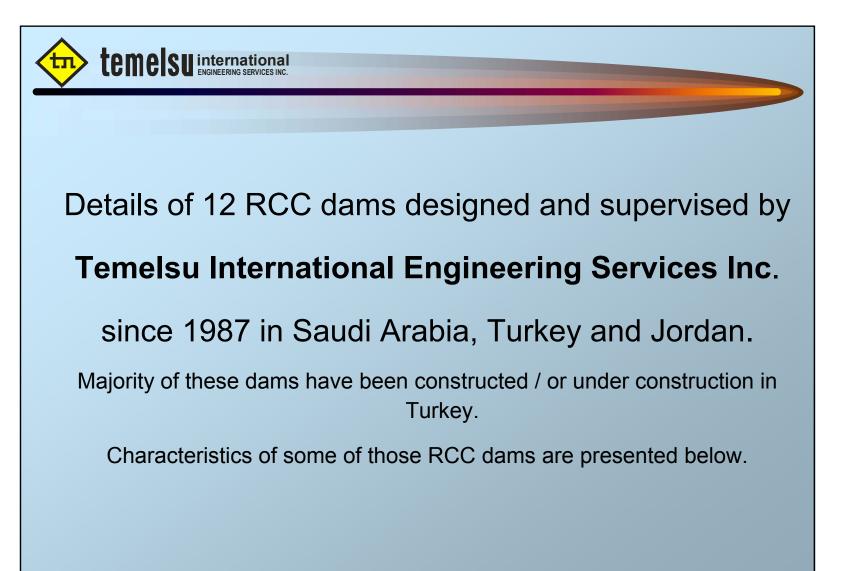
6.0 MPa

- Cementitious material:

50 kg/m³ cement (OPC-42.5 type) + 20 kg/m³ fly ash

 Three different well graded aggregate sizes for maximum density:


0-10 / 10-25 / 25-75 mm


Physical Properties

Material	Modulus of elasticity (kPa)	Unit weight (kN/m ³)	Poisson ratio
Hardfill	1. 0*10 ⁷	24. 0	0. 22
Found. rock	5. 0*10 ⁶	23. 0	0. 20

Strength Properties

Material	180 d comp. Stren. (kPa)	180 d tens. stren. (kPa)	180 d cohes. stren. (kPa)	Inter. frict. angle (°)
Hardfill	6000	600	800	45
Bedding mortar	-	-	500	37
Found. rock	8000	800	200	25

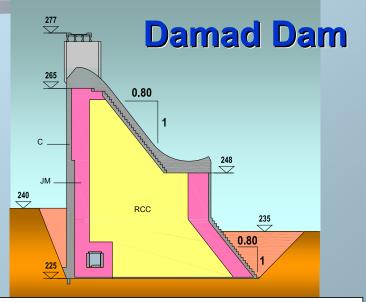
	Name of the Dam	Place	Construction Year	Maximum Height	Crest Width	Crest Length	Upstream Slope	Downstream Slope	Face
	Al Wehdah ^(*)	Jordan	2004-2007	96 m	7,20 m	480 m	Vertical 0,6H / 1V	0,8 H / 1V	Grout enriched RCC
	Beydağ	İzmir	2005 - 2009	95 m	9,80 m	800 m	0,25 H / 1V	0,8 H / 1V	PVC + Precast Panel
	Beyhan-1	Elazığ	2011 –Cont.	97 m	10 m	365 m	0,7 H / 1V	0,7 H / 1V	Concrete
ed	Cindere	Denizli	2002 - 2009	107 m	10 m	280 m	0,7 H / 1V	0,7 H / 1V	PVC + Precast Panel
Constructed	Damad	Saudi Arabia	2006 - 2009	52 m	5,4 m	600 m	Vertical	0,8 H / 1V	Concrete
suo	Güllübağ	Erzurum	2008 - 2012	71,5 m	10 m	92 m	Vertical	0,7 H / 1V	Concrete
0	Köprü	Adana	2009 – Cont.	109 m	6 m	430 m	Vertical, 0,6 H / 1V	0,8 H / 1V	Concrete
	Menge	Adana	2009 - 2011	68 m	10 m	303 m	Vertical, 0,25 H / 1V	0,8 H / 1V	Concrete
р	Ergenli	İzmir	-	100,5 m	9 m	530 m	0,2 H / 1V	0,7 H / 1V	Concrete
Designed	Naras	Antalya	-	78 m	6,5 m	440 m	0,25 H / 1V	0,7 H / 1V	PVC + Precast Panel
	Narlı	Muğla	-	99,5 m	10 m	275 m	Vertical, 0,6 H / 1V	0,8 H / 1V	PVC + Precast Panel
	Pervari	Siirt	-	180 m	10 m	380 m	Vertical, 0,6 H / 1V	0,75 H / 1V	PVC + Precast Panel

RCC Dams Designed by TEMELSU since 1987

(*) The final Design were performed by Harza - USA. Preparation of the detailed design and shop drawings for civil, electrical and hydro-mechanical works of RCC dam and appurtenant structures were completed in 2006 by Temelsu.

Target Strengths, Cementitious Material Contents and Spillway Capacities of RCC Dams

	Name of the		Maximum	Roller	Roller Compacted <concrete< th=""><th colspan="4">Spillway</th></concrete<>			Spillway			
	Dam	Diaco I	Height	Design Strength	Cement	Puzolan	Туре	Width	Design Discharge		
	Al Wehdah ^(*)	Jordan	96 m	10 MPa	70 kg / m³	30 kg / m³	Ungated	250 m	7 600 m³/ s		
	Beydağ	İzmir	95 m	7 MPa	60 kg / m³	30 kg / m³	Ungated	70 m	735 m³ / s		
	Beyhan-1	Elazığ	97 m	15 MPa	65 kg / m³	50 kg / m³	Radial Gate	6 x 11,5 m	10 200 m³ / s		
cted	Cindere	Denizli	107 m	6 MPa	50 kg / m³	20 kg / m³	Radial Gate	4 x 10 m	3 620 m³/ s		
Constructed	Damad	Saudi Arabia	52 m	7 MPa	50 kg / m³	30 kg / m³	Ungated	209 m	4 800 m³/ s		
Cor	Güllübağ	Erzurum	71,5 m	15 MPa	70 kg / m³	70 kg / m³	Radial Gate	3 x 11 m	4 465 m³/ s		
	Köprü	Adana	109 m	12 MPa	100 kg / m ³	50 kg / m³	Ungated	125 m	5 170 m³/ s		
	Menge	Adana	68 m	10 MPa	70 kg / m³	40 kg / m³	Radial Gate	3 x 11 m	4 680 m³/ s		
σ	Ergenli	İzmir	100,5 m	12 MPa	-	-	Ungated	30 m	300 m³ / s		
Designed	Naras	Antalya	78 m	6 MPa	-	-	Ungated	80 m	900 m³ / s		
	Narlı	Muğla	99,5 m	15 MPa	-	-	Radial Gate	3 x 9 m	1 700 m³/ s		
	Pervari	Siirt	180 m	16 MPa	-	-	Radial Gate	3 x 10 m	2 670 m³/ s		
(*) The final Design were performed by Harza - USA. Preparation of the detailed design and shop drawings for civil, electrical and hydro-mechanical works of RCC dam and appurtenant structures were completed in 2006 by Temelsu.											



temelsu international ENGINEERING SERVICES INC.

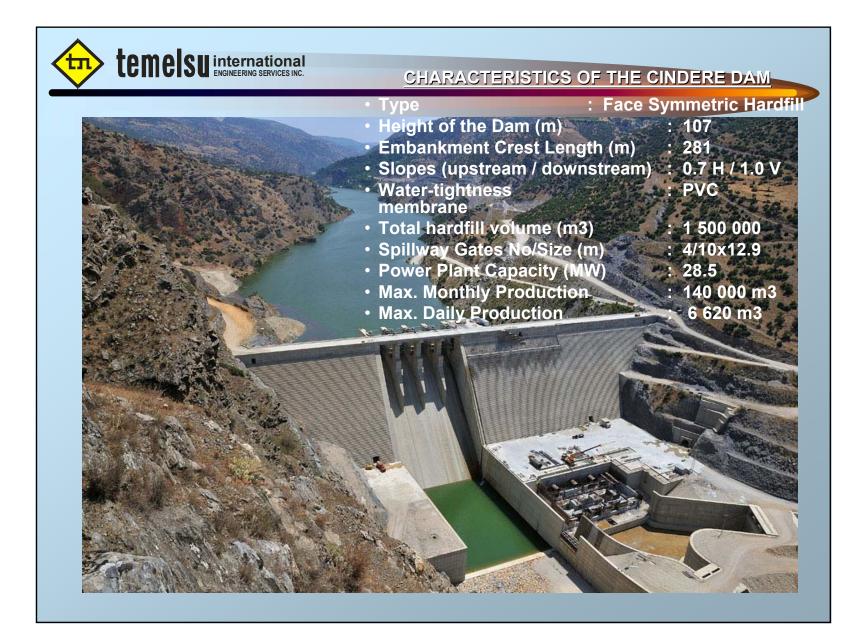
The first RCC dam design by Temelsu in 1987 is the Damad Dam located in Jizan province of Saudi Arabia.

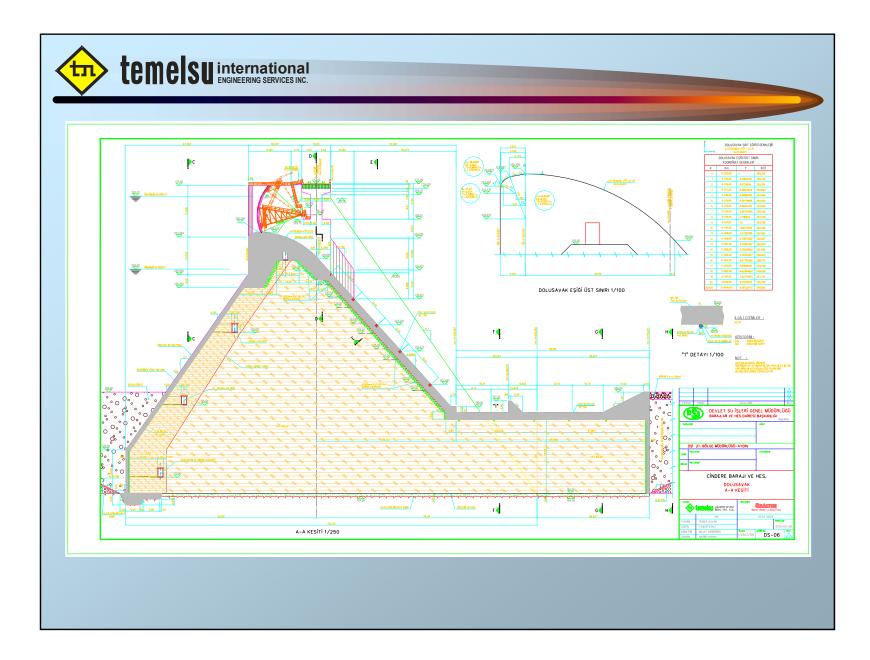
The detailed design has also been carried out by Temelsu in 2006 and construction is finished in 2010.

<u>Damad Dam:</u> has a crest level of 277.00, foundation level of 225.00 and a height of 52.0 m.

The un-gated spillway which consists of 14 chambers with a width of each 14.0 m has a sill level of 270.00; the reservoir volume at this level is 55.5 Million m3.

The RCC volume of the dam is 240 000 m3.




CINDERE DAM AND H.P.P THE FIRST HARDFILL DAM IN TURKEY

The first RCC application in Turkey is Çine Dam, whose construction has started in 1998.

The first Hardfill dam with low cementitious content (50 kg/m3 Portland cement + 20 kg/m3 fly ash = 70 kg/m3 cementitious content) in Turkey is Cindere Dam,

designed by Temelsu International Engineering Services Inc. in 2000.

ADVANTAGES OF F. S. HARDFILL DAMS

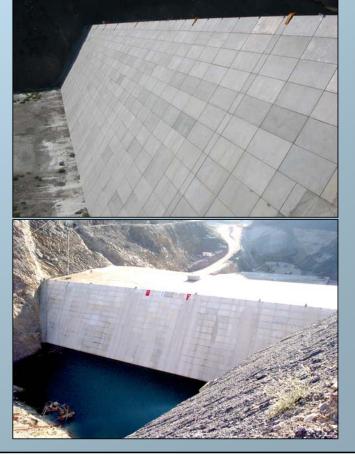
- High resistance to EQ excitations,
- Better stability against sliding,
- Low base pressure and less foundation settlement, – Gravity dam on weak foundations.
- Lower and more uniform stress distribution,
- Lower strength requirements:
 - Low cementitious content,
 - Low heat of hydration,
 - Less sensitive to volume changes,
 - No need for cooling.
- Low modulus of elastisity:
 - Flexible, better adaptation to foundation settlements.

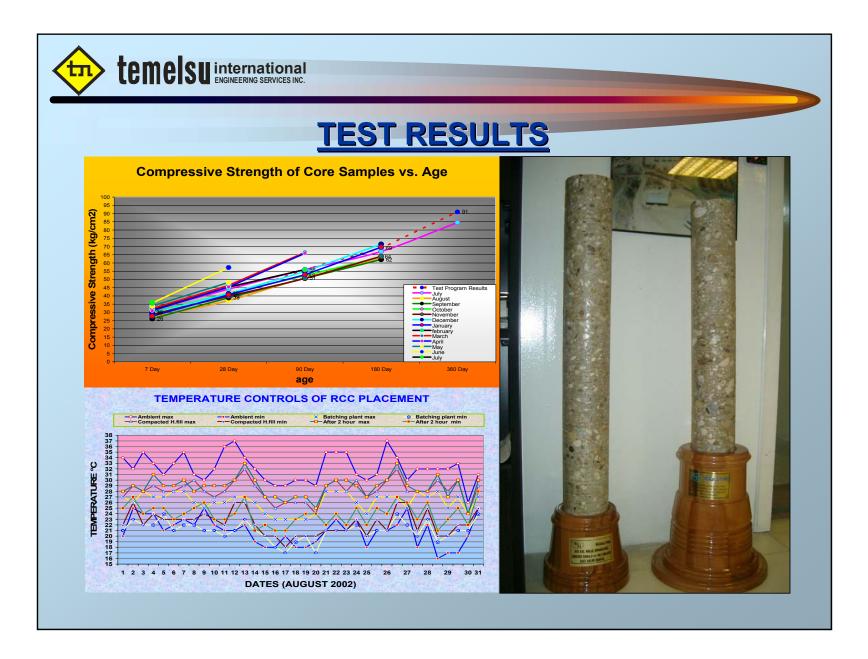
IMPERMEABLE UPSTREAM FACE

PVC membrane stuck on the inner side of precast concrete panels.

Advantages:

- No seepage through the cold joints and cracks,
- Improves the stability (reduces uplift pressure),
- Precast panels act as formwork and protect the impervious membrane,

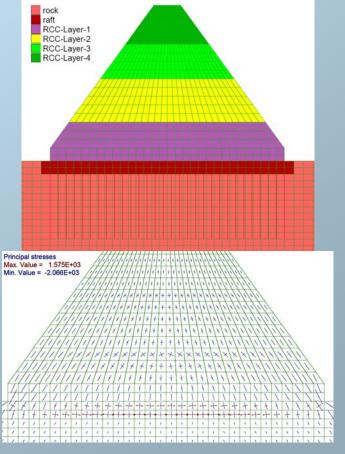


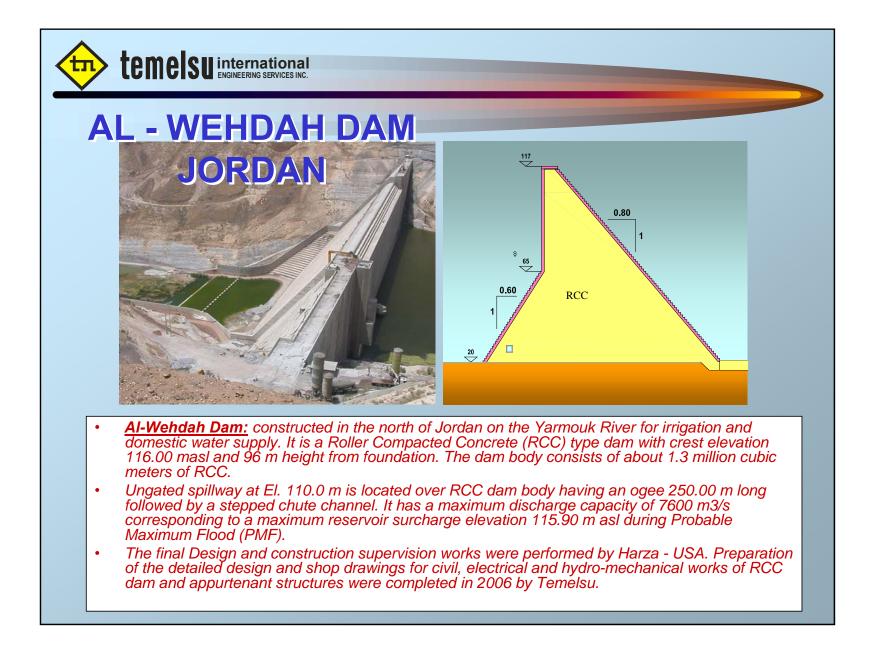


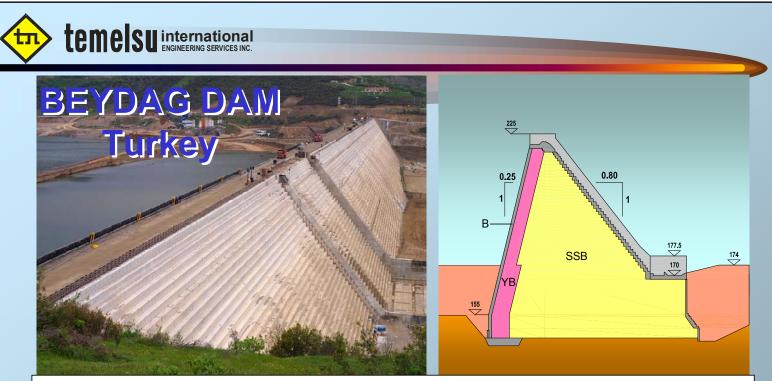
IMPERMEABLE UPSTREAM FACE

- Due to its flexibility:
 - The membrane is less influenced by dam settlement during construction and impounding of reservoir,
 - High resistance against earthquake,
 - Low sensitivity to volume changes of thermal or shrinkage origin.

COST EFFECTIVE AND FAST.

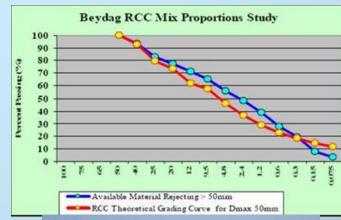

BEYHAN 2 DAM


- Because of high seismicity of the dam site, Beyhan-2 Dam, having the maximum height of 60 m, has been designed as a symmetrical faced RCC dam with slopes of 0.7H:1V.
- The geological studies have revealed that the deformation modulus of foundation has been estimated as E = 750 MPa, which is very small in terms of required stiffness for a RCC dam.
- It has been proposed to utilize a remediation system under the dam body, composed of a


rigid raft foundation resting on the

improved rock with piles.

 Performed analyses have shown that a piled-raft system below the base of the dam may affectively be used to reduce excessive tensile stresses at the rock – RCC interface and also compensate the adverse effect of foundation settlements in case of a foundation rock with insufficient stiffness for a RCC dam.

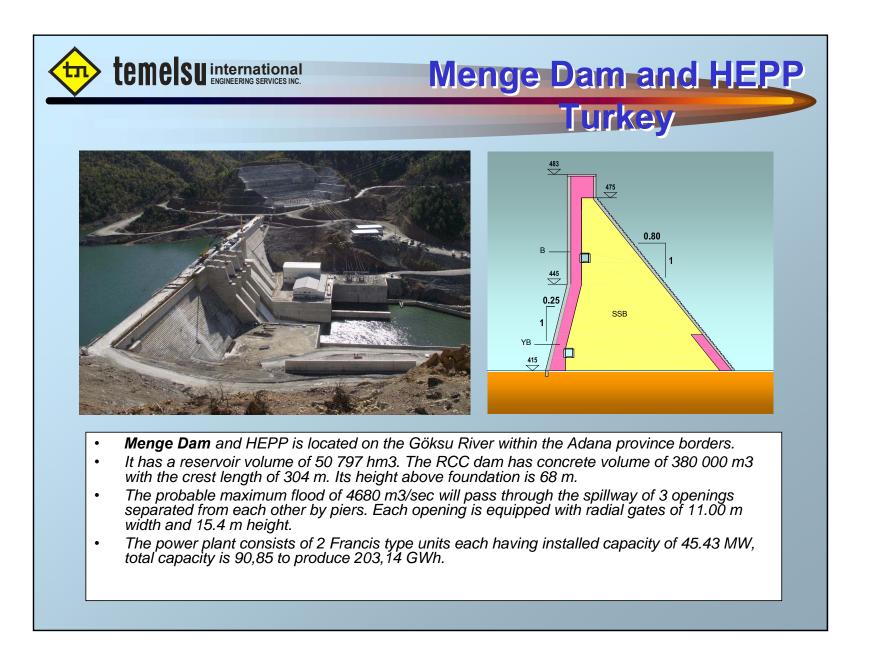

Beydag Dam is located on Küçük Menderes River for the irrigation of 10910 ha. agricultural area. Its height is 95.0 m above the foundation and 54.0 m above the thalweg. The embankment is originally designed as clay cored rockfill to impound 248.275 million m³ of water. Later on, type of dam body was modified as RCC. The diversion tunnel 584.5 m long with an inner diameter of 5.00 m has a capacity of 151 m³/sec.

The uncontrolled spillway on the right bank has a capacity of 1275 m³/sec. Its ogee crested 60 m long weir is designed for a head of 4.75 m. Rectangular chute channel is 60.0 m long and 60 m wide at the beginning. It reaches a width of 40.0 before entering the stilling basin type energy dissipater.

RCC is produced with natural tuvenane aggregate.

Just ONE Grain Size Fraction- Less than 50mm

The Designer and/or Contractor must balance the potential cost savings in a reduction in number of stockpiles and separate, handling and weighing facilities with the potential for increased variation in aggregate grading and its impact on uniformity of the RCC. The Figure shows an unique aggregate curve that is being used in Beydag RCC Dam in Turkey



Beyhan 1 Dam and HPP

- Dam is constructed on Murat River (Eastern Anatolia region) for energy purpose.
- It has a drainage area of 25274 km2.
- The dam is RCC (roller compacted concrete) type with a crest length of 361.00 meter.
- Its height above foundation is 97.00 meter. The flow of Murat River is diverted through 3 tunnels with circular cross section which has an inner diameter of 9.50 meter.

- The probable maximum flood of 10528m3/s (QPMF) will pass through the spillway of 6 openings separated from each other by piers. Each opening is equipped with radial gates of 11.50 width and 15.20 meter height.
- The power plant consists of 3 units each with an installed capacity of 175.33 MW and a fourth small unit with an installed capacity of 24.00MW, thus totaling 550 MW to produce 1245.1 GWh annually.

Güllübağ Dam and Hydroelectric Power Plant: is located on Çoruh River (Eastern Anotolian region within the province of Erzurum) for energy purpose.

It has a drainage area of 5915 km2. The dam is RCC type with a crest length of 92.00 meter. Its height above foundation is 71.50 meter.

The spillway is on the RCC dam body. The probable maximum flood of 4464m3/s will pass through the spillway of 3 openings separated from each other by piers. Each opening is equipped with radial gates of 11.00 width and 14.80 meter height.

The power plant consists of 3 units with total installed capacity of 96 MW to produce 313.90 GWh annually.

THANK YOU VERY MUCH for your kind attention

ISLAMIC DEVELOPMENT BANK GROUP ANNUAL MEETING Dushanbe, Tajikistan, 18 - 22 May 2013

