Lect. 9: Allocation, Translocation & Partitioning

- Photosynthates (i.e., starch & sucrose)
- Movement of photosynthates
- Phloem loading, transport and unloading
- Distribution of sugars

Reading: Chapter 6

Export and Short-term Storage of Photosynthates

Photosynthates = Reduced-carbon products of photosynthesis

In light, excess photosynthates are stored in different chemical forms and cellular locations

- Dicotyledenous plants (potatoes, etc...) tend to make and store starch in plastids
- 2. Monocotyledenous plants (corn, sugarcane, etc...) tend to make sucrose to be stored in vacuoles

At night, photosynthates can be metabolism via respiration to form ATP needed for cellular energy

Review of Products from PCR Cycle (Fig. 5.11)

- Trios phosphate (DHAP) is exported from chloroplasts
- Fructose-6-phosphate begins starch synthesis

Two Forms of Starch in Chloroplasts - []-Amylose (non-branched), []-(1-4) glucan - Amylopectin (branched), amylose with periodic []-(1-6) links | Heart H

Fig. 6.1

Starch synthesis in Chloroplasts (section 6.1.1 in text)

1) glucose-1-phosphate is "charged" with ADP (increased potential energy)

2) It is covalently linked to growing starch (amylose or amylopectin) chain by Starch Synthase Enzyme

3) Starch-branching enzymes generate amylopectin

Starch-branching enzymes generate amylopectin

Starch-branching enzyme II

Soluble starch synthase

I phosphate 3 PGA

ADP-glucose
I phosphorylase
I phosphorylase
I phosphorylase
I phosphorylase
I granule-bound
I starch synthase
I starch-branching
I starch-br

Lect. 9: Allocation, Translocation & Partitioning

- Photosynthates (i.e., starch & sucrose)
- Movement of photosynthates
- Phloem loading, transport and unloading
- Distribution of sugars

Reading: Chapter 6

Sugars Quickly Translocated into Phloem Tissue

- Add C¹⁴ via CO₂ and follow radioisotope for 10 minutes
- Ends up in petiole phloem tissue within a few minutes

Fig. 6.6 (sugarbeet petiole)

Translocation of Photosynthates Within Trees

- Girdling a tree removes phloem tissues
- Tree lives for only a short time, until roots die.
- Phloem above girdle thickens due to excess photosynthates and abnormal cell growth

Different types of sugars in phloem Although sucrose is the most common transport sugar, other sucrose-related sugars occur in phloem For example, "raffinose series" present in some plants Galactose Galactose Galactose Glucose O-CH₂ O-CH₂ HO O O-CH₂ HO O CH₂OH он Сн.он ОН ноон OН ОН -0-ÓН - Raffinose - Stachyose --Verbascos - sucrose is by far the most common!

Why Sucrose?

- Why is sucrose the preferred transported sugar?
- Chemical stability and small size
- "non-reducing" sugar (lacks reactive free aldehyde or ketone group)

Phloem Structure and Sieve element (Fig. 6.8 & 6.9)

P-protein & Collose protect plant from damaged phloem

- P-protein stands for phloem protein
- very high concentration in sieve elements
- P-protein gels when exposed to air, plugs sieve elements when phloem tubes are damaged (cut/chewed)
- Blocks the loss of valuable sugars

Callose (a ☐–(1-3) glucan, similar to cellulose)

- rapidly synthesized near wounded sieve plates
- Helps "plug" the sieve tube holes to prevent loss of sap

Source-Sink Relations

- Source = location where photosynthates are made and loaded into phloem (leaves)
- Sink = location where photosynthates are rapidly reduced for energy (actively growing) and/or loaded into phloem
- These can change over time and plant development

Source-Sink Relations

Radiolabeled Photosynthates in Phloem

- -Time course over 24 hr
- Newly fixed radiolabelled carbon ends up in "growing" tissues and not in older organs
- Series of progressively younger leaves from soybeans

Older

Younger

_			
_			
_			
-			
_			

