
PelicanHPC: A Linux Cluster Distribution for MPI-based Parallel Computing

Michael Creel1

Department of Economics and Economic History, Edi�ci B, Universitat Autònoma de Barcelona, Cerdanyola del Vallès (Barcelona)
08193, Spain

Email address: michael.creel@uab.es (Michael Creel)
1Universitat Autònoma de Barcelona, Barcelona Graduate School of Economics and MOVE. This research was funded by projects

MICINN-ECO2009-11857 and SGR2009-578.

Preprint submitted to Elsevier January 19, 2012

2

Abstract

This paper describes the PelicanHPC distribution of GNU/Linux, which can be used for rapid and simple creation of
a cluster for MPI-based parallel computing. Di�erent usage models are discussed, including short term ad-hoc clus-
tering versus a long term, remotely administered cluster, and the possibilities for mixing real and virtualized hosts.
Means of customizing the distribution for speci�c tasks are presented, and some examples of derived distributions
are noted. Documentation, performance, and security are discussed.

Keywords: linux cluster, MPI, live CD/USB

3

1. Introduction

This paper introduces and describes PelicanHPC2 (Creel, 2008), a GNU/Linux distribution focused on MPI-
based parallel computing on a cluster. PelicanHPC �rst appeared in January 2008, as the continuation and evolution
of the ParallelKnoppix project (Creel, 2005), which had its �rst release in 2004. The main goal of this line of work
has been and continues to be the provision of a �exible and versatile system for simple and rapid creation of a cluster
for MPI-based computing. A basic PelicanHPC cluster can be created in less than �ve minutes, with no special
technical knowledge. An ad hoc cluster of this sort can be useful for a number of purposes, including making use of
idle resources for a pressing computational problem, demonstrating a computational solution during a presentation,
or for teaching or learning about clustering and parallel computing. It is also possible to use PelicanHPC on a long
term basis, with automatic setup, use of permanent storage, and with compute nodes can be booted automatically or
remotely. Respecting the goal of simplicity, which keeps maintenance needs to a minimum, the project has evolved
in the direction of improving the �exibility and customizability of the system, so that is can be useful to researchers
in a variety of �elds. ParallelKnoppix, PelicanHPC and derivatives have been used as research tools in a number
of �elds, including image processing (Dietlmeier, Begley and Whelan, 2008), solid state physics (San Sebastian et
al. 2008), mathematical programming (Grytsenko and Peratta, 2007), econometrics (Creel and Kristensen, 2011),
cheminformatics (Abreu et al., 2010) and bioinformatics (Chew et al., 2011). This paper describes the system used
to create PelicanHPC, how PelicanHPC may be used, and how it may be adapted to meet speci�c needs.

2. Description

PelicanHPC is released as a binary-hybrid ISO image that is built from packages from Debian GNU/Linux3,
using the Debian Live system4. The image can be copied to a CD or USB storage device, which may then be used
to boot a computer. Alternately, the ISO image may be used to boot a virtual machine, or may be booted directly
using a bootloader capable of booting ISO images from disk (e.g., grub2). Once a computer, either real or virtual,
has been booted from the image, it is referred to as the �frontend� node. Once logged into the account �user� on
the frontend, one may run the pelican_setup script, which con�gures the frontend as a netboot server (providing
services such as dhcp, tftp, nfs). After this is done, other computers on the network that are con�gured in BIOS to
netboot will boot as compute nodes, receiving their �lesystems from exactly the same image as was used to boot
the frontend node. It is possible to run the frontend and/or the compute nodes as a virtual appliances on any of
the popular operating systems, and real and virtualized systems may be mixed on a cluster. Because all computers
in the cluster are booted from the same image, software versions are automatically synchronized across all nodes.
The compute nodes obtain their �lesystems by decompressing a single �le that is exported by the frontend node.
This scheme minimizes network tra�c, at the expense of higher memory requirements for the compute nodes.
Additionally, the /home directory of the frontend node is NFS-shared with all of the compute nodes. New software
installed in /home on the frontend is automatically available on the whole cluster.

PelicanHPC has a single user account, with the username �user�. No queuing or job scheduling software is
included on the released images. PelicanHPC is designed to be used by one user at a time, who has full access
to all of the resources of the cluster. A PelicanHPC cluster is often created when needed, and the machines that
form the cluster return to their normal uses when the clustering work is �nished. Such a scenario could take place
in the computer room facilities of a university, for example, where the cluster could be used for research at night,
while the computers are used during the day by students5. It is also possible to run a PelicanHPC cluster for a
long period of time, with unsupervised booting of all nodes (supposing the compute nodes have been con�gured for
wake-on-LAN) and recuperation of state across boots. If a long term installation is to be shared by researchers,
one can add user accounts as needed. The entire /home directory is shared across nodes, so new user accounts will

2http://pareto.uab.es/mcreel/PelicanHPC/
3Debian: http://www.debian.org/
4Debian Live: http://live.debian.net/
5See the video http://www.youtube.com/watch?v=NBgAeKEt9uo for such an example.

4

also also able to use the cluster. If this is to be done, it may be desirable to add queuing software. It is expected
that in most cases, PelicanHPC will be used by a single researcher, and this paper focuses on this form of usage.

As noted, PelicanHPC evolved from the ParallelKnoppix project. ParallelKnoppix images were created by
remastering the Knoppix GNU/Linux distribution (refs). The remastering process could be partly scripted, but
still involved a fair amount of interactive work, with the consequent possibilities for errors, and di�culties of exact
replication of the process. The process also required a fair amount of knowledge on the part of the person performing
the remastering. The fundamental di�erence between PelicanHPC and ParallelKnoppix is that the PelicanHPC
image is created by running a single script, make_pelican. This can easily be done by any user with moderate
knowledge of the Linux operating system. The script has only a few dependencies (debootstrap, rsync, wget, live-
build) that can easily be installed on any version of Linux. For example, it is possible to run the script on a running
PelicanHPC system, as all dependencies are already installed. To make a custom version with di�erent packages,
for example, one can edit the script to add the needed Debian package names, and then run it. This will result in
a customized image �le which can be used in the same way as the released PelicanHPC images. Thus, PelicanHPC
is �exible and can easily be customized to met the needs of researchers in di�erent �elds. Two very good examples
of specialized distributions that were built using modi�ed versions of make_pelican are birgHPC6 (Chew et al.,
2011) and MOLA7 (Abreu et al., 2010). The make_pelican script provides a fairly easy to use and robust means of
generating a tailor-made clustering distribution with any specialized software that may be needed. Because of this
scope for customizability, PelicanHPC itself will remain simple, providing clustering and a single implementation of
MPI (Open MPI is the installed implementation), with few �bells and whistles�. The simplicity of the basic setup
is intended to make it easy to understand and modify, and easy to maintain.

3. Use

The frontend node �rst must be booted, using a CD or USB storage device, or directly from the ISO image if
the frontend is a virtual machine. As it boots, the user is prompted to input some information, such as the desired
password, or the network device to use for the cluster, if more than one is available. Upon completion of booting,
the machine is at the Linux console login prompt. One logs in with the username �user� and whatever password was
supplied. One may then enter the graphical desktop environment by typing �startx� or continue in the console. To
set up the cluster, one enters �pelican_setup�. This script con�gures services such as dhcp, tftp, and nfs. When
this is done, a prompt to turn on the compute nodes appears. Then the frontend cycles, checking and reporting
how many compute nodes have booted. When all are booted, the user indicates this is so, and a basic Open MPI
bhosts �le is written. This �le can easily be modi�ed to achieve better load balancing on a heterogeneous cluster.
Next, a simple Fortran MPI program that computes the total number of �ops that are available is compiled and
run, assuming one slot per node. This achieves the simple goal of testing that the cluster is functional. After this,
the console prompt appears and setup is done. From booting the frontend to completing the process takes about
�ve minutes.

It is very helpful if the frontend node has two network devices, one for the cluster, and one for internet access.
If the frontend is a virtual machine, one can create two virtual net devices, one that uses NAT, which allows ssh to
and from the virtual frontend, and one which uses bridged networking, in order to connect to the cluster's network.
It is very important that the network interface used for the cluster be isolated from any public network, or the dhcp
server that runs on the PelicanHPC frontend node can interfere with the public network.

PelicanHPC inherits its features from the Debian Live system. This system includes the aufs kernel module,
which is a layered �le system that allows modi�cations to a �le system that originates from a read-only medium such
as a CD. Because of this, it is possible to install software in the normal way to the running PelicanHPC frontend
node.

Example 1. To install the emacs editor on the frontend, execute

sudo apt−get i n s t a l l emacs

6birgHPC: http://birg1.fbb.utm.my/birghpc/
7MOLA: http://www.esa.ipb.pt/∼ruiabreu/mola/

5

to install an editor that is not provided on the released images.

The same applies to the compute nodes, which share the frontend's internet connection using IP masquerading:
they may be accessed from the frontend by ssh, and software may also be installed to each compute node. The
package dsh is installed, which simpli�es running a set of commands on each of a set of hosts.

Example 2. To install the GNU scienti�c library on all nodes, one can execute

dsh −f /home/ user /tmp/ bhosts sudo apt−get −y i n s t a l l l i b g s l 0−dev

on the frontend node.

This provides a simple solution for adding a small number of packages on the �y. Packages added in this way will
not be available after a reboot, however, because aufs overlays live in RAM. For newly installed packages to survive
a reboot, there are two options. This �rst, which is recommended for users who intend to use PelicanHPC on a long
term basis, is to prepare a customized image, as is described in the next section. The second, which may be more
suitable for a project which requires adding a limited number of packages, is to use permanent storage for /home,
and to install new software to a destination in /home. As /home is NFS shared to all nodes, a single installation there
on the frontend provides the new software to the entire cluster. The con�guration switch --with-prefix=/home

will achieve this goal for much software compiled from source.

To use permanent storage, there are two methods. The �rst is to enter the device name (e.g., /dev/sda4) of an
ext2, ext3 or ext4 formatted partition at boot time, instead of accepting the default of using tmpfs (in RAM) for
/home. If this is done, then the speci�ed partition is mounted at /home, and all changes under /home will survive
a reboot. Software installed there will be available permanently. A more sophisticated option �rst appeared in
PelicanHPC v2.2, thanks to Robert Petry. At this time, the pelican_config mechanism was added. Upon boot,
PelicanHPC scans for a partition labelled PELHOME. If this volume name is found, the user will be prompted as to
whether or not the partition should be mounted at /home. Next, as is usual at boot time, the user will be asked
if the example software should be copied over to /home. If this is done, the pelican_config �le, among others,
will be copied to the permanent storage. The contents of pelican_config can be edited to modify the behavior
of PelicanHPC at boot and setup time. It is possible to con�gure automount of the PELHOME partition, automatic
setup, addition of a list of usernames, con�guration of a static IP address, use of a network di�erent than the
default 10.11.12.x, use of a �rewall, whether or not prompts should wait for user intervention, and a number of
other features. The �le is self-documented, and serious users should read it carefully, as it provides features which
can make the cluster much more �exible and powerful when used on a non-transitory basis.

Example 3. The means of assigning a label depends on the type of �lesystem of the partition. To assign the
volume label PELHOME to the partition /dev/sda6 which is formatted as ext2/ext3/ext4, one can execute

sudo / sb in / e 2 l a b e l /dev/ sda6 "PELHOME"

while running PelicanHPC. At the next reboot, the partition will be found.

After booting and setting up the cluster using pelican_setup, the cluster is ready for use. The Open MPI
implementation of MPI is installed on the released images, and the bhosts �le created at setup time is located at
/home/user/tmp/bhosts. This �le simply lists the machines in the cluster by IP address, with no attempt at load
balancing. Users should edit the �le as appropriate for the hardware of the cluster. This is important to obtain
good performance if the hosts are heterogeneous, for example, with di�erent numbers of cores. If compute nodes are
added or removed after initial setup, one can run pelican_restarthpc to re-con�gure the basic MPI environment,
including re-generating the bhosts �le.

Example 4. To obtain a list of the hosts in the cluster, one can run

mpirun −−h o s t f i l e ~/tmp/ bhosts hostname

6

4. Customization

PelicanHPC releases contain the Open MPI implementation of MPI, as well as a reasonably complete set of
tools and libraries for compiling C, C++ and Fortan applications. GNU/Octave with MPI extensions and a fairly
extensive set of examples related to the author's research and teaching are also provided, but these examples
will be of interest to a limited set of users. Python with mpi4py is also provided, and examples are found in
/home/user/mpi4py-$VERSION/demo/. The Octave and Python examples may be of some interest to some users,
but most users with speci�c needs will require software that is not installed on the released images. As was noted
above, PelicanHPC images are made by running a single script, make_pelican. This script has a small set of
dependencies: wget, rsync, deboostrap, and live-build version 2.x (as of this writing - future versions of will use
newer versions of live-build). All of these packages can easily be installed on any Linux system, and they are
installed on PelicanHPC releases. To build an image, one just runs the script (as root, or using sudo). An internet
connection is required, to download packages from Debian mirrors. Also, a fair amount of disk space (several GB
is su�cient) is needed, to accomodate the downloaded packages and to build the image. To run the script on a
running PelicanHPC system, one most likely needs to be using permanent storage, as discussed above, because
most systems will not have enough RAM to build an image in memory.

Example 5. To run the current release at this writing, do

sudo sh . / make_pelican−v2 . 6

on a running PelicanHPC system

The make_pelican script is mostly self-documented, and it is also discussed in the PelicanHPC Tutorial (see the
following section on Documentation). In the script, one can specify the architecture (amd64 or i386), the Debian
release (stable is the default), Debian mirror to use, and the list of Debian packages to include on the image. All
of these options are at the top of the script, and are easy to locate.

The script looks for a directory ./pelicanhome in the build directory (the location of make_pelican). All of
the contents of this directory are copied to the image, and will be in /home/user after the image that is built is
booted. Furthermore, if this directory contains a script make_pelicanhome.sh, then this script will be run during
the build process to perform any needed actions such as downloading source code, compilation of source code, etc.
This provides a means of including software and data that is not part of Debian on a PelicanHPC image. The
script is executed in the chroot environment that contains the �lesystem that will appear on the image, at the last
stage before the image is made. Thus, all libraries and packages that were included from Debian packages will be
available for compilation of special software that is not in Debian. The software can also be installed to any location
such as /usr, /opt or /usr/local, it does not have to be installed under /home. Octave, the Octave examples, and
mpi4py are included on the released images using this mechanism, and the pelicanhome.tar.bz2 archive that is
available on the PelicanHPC web page provides an example of how the mechanism may be used.

Example 6. The following lines of code, contributed by Stanislav Godi²ka of Slovak Technical University of
Technology, are in the make_pelicanhome.sh script that is used by default. If these lines are uncommented, then
a NIC module that is not part of Debian will be available. A similar strategy could be used to add other kernel
modules.

Linux headers (f o r Atheros d r i v e r i n s t a l l a t i o n)
uncomment below t h i s l i n e
cd / e tc / s k e l
wget http :// l aunchpad l i b ra r i an . net /86474951/ l inux−headers −2.6.32−37_2.6 .32−37.81 _al l . deb
dpkg − i l inux−headers −2.6.32−37_2.6 .32−37.81 _al l . deb
wget http :// l aunchpad l i b ra r i an . net /86453234/ l inux−headers −2.6.32−37− generic_2 .6 .32−37.81_amd64 . deb
dpkg − i l inux−headers −2.6.32−37− generic_2 .6 .32−37.81_amd64 . deb
Atheros 81 Network fami ly d r i v e r
cd / e tc / s k e l
mkdir AR81Family
wget http :// k003 . k iwi6 . com/ ho t l i nk /5 h69ss0y70 /ar81family_linux_v1_0_1_14_tar . gz

7

mv ar81family_linux_v1_0_1_14_tar . gz AR81Family
cd AR81Family
tar zxvf ar81family_linux_v1_0_1_14_tar . gz
make i n s t a l l
modprobe a t l 1 e

5. Limitations and Cautions

Some caution is needed when setting up a PelicanHPC cluster, especially if one has little experience with
networks. The PelicanHPC frontend node begins to act as a netboot server after pelican_setup has been run.
This means that it will provide an IP address to any client that solicits one. If the network of the cluster is not
isolated from larger networks, the PelicanHPC dhcp service may interfere with the dhcp service running on the
larger network, causing connectivity problems for the users of the larger network.

A second caution is that attempts to use permanent storage should be made only after one understands what is
the Linux device name given to hard disk or USB storage partitions. In its default con�guration, PelicanHPC does
not use permanent storage, and there is no risk of data loss. If one uses permanent storage, it becomes possible
to erase or compromise data on the storage devices. Users with little experience with the Linux operating system
should be especially careful. It is advisable to ensure that important data has been properly backed up.

A �nal caution concerns security and privacy. The user of a PelicanHPC cluster can easily access all data on all
of the machines in the cluster. For example, an instructor of a class should be cautious about letting students use
machines that contain sensitive data to make a cluster, as the students will be able to access the data while running
PelicanHPC. With regard to external threats, there is little risk of unauthorized access from external networks as
long as a strong password is used. PelicanHPC uses a �rewall and software that blocks IPs from which too many
failed logon attempts originate.

6. Documentation and Support

The main documentation for PelicanHPC is the PelicanHPC Tutorial8 (Creel, 2008) which is included on released
images and is also available as a web page. The Tutorial explains how to set up and use a cluster, as well as how
to make customized images. Documentation is also provided by README �les in appropriate places on the image,
as well as by comments in scripts. For example, make_pelican and pelican_config are extensively commented.
Support is available primarily through the user forum9. The ParallelKnoppìx and PelicanHPC projects have been
in continuous existence since 2004, and will continue to exist in a similar form for the foreseable future, so the level
of support that currently exists will continue to be available.

7. Performance and Examples

A PelicanHPC cluster is a normal Beowulf-style cluster for MPI after all setup has been done. It is possible to
use permanent storage, swap space, and scratch partitions. Performance of a PelicanHPC cluster depends upon the
hardware that is used, and upon proper tuning of the MPI environment, especially if the machines that make up
the cluster are heterogeneous. Tuning of the MPI environment, for example by editing the bhosts �le used by Open
MPI, is not an issue speci�c to PelicanHPC, and for this reason it is not discussed here. One can obtain nearly
linear speedups for appropriate problems.

Example 7. PelicanHPC contains a number of example of GNU Octave scripts that perform various tasks in
econometrics and statistics, including multivariate nonparametric kernel regression. To run the example code for
kernel regression on a single core, one enters Octave, and executes

8PelicanHPC Tutorial: http://pareto.uab.es/mcreel/PelicanHPC/Tutorial/PelicanTutorial.html
9User forum: http://pelicanhpc.788819.n4.nabble.com/

8

kernel_example (5000 , f a l s e , f a l s e)

To run on all 8 cores of a dual quad core machine, one executes (from the terminal, not from the Octave prompt)

mpirun −np 8 octave −q −−eva l "kernel_example (5000 , true , f a l s e)"

To run on all the 24 cores of 3 dual quad core machines in a cluster, one executes

mpirun −np 24 −h ~/tmp/ bhosts octave −q −−eva l "kernel_example (5000 , true , f a l s e)"

Timings for these three commands are 10.41 seconds, 1.77 seconds, and 0.53 seconds, respectively, which shows good
scaling performance for this problem. To learn what the example does and how kernel regression is implemented,
one can enter Octave and then enter �help kernel_example� or �help kernel_regression�.

A number of similar results for a variety of problems are reported by Creel (2005) using ParallelKnoppix,
which operated fundamentally in the same way as does PelicanHPC. Abreu et al. (2010) provide performance
measurements (see especially Figure 2) in the context of virtual screening of small molecules, using MOLA, a
customized and enhanced version of PelicanHPC. Chew et al. (2011) �nd that the performance of a PelicanHPC
cluster can be as good as that of a traditionally installed cluster that uses the same hardware (see their Table 1).

One interesting possibility that arises when building a Live CD/USB image is that of including complicated
software environments that are di�cult or time-consuming to reproduce, especially by non-specialists who may be
users of di�erent operating systems. A researcher can include all of the software needed to replicate results on a
PelicanHPC image, and this can allow other researchers to replicate and extend results immediately, without the
need to install and con�gure a long list of software dependencies. It may also be a very useful tool for demonstrations
at seminars or conferences. To give an example of this possibility, and to give some more evidence of the performance
of a PelicanHPC cluster, we can consider the �le runme.sh10 that is provided on PelicanHPC images. This �le
allows replication of the results found in Table 7 in Creel and Kristensen (2011). To obtain these results, one
needs to have installed GNU Octave11, Open MPI12, the MPI extensions for Octave13, the Dynare package for
solving dynamic stochastic nonlinear models14, and the ANN15 library for �nding nearest neighbors to points, as
well as additional code provided by the author. Given this list of items, it would be di�cult to replicate the results
if everything were to be installed from scratch. However, given a recent copy of PelicanHPC, it is very easy to
replicate the results, as one just executes the runme.sh script. This means of sharing code is free and open, but
it is also practical and user friendly, and it can lead to more rapid and e�ective dissemination of scienti�c results.
On a heterogeneous cluster made of 3 dual quad core machines (24 cores), the script runs in 48 seconds, while on a
single core it takes 570 seconds. This application involves a fair amount of �le I/O during the run, and a substantial
portion that is not parallelized, thus the less than linear scaling is to be expected.

8. Conclusion

This paper has brie�y introduced PelicanHPC. The most obvious feature of this clustering solution is the rapidity
with which it can make available a cluster. Less obvious features include the customizability of the scheme, which
allows it to be adapted to meet the needs of a large variety of users, and the possibilities for using PelicanHPC to
create a cluster that may be remotely administered and used on a long-term basis. This paper has attempted to
point out these less obvious features, to provide examples, and to give sources of additional information.

10The full path of the �le on PelicanHPC is /home/user/Econometrics/MyOctaveFiles/Econometrics/IL/DSGE_PO/runme.sh
11GNU Octave: http://www.gnu.org/software/octave/
12Open MPI: http://www.open-mpi.org/
13Open MPI extensions for Octave: http://octave.sourceforge.net/openmpi_ext/index.html
14Dynare: http://www.dynare.org/
15ANN: http://www.cs.umd.edu/∼mount/ANN/

9

[1] Abreu, R., Froufe, H., Queiroz, M., Ferreira, I. (2010) �MOLA: a bootable, self-con�guring system
for virtual screening using AutoDock4/Vina on computer clusters�, Journal of Cheminformatics, 2010,
2:10.

[2] Teong Han Chew, Kwee Hong Joyce-Tan, Farizuwana Akma and Mohd Shahir Shamsir (2011),
�birgHPC: creating instant computing clusters for bioinformatics and molecular dynamics�, Bioin-
formatics, 27, 1320-1321.

[3] Creel, M. (2005) �User-friendly parallel computations with econometric examples�, Computational Eco-
nomics, 26, 107-128.

[4] Creel, M. (2008) �PelicanHPC Tutorial�, UFAE and IAE Working Papers, 74908,
http://econpapers.repec.org/RePEc:aub:autbar:749.08.

[5] Creel, M. and D. Kristensen (2011) �Indirect likelihood inference�, Barcelona GSE Working Paper
Series, 558, http://research.barcelonagse.eu/tmp/working_papers/558.pdf.

[6] Dietlmeier, J, S. Begley and P. Whelan (2008) �Cost-e�ective HPC clustering for computer vision
applications�, IMVIP '08 Proceedings of the 2008 International Machine Vision and Image Processing
Conference, 97-102.

[7] Grytsenko, T. and Peratta (2007) �Implementation and performance assessment of a parallel solver
for sparse linear systems of equations and rules for optimal solution� in Data Mining VIII: Data, Text
and Web Mining and their Business Applications, A. Zanasi and C. Brebbia, eds., WIT Transactions
on Information and Communication Technologies, WIT Press.

[8] San Sebastian, I, J. Aldazabal, C. Capdevila, C. Garcia-Mateo (2008) �Di�usion simulation of Cr�Fe
bcc systems at atomic level using a random walk algorithm�, physica status solidi (a), 205, 1337�1342.

