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Chapter 1

Introduction

This document contains the specifications for the protocols for our Tribler content delivery library.
The reader is assumed to be familiar with the BitTorrent protocol [4] [5] on which Tribler is based.
For convenience, we include a brief summary.

BitTorrent has an interesting design that enables each individual downloader to maximize his own
download rate and locks out users who do not contribute to the system. A peer wishing to download a
particular file through BitTorrent first needs to obtain a torrent metafile for the file from, for example,
a Web site or RSS news feed. The metafile gives the peer the address of a tracker for the file and
checksums to verify downloaded parts of the file. The peer then contacts the tracker to obtain a list of
peers currently involved in downloading the file, implying they have pieces of the file to share.

Next, the peer contacts a random peer to obtain a first piece of the file itself. With this piece in
hand, the peer starts to contact other peers in the list to see if they will trade its piece for another part
of the file. If so, the contacted peer sends a few blocks of the negotiated piece, and continues to do
so as long as the other does the same. This tit-for-tat mechanism automatically locks out peers who
are unwilling to upload themselves. By monitoring the download rate obtained from its current set
of peers and randomly trying other peers to see if faster peers are available, a user can maximize its
download rate. By always selecting a rare part of the file from the pieces on offer, a peer ensures
it always has a piece of the file that other peers are interested in. These policies for piece selection
and bandwidth trading lead to a balanced economy with suppliers meeting demand and achieving
their own goal (fast download) at the same time. Once the peer has obtained the complete file it will
become a seeder and altruistically provide pieces to other peers without any return. The set of all
peers currently actively exchanging pieces of the file is called the file’s swarm.

We describe the protocols and the features they enable one by one in a separate chapter.
[ TODO

• (use-local-network-if-same-NAT (post Jan2009))

]
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Chapter 2

Video-On-Demand

2.1. INTRODUCTION

In current BitTorrent, a user must wait for the download of a media file to be completed before it can
be played. To play a media file while it is being downloaded the download protocol must guarantee
that the media player receives the pieces of the file in-order and in time. The time requirement means
that the download protocol must supply the piece before the media player has to display it on the
screen. The BitTorrent protocol provides no guarantees about the order and timeliness of file pieces.

Instead, its piece-picking policy is based on an economic model of supply and demand [4]. The
model uses the basic principle of tit-for-tat, that is, a peer cannot download a piece of the file unless
it uploads a piece in return. To support this principle, the BitTorrent piece-picking policy states that a
peer should download the piece of the file with the least replicas in the network of peers. As a result,
a peer will always have a rare piece and thus is able to find a lot of peers willing to trade with him
(i.e., low supply, high demand). Unfortunately, this policy does not provide any ordering or timeliness
guarantees.

We have extended BitTorrent such that it allows media files to be played while they are download-
ing, if the user’s network connection is fast enough. We call our approach Give-to-Get and we refer
to [12] for a detailed description of this approach.

2.2. WIRE FORMAT

For completeness we will describe the G2G PIECE XFER protocol message that is used. The idea of
Give-to-Get is to discourage free-riding by letting peers favour uploading to other peers who have
proven to be good uploaders. As a consequence, free-riders are only tolerated as long as there is spare
capacity in the system. To enable this, peers need to inform other peers about how much they upload,
for which they used the G2G PIECE XFER message.

A peer that supports Give-to-Get should signal this fact to other peers by including the method
Tr G2G in its BitTorrent extension protocol handshake [13]. This protocol is a simple mechanism that
allows peers to communicate what BitTorrent extensions they support and to exchange the associated
messages. We refer to it as the EXTEND protocol.

When it meets another peer that supports Give-to-Get in the same swarm, the peers send each
other G2G PIECE XFER messages every time they upload a piece of content to any other peer. By
default this message has message ID 235, unless negotiated otherwise via the EXTEND handshake.
The message body consists of a piece number, an offset and a length (4-byte integers), detailing which
part of which piece they uploaded.
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Version 2

During testing it was revealed that sending a G2G PIECE XFER message in the above format for
every uploaded piece generated too much traffic, especially with the small piece sizes we use. Hence,
we changed the message format such that it allows batched information transfer. Version 2 of the
G2G PIECE XFER message therefore has the following payload. It consists of a bencoded dictionary,
mapping the piece number uploaded (as a string) to string of length 1, encoding the percentage of the
piece uploaded. The string contains the character obtained when the percentage of the piece uploaded
is multiplied by 100 and converted to an integer, i.e., chr(int((100.0 * perc)) to give a compact message.
A peer supporting version 2 of the Give-to-Get message should use include the method ‘Tr G2G v2’ in
the EXTEND protocol handshake, rather than ‘Tr G2G’.

2.3. TORRENT FILE EXTENSION

To estimate the amount of content to prebuffer we extend a torrent file to include the bitrate of the
content. For security reasons it is encoded in the ‘info’ field of the torrent file, such that it cannot be
modified without changing the identity of the torrent file (i.e., its infohash). For a single-file torrent
the ‘info’ dictionary just contains an extra ‘bitrate’ field specifying the bitrate in bytes per second. For
multi-file torrents, the per-file dictionary in the ‘files’ list is extended with a ‘bitrate’ field.

2.3.1. MetaDiscussion

In the current Tribler implementation (January 2009) we actual use the torrent-file extension made by
Azureus which encodes the bitrate and other properties in a azureus properties field in the top-level
dictionary. See http://svn.tribler.org/abc/branches/release-4.5/Tribler/Main/vwxGUI/zudeo torrent description.
txt
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Chapter 3

Live Streaming

Live streaming is the real-time broadcast of video or audio over a network of BitTorrent clients. Live
streaming differs from video-on-demand in two important aspects: first, a live broadcast can have an
infinite duration. Second, as a result, the content to be broadcast is not known beforehand. BitTorrent
heavily depends on the content being known beforehand for its algorithms and integrity protection.
We have extended the BitTorrent design to cover these two differences. For completeness, we also
include our policy for playing back a live stream and how to replicate the source to get more seeding
capacity.

3.1. SUPPORTING INFINITE DURATION

The BitTorrent protocol assumes the number of pieces is known in advance. The number of pieces is
used throughout a typical implementation to allocate arrays with an element for every piece. For that
reason, it is not practical to simply increase the number of pieces such that the last piece will not be
reached (for instance, 232). Instead, we use a sliding window which rotates over a fixed number of
pieces. Pieces which fall out of the window will be considered out-dated. Each peer deletes out-dated
pieces, and will consider them to be deleted by its neighbours as well, thereby avoiding the need for
additional messages. If a piece is out-dated by the time it is downloaded, it will not be offered for
download to other peers. Within the sliding window, each peer barters for pieces as per the BitTorrent
protocol.

The sliding window of the injector consists of W pieces up to and including the latest generated
piece. Since the injector has to be able to serve any peer in case all other peers depart, no peer is
allowed to have a playback position of more than W pieces before the latest generated piece. We use a
rather large value of W (15 minutes), which allows the system to operate in a broad range of networks.

The sliding windows of the peers cannot be perfectly synchronized due to the differences in delays
within the network. Since not all peers are connected to the injector, a peer P assumes newly generated
pieces are at most W pieces beyond P’s current playback position. On the other hand, the neighbours
of P can request pieces up to W pieces behind P’s current playback position. Every peer therefore
maintains a sliding window of both W pieces before and W pieces after its current playback position.
Note that not all of the pieces within the sliding window of a peer actually exist, as most of the sliding
windows extend beyond the latest generated piece.

When a peer joins the network and connects to other peers, it learns about which pieces are
available and has to decide which pieces are the latest. The other peers will report which pieces they
own within their own sliding window. The pieces available in the neighbourhood of any peer span at
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most 2W (barring network latencies and clock differences), as any piece is discarded after at most 2W
after it has been generated. To be able to distinguish the beginning and end of the sliding windows,
we need to rotate it over a total number of pieces corresponding to a ring of 4W pieces. Such a ring
will always contain an empty range of at least 2W pieces in length. A peer can therefore synchronize
on the latest piece available before an empty range of at least 2W pieces.

Malfunctioning and malicious clients may claim to have pieces outside the range which is con-
sidered valid by the other peers. To avoid basing the sliding window on such clients, a peer uses
majority voting to determine the correct current position of the sliding window: only the pieces which
are available at more than half the neighbours are considered.

3.2. SOURCE AUTHENTICATION

The BitTorrent protocol computes a hash for each piece and includes these hashes in the torrent file.
In the case of live streaming, these hashes have to be filled with dummy values or not be included at
all, because the data is not known in advance and the hashes can therefore not be computed when the
torrent file is created. However, the lack of hashes makes it impossible for the peers to validate the
data they download, leaving the system prone to injection attacks and data corruption.

We prevent data corruption by using asymmetric cryptography to sign the data, which has been
found to be superior to several other methods for data validation in live P2P video streams. The
injector publishes its public key by putting it in the torrent file. Each piece is assigned an absolute
sequence number, starting from zero. Each piece, along with its absolute sequence number and time
stamp, is signed by the injector. Such a scheme allows any peer to validate any packet as originating
from the injector. By including the sequence number and time stamp, a peer is able to verify that the
signed piece is actually the piece it requested. The sequence number allows a peer to confirm that the
piece is recent, since the actual piece numbers are reused by the rotating sliding window. As a bonus,
the included time stamps allow a peer to estimate the delay between the injector and its own playback
position.

Our design allows for different methods of source authentication. We currently support ECDSA-
based authentication as follows. A regular torrent file contains a pieces field in its info dictionary that
contains the SHA1 hashes of the published content. We replace this pieces field with a live field that
contains a dictionary. This live dictionary contains a single required field authmethod that specifies
the authentication method to use (either ECDSA or None). If the method is ECDSA the dictionary
contains an additional field pubkey that contains the EC-public key of the source in binary (DER)
format. Putting this information in the info dictionary of the torrent makes it part of the identify of
the torrent, and therefore it cannot be modified by malicious parties without changing the torrent’s
identity.

The payload of each piece is slightly reduced to make room for the metadata and the signature. In
our case, the signature adds 65 bytes of overhead to each piece, and the piece number and timestamp
add 16 bytes in total. The layout is as follows:

• an 8 byte sequence number

• an 8 byte real-time timestamp in UTC

• a 1 byte length field followed by

• a variable-length ECDSA signature in ASN.1 (max 64 bytes)

• optionally 0x00 padding bytes, if the ECDSA sig is less than 64 bytes
6



The data is stored in the last 81 bytes of the piece.
If a peer downloads a piece and detects an invalid signature or finds it outdated, it will disconnect

from the neighbour that provided the piece. A piece is outdated if the timestamp indicates it was
generated W pieces or longer ago.

3.3. LIVE PLAYBACK

Before a peer starts downloading any video data, it has to decide at which piece number it will start
watching the stream. In order to obtain the full download speed, a peer should not focus on the latest
pieces if those pieces are only available at a small number of neighbours. As a trade-off, we let peers
start downloading at B pieces before the latest piece which is available at at least half of the neighbours.
In this prebuffering phase, a peer waits until it has downloaded at least 90% of these B pieces, to avoid
waiting for pieces that are lost in the network, in transit, or take too long to download.the prebuffering
phase.

During playback, the peer maintains a playback buffer of pieces to send to the video player in-
order. The first amount of data sent to the video player is discarded as the video player seeks to the first
complete picture to display. Since our algorithm deals with byte streams and does not know any frame
boundaries, the amount of data discarded is hard to predict accurately. As a result, it is theoretically
possible for a peer to have a buffer underrun immediately after playback has commenced.

A buffer underrun occurs when a piece i is to be played but has not been downloaded. Since pieces
are downloaded out of order, the peer can nevertheless have pieces after i available for playback. If a
peer has more than B/2 pieces available after i, the peer will drop missing piece i. Otherwise, it will
stall playback in order to allow data to be accumulated in the buffer. Once more than B/2 pieces are
available, playback is resumed, which could result in dropping piece i after all if it still has not been
downloaded.

We employ this trade off since dropping nor stalling is a strategy that can be used in all situations.
For instance, if a certain piece is lost because it never reached a peer’s neighbours, it should be
dropped and playback can just ignore the missing piece. On the other hand, a peer’s playback position
can suddenly become unsustainable if the neighbourhood of the peer changes. The new neighbours
may only be able to provide the peer with older data than it needs. In that case, a peer should stall
playback in order to synchronize its playback position with its new neighbours.

The value of B to use depends on the bitrate and the average network connection of a peer (latency
and bandwidth). Previously we have used simulations to determine the optimal value of B for a given
set of parameters.

3.4. AUXILIARY SEEDERS

In BitTorrent swarms, a fraction of the peers has completed their download and seeds the content to
others. The presence of seeders significantly improves the download performance of the other peers
(the leechers). However, such peers do not exist in a live streaming environment as no peer has ever
finished downloading the video stream.

We redefine a seeder in a live streaming environment to be a peer which is always unchoked by
the injector and is guaranteed enough bandwidth in order to obtain the full video stream. The injector
has a list of peer identifiers (for example, IP addresses and port numbers) representing trusted peers
which are allowed to act as seeders if they connect to the injector. The seeders and leechers use the
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exact same protocol, but the seeders are guaranteed to be unchoked by the injector. The identity of the
seeders is not known to the other peers to prevent malicious behaviour targeted at the seeders.

The injector thus controls the set of seeders, and has two incentives for maintaining that set. First,
the seeders can provide their upload capacity to the network, taking load off the injector. The seed-
ers behave like a small Content Delivery Network (CDN), which boosts the download performance
of other peers as in regular BitTorrent swarms. Second, the seeders increase the availability of the
individual pieces. All pieces are pushed to all seeders, which reduces the probability of an individual
piece not being pushed into the rest of the swarm.
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Chapter 4

Small Torrent Files

4.1. INTRODUCTION

BitTorrent requires a torrent file containing a cryptographic digest of every piece of the file to allow
the verification of pieces during the download. Serving torrent files for large files puts a strain on the
Web servers used. The idea is to replace the torrent file with a short, secure identifier. For example, a
single cryptographic digest or BitTorrent URL.

A related problem is the use of large piece sizes. To keep the size of a torrent file small (as to
not overload the Web servers) the number of hashes for a file is being kept small. For large files
this implies that the piece size over which digests are calculated must go up (up to 2MB pieces are
used). The large piece sizes affect the ability of peers to barter pieces. Only when a piece has been
completely received and verified using the digest may it be traded with other peers. This means that it
may be some time before a node starts bartering with others.

The idea is to replace the list of digests with a single Merkle hash [11]. A Merkle hash can be
used to verify the integrity of the total file as well as the individual blocks via a hierarchical scheme.
It works by constructing a hash tree of the content and using just the root hash as data integrity
protection. The simple root hash value also allows for smaller piece sizes to be used. A common form
of hash trees is the Merkle hash tree, hence the name.

4.2. SIMPLE MERKLE HASHES

We have chosen a minimalistic design that does not affect the existing BitTorrent protocol and clients
very much. The design is backwards compatible in the sense that clients supporting the Simple Merkle
Hash extension can still be made to process regular torrent files easily.

From the content we construct as hash tree as follows. Given a piece size, we calculate the hashes
of all the pieces in the file set. Next, we create a binary tree of sufficient height. Sufficient height
means that the lowest level in the tree has enough nodes to hold all piece hashes in the set. We place
all piece hashes in the tree, starting at the left-most leaf. The remaining leaves in the tree are assigned
a hash value of 0 (see Discussion). Finally, we calculate the hash values of the higher levels in the
tree, by concatenating the hash values of the two children (again left to right) and computing the hash
of that aggregate. This process ends in a hash value for the root node, which we call the root hash.

The root hash along with the total size of the file set and the piece size are now the only information
in the system that needs to come from a trusted source. A client that has only the root hash of a file
set can check any piece as follows. It first calculates the hash of the piece it received. Along with this
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Figure 4.1: A Merkle tree for a file consisting of 12 pieces of content. Verifying the hash of piece
index 8 by recomputing the root hash 0 requires all circled hashes (9, 12, 6, 1).

piece it should have received the hashes of the piece’s sibling and of its “uncles”, that is the sibling
Y of its parent X, and the uncle of that Y until the root is reached. Using this information the client
recalculates the root hash of the tree, and compares it to the root hash it received from the trusted
source.

Discussion

We chose a binary tree for simplicity. Trees with larger degrees are also possible. However, the
number of hashes that need to be sent with each piece is already small at about 2log of the file-set
size.

The leaves of the tree that do not contain a piece hash currently get the value 0, e.g. 20 bytes with
value 0 for a SHA-1 hash. Cryptographically, it is probably stronger to use other values there. The
problem is, however, that the filler values would have to be known by any initial seeder, or seeder that
lost its state (but not the set of files). Otherwise, it cannot construct the same hash tree. If we assume
that a seeder should be able to start with just a torrent file and the set of files, the filler values must be
public information. The cryptographic question is whether using public filler values is stronger than
using 0s.

4.3. INCLUSION IN BITTORRENT

The original publisher of the file set creates a so-called Merkle torrent which is a torrent file that
contains a ‘root hash’ key in its info part instead of a ‘pieces’ key. Merkle torrents have the extension
.merkle.torrent.

When a seeder starts it uses the information in the Merkle torrent and the file set to reconstruct the
hash tree and registers itself with the tracker using the hash value of the info part of the Merkle torrent,
as usual (see Discussion).

A BitTorrent client that supports the Simple Merkle Hash extension must set bit 42 in the 8 re-
served bytes in the BT header, where the left-most bit is bit 0 and the right-most is bit 63. Such a
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client must not send PIECE messages but must use the new message type HASHPIECE to send pieces.
A HASHPIECE message consists of an index, begin, hashlist and piece. The hashlist consists of

the piece’s own hash, the piece’s sibling hash, and the uncles of the piece up until and including the
root hash (see above and Discussion). In particular, the hashlist is a list of 2-element lists. The first
element denotes the node offset in the tree, the second element is the hash value. The node offset is
the number of the node when numbered in a breadth-first fashion (i.e., going left to right starting at
the top).

Only the HASHPIECE message with begin = 0 must contain a filled hashlist, for all other begin
values the hashlist must be empty. In other words, the message containing the first subpiece should
have a filled hashlist, subsequent subpieces should not.

A HASHPIECE message is a regular BT protocol message (as opposed to an overlay-swarm pro-
tocol message) with message ID 250 and has the following payload:

1. 4-byte index

2. 4-byte begin

3. 4-byte length of bencoded hashlist

4. the bencoded hashlist

5. the piece

Upon receipt of a HASHPIECE message, the receiver recomputes the root hash using the hashlist
and compares it to the root hash in the Merkle torrent. If they match, all the hash values are saved in
the receiver’s own hash tree, such that they can be passed on to others when the piece is downloaded
from this receiver. When all subpieces have come in, the piece is checked using the hash from the
hash tree.

Discussion

Using the hash of the ‘info’ part for registering at the tracker means that for a given file set, the swarm
that use a conventional torrent file and the swarm that uses a Merkle torrent will be disjunct. The hash
value is different, hence the swarms are known under different identifiers at the trackers.

In theory we can create one swarm. In that swarm, new clients could serve pieces to old clients.
For the new clients to benefit from the old clients, however, we need to add some way for the new to
obtain the hashes required to check a piece. Designing a fool proof solution for this problem is not
trivial.

Because we let the initial seeders recalculate the hash tree, this extension is incompatible with the
proposed HTTP Seeding extension by John Hoffman that allows seeding directly from Web sites [9].

Including the root hash in a HASHPIECE message allows a quick sanity check.

4.3.1. MetaDiscussion

We should replace the mechanism for signaling we support the Merkle hash extension from the bit in
the 8 reserved bytes in the BT header to using the official BitTorrent extension protocol [13].
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Chapter 5

Secure, Permanent Peer Identifiers

5.1. INTRODUCTION

At present, BitTorrent does not require strong authentication of peers, as peer-to-peer interactions are
transient and shortlived and security stems from the digests in the trusted torrent file. We want to
establish longer term relationships between peers and introduce a number of privileged operations
which should only be available to friends. We therefore extend the protocol with secure, permanent
peer identifiers called PermIDs. We assume a PermID maps to a single IP address and port number
and is initially also used to identify users. The mapping of PermID to IP address is controlled by the
owner of the PermID (a user). Initially we used PermIDs for authentication of friends in cooperative
downloads.

The idea is to use public-key cryptography and give each peer a public/private keypair, where the
public key will act as the PermID. We intend to use Elliptic Curve-based public key cryptography [15]
because it provides stronger protection using small keys than e.g. RSA-based algorithms [1]. Having
small PermIDs is useful to allow caching of large numbers of (PermID,IP) pairs, as discussed next.

5.2. PERMIDS

In Tribler, each client creates a public/private key pair based on Elliptic Curve Cryptography. The
(currently uncertified) public key acts as the PermID for the user. Users distribute this PermID to
their friends out-of-band to establish trusted friend relationships. When two peers connect as part of a
download, the Tribler client checks whether the peer supports our PermID extension. If so, it will also
setup a overlay-swarm connection to the peer. To successfully set up an overlay-swarm connection
both peers need to authenticate themselves using the standard ISO/IEC 9798-3 challenge/response
identification protocol.

If the peer is successfully authenticated but not a friend of the user (i.e., does not appear in the
list of friends’ PermIDs), the Tribler client will allow it to request non-privileged operations, such
as exchanging file preferences (see Section 6.2). If the peer is a friend, it may request privileged
operations such as coordinating a friends-assisted download (see Section 8.2).

5.2.1. Definitions and Terminology

PermID A PermID or permanent identifier is a public key in DER encoding. More specifically, it is a
public key of an Elliptic Curve Cryptography (ECC) keypair that is generated on the sect233k1
curve, see [3].
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It can be generated using OpenSSL 0.9.8 with point conversion set to POINT CONVERSION UNCOMPRESSED
and the ASN.1 flag set.

5.2.2. Authentication Protocol

We implement a ISO/IEC 9798-3 challenge-response identification protocol, as described in $10.3.3
(ii) (2) of [10].

Alice (A) and Bob (B) both have a ECC keypair as indicated above. Assume B initiates a connec-
tion to A. Assume B’s BT handshake has been sent and A’s received, so both sides know eachother’s
BT peer ID, and B has sent a BITFIELD message indicating what content it already has, if applicable
(the BT spec says that this may only ever be sent as the first message, we stick to that). The exact
message layout and content is described below.

1. To start the authentication protocol, B creates a 8092-bit random number rB and sends this
number in a CHALLENGE message to A.

2. On receiving the CHALLENGE message A also generates a 8092-bit random number rA. It
creates a signature SA over rA,rB and the BT peer ID of B, using its private key KA. The signature
is placed in a RESPONSE1 message along with pubA, rA, and the BT peer ID of B. pubA takes
the role of certA in the ISO/IEC protocol specification.

3. A sends the RESPONSE1 message to B.

4. B verifies that the peer ID in the RESPONSE1 message is his peer ID. B verifies that the signature
SA is correct using the fields in the RESPONSE1 message.

5. If the signature SA is correct, B believes it has successfully authenticated A.

6. Next, B creates a signature SB over rB, rA, and the peer ID of A, using its private key KB. This
signature is placed in a RESPONSE2 message along with pubB and the BT peer ID of A. pubB

takes the role of certB in the ISO/IEC protocol specification.

7. A verifies that the peer ID in the RESPONSE2 message is his peer ID. A verifies that the signature
SB is correct using the fields in the RESPONSE2 message.

8. If the signature SB is correct, A believes it has successfully authenticated B.

If any check fails in this protocol, the party discovering the problem simply does not continue with
the protocol. At present, the peers are allowed to continue their BT interaction (i.e., we don’t break
the connection).

CHALLENGE Message ID 253. It consists of the message ID followed by a fixed length bencoded
array of 1024 random bytes.

RESPONSE1 Message ID 252. It consists of the message ID followed by a variable length bencoded
dictionary. The dictionary has the following keys:

‘certA’ A variable-length public key in DER format.

‘rA’ 1024 random bytes.

‘B’ A 20-byte BitTorrent peer ID.
14



‘SA’ An ASN.1 encoded ECDSA signature (see “ANSI X9.62-1999: Public Key Cryptogra-
phy for the Financial Services Industry: the Elliptic Curve Digital Signature Algorithm
(ECDSA).”).

The signature is computed as follows. First we create a list L consisting of three items: rA, rB

and the BT peer ID of B, in that order. Next, we bencode that list, creating array M. We then
compute the SHA-1 hash of M, creating hash H. This hash H is used as input to OpenSSL’s
ECDSA sign function, to create the ASN.1 encoded ECDSA signature.

RESPONSE2 Message ID 251. It consists of the message ID followed by a variable length bencoded
dictionary. The dictionary has the following keys:

‘certB’ A variable-length public key in DER format.

‘A’ A 20-byte BitTorrent peer ID.

‘SB’ An ASN.1 encoded ECDSA signature.

The signature is computed as described for RESPONSE1 except the list L now consists of three
items: rB, rA and the BT peer ID of A, in that order.

5.2.3. Integration into BitTorrent

See Sec. 5.3 on how to signal to other peers that the PermID extension is supported.

5.2.4. Torrent Signatures

Torrents (either regular, or Merkle torrents (see Section 4.2) may be signed using a PermID, as follows.
The metainfo, i.e. the dict in the torrent file, is extended with two entries (in addition to ‘announce’
and ‘info’)

‘signer’ The PermID of the signer (i.e., its public key in DER format).

‘signature’ The ECDSA signature in ASN.1 format.

The signature is computed over the SHA1 digest of the bencoded version of the metainfo without
the two new entries. In other words, to verify the signature, make a deep copy of the metainfo,
remove the ‘signer’ and ‘signature’ entries, bencode the resulting dictionary, compute the SHA-1 of
the bencoded data, and verify it using OpenSSL’s ECDSA verify with the PermID and signature as
parameters.

5.3. THE OVERLAY SWARM

The recommendation and cooperative download feature both require new BitTorrent-protocol mes-
sages. We require a clean method for extending the protocol because our aim is to include more
features in the future. Another requirement is being the least invasive in existing implementations.
Furthermore, the current BitTorrent protocol does not allow communication outside the context of a
swarm, that is, clients can only communicate with clients that are downloading the same file. For our
extensions, we must be able to communicate outside the context of a single file swarm.

We therefore propose to create a new virtual swarm that encompasses all peers that are using the
system, called the overlay swarm for high-level communication between peers. The swarm to which a
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peer connection belongs is defined by the infohash field during the initial BitTorrent handshake. This
infohash normally contains the SHA1 hash of the contents of the torrent file. In case of the overlay
swarm, the infohash must contain a value of all zeros. The overlay swarm has no central BitTorrent
tracker. A peer that wants, for example, to exchange preference lists with another peer must use the
overlay swarm. The peer connects to the other peer’s listen socket and uses the zero infohash value in
the handshake. If the handshake is successful both parties know that new extension messages can be
exchanged. After connecting to a peer on the overlay swarm the peers must run the challenge/response
protocol from Section 5.2 to exchange and validate their PermIDs before any other communication.

By using this non-valid infohash value we remain fully backwards compatible and also are min-
imally invasive to the BitTorrent protocol. It also does not require extra TCP listen ports. The latter
implies that no extra configuration of firewalls or Network Address Translators (NATs) is required by
the user. This overlay can be extended in the future with new messages for secure gossip, sharing ratio
enforcement, social networking, voting/moderation, reputation management, etc .

5.4. PROTOCOL VERSIONING

As we expect the overlay-swarm protocol to change frequently as new features are added or improved,
we have to allow for many different versions of the protocol. Traditionally, the BitTorrent protocol
has been versioned using the 64 reserved bits in the BitTorrent header:

‘19’ ‘BitTorrent protocol’ reserved info hash peer ID
1 19 8 20 20

More accurately phrased, the client’s features are expressed using the reserved bits. See [6] for
the current allocation of the reserved bits. More recently, various vendors have started using the (now)
official BT extension protocol [13]. We do the same as it has a larger identifier space and thus doesn’t
require coordination with other BitTorrent vendors to prevent clashes.

However, our Merkle-torrents extension (see (see Sec. 4.2) was developed before the BT extension
protocol and currently still uses a reserved bit.

5.4.1. Basic Protocol Versioning

We currently have one change to the basic protocol, namely, Merkle torrents. For this feature, we used
a reserved bit. At the time, there was only one officially reserved bit, the right-most bit. This is used
by BitTorrent 4 to indicated DHT-based tracker support. The “de facto” standards were as follows:

Azureus The left-most bit indicates support for the Azureus Messaging Protocol.

BitComet The first 2 bytes spell ‘ex’.

Therefore, to prevent clashes we used bits in the middle of the 64-bit sequence. To indicate
Merkle-torrent support, a client must set bit 42 (where the left-most bit is bit 0 and the right-most is
63).

5.4.2. Overlay-swarm Protocol Versioning

We expect a lot of protocol evolution in the swarm protocol, so it will be versioned differently. An
important requirement is to allow backward compatibility. That is, if the protocol has been upgraded
to V2, but a V2 client can still talk to a V1 client and vice versa, this should be possible.
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To indicate support for any version of the overlay-swarm protocol, a client must use the BT ex-
tension protocol. In particular, it must define the extension Tr OVERLAYSWARM in the EXTEND
handshake message ‘m’ field. Preferably the extension should have message ID 253.

Which versions of the protocol are spoken is currently communicated via the peer-ID field, as we
do not use the peer ID in the overlay swarm. The versioning information will be encoded into the
20-byte peer ID field of the header as follows:

Bytes 0–15 Used as before.

Bytes 16+17 16-bits big endian unsigned integer indicating the lowest protocol version this client
supports.

Bytes 18+19 16-bits big endian unsigned integer indicating the current protocol version of this client.

In general, version negotiation works as follows. Peer A initiates an overlay-swarm connection
to B encoding the lowest and current versions in A’s peer ID. B checks if it supports a protocol in
A’s range. If not, it closes the connection. If so, it does not close the connection and sends its own
handshake if it did not already do so (B may send it before the check). Upon receipt of B’s info A does
the same check. If it does not fail, A and B will choose the highest support protocol version.

Normally, the lowest protocol field should be set to the lowest version supported. Alternatively, a
client may set it lower. Consider the following example: Assume there are 3 versions of the protocol:
3,4 and 5. Protocol 3 and 5 are good, but protocol 4 is broken. Client A wants to support all the good
protocols, but not broken protocol 4. A then sets the oldest protocol it can support to 3 instead of 4
and the current one to 5.

To prevent using protocol 4, A then acts as follows. Assume B supports at most protocol 4 and
at least protocol 2. A initiates an overlay swarm connection with B. Via the normal procedure the
candidate protocol would be 4, which is unacceptable to A. To fix this situation A closes the current
connection, and then reconnects to B with the oldest protocol and current protocol set to 3 (i.e., the
only good protocol that both A and B can speak).

5.4.3. Protocol History

v1 Used only internally.

v2 First public release, Tribler>= 3.3.4

v3 Second public release, Tribler>= 3.6.0, Dialback, BuddyCast 2.

v4 Third public release, Tribler>= 3.7.0, BuddyCast 3.

v5 Fourth public release, Tribler>= 4.0.0, Social Networking (SOCIAL OVERLAP message).

v6 Fifth public release, Tribler>= 4.1.0, Remote query, extra BC fields.

v7 Sixth public release, Tribler>= 4.5.0, Remote monitoring and friendship making support.

5.4.4. MetaDiscussion

Should use just the EXTEND protocol to convey versioning information.
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Chapter 6

Decentralized Recommendation

6.1. INTRODUCTION

The list of content a person downloads via BitTorrent can be considered the taste of the user. There
are well-known centralized techniques for using your list of downloads and those of other users to dis-
cover new content that you will want to download. An example of such a recommendation technique
is user-based collaborative filtering [2]. We have developed a decentralized version of this algorithm
that will allow the Tribler client to make such personal recommendations.

6.2. BUDDYCAST PROTOCOL

Through its downloads the user builds up a preference list of content. The preference list contains by
default all downloaded files from which the user can add or remove entries. These preference lists are
exchanged freely amongst peers using the Buddycast algorithm. Using this algorithm the user builds
a collection of a few hundred or more of such preference lists. This collection is called the Preference
Cache.

The recommender component uses the Preference Cache to calculate both similarity between
peers and to recommend certain content the user is predicted to like, using a special collaborative
filtering algorithm. When a certain peer has a preference list with high similarity to the user’s they
have the same download taste. We call such similar peers taste buddies.

Epidemic Protocol

The Buddycast algorithm is based on an epidemic protocol and roughly works as follows. Each peer
maintains two lists of peers: (1) a list of its top-N taste buddies along with their current preference
lists, and (2) a list of random peers. Periodically, a peer selects an entry from one of the lists and sends
it its preference list, taste-buddy list and a selection of random peers. The receiving peer stores the
preference list and uses the taste buddy and random peer info to update its own lists.

Furthermore, if the sending peer has downloaded some content which is of interested to the re-
ceiving peer (according to the collaborative filtering algorithm), the receiving peer may request the
associated torrent file for the content from the sender, using a GET METADATA message. It will also
download the torrent files from some randomly selected content, to improve the spread of information
through the network. The whole process is referred to as torrent collecting. We alternatingly select a
random peer and a taste buddy to exchange with. The exact protocol is described below.
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BuddyCast takes into consideration the connectivity of the peers. A peer is connectible if it can be
reached by another peer from the Internet. An unconnectible peer can only talk to other peers if it itself
initiates a connection. We found that many peers are, unfortunately, unconnectible due to extensive
firewalls and the dynamic property of peer-to-peer networks. To counter this problem, BuddyCast
keeps open connections with a number of peers and only uses the addresses of the peers it is currently
connect to fill the outgoing message, so all the peers broadcast by a peer are online.

Initially, the links to similar peers created by the BuddyCast algorithm were used just for recom-
mending new content in a passive way. Later, we started using the links to answer active keyword
searches from the user for particular content. The rationale is still that the similar peers are more
likely to have the content the user is searching for and thus keeping links to them gives a higher hit
rate. The details of the search protocol are described in Sec. 7.2. To improve the keyword search
capability we extended the protocol. A peer now sends a list of recently collected torrents, that is,
torrents he recently retrieved from other peer or obtains from an RSS feed. This list ensures that when
two random peers meet, they both can discover and exchange a fresh torrent file.

6.3. DETAILED ALGORITHM

A peer running BuddyCast 2 keeps the following data structures in memory:

Connection List C - A list of peers to whom we keep open TCP connection.

C consists of the following 3 sublists.

• Connectible Connected Taste Buddy List CT : A list of connectible peers to whom we keep
a connection and which have similar tastes as us. The maximum number of peers in this
list is 10.

• Connectible Connected Random Peer List CR: A list of connectible peers who established
connection with us most recently and are not in CT . The maximum number of peers in
this list is 10.

• Unconnectible Connected Peer List CU : A list of unconnectible peers who connected to
us. The maximum number of peers in this list is 10.

Connection Candidates List CC - A list of peers which we can select as the target for a BUDDY-
CAST message. The maximum number of peers in this list is 100.

Block List B - It contains a number of peers which you should not contact in a period (4 hours). It
includes a Send Block List BS (do not send message to any peer in this list) and a Receive Block
List BR (discard messages received from any peer in this list).

In addition to the in-core lists, every Tribler client has several database to store the information of
peers, torrents and preferences it discovered in the network. We call these database the megacaches.
Using the megacaches, a Tribler client can calculate similarity between peers and recommend torrents
to download.

6.3.1. Pseudo Code

When Tribler starts it executes the algorithm shown in Figure 6.1, and sends out BUDDYCAST mes-
sages periodically. When it receives a BUDDYCAST message, the client executes the algorithm of Fig-
ures 6.2, updating its in-core lists and the megacaches. Both the send and receive algorithms use the
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Table 6.1: Functions in BuddyCast
Function Description

blockPeer(Q, block list, time) Add the peer Q into block list for a period of time
fillPeers(message) Put the addresses from the indicated list in the message

connectPeer(Q) Connect to peer Q
getSimilarity(Q) Get the similarity between peer Q and myself

1: loop
2: wait(∆T time units) {15 seconds in current implementation}
3: remove any peer from BS and BR if its block time was expired.
4: keep connection with all peers in CT , CR and CU

5: if idle loops > 0 then
6: idle loops← idle loops−1 {skip this loop for rate control}
7: else
8: if CC is empty then
9: CC← select 5 peers recently seen from Mega Cache

10: end if
11: Q← select a most similar taste buddy or a most likely online random peer from CC

12: connectPeer(Q)
13: blockPeer(Q, BS, 4hours)
14: remove Q from CC

15: if Q is connected successfully then
16: buddycast msg send← createBuddycastMsg()
17: send buddycast msg send to Q
18: receive buddycast msg recv from Q
19: CC← fillPeers(buddycast msg recv)
20: addConnectedPeer(Q) {add Q into CT , CR or CU according to its similarity}
21: blockPeer(Q, BR, 4hours)
22: end if
23: end if
24: end loop

Figure 6.1: The protocol of an active peer.

createBuddycastMsg, addConnectedPeer and miscellaneous methods shown in Figure 6.3, Figure 6.4,
and Table 6.1, respectively.

6.3.2. Valid Peers and Bootstrapping

The BUDDYCAST message requires that each client knows other online peers. After the software is
installed the client needs to obtain an initial online peer. We call this process bootstrapping and use
well known superpeers to solve it. The addresses of the super peers are preloaded in the client’s Peer
Cache.

After installation the Tribler client will :

• Select a superpeer randomly from the Peer Cache.
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1: loop
2: receive buddycast msg recv from Q
3: CC← fillPeers(buddycast msg recv)
4: addConnectedPeer(Q)
5: blockPeer(Q, BR, 4hours)
6: buddycast msg send← createBuddycastMsg()
7: send buddycast msg send to Q
8: blockPeer(Q, BS, 4hours)
9: remove Q from CC

10: idle loops← idle loops+1 {idle for a loop for rate control}
11: end loop

Figure 6.2: The protocol of a passive peer.

function createBuddycastMsg()
My Pre f erences← the most recently 50 preferences of the active peer
Taste Buddies← all peers from CT

Random Peers← all peers from CR

buddycast msg send← create an empty message
buddycast msg send attaches the active peer’s address and My Pre f erences
buddycast msg send attaches addresses of Taste Buddies
buddycast msg send attaches at most 10 preferences of each peer in Taste Buddies
buddycast msg send attaches addresses of Random Peers

Figure 6.3: The function of creating a BUDDYCAST message

function addConnectedPeer(Q)
if Q is connectable then

SimQ← getSimilarity(Q) {similarity between Q and the active peer}
MinSim← similarity of the least similar peer in CT

if SimQ ≥MinSim or (CT is not full and SimQ > 0) then
CT ←CT +Q
move the least similar peer to CR if CT overloads

else
CR←CR +Q
remove the oldest peer to CR if CR overloads

end if
else

CU ←CU +Q
end if

Figure 6.4: The function of adding a peer into CT or CR

22



• Connect to this superpeer via the overlay swarm.

• Send a BUDDYCAST message with an empty preference list.

• Receive a BUDDYCAST message from the superpeer with filled in random-peers list..

• Initiate Buddycast using the superpeer’s random peers.

When a superpeer is sent a BUDDYCAST message, this superpeer will respond with random-peers
list. It may also have a filled in taste buddies list and preference lists. The latter can be used to promote
certain important content and bootstrap a taste network around it.

6.3.3. Rate Control

A vital part of any epidemic protocol such as Buddycast is controlling the bandwidth it uses. Within
a single minute it is possible to exchange preferences with many peers. When file downloads take
days to complete it is important that no excessive amount of bandwidth is consumed by Buddycast.
However, discovery of new files and new peers means that some amount of bandwidth needs to be
spent.

Currently we use a simple policy to control rate: When starting for the very first time, we contact
a peer every second for the first 2 minutes. For subsequent starts we contact a peer every 5 seconds
for the first 30 minutes. From 30 minutes till 24 hours that we contact a peer every 15 seconds, after
that once every minute. If we exchanged preference with a peer in the last 4 hours, we will not contact
it again (but that peer can still connect you since it may have changed its preference).

6.4. WIRE FORMAT

The preference and taste buddy lists of a client are exchanged via the overlay swarm (see Section 5.3),
using a new BUDDYCAST message. The payload of this message contains 50 recent entries from your
preference list, as well as the address information of your 10 most similar taste buddies and 10 random
peers from your Peer Cache.

The exact format of the BUDDYCAST message is as follows. Its message ID is 249 and its payload
consists of a bencoded dictionary with the following keys. All character string values are UTF-8
encoded.

‘connectable’ Whether I am directly reachable from the Internet (Boolean)

‘ndls’ My total number of downloads (integer)

‘nfiles’ Total number of torrents I collected (integer)

‘npeers’ Total number of peers discovered (integer)

‘name’ My name as a string.

‘ip’ My current IP address (string encoding, in dotted quad format).

‘port’ My listen port number (integer encoding).

‘preferences’ List of infohashes, one per preferred file (byte string). The minimum length of this list
is 0, the maximum length is 50.
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‘taste buddies’ A list of taste-buddy records. The minimum length of this list is 0, the maximum
length is 10. A taste-buddy record is a dictionary containing the following keys:

‘preferences’ List of infohashes, one per preferred file (byte string). The maximum length is
0 (i.e., unused, see below)

‘PermID’ Public key of the taste buddy (string encoding).

‘ip’ The last known IP address of the taste buddy (string encoding, in dotted quad format).

‘port’ The port number that the taste buddy is listening on (integer encoding).

‘similarity’ Similarity between me and this taste buddy as an integer, higher meaning more
similar.

‘connect time’ When I established a connection with this taste buddy as an integer.

‘oversion’ The overlay-protocol version (see Sec. 5.3 spoken by this taste buddy.

‘nfiles’ Number of torrent files this taste buddy has collected as an integer (used to select peers
to send remote keyword searches to).

‘random peers’ List of peer addresses. The minimum length of this list is 0, the maximum length is
10. A peer address is a dictionary with the following keys:

‘PermID’ Public key of the random peer (string encoding).

‘ip’ The last known IP address of the random peer (string encoding, in dotted quad format).

‘port’ The port number that the random peer is listening on (integer encoding).

‘similarity’ Similarity between me and this random peer as an integer, higher meaning more
similar.

‘connect time’ When I established a connection with this random peer as an integer.

‘oversion’ The overlay-protocol version (see Sec. 5.3 spoken by this random peer.

‘nfiles’ Number of torrent files this random peer has collected as an integer (used to select peers
to send remote keyword searches to).

‘collected torrents’ List of infohashes, one per recently collected file (byte string). The minimum
length of this list is 0, the maximum length is 50.

After receiving a BUDDYCAST message a peer must directly send its own message in reply, filled
with the peer’s own preferences and taste buddies. After sending the reply, the peer updates its Pref-
erence Cache and its Peer Cache. We do not yet take security into account and thus simply overwrite
existing entries if the age the obtained preference list is superior then any possible previous entry. If a
peer encounters unknown infohashes in the preference lists it may send a GET METADATA message to
obtain the metadata (i.e., the torrent file) of this new content, as described below.

To keep the overlay-swarm connections to taste buddies and random peers open, (see Figure 6.1)
an active peer may send KEEP ALIVE messages periodically. The message ID of a KEEP ALIVE mes-
sage is 240 and it has no body.
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6.4.1. History and Open Issues

The above specification describes the BUDDYCAST message as it is in version 6+7 of the overlay-
swarm protocol. Previous versions have the following changes:

v3 • Added ‘connectable’ field.

• Removed ‘age’ field from per taste-buddy/random-peer dict.

v4 • Added ‘collected torrents’ field.

• Added ‘similarity’ field to per taste-buddy/random-peer dict.

• Deprecated ‘preferences’ field in per taste-buddy/random-peer dict, now always empty.

v6 • Added ‘npeers’, ‘ndls’ and ‘nfiles’ field.

• Added ‘oversion’ field to per taste-buddy/random-peer dict.

• Added ‘nfiles’ field to per taste-buddy/random-peer dict.

In January 2009 we started working on a new version of BUDDYCAST that uses overlay-protocol
version 8, to be documented here later.

6.4.2. MetaDiscussion

• The ‘ip’ and ‘port’ fields are superfluous, a receiver should use the IP address and listen port
obtained during overlay-connection establishment (see Sec. 5.3).

• The protocol needs a security review. E.g. the ‘permid’, ‘ip’ and ‘port’ fields of taste buddies
and random peers should be secured by self-signing such that malicious peers cannot change
the contact info (ip+port) for those peers.

• The empty ‘preferences’ field in a per-taste-buddy dict is superfluous.

• The ‘name’ field is superfluous when BUDDYCAST is used in combination with the social
network SOCIAL OVERLAP message, see Sec. 9.2.1.

6.5. OBTAINING METADATA

After a preference exchange the GET METADATA message is used to obtain information on a unknown
infohash. The response is a METADATA message containing the torrent file for the given infohash.
Since this mechanism was added to Tribler in 2005, an official BitTorrent extension has been proposed
for obtaining the torrent file of a swarm. See [8].

The exact format of the GET METADATA message is as follows. Its message ID is 248 and its
payload consists of a bencoded infohash.

The exact format of the METADATA message is as follows. Its message ID is 247 and its payload
consists of a bencoded metadata record. A metadata record is a dictionary with the following keys:

‘torrent hash’ The infohash of the torrent (byte string)

‘metadata’ The torrent (byte string)

‘last check time’ Time of last check at the torrents tracker for how many peers are in the swarm,
UTC in seconds as integer.
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‘status’ String indicating the status of the checks:

‘good’ The tracker is responding.
‘dead’ The tracker has not responded on a number of tries.
‘unknown’ The tracker is flaky.

‘leecher’ Number of downloaders at last check.

‘seeder’ Number of seeders at last check.

The check fields were added in version 4 of the overlay-swarm protocol.

6.5.1. MetaDiscussion

There is no need to bencode infohash in the GET METADATA message payload.

6.6. FUTURE SECURITY

As part of our research into security for epidemic protocols we are looking into Socially-Inspired
Reputations (SIR). The challenge of security is to identify malicious peers, to prevent DoS attacks,
and to prevent information poisoning. SIR presumes that distributed reputation systems must be
inspired by human mechanisms to judge believability of gossip. Our vehicle for demonstrating SIR
is a new epidemic protocol called BarterCast that continously spreads information about the positive
behavior of peers.

BarterCast uses the connections established by the peer-selection algorithm of BuddyCast to ex-
change information on positive actions of other peers. By storing all this “gossip” in the Tribler
MegaCache, each peer can use the opinion of others to estimate trustworthiness levels. In BarterCast
we gossip on the donation of upload bandwidth. Each peer keeps track of which peers have given
him the most bandwidth and uses this to form an outgoing BARTERCAST message. This message
contains a complete barter record, with both the number of uploaded and of downloaded MBytes, for
10 peers. Consequently, every four hour BuddyCast cycle a peer tries to receive fresh information on
barter activities from 960 gossipers. A BARTERCAST message is a single message and is exchanged
after a BUDDYCAST message.

6.6.1. Wire Format

A BARTERCAST message has message ID 236 and its payload consists of a bencoded dictionary with
the following fields:

‘totals’ A tuple containing the total amount of data uploaded by me and the total amount of data
downloaded by me, respectively. Both are integers indicating kibibytes.

‘data’ A dictionary mapping a peer’s PermID to a barter record. A barter record is a dictionary with
two keys:

‘u’ The amount of data I uploaded to this peer (integers indicating kibibytes).
‘d’ The amount of data I downloaded from this peer (integers indicating kibibytes).

6.6.2. MetaDiscussion

As the BARTERCAST info is not yet used for building reputations the feature is as yet incomplete.
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Chapter 7

Remote Search

7.1. INTRODUCTION

The BuddyCast protocol establishes connections between a user and its taste buddies, see Sec. 6.2.
Initially, these connections were established to allow meaningful recommendation of new content to
users following the principle of collaborative filtering. This principle says that if two people, A and B,
have a similar taste in content, then any new content that A downloads is also likely to be appealing to
B and vice versa. At the moment, taste buddies periodically exchange information about new content
which then results in a list of recommended items for the user. As a next step we now use these
connections to taste buddies to implement an efficient search mechanism for content. If a user wants
to watch some new content that he heard about, but it is not on his list of recommended items yet, he
can now do an explicit search of the databases of his taste buddies to see if they have already found
this content. This mechanism, known as semantic-overlay search, has been shown to yield high hit
rates [16].

7.2. PROTOCOL

The remote search mechanism queries the megacaches of the peers you are currently connected to (as
a result of the BuddyCast protocol). To query a peer’s database, the client sends an overlay-swarm
QUERY message to the peer, containing a query ID and a query specification. The receiving peer
checks if the sender has not exceeded the quota for QUERY messages. For senders who are marked as
friends by the receiver’s user, the quota is unlimited. For unknown senders there is a 100 query quota.
If the quota has not been exceeded, the receiver parses the query and executes it on its megacache. The
results are then sent back in an overlay-swarm QUERY REPLY message that carries the same query ID
and a set of answers. At the moment, queries are limited to simple keyword searches in the receiver’s
torrent database, but it can be extended to full-fledged SQL-like queries in the future.

When the query results come in, they are displayed to the user. When the user decides to download
one of the found torrents, the user clicks on the result, and its client then sends a GET METADATA
message to the peer that returned the result. The peer, if still online, will then return the desired
.torrent file in a METADATA message. This is the same mechanism for obtaining a torrent file from a
peer as used in the Cooperative Download feature, see Sec. 8.1.
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7.3. WIRE FORMAT

A QUERY message has message ID 238 and its body consists of a bencoded dictionary with the
following fields:

‘id’ A 20-byte random query ID.

‘q’ A string which consists of the fixed word SIMPLE followed by a space and a number of space-
separated keywords.

A QUERY REPLY message has message ID 237 and its body consists of a bencoded dictionary
with the following fields:

‘id’ A 20-byte random query ID.

‘a’ A dictionary containing the query results.

For the current simple queries the ‘a’ dictionary is a map from torrent IDs (infohashes) to torrent
records. A torrent record is itself a dictionary with the following keys:

‘content name’ The ‘name’ field of the torrent as string.

‘length’ The total size of the content in the torrent as 4-byte integer

‘leecher’ The current number of downloaders as 4-byte integer.

‘seeder’ The current number of uploaders as 4-byte integer.

‘category’ A list of strings denoting the categories this torrent was classified into.
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Chapter 8

Cooperative Downloading

8.1. INTRODUCTION

When there are few seeders in BitTorrent, your download speed is equal to your upload speed. As
most people have an asymmetrical network connection with a maximum download speed that is larger
than the upload speed, the downlink is often not fully exploited. If you have a group of friends whose
connections are idle, they can be used to fill the downlink. For example, the friends can each download
a piece of the file that you not yet have using standard BitTorrent. Once the piece is received, they then
send it to you over your underutilized downlink without expecting any data in return. So by doing
barter-free downloads with your friends you can utilize your asymmetric network link to its fullest.

8.2. PROTOCOL

Peers from a social group that decide to participate in a cooperative download take one of two roles:
they are either coordinators or helpers. A coordinator is the peer that is interested in obtaining a
complete copy of a particular file, and a helper is a peer that is recruited by a coordinator to assist
in downloading that file. Both coordinator and helpers start downloading the file using the classical
BitTorrent tit-for-tat and cooperative download extensions. Before downloading, a helper asks the
coordinator what piece it should download. After downloading a file piece, the helper sends the piece
to the coordinator without requesting anything in return. In addition to receiving file pieces from its
helpers, the coordinator also optimizes its download performance by dynamically selecting the best
available data source from the set of helpers and other peers in the BitTorrent network. Helpers give
priority to coordinator requests and are therefore preferred as data sources.

The Protocol in Detail

To invoke the help of a friend, the coordinator opens an overlay-swarm connection (see Section 5.3)
to the helper and sends a DOWNLOAD HELP request. When the DOWNLOAD HELP message is re-
ceived, and the helper is willing to help, it obtains the torrent file to use from the coordinator using
a GET METADATA message. After receiving the corresponding METADATA message, the helper estab-
lishes two connections with the coordinator: a control connection and a data-exchange connection.

The control connection is used by the helper for claiming pieces at the coordinator. Control
connections are blocking; the helper can block waiting for the response from the coordinator. Only the
control messages RESERVE PIECES and PIECES RESERVED are sent over the control connections.
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The pieces of the file the helper downloaded on behalf of the coordinator are transferred over the data-
exchange connection. The control connection was introduced to make sure the helper immediately
knows whether a particular piece was claimed elsewhere or not.

Whenever helper H wants to download a piece P, H first contacts the coordinator and tries to
reserve (claim) P using a RESERVE PIECE message. If P was not claimed by anybody else, the
coordinator sends a PIECE RESERVED message in return, and H, in turn, sends requests for piece P
to the offering peer in the swarm. Otherwise, H checks its download bandwidth utilization. If the
amount of unused download bandwidth is above a certain threshold, H requests P (although P was
claimed by some other helper).

In order to decrease the number of messages exchanged between the coordinator and its helpers,
the coordinator from time to time appends a list of all pieces that have been already claimed by others
to the PIECE RESERVED reply to a helper. This optimization greatly improves the performance in the
later stages of the download when most of the pieces have already been claimed, and only a few still
have to be downloaded. With this list, the helper can then determine locally which pieces have been
already obtained without asking coordinator for the status of each piece separately.

The coordinator decides to download a missing piece from either one of its helpers or any other
peer in the swarm using the standard BT peer selection mechanism. A helper which is getting a
REQUEST message for a piece from the coordinator puts this request in front of its sending queue,
consequently giving them the highest priority. The connections between helper and coordinator are
never choked.

8.3. WIRE FORMAT

The control connection is an overlay-swarm connection, see Sec.5.3. The data-exchange connection
is a regular BT connection for the torrent in question.

The DOWNLOAD HELP message has message ID 246 and its body consists of the infohash of the
torrent to help with.

The STOP DOWNLOAD HELP message has message ID 245 and its body consists of the infohash
of the torrent to stop helping with.

The RESERVE PIECES message has message ID 242 and is a concatenation of a 20-byte infohash,
a 1-byte all-or-nothing field, and a bencoded list of piece numbers (integer encoding). The all-or-
nothing field has value 0x1 if the helper wants a reservation for all given pieces, but if that is not
possible wants no reservation of pieces at all. A value of 0x0 indicates that the helper is willing to
accept a partial reservation.

The PIECES RESERVED message has message ID 241 and is a concatenation of a 20-byte info-
hash, and a bencoded list of piece numbers (integer encoding). Piece numbers may be positive or
negative. In the latter case they represent pieces that have already been reserved by others.

8.3.1. MetaDiscussion

We should overhaul to protocol to be more in-line with other messages, i.e., use a bencoded dictionary
with keys as payload instead of concatenation.
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Chapter 9

Social Networking

9.1. INTRODUCTION

The social networking features of Tribler consist of a message for exchanging nickname and avatar
pictures and a mechanism for friendship establishment that does not require the two parties involved to
be online at the same time. It also does not require a central component to achieve this asynchronicity.

9.2. NICKNAME AND PICTURE EXCHANGE

In the text we will use the terms public name and picture. A user’s public name is the name chosen
by the user by which he will be publicly known. As it is chosen by the user, it is not necessarily
system-wide unique. A user’s public picture is a picture chosen by the user that will be shown to other
users.

9.2.1. Wire Format

This feature is implemented by extending the overlay-swarm protocol with one message. After iden-
tification via the challenge/response protocol, if the peer A does not know peer B, the peer with
the lexicographically smallest PermID sends a SOCIAL OVERLAP message. A may also send a SO-
CIAL OVERLAP message to peer B it has met before, but a long time ago, so they both get a up-to-date
view of each other’s info.

A SOCIAL OVERLAP message has message ID 239 and consists of a dictionary with the following
keys:

‘persinfo’ A dictionary containing the personal information about the peer.

A persinfo dictionary has the following keys:

‘name’ Public name of the peer (string encoding)

‘icondata’ Public picture of the peer (string encoding)

‘icontype’ The MIME type of the public picture
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9.3. FRIENDSHIP MAKING

To facilitate the creation of social networks we designed a protocol for friendship establishment that
does not require the two parties involved to be online at the same time. It also does not require a
central component to achieve this asynchronicity.

The basic friendship making protocol is a simple request-reply protocol. A peer A wanting to
become friends with peer B sends him a FRIENDSHIP message with message type ’REQ’. When peer
B is online and receives this request this is somehow signaled to the user of B. If the user responds to
the request, peer B returns a FRIENDSHIP message with a message type ’RESP’ conveying the user’s
positive or negative response.

The special feature of this friendship protocol is its support for offline peers. If B is offline at
the time of the friendship request by A, A will (after a retry) delegate the forwarding of the message
to its fellow peers. This also holds for peer B sending a friendship response when A is down. In
particular, a client will ask a mix of friends and online taste buddies in a ratio of 70% friends (if
he has them) and 30% taste buddies, where taste buddies are a concept in BuddyCast that denote
people that have similar taste in content. The client sends each helper a FRIENDSHIP message of type
‘FWD’ containing the contact info for the destination peer and the message body of the REQ or RESP
message to forward. The original client and its helpers will attempt to contact the destination for a
certain period of time, after which the message is discarded. Forwarded messages are not forwarded
to others when the final destination peer remains offline.

9.3.1. Wire format

A FRIENDSHIP overlay-protocol message has message ID 234 and its body consists of a bencoded
dictionary with a single common field:

‘msg type’ A variable-length string, currently ‘REQ’, ‘RESP’ or ‘FWD’.

When the message type is ‘REQ’ there are no other fields. When the message type is ‘RESP’ it
contains a single field:

‘response’ Whether the request from the peer was approved or denied encoded as a 1 or 0 integer
value.

The ‘FWD’ message has three extra fields:

‘source’ Contact info of the original source of the message.

‘dest’ Contact info of the final destination of the message.

‘msg’ Dictionary with the body of the forwarded message.

Contact information itself, in turn, is a dictionary containing three fields:

‘permid’ The binary PermID of the peer.

‘ip’ The IP address of the peer as a string in dotted notation.

‘port’ The port of the peer as an integer.
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Chapter 10

NAT/Firewall Detection and Traversal

10.1. INTRODUCTION

With the increasing shortage of IP-address space and rising security concerns, more and more users
will access the Internet from behind a Network-Address Translator (NAT) or firewall. We have de-
signed a mechanism for a client to detect if it is behind a firewall. In addition, we added a platform-
independent implementation of the Universal Play and Play (UPnP) protocol (Internet Gateway De-
vice) for remotely configuring firewalls (http://www.upnp.org/). As another step towards full support for
dealing with NATs we have implemented detection for which type of NAT is being used (as opposed
to detecting just the presence of a NAT).

10.2. EXTERNAL ADDRESS DISCOVERY

Many of the clients run on a machine with or behind a firewall or Network Address Translator (NAT).
This poses several problems:

1. Unless the Tribler listening port (7762 by default) is opened on the firewall, other peers cannot
connect to it.

2. The Tribler client can no longer obtain the IP address via which it is reachable on the Internet
from the operating system. As a result, it is not able to provide this address to others.

To solve these problems we have extended Tribler with a facility for detecting a firewall, and
discovering a client’s external IP address. In particular, we added two messages to the overlay-swarm
protocol called the dialback messages. These messages are used as follows. At client startup, 7 peers
are selected from the database of encountered peers. This database is initially filled with the addresses
of the 8 Tribler superpeers. The client attempts to send a DIALBACK REQUEST to each of the 7 peers
using the overlay swarm.

When a peer B receives a DIALBACK REQUEST it closes the existing overlay-swarm connection.
It then tries to connect back to the initiating peer A. In particular, it will try to connect back to the
IP address X that initiated the previous connection and the listen port that peer A specified in the Bit-
Torrent handshake message (see Sec. 5.3). If the connection succeeds, B sends an DIALBACK REPLY
message containing the IP address X it used to connect. Peer B thus informs the initiating client A that
(1) the client is reachable from the Internet and (2) what its external IP address is (which is X).

To protect against malicious peers, the client will record the external IP addresses returned by the
7 peers and select the address the majority agrees on as being its real address. If there was no majority
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either because not enough peers replied or they disagreed, the client start the process over again with
7 other peers after 30 seconds. The client will retry 5 times, so contact at most 35 peers.

In order to improve reachability of peers the client warns the user. The user interface clearly
indicates when Tribler is not reachable and that port forwarding should be turned on its firewall for
full performance.

10.2.1. Wire Format

A DIALBACK REQUEST message has message ID 244 and has no body.
A DIALBACK REPLY message has message ID 243 and its body consists of a bencoded IP address

in dotted string notation.

10.2.2. MetaDiscussion

No need to bencode the DIALBACK REPLY message payload. There is now an official BT proposal to
let the tracker return the external IP address of a client, see [7]. Also the EXTEND protocol handshake
defines a ‘yourip’ field, see [13].

10.3. DETECTION OF NETWORK ADDRESS TRANSLATOR (NAT) TYPE

The NAT-detection functionality performs a simple check of the NAT/firewall type. In addition, it tests
the duration of a given mapping from (internal address, internal port) to (external address, external
port) in the NAT/firewall when not used for a while. In other words, when does a mapping in a
NAT/firewall expires if there is no communication going through. This value is referred to as the
NAT timeout. The NAT type check is done using a simplified version of the STUN protocol [14] and
requires the assistance of several STUN servers, while the timeout check requires the assistance of a
timeout server. The NAT-type detection can be activated remotely via the Remote Monitoring facility
described below, and is used to measure the network connectivity of the average peer.

10.3.1. Type Detection

The NAT/firewall type detection process is depicted in Figure 10.1. The process is performed using the
STUN algorithm, and therefore it requires the peer to know the addresses of at least 2 STUN servers.
When performing the Test I, the peer sends a ping1 message to a STUN server. Upon receiving such
a request, the server replies sending back a message containing the IP address and port it received the
request at. Test I is used to understand whether a peer has a public IP address. If Test I is repeated
using two different STUN servers (different addresses), the peer can also understand whether the NAT
is allocating for it the same port in both communications. Test II and Test III are needed to check the
filtering characteristics of a NAT/firewall. More specifically, when a peer is running Test II, it sends
a ping2 message to a STUN server. The server then delegates another STUN server (residing on a
machine with a different IP address) to send a reply back to the peer from which the request was
originated. During Test III, instead, the peer sends a ping3 message to a STUN server, that replies
from a different socket (bound on a different port). All the replies the STUN servers send to the
requesting peers are in the format ipaddress:port.
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10.3.2. Timeout Detection

The NAT timeout detection is based on a very simple algorithm. The peer sends messages in the
format ping:< delay > to the timeout server, meaning that it expects the server to reply after delay
seconds. More specifically, the peer opens a new socket for each delay value in {25, 35, 55, 85, 115,
145} and assumes as NAT timeout the largest delay value for which it receives a reply from the server.
The server’s response is in the format pong:< delay >.
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Figure 10.1: The process for detecting the NAT type used.
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Chapter 11

Remote Monitoring

11.1. INTRODUCTION

To measure the behaviour of the system the client a generic crawler architecture was added. It allows
monitoring of the system from different hosts to gain a broader picture. Its primary purpose is to
let researchers to measure different aspects of the system, but can also be used for general health
monitoring and statistics gathering.

Remote monitoring is performed by Crawler processes. Crawler processes send Crawler-request
messages to peers they find through BuddyCast (i.e, a pull-based mechanism). A Crawler can request
specific statistics or, for instance, request a NAT-type detection (see Sec 10.3.1). A Crawler request is
only accepted when it is sent by an authorized Crawler. An authorized Crawler is a crawler that has
authenticated itself via the overlay protocol and whose public key appears in the a specific text file
present on all clients..

11.2. PROTOCOL

The basic Crawler protocol is a simple request-reply protocol. Administrators or researchers wishing
to extend it for a particular monitoring tasks by defining an additional message subtype. Currently we
have four subtypes:

CRAWLER DATABASE QUERY For free-form queries on the Tribler Megacache.

CRAWLER NATCHECK For requesting NAT-type detection.

CRAWLER SEEDINGSTATS QUERY For queries about seeding behaviour.

CRAWLER FRIENDSHIP STATS For queries about friendship making behaviour.

The protocol in addition has support for returning large amounts of statistics via a channel mech-
anism that correlates parts of the same reply, and some protection against too many crawling requests.

11.3. WIRE FORMAT

Crawler messages are sent via the overlay protocol and have message ID 232 (CRAWLER REQUEST)
and 231 (CRAWLER REPLY). They have a common prefix consisting of a fixed number of bytes:

1. 1 byte message subtype
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2. 1 byte channel identifier (for returning large replies)

A CRAWLER REQUEST in addition has two extra elements following the prefix:

3. 2 byte Crawl frequency in network-byte order

4. n byte request payload

A CRAWLER REQUEST in addition has two extra elements following the prefix:

3. 1 byte giving number of parts left

4. 1 byte indicating success (0) or failure (non 0)

5. n bytes reply payload
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