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Abstract

The pattern embossed on the back of an oriental magic mirror appears in the
patch of light projected onto a screen from its apparently featureless reflecting
surface. In reality, the embossed pattern is reproduced in low relief on the
front, and analysis shows that the projected image results from pre-focal ray
deviation. In this interesting regime of geometrical optics, the image intensity
is given simply by the Laplacian of the height function of the relief. For
patterns consisting of steps, this predicts a characteristic effect, confirmed by
observation: the image of each step exhibits a bright line on the low side and a
dark line on the high side. Laplacian-image analysis of a magic-mirror image
indicates that steps on the reflecting surface are about 400 nm high and laterally
smoothed by about 0.5 mm.

1. Introduction

Cast and polished bronze mirrors, made in China and Japan for several thousand years, exhibit a
curious property [1-4], long regarded as magical. A pattern embossed on the back (figure 1(b))
is visible in the patch of light projected onto a screen from the reflecting face (figure 2), when
this is illuminated by a small source, even though no trace of the pattern can be discerned
by direct visual inspection of the reflecting face (figure 1(a)). The pattern on the screen
is not the result of the focusing responsible for conventional image formation, because its
sharpness is independent of distance, and also because the magic mirrors are slightly convex.
It was established long ago [2] that the effect results from the deviation of rays by weak
undulations on the reflecting surface, introduced during the manufacturing process and too
weak to see directly, that reproduce the much stronger relief embossed on the back. Such
‘Makyoh imaging’ (from the Japanese for ‘wonder mirror’) has been applied to detect small
asperities on nominally flat semiconductor surfaces [5—8].

My aim here is to draw attention (section 2) to a simple and beautiful fact, central to
the optics of magic mirrors, that has not been emphasized—either in the qualitative accounts
[9-11] or in an extensive geometrical-optics analysis [12]: in the optical regime relevant to
magic mirrors, the image intensity is given, in terms of the height function A(r) of the relief
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Figure 1. (a) Convex reflecting face of magic mirror, (b) pattern embossed on back face of magic
mirror. These and subsequent images were photographed with a Fuji 610F digital camera, and
saved as jpeg files, the only manipulation being conversion from RGB to greyscale.
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Figure 2. Magnified magic-mirror image reflected onto a screen by the illuminated front face.

on the reflecting surface, by the Laplacian V2h(r) (here r denotes position in the mirror plane:
r = {x,y}). The Laplacian image predicts striking effects for patterns, such as those on
magic mirrors, that consist of steps (section 3); these predictions are supported by experiment
(section 4). The detailed study of reflection from steps throws up an unresolved problem
(section 5) concerning the relation between the pattern embossed on the back and the relief on
the reflecting surface.

The Laplacian image is an approximation to geometrical optics, which is itself an
approximation to physical optics. The appendix contains a discussion of the Laplacian image
starting from the wave integral representing Fresnel diffraction from the mirror surface.

2. Geometrical optics and the Laplacian image

If we measure the height 4(r") from the convex surface of the mirror (figure 3), assumed to
have radius of curvature R, then the deviation of the surface undulations from a reference
plane (figure 3) is

12

/N _r_ /
n(r) = 3Ry +h(r). ey



Oriental magic mirrors and the Laplacian image 111

Figure 3. Geometry and coordinates for formation of magic-mirror image. For clarity, the surface
elevation i(r") (measured from the convex surface with radius of curvature Ry) is exaggerated; in
reality, the surface radii of curvature can be comparable with or smaller than Ry, so the mirror’s
undulating surface can be entirely convex.

The specularly reflected rays of geometrical optics are determined by the stationary value(s) of
the optical path length L from the source (distance H from the reference plane) to the position
R on the screen (distance D from the reference plane) via the point r’ on the mirror. This is

L=v(H—-n@))2+r2+/(D—n)*+R—r)?
~H+D+A{,R), 2

where in the second line we have employed the paraxial approximation (all ray angles small),
with

AR = BRI e 3)
r',R)= —+———+— —2h(r).
2H' 2D R

In applying the stationarity condition
Ve A, R) =0, “4)

it is convenient to define the magnification M, the reduced distance Z, and the demagnified
observation position r referred to the mirror surface:

D 2D 2D
M=1+—+—, Z=—, r (®)]
H Ry M
We note an effect of the convexity that will be important later: as the source and screen distance
increase, Z approaches the finite asymptotic value Ry.
With these variables, the position r'(r,Z), on the mirror, of rays reaching the screen

position r, is the solution of
r=r — ZVh(r). (6)

The focusing and defocusing responsible for the varying light intensity at r involves the
Jacobian determinant of the transformation from r’ to r, giving, after a short calculation,

<|w

ax’ ay’  dy’ ax’

-1
_ (1= zvtney « 22 (2RO 2RE) (BN -
- 9x"? 3y/2 dx'0y’ ’

r'—r'(r,Z)

dx dy dx dy -1
Igeom(r, Z) =constant X { — — — — —
r'—r'(r,Z)




112 MV Berry

Figure 4. (a) Tracing of relief on the back of the mirror, with step heights shaded according
to elevation (lowest black, highest white); (b) Laplacian image of (a), smoothed by / = 0.5 mm
according to equations (10), (12) and (13).

where the result has been normalized to /yeom = 1 for the convex mirror without surface relief
(i.e. h(r) = 0).

So far, this is standard geometrical optics [12]. In general, more than one ray can reach
r—that is, (6) can have several solutions r'—and the boundaries of regions reached by different
numbers of rays are caustics [13, 14]. In magic mirrors, however, we are concerned with a
limiting regime satisfying

<1, 3
Rmin

where R, is the smallest radius of curvature of the surface irregularities. Then there is only

one ray, (6) simplifies to

r ~r, &)
and the intensity simplifies to
Iaptacian (¥, Z) = 1+ ZV2h(r). (10)

This is the Laplacian image. Changing Z affects only the contrast of the image and not
its form, so (10) explains why the sharpness of the image is independent of screen position,
provided (8) holds. The intensity is a linear function of the surface irregularities /4, which
is not the case in general geometrical optics (i.e. when (8) is violated), where, as has been
emphasized [12] the relation (7) is nonlinear. And, as already noted, for a distant source and
screen Z approaches the value Ry, implying that (8) holds for any distance of the screen if
Ry < R, that is, provided the irregularities are sufficiently gentle or the mirror is sufficiently
convex. Alternatively stated, the convexity of the mirror can compensate any concavity of the
irregularity /, in which case there are no caustics for any screen position.

3. Laplacian images of steps

The relief Ap,cx on the back of magic mirrors commonly consists of a pattern of steps (/pack,
like A, is measured outwards from the mid-plane of the mirror, so increasing step heights on
both the front and back correspond to increasing 4 and hy,c). Figure 4(a) shows a tracing
of the pattern of figure 1(b), with step heights shaded according to elevation. It seems that
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during the manufacturing process this is reproduced on the reflecting surface, with the steps
greatly diminished—by a factor a, say—and slightly smoothed—by a distance /, say—so that,
modelling the smoothing as Gaussian,

/ _ a 2. / (l‘// B r/)z
h(r,l)—m//dr hback(r)eXP{—T . (11
Then the Laplacian image can be implemented with the transformation
V) = [ [ & bR @ 1), (12)
where the kernel is
/" N a /" /N2 2 (l'// - r/)z
K(r —r)_m[(r —-r) —21]exp{—T . (13)

(In image processing, this transformation is commonly employed for edge detection [15-17].)

It is easy to implement the Laplacian image (10) using the transformation (12) and (13).
In Mathematica™, for example [18], this involves essentially only three lines of code: one
to import the image as a list, one to define the kernel K, and one to define the convolution.
Figure 4(b) shows a magic-mirror image simulated in this way; it should be compared with
the observation in figure 2. The essential features of the image, correctly reproduced by the
theory, are associated with the steps: each step on the back appears in the image as a bright
line on the low side, where the concavity of 4 leads to a concentration of rays, and a dark line
on the high side, where the convexity of / leads to a depletion of rays.

To examine the image in more detail, we model the /-smoothed step, with height 4, by

h(x) = h—zoerf ()l—c) = % ;

and introduce the dimensionless position and distance variables

x/1
dr exp(—12) (14)

= X _ g (15)
Swr ST 5w
Then the exact ray equation (6) becomes
e i _ 2 ’
£=¢ ﬁeXp( £9) =8¢0, (16)
and the geometrical intensity is
Igeom (€. §) = [1+2‘;—E’exp{—s’(e ;)2}}1. a7
geom\S » ﬁ s
The Laplacian image (10) is simply
258
TLaplacian (8, §) = 1 — N exp{—&7}. (18)

4. Experiment

Equation (18) is the prediction of the Laplacian theory for the image of a smoothed step. To
compare it with observation, we first extract a part of the image (figure 2), corresponding to a
prominent step; this is shown in figure 5(a). Next, we reduce the noise by smoothing along
the step (figure 5(b)). The intensity profile of the image is the full curve in figure 6.
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Figure 5. (a) Magnification of part of left-hand vertical step near the centre of magic-mirror image
in figure 2; (b) as (a), after averaging along the step. The length scales denote distances on the
mirror surface, not the image.
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Figure 6. Full curve: intensity across the step in figure 5(b) (arbitrary units); dashed curve:
Laplacian-image fit from equation (18), with a straight line of finite slope replacing the constant
term; dotted curve: full geometrical-optics fit, incorporating the ray displacement (16) and
intensity (17).

Measurements on the curve give the intensity contrast as

Coxp = 2Umax = Imin) _ 0.467. (19)
(Imax + Imin)

Comparison with the theoretical contrast from the extrema of (18) (at & = +1/4/ 2), namely

[ 2
Ctheory = 2( %, (20

leads to the identification { = 0.482.

In the experiment, the source (a halogen lamp) and screen were at the same distance from
the mirror, also chosen to coincide with Ry: D = H = Ry = 800 mm. Thus, from (5), and
also as observed (cf the scale in figure 2), the magnification is M = 4, leading to Z = H/2 =
400 mm. Fitting the observed step profile to (18) (dashed curve in figure 6), gives the step
width / = 0.560 mm. The relation (15) now gives the step height /iy = ¢/?>/Z = 378 nm. This
value is substantially less than the wavelengths of visible light, so it is not surprising that the
steps cannot be seen directly.
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The Laplacian-image fit in figure 6 is good, but fails to incorporate a slight asymmetry
between the two sides of the step: on the bright side, the intensity rises higher above the mean
than it falls below the mean on the dark side. To understand this, we investigate the degree to
which the condition (8) is satisfied. In the dimensionless variables (15), (8) corresponds to

<= /?:2.067... 21)

The value ¢ = 0.482 derived from observation is substantially smaller than ¢ *—well within the
no-caustic regime that we have identified as corresponding to magic mirror imaging. However,
fitting with the full geometrical-optics theory (16) and (17) (dotted curve in figure 6) gives
a small correction that reduces the discrepancy by introducing an asymmetry in the correct
sense. (The asymmetry between the bright and dark sides of the step increases with ¢ until ¢ =
¢* where the caustic is born.)

5. Concluding remarks

The theory based on the Laplacian image accords well with observation, at least for the mirror
studied here. The key insight is that the image of a step is neither a dark line nor a bright line,
as sometimes reported [11], but is bright on one side and dark on the other. It is possible that
there are different types of magic mirror, where for example the relief is etched directly onto
the reflecting surface and protected by a transparent film [11], but these do not seem to be
common. Sometimes, the pattern reflected onto a screen is different from that on the back, but
this is probably a trick, achieved by attaching a second layer of bronze, differently embossed,
to the back of the mirror.

Pre-focal ray concentrations leading to Laplacian images are familiar in other contexts,
though they are not always recognized as such. An example based on refraction occurs in
old windows, where a combination of age and poor manufacture has distorted the glass. The
distortion is not evident in views seen through the window when standing close to it. However,
when woken by the low morning sun shining through a gap in the curtains onto an opposite
wall, one often sees the distortions magnified as a pattern of irregular bright and dark lines. If
the equivalent of (8) is satisfied, that is if the distortions and propagation distance are not too
large, the intensity is the Laplacian image of the window surface. (When the condition is not
satisfied, the distortions can generate caustics.)

Only the optics of the mirror has been studied here. The manner in which the pattern
embossed on the back gets reproduced on the front has not been considered. Referring to (11),
this involves the sign of the coefficient a in the relation between /. and . There have been
several speculations about the formation of the relief. One is that the relief is generated while
the mirror is cooling, by unequal contraction of the thick and thin parts of the pattern [10]; it
is not clear what sign of a this leads to. Another [4] is that cooling generates stresses, and that
during vigorous grinding and polishing the thin parts yield more than the thick parts, leading
to the thick parts being worn down more; this leads to a < 0. However, this seems to contradict
the observations, which point firmly to @ > 0: bright (dark) lines on the image, indicating low
(high) sides of the steps on the reflecting face, are associated with the low (high) sides of the
steps on the back (figure 7(a)), not the reverse (figure 7(b)). This suggests two avenues for
further research. First, the sign of @ should be determined by direct measurement of the profile
of the reflecting surface; I predict a > 0. Second, whatever the result, the mechanism should
be investigated by which the process of manufacture reproduces onto the reflecting surface the
pattern on the back.
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(a)
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Figure 7. (a) Relief % of the reflecting surface with the same sign as the relief /ip,cx embossed on
the back, i.e. @ > 0 in (11); this is the sign supported by observation. (b) As (a), but with a < 0,
suggested by the stress-release theory but not by observation.
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Appendix. Diffraction

For magic mirrors, the Laplacian-image intensity (10) is a good approximation to the full
geometrical-optics theory (7). How accurate is geometrical optics as an approximation to
physical (wave) optics? To investigate this, we represent the reflected light wave i, with
wavenumber k£ = 2mr/A for light of wavelength A, as a Fresnel (paraxial) diffraction integral.
From the optical path length (3), and in terms of the variables (5), the integral, normalized to
unity when A(r) = 0, is

W, Z) = —i% / dr’ exp{ik[(¥' — 1)%/Z — 2h(F)]}. (A.1)

Geometrical optics emerges in the familiar way, as the large k& asymptotic approximation
obtained by the stationary-phase method [19], which selects the rays (6) corresponding to the
values of 1’ that contribute coherently to the integral.

To investigate the quality of the approximation, we integrate (A.1) numerically, with the
profile (14) corresponding to a single step. With the dimensionless variables (15), and

Kk = khy, (A.2)
(A.1) becomes, in terms of the variable T = &§'—£,
_ L e
VE k) = W / dr explile? — kerf(E +Ty/Z/01.  (A3)

The integral converges fast enough for convenient numerical evaluation if the contour is
deformed into a complex path with T = ¢ exp(in/8) (—00 < o < +00). Choosing ¢ = 0.482
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Figure 8. (a) Comparison of wave intensity I = ||?, computed from (A.3) (full curve) with the
geometrical-optics intensity (17) (dashed curve), for the empirical values ¢ = 0.482, k = 3.65.
(b) As (a), with k = 0.05, corresponding to a step height 4o = 5.2 nm, and with the wave intensity
computed from (A.4) (indistinguishable from (A.3) for this case).

(section 4), and representing visible light by wavelength A = 650 nm, so that (A.2) and the
height hyp = 378 nm give x = 3.65, we obtain the image shown in figure 8(a). Evidently
geometrical optics is an excellent approximation.

The fact that iy = 378 nm is smaller than the wavelengths in visible light does not
imply that the Laplacian image is the small-x limit of (A.3), namely the perturbation limit
corresponding to infinitely weak relief. Indeed it is not: the perturbation limit, obtained by
expanding the exponential in (A.3) and evaluating the integral over t, with a renormalized
denominator to incorporate the known limit / = 1 for £ = £o0, is

—ixerf(§//1+1¢/k)

For the gentlest steps, this predicts low-contrast oscillatory images, very different from the
Laplacian images of geometrical optics; this is illustrated in figure 8(b), calculated for k =
0.05, corresponding to /g = 5.2 nm.

1
wperl(és ;-’ K) = (A4)
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