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Abstract. The AGM theory of belief contraction is extended to multiple contraction, i.e. to 
contraction by a set of sentences rather than by a single sentence. There are two major variants: 
In package contraction all the sentences must be removed from the belief set, whereas in 
choice contraction it is sufficient that at least one of them is removed. Constructions of both 
types of multiple contraction are offered and axiomatically characterized. Neither package nor 
choice contraction can in general be reduced to contractions by single sentences; in the finite 
case choice contraction allows for reduction. 
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1. BACKGROUND 

This paper contains a substantive generalisation and extension of the logic of 
theory (or belief) change as developed by Carlos Alchourr6n, Peter G~irden- 
fors, and David Makinson (henceforth AGM). Though from a technical point 
of view the present paper is self-contained, we have primarily in mind a 
reader who is acquainted with the key ideas and results of the AGM theory, 
as described e.g. in AGM (1985). The present paper is concerned with the 
theory of  contractions; a sequel will treat revisions. 

A change operation in the sense of  AGM operates on a theory, say T, and 
a sentence, say ce, to deliver a new, changed, theory, T I, where the change 
from T to T / is constrained by the sentence ~. In the AGM theory three types 
of changes - i.e. three ways of constraining the transition from T to T I - are 
considered: 

- expansions:  we just add o~ to T and close under logical consequence; 
- contract ions:  we remove o~ from T, trying to save as much of T as we 

can;  

- revisions: we add o~ to T while trying to maintain (or create) consistency. 
Clearly, expansions are easily definable: they pose no problem. It is wide- 

ly agreed that revisions can be reduced to contractions and expansions: first 
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contract T so as to open up for the consistent addition of c~, i.e. retract ~c~, 
then expand by c~. Thus, the AGM theory focusses on the task of charac- 
terising suitable contraction operations. This task may be accomplished in 
two different ways. First, we may give recipes or algorithms for construct- 
ing a contracted theory T - c~ from any theory T and sentence c~. Second, 
contractions may be characterised more indirectly by laying down a number 
of conditions each reasonable contraction operation should obey. In AGM 
(1985) and subsequent writings both paths have been taken and suitable 
representation results have been proven. 

The plan of this paper is as follows. In the next two sections we shall 
argue informally that a theory of multiple contractions is a new and useful 
tool for analysing changes of theories or belief sets. In Section 4 we introduce 
some terminology and notation and reproduce, for the reader's convenience, 
the AGM postulates for contractions. For motivations of these postulates the 
reader is referred to Makinson (1985) or G~irdenfors (1988). In Section 5 we 
observe a fundamental distinction between two kinds of multiple contraction 
operations. These operations will then be studied by way of suitable postulates 
(Sections 5 to 7) and by looking at models of multiple contractions (Sections 8 
to 11). In Section 12 we briefly return to the topic of possible reductions 
of multiple to singleton contractions. We close with a section on possible 
applications and future developments. 

2. DELINEATING THE TOPIC 

The AGM theory of belief change exhibits a curious asymmetry in the argu- 
ments that a change operation may take. A change operation in the sense 
of AGM (a contraction, expansion, or revision) may be seen as a binary 
operation that takes two sets of sentences, X and Y, to return a third set of 

sentences X': 

(X, Y) ~ X I 

Intuitively, the left-hand argument, X,  is the item to be changed. The right- 
hand argument forces - up to uniqueness - a certain "direction of change": it 
represents the item to be "changed by". Asymmetry enters the AGM theory 
by way of three constraints: 

1. the left argument is closed under consequence; 
2. the right argument is a singleton set. 

Sometimes (as in G~denfors (1988) but not in AGM (1985)) it is also required 

that 
3. the left argument is consistent. 
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However, the last condition plays virtually no role in the AGM theory. It may 
be waived without significant consequences to the theory as a whole. 

The first condition marks one of the differences between theory contraction 
and what has come to be called base contraction (Hansson (1989), Fuhrmann 
(1991)). Though this condition is now usually associated with the AGM 
theory, it was not there in the beginning. In the first papers by Alchourrfn 
and Makinson the condition was not required. And in their survey of partial 
meet contractions (1985) AGM took much care to signal where the condition 
is actually used. 

The second condition has by and large withstood the tide of time. A first 
sketch of a theory of change operations that are not generally singular on 
the right is contained in Fuhrmann (1988). Hansson (1989), Niederfe (1991), 
and Rott (1992) have independently pursued the idea of multiple change 
operations. The purpose of this paper is to systematize previous ideas and 
results and to probe further into the theory of multiple change operations. 

The term "multiple contraction" was proposed in Fuhrmann (1988) for 
operations of contraction that allow for simultaneous contraction by more 
than one sentence. It should be distinguished from "repeated" or "iterated" 
contraction, i.e., the performance of two or more contractions in a sequence 
(not to be discussed here). Multiple contraction, as we understand it, is simul- 
taneous contraction by a set of sentences that need not be a singleton. 

Here, we shall be orthodox on the left and liberal on the right: We shall 
consider changes of logically closed sets of sentences by (arbitrary) sets of 
sentences. This asymmetry is maintained mainly for expository purposes. 
Ultimately we should want to be liberal both on the left-hand and on the 
right-hand side of the change operations; the fully general theory is planned 
for Fuhrmann (1994). 

In this paper we shall focus on multiple contraction operations. In a sequel 
to this paper we will treat multiple revisions and their reduction to multiple 
contractions by a suitable generalisation of the Levi identity for singletons. 

3. THE UBIQUITY AND NECESSITY OF MULTIPLE CONTRACTION 

Before introducing the formal theory, we owe it to the reader to show, in an 
informal setting, that multiple contraction is a useful tool in modelling belief 
change, and that it can be expected to do more than singleton contraction. 

Three questions need to be distinguished: 

1. Do multiple contractions occur? 

2. Need multiple contractions occur? 

3. Should multiple contractions occur? 
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We shall shortly argue that, as a matter of brute fact, multiple contractions 
do occur in our cognitive practice - though it may require a step of abstraction 
to recognize their presence. 

Still, multiple contractions may only occur as a matter of  convenience. 
Perhaps they can, at least in principle, always be replaced by singleton con- 
tractions and, hence, need not occur. We shall show that none of the multiple 
contractions we consider here generally allow for such reduction, though 
under certain conditions reduction is possible. Thus, given that multiple con- 
tractions are sui generis, there is a sense in which they must occur: there are 
no alternatives to achieve their effects. 

The last question is perhaps the most difficult of the three: given that infor- 
mation is precious, can it ever be rational to engage in multiple contraction? 
This is a question we shall not address here. Instead we proceed from the 
assumption that decisions to multiply contract are sometimes taken and that 
some ways of implementing such decisions are better than others. (Perhaps 
it is generally irrational to run nuclear power plants. But given that nuclear 
power plants exist, there are more and less rational ways of operating them.) 

Although we shall not here pursue the question as to which contractions 
ought to be carried out, we recommend it to the reader's attention. According 
to Levi there are only two situations in which it is rational to contract: 
opening one's mind for new possibilities and retreating from inconsistency. 
Levi merges the second with the third question by proffering the conjecture (in 
correspondence) that every legitimate contraction, that is, every contraction 
that serves one of the two purposes, must be (equivalent to) a singleton 
contraction. This is not a general reduction thesis but one pertaining only 
to those contractions one should engage in, i.e. the legitimate or rational 
contractions. Evidently, the conjecture turns much on the requisite notion of 
legitimacy; it is accordingly much more difficult to assess than the general 
reduction theses considered, and refuted, below. 

If Levi's conjecture can be shown true, it will constitute a very substantial 
philosophical insight into the nature of rational belief change. Such insights 
can happily live alongside the formal characterisations aimed at in this paper. 
(However, in the best of all possible worlds accessible to the authors, Levi's 
conjecture tums out false.) 

It is generally accepted in the belief change literature that it is difficult 
to find cases of pure contraction. In most cases, the retraction of a belief is 
provoked by the acquisition of some other belief which forces the old one 
out. Contraction seems to occur most frequently as part of a more complex 
operation which involves both the removal and the addition of information. 
The most clear case of pure contraction that has been discussed in the literature 
is what may be called 'contraction for the sake of argument' or 'mind-opening 
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contraction': one may wish to give a belief that a a hearing although it 
contradicts one's present state of belief. To open up for a one should then 
contract by --,a. (Levi (1980, ch. 3), (1991, ch. 4); G~irdenfors (1988, p. 60); 
Fuhrmann (1991, Sec. 4).) 

Contraction for the sake of argument will often involve the simultaneous 
removal of more than one belief. Suppose, for instance, that you wish to give 
each of two different views - both of which contradict your own standpoint - 
a fair hearing. You then need to open up your belief state to make it consistent 
with either of the two views. Representing the two views by the sentences, 
say -~a and -1/3 respectively, this is equal to removing both a and fl from 
your belief set. The result of this operation should be a belief set that implies 
neither a nor fl and is otherwise as similar as possible to the original belief 
set. 

It is important to distinguish the operation of completely removing a set 
of sentences, say, {a,/3}, from a theory from several other operations which, 
at first sight, seem to have similar effects: 

1. contracting by a V j3, 
2. intersecting the results of contracting by a and of contracting by ~, 
3. first contracting by c~ and then by/3, or vice versa, 
4. contracting by a/x/3.  

In Section 11 below we shall investigate possible strategies for reducing 
contractions by sets to contractions by single sentences. For now the following 
informal remarks may serve to indicate that it is far from obvious that such 
reduction strategies can be successful. 

As to the first operation, it is true that in order to remove a disjunction from 
a theory one needs to remove both disjuncts. But not conversely: contracting 
by the set {a,/3} does not require removal of a V/3. One may open one's 
mind to both --,a and --/3 without opening it to - , (a  V/3). For a rather drastic 
counterexample to this particular reduction thesis let/3 = --,a. 

Still (as David Makinson has pointed out in correspendence), contractions 
by disjunctions may gain interest when one turns to multiple revisions. Sup- 
pose a set A is to be consistently added to a theory T,  i.e. T is to be revised 
by A. A natural approach (natural, that is, from the viewpoint of partial meet 
constructions; see below) is to first consider the collection of all subsets of T 
that are maximally consistent with all of A, then to add A to what is common 
to all "preferred" such subsets, and finally to close the resulting set under 
consequence. Now, a subset X of T is (classically) consistent with A just in 
case no finite disjunction - h a  1 V . . .  V "-ha n (ai E X) can be derived from A. 
This simple observation suggests that a multiple revision by a (finite) set A 
should be defined in terms of a singleton contraction by V fi~ (the disjunction 
of all negated elements of A), followed by a singleton expansion by/~ A. This 
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strategy will be explored in a sequel to the present paper. Whatever the proper 
approach to multiple revisions may turn out to be, we take the objection of 
the last paragraph to the disjunctive approach to multiple contractions to be 
decisive. Here, then, may be a point where the connection - as formulated in 
the Levi Identity - between contractions and revisions comes apart. 

The second operation may result in a theory which is too small to represent 
the corresponding multiple contraction. Still, this reduction strategy seems 
to be the most promising of the four and we shall return to it at the end of 
Section 9. 

The third operation would introduce asymmetry where there should be 
none. For, the order of contraction may make a difference (see e.g. Hansson  
1992c). We cannot expect in general that the result of first contracting by 
oz and then by /3  is the same as that of first contracting by /3  and then by 
oz. But it is part of  the very idea of a multiple contraction that all sentences 
to be retracted are equal. Thus, sequential contraction cannot be the same 
operation as multiple contraction. Multiple contraction is simultaneous: it 
does not discriminate between items to be removed by some assignment of 

priority. 
Symmetry could be restored by intersecting all possible contraction 

sequences; in the case of a two-elements-set we could intersect the result 
of first retracting oz, then/3 with the result of first retracting/3, then oz. But this 
operation would make the contracted theory even smaller than the one that 
results from applying the second strategy above. Given that the second oper- 
ation cannot serve our purpose (as will be shown below), its symmetrizing 

mate must fail too. 
That the fourth operation is unsuitable as a representation of a contraction 

by {oz,/3} is easy to see: to remove a conjunction it suffices to remove one 
of the conjuncts. Thus, we may have oz staying in a contraction by oz A/3 but, 
of course, oz should not stay in a multiple contraction by {oz,/3} as we have 
used the term so far. 

The last operation points towards an alternative notion of multiple contrac- 
tion: instead of removing a certain set completely from a theory one might be 
interested in an operation that modifies a theory such that this set is no longer 
contained in it. This notion of a multiple contraction is useful whenever a 
theory is faced with contravening evidence which, however, is not specific 
enough to determine exactly which sentences ought to be retracted in order 
to accommodate the evidence. This is a situation frequently encountered: the 
recalcitrant evidence may, on its own, not determine which parts of the theory 
ought to be given up - in this sense it may be inconclusive. In the worst case 
the evidence gives no guidance at all as to which part of the theory is likely to 
be false. More usually, however, the evidence will incriminate a proper part 
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of the theory from which culprits should be picked. In any case we are faced 
with a choice which can only be made in the context of the whole theory. 
That is to say, the theorist has to judge - according to some contextually fixed 
relevant parameters - which part of the theory she can best afford to live 
without. 

(The theory of belief revision itself supplies a fine example of this kind of 
contraction. G/~rdenfors' (1988, sec. 7.4) impossibility theorem concerning 
the generation of conditionals in systems of belief revision is commonly 
taken to require that, in the presence of the Ramsey test, the full set of 
revision postulates be retracted. But, of course, the retraction ought not to be 
a complete one but one that involves choice - it is far from clear, however, 
which choice is to be made.) 

We can thus discern two kinds of multiple contraction. According to one 
kind of contraction all members of a set are retracted: they have to go in a 
package. There is another kind of contraction where one only needs to ensure 
that some set is no longer a subset of the theory in question. For that purpose 
it suffices to remove some elements of that set from the theory: one needs 
to choose which ones. We shall call the first type of multiple contractions 
package contraction and the second choice contraction. It will emerge (see 
Observation 17 below) that in the finite case the latter reduces to contraction 
by the conjunction of all sentences to be retracted. 

We close this section by adducing three more clusters of situations where 
multiple contractions are called for. First, suppose you have inadvertently 
expanded a consistent belief set by some sentence c~ such that - ~  is in the 
belief set. As was observed by Levi (1991, sec. 4.8), in such cases it is often 
best to restore consistency by retracting both o~ and ~o~. In general there is 
no reason to contract first by c~ and then by -~c~, or the other way around. 
We therefore believe that this is a case of multiple contraction by {o~, --,o~}. 
If the epistemic agent is only concerned with regaining consistency, then 
choice contraction is sufficient. If, on the other hand, she is more cautious (or 
"sceptical" to use another popular AI-term) and wishes to investigate again 
both the statements that led to contradiction (as Levi tends to recommend), 
then a package contraction is called for. 

Second, multiple contraction is applicable in non-epistemic contexts as 
well. Consider, for instance, the dynamics of normative systems - which, 
by the way, was one o f  the main sources for the logic of theory change; 
see Alchourr6n and Makinson (1981). Changes in legal systems often come 
in large p!eces: they typically involve the simultaneous alteration of many 
parts of a legal code. Contractions, or derogations as one would say in legal 
contexts, are frequently of (he package variety. It seems difficult, however, to 
find clear examples of choice derogations. 
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Third, most theories come in layers. For example, physics is (partly) 
based on a background of mathematics which in turn is (partly) based on 
a background of logic. This picture - a heritage from the Viennese Circle 
- is, perhaps, too simple but nevertheless essentially correct. The pictures 
does not only apply to the architectonics of science but also models ways 
information is structured in artificial intelligence systems, say, in distributed 
databases. Consider then a partial order of theories with a maximal element, 
T, (incorporating all theories below in the order) such that for all theories TI 
and T2: if T1 _< T2 and o~ --~/3 C 7"1 and oz E T2, then/3 E T2. (Probably the 
first formal study of such structures is Meyer (197+).) There may be occasions 
when we need to study the effect of removing a whole theory 2~ from the 
partial order - perhaps, in order to replace it by some other theory. (This is 
like removing a module from a distributive database.) It appears promising 
to represent such a change as either a package or a choice contraction of the 
top theory T by the subtheory Ti. 

This concludes, for the time being, our informal motivation and charac- 
terisation of multiple contraction operations. At this stage we can hardly do 
more than broadly outline our target notions and give some indication that we 
are engaged in a worthwhile enterprise. Once we are equipped with a corpus 
of formal definitions and results, we shall return to some of the questions 
raised in this section. 

4. FORMAL PRELIMINARIES 

We assume that our theory applies to languages that have at least a Boolean 
structure. In particular we assume that there are operations on sentences 
expressing negation (-1) and conjunction (A). The set of all sentences of the 
language under consideration will be denoted by 'Fml'. Small Greek letters, 
o~,/3, % . . . ,  range variably over sentences. Capital roman letters, A, B, C, 
• . . ,  X, Y, Z stand for sets of sentences• We reserve the letter T, sometimes 
dashed or subscripted, to denote theories• 

A theory is a set of sentences closed under logical consequence, Cn: 

T : Cn(T) 

We assume that Cn includes classical consequence. For the most part, howev- 
er, we only need a few general facts about (finitary) consequence operations. 
For the reader's convenience we recall these facts here: 

X C Cn(X) (Refl) 

X c Y '- Cn(X) C_ Cn(Y) (Mon) 



A SURVEY OF MULTIPLE CONTRACTIONS 47 

Cn(Cn(X))  c_ Cn(X) (Idm) 

Cn(X) = U { c n ( x 0 )  • x0  is a finite subset of X} (Fin) 

Apart from these abstract properties of consequence operations we shall at 
times make use of some further elementary properties pertaining to specific 
connectives in the language. Prominent among these properties is the so- 
called deduction equivalence, 

o~ --+ fl C Cn(X) -', ;-/3 E Cn(X U {a}) 

It will be convenient to freely switch between an operational and a relation- 
al notation. Thus, instead of a E Cn(A) we sometimes write A ~ a. More 
generally, given a consequence operation, Cn, we define two consequence 
relations, f- and It-, as follows: 

DEFINITION 1. For sets o f  sentences X and Y:  

1. X ~- Y ;- Y 7~ Cn(X) ¢ ~; 
2. X[~- Y ---4- Y C_ Cn(X). 
Thus, the relation ~- holds between X and Y if some of Y are among the 

consequences of X,  and the relation IF- holds if all of Y is contained in the 
consequences of X. The relation ~- is familiar from Gentzen and subsequent 
work in multiple conclusion sequents (such as Smiley and Shoesmith (1978)). 

Since we shall make frequent use of the two kinds of consequence relation, 
we take the time to emphasize that, according to the above definition, X ~ Y 
is another way of saying that none of Y is a consequence of X and X /~- Y 
means that Y is not contained in the consequences of X. 

We shall economise a little in writing down elements of the consequence 
relations: for instance X U Y F- Z t3 {a} will be abbreviated to X, Y }- Z, o~, 
and similarly for It-. 

Note, first, that for singleton right-hand-sides the two relations coincide: 

(.'. 

Note, second, that 

X[~- Y & YIF- X ~ Cn(X) = Cn(Y) 

However, from X ~- Y and Y t- X (X -qt- Y) it does not in general follow 
that Cn(X)  = Cn(Y-) - though the converse does of course hold as long as 
X and Y are non-empty. 
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The principal objects under investigation in this paper are certain change 
operations, in particular contraction operations. Formally, we consider oper- 
ations f which take a theory, T,  and a set of  sentences, A, to a new theory, 
f (T, A), the contraction of  T by A. In the case of  singleton sets to be retracted 
we write down the result of  contracting a theory T by {o~} as T - a .  Here 
then are 

THE A G M  POSTULATES FOR CONTRACTIONS 

T = Cn(T)  )- T - c~ = Cn(T  - a )  (closure) 

OVa : , a f t T - a  (success) 

T - a C_ T (inclusion) 

ee~T FTC_T-c~ 

a q F f l ~ T - o z = T - f l  

T C Cn( (T  - (~) U { a ) )  

(vacuity) 

(extensionality) 

(recovery) 

SUPPLEMENTARY POSTULATES 

(T - o~) N (T - / 3 )  C_ T - (oL A/3) (intersection) 

~ ¢ T -  (o~A/3) ;- T - (o~ A 13) C T -  o~ (conjunction) 

5. PACKAGE C O N T R A C T I O N  AND CHOICE C O N T R A C T I O N  

In this section, we shall search for suitable generalisations of  the success pos- 
tulate for contraction by singleton sets. As we shall see, such generalisations 
branch into two directions. 

The purpose of  the success postulate, 

o~ ~ T - oz, unless 0 ~- a (success) 

is to ensure that the sentence to be removed from a theory should no longer 
be contained in the theory after the contraction has been performed. This 
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intuitive requirement needs some adjustment in the face of another postulate, 
i.e. closure: 

T = Cn(T) > T - o~ = Cn(T - c~) (closure) 

- the result of contracting is not any old set of sentences but a set which is 
closed under logical consequence. Thus the closure of the empty set, Cn((~), 
is a subset of any contraction result. Accordingly, consequences of the empty 
set (Logical Truths) are immune to effective retraction, as stated in the unless- 
clause of success. 

In the sought generalisation of success the formula o~ must be replaced by 
a set A of formulae. Contracting a theory T by A should "remove" A from 
T. There is an evident ambiguity here: to remove A from T can mean either 

- to let the intersection of T with A be empty, or 
- to let A be no longer contained in T. 

As argued above, both possibilities are interesting in their own right and need 
t o  be investigated. 

To completely contract T by A is to remove all elements of A from 
T. We call this kind of removal operation package contraction and use the 
notation T - [A]. The tentative success postulate for package contractions is: 
A n (T - [A]) = (~. (In Fuhrmann (1988) the term "meet" contraction was 
used instead. The new term avoids confusion with the concept of a partial 
meet contraction as it occurs in the writings of AGM.) 

To contract T so that A is no longer contained in T it suffices to remove at 
least one of the elements of A from T. We shall refer to this kind of contraction 
as a choice contraction and use the notation T - (A). The tentative success 
postulate for choice contraction is: A ~ T - (A). 

Sometimes it is convenient to remain ambiguous between package and 
choice contraction. We shall then speak of (multiple) contraction and use the 
(ambiguous) notation T - A. To aid browsing we shall frequently - but not 
always! - prefix the name of a postulate with a 'P' (for 'Package') or a 'C' (for 
'Choice') even when the context leaves little doubt which kind of multiple 
contraction is under consideration. 

Since we are concerned here with theory contraction, we will assume that 
multiple contractions, just as their singleton counterparts, should satisfy a 
closure condition: 

T = Cn(T) > T -  A = C n ( T -  A) 

This immediately calls for a qualification of the success conditions for mul- 
tiple contractions. For, if A consists of theorems only, A cannot be choice- 
removed from any theory; and if A contains some theorem, then A cannot be 
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completely or package-removed from T. Hence, 

~ ,~- A ',. A ~: T -  (A) (Choice success) 

~ A  ----> A N  (T - [.4]) = ¢ (Package success) 

The condition that the set A must contain no theorems for a package 
contraction by A to be successful, may appear to be a very strong one. To 
illustrate somewhat drastically, suppose that A is very large but contains 
a single theorem. Then, for all we know so far, an application of package 
contraction may not remove any sentence from the original theory, simply 
because the condition under which success is guaranteed, does not obtain. 

An intuitively more satisfactory variation on the theme of package con- 
tractions is a contraction operation which, as it were, tries to do its best: it 
removes all those sentences in A from a theory that can be removed. Let 

stand for such a contraction operation. An appropriate success postulate 
would be 

(A\Cn(O)) N (T ~ A) = O 

where \ denotes set-theoretical subtraction. This kind of contraction appears 
to be well-positioned between choice and package contractions. But it is 
easily defined in terms of the latter by putting 

T ~ A := T - [A\Cn(O)] 

Some consideration has to be given to contraction by the empty set. The 
unconditional success postulate for choice contraction would be false for 
contractions by the empty set. But the unless-clause makes the postulate hold 
for 0-contractions by falsity of the antecedent. Trivially the success condition 
for package contraction holds in the case of the empty set. In other words, 
the success conditions do allow for contractions by the empty set. However, 
in that limiting case, these conditions convey no information specific to the 
notion of contraction. 

6. BASIC PROPERTIES OF MULTIPLE CONTRACTION 

AGM's list of six basic and two supplementary postulates for singleton con- 
traction has played a central r61e in studies of singleton contractions. In the 
last section, we generalised two of these postulates, closure and success, to 
multiple contraction. In this section, we shall discuss the generalisation of the 
remaining four basic AGM postulates and some closely related properties. 
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According to the inclusion condition, the result of a singleton contraction 
should be a subset of the original set: 

T-o~C_T 

The basic intuition behind inclusion is that contraction is "pure" in the sense 
of  not involving the acquisition of any new item of belief. Although it may be 
maintained that pure contraction in this sense is not common as an isolated 
phenomenon, it may occur as part of more complex changes in belief. In this 
sense, pure contraction is at least a useful logical abstraction - like material 
implication - and an important tool in the analysis of belief change. This 
holds true for multiple just as well as for singleton contraction. 

The appropriate generalisation of inclusion is obvious and it is the same 
for both choice and package contraction: 

T - A c_ T (P/C-inclusion) 

According to AGM's vacuity postulate, the contraction by something that 
was not in the original belief set is an idle operation. In other words, if what 
should be achieved by the contraction has already been achieved, then the 
operation of  contraction is vacuous. If you do not believe that London is the 
capital of France, then the contraction of your belief set by that belief involves 
no change at all. In general we should require that 

~ffT~T:T-~ 

One half of the consequent holds already unconditionally by inclusion; the 
other half is the vacuity condition. For package contraction, the corresponding 
principle should come into force only for sets that are completely disjoint 
from T. Only this case completely anticipates the effect of the proposed 
contraction. To illustrate this, suppose that you do not believe that London is 
the capital of France but believe that Berlin is the capital of Germany. Then 
the contraction of your belief set by the set containing these two beliefs should 
be a real change which removes the last-mentioned belief from your set of 
beliefs. If, on the other hand, you entertained neither of these beliefs, then 
the contraction is vacuous. Thus we have the following vacuity condition for 
package contraction: 

A N T = 0 ---> T = T - [A] (Package vacuity) 

With choice contraction, the intuition behind vacuity gives rise to a differ- 
ent principle. A choice contraction aims at removing at least one element of 
the set to be contracted. Therefore, for vacuity to come into force, it suffices 
that there is one element of A that is not an element of T. Thus, 

A ~ T ~ T = T - (A) (Choice vacuity) 
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The next among Gfirdenfors' basic postulates is extensionality. This pos- 
tulate ensures that the contraction of a theory by two logically equivalent 
sentences yields the same result: 

a -tk/9 ',.T-a=T-~. 

The most immediate generalisation of this postulate to multiple contraction 
would be to require that a contraction by logically equivalent sets yields the 
same result, i.e.: 

Cn(A) = Cn(B) > T - A = T - B (*) 

The principle will be shown correct for choice contractions, i.e. 

Cn(A) : Cn(B) > T - (A} = T - (B) (Choice extensionality) 

But (*) is not the right kind of extensionality condition for package contrac- 
tions. For, Cn(p A q) = Cn(p A q, p). Yet, if we put T = Cn(p) we have 
T - [iv A q] = T by vacuity whilst T - [p A q, p] # T by success. Instead of 
(*) we shall consider two further generalisations of singleton extensionality: 

A -~ B ',- T - [A] = T - [B] (Package extensionality) 

where A - B represents the property that for every element of A there is a 
logically equivalent element of B, and vice versa. Furthermore: 

A ~T  B < > T - [A] = T - [B] (Package uniformity) 

where --=T represents a relation of equivalence-according-to-T: 

A-TB< : . V X C T ' X k A <  >X~B 

The uniformity condition has first been formulated in Hansson (1992a). In 
general P-extensionality entails P-uniformity. Note that as far as contraction 
by singletons is concerned, the converse holds also, since o~ 4k /9  > Ol -~T 

/9. 
The most controversial among the six basic G~irdenfors postulates is that 

of recovery. According to this postulate, if a removed sentence is reinserted 
into the contracted belief set, then the original belief set is recreated, or, more 
precisely, can be recreated by logical closure: 

T C Cn((T -.~a) U {a}) 

The plausibility of recovery - especially in situations where T # Cn(T) - has 
been questioned by several authors (e.g. Makinson (1987), Fuhrmann (1991), 
Hansson (1991), Levi (1991)). However, without this postulate the remaining 
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AGM postulates do not suffice to achieve minimality of belief change. Where- 
as the postulate of inclusion precludes the addition of new sentences, and that 
of vacuity precludes subtractions in the vacuous limiting case, recovery is the 
only one among the AGM postulates that prevents unmotivated subtractions 
in the general case. It does so by ensuring that incisions into a theory are so 
small that contractions can be undone by simply adding the removed sen- 
tence. Indeed, without recovery the other five postulates are compatible with 
an operation such that if oL C T, then T - oz = Cn(O); see Hansson (1991). 
The following is a straightforward generalisation of singleton recovery; we 
formulate it for both choice and package contraction: 

T C_ Cn((T - A) U A) (P/C-recovery) 

The following weakening of recovery will tum out to be useful: 

If A is finite, then T c_ Cn((T - A) U A) (finite P/C-recovery) 

The intuitive idea behind recovery is perhaps too strong, but nevertheless we 
need some postulate that imposes informational economy. Another condition 
that, like recovery, requires contraction to treasure information is the postulate 
of relevance. Its singleton version was introduced in Hansson (1991) to 
capture the intuition that in contracting one should not remove items without 
reason. That is to say, whatever is being removed from a belief set in the 
course of a contraction does in some way contribute to entailing the sentence 
to be retracted. Relevance for singleton contraction is defined as follows: 

If/3 E T \ ( T  - ~), then there is some set T'  such that 

(a) T -  a C_ T' C_ T, 

(b) T '  [ / a  and 

(c) T',/3 ~- c~ (relevance) 

One might have hoped that relevance should characterise a different set 
of  operations than the apparently stronger principle of recovery. However, as 
the following two observations will show, the singleton version of relevance 
and recovery are interchangeable in the presence of the other basic AGM 
postulates. (This result does not hold if the theory T is replaced by an arbitrary 
set; cf. Hansson (1991).) 

OBSERVATION 2. 
1. I f  the operation - satisfies closure, inchtsion, vacuity, and recovery for 

singletons, then it satisfies relevance for singletons. 
2. I f  the operation - satisfies relevance for singletons, then it satisfies 

recovery for singletons. 
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Proof. Ad 1. If a ~ T, then T = T - a by vacuity and inclusion, so 
that relevance is vacuously satisfied. In the principal case, when a 6 T, let 
/3 6 T \ ( T  - a) and let T '  = (T - a)  U {/3 -+ o~}. By the logical closure of  
T,/3 ~ o: E T. By the inclusion postulate, T - a ___ T. It follows that clause 
(a) of the definition of relevance is satisfied. Clearly, (c) is also satisfied. To 
see that (b) is satisfied, suppose to the contrary that T'  F- a. Then it follows 
by deduction equivalence that T - a F- (/3 ~ a) ~ a, i.e. T - a F- a V/3. 
By recovery and again deduction equivalence, T - a [- a ~ /3. We may 
conclude that T - o~ ~-/3. However, it follows from/3 ¢ T - a and closure 
that T - a ~//3, contrary to our assumptions. This contradiction concludes 
the proof. 

Ad 2. Let T be logically closed and let - be an operation on T that satsfies 
relevance for singletons. Suppose that recovery is violated, so that there are a 
and/3 such that/3 6 T and/3 ¢~ Cn((T - a)  tA {a}). Then a ~ / 3  ~ T - a. By 
the logical closure o fT ,  it follows from/3 6 T that a ~ / 3  6 T. By relevance, 
there is some T '  such that T - a C_ T '  C_ T, T '  ~/a ,  and T', a ~ / 3  F- a. 
However, T' ,  a ~ / 3  b a is equivalent to T'  b (a  ~ / 3 )  -~ a,  i.e., T '  ~- a. 
This contradiction concludes the proof. [] 

The generalisation of singleton relevance to package and choice contrac- 

tions is straightforward: 

If fl E T \ ( T  - [A]), then there is some T I such that 

(a) T - [ A ]  C T'  C_ T, 

(b) T' ~/A and 

(c) T' ,  /3 ~- A (Package relevance) 

If/3 6 T \ ( T  - (A}), then there is some T '  such that 

(a) T -  (A) C_ T' C_ T, 
(b) T' ~ g and 

(c) T I,/~[k- A (Choice relevance) 

The next property, failure, also follows from the basic AGM postulates. It 
follows from closure and recovery and, hence, from closure and relevance: 

@?a~TCT-a 

As was indicated in the previous section, if A contains at least one theo- 
rem, then A cannot be completely removed from T. Thus, failure should be 
genera]ised to package contraction as follows: 

(~ ~- A '- T C T - [A] (Package failure) 
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For choice contraction, a generalisation of failure must be based on the 
observation that if A consists of theorems only, then it cannot be choice- 
removed. Thus, 

0IF- A :- T C_ T - (A) (Choice failure) 

Failure will play an important r61e in the representation theorems for multiple 
contractions to be proved below. 

We close this section by recording some of the entailment relations holding 
between groups of postulates. These facts will be used later when proving 
representation results for package and choice contractions. 

LEMMA 3. 
1. P-inclusion and P-relevance imply P-closure, T - [A] = Cn(T - [A]). 
2. P-relevance implies P-failure, ~) F- A ~ T C_ T - [A]. 

Proof. Ad 1. Suppose (1) T = Cn(T) and (2) T - [A] F- a while a 
T - [A]. From (2) we infer by inclusion and weakening that T ~- o~ whence 

E T by (1). So a C T \ T  - [A]. We may thus apply relevance to infer that 
there exists some set S such that 

T - [ A ]  c_ S C_T & S F /  A & S ,  a t -  A 

From (2) and the third conjunct we obtain by cut that S, T - [A] F- A. It 
follows from the first conjunct that S F- A - contrary to the second conjunct. 

Ad 2. Assume relevance and ~ F- A while T g T - [A]. Then for some 
sentence a, a E T \ T  - [A]. It follows by relevance that there is some set S 
with the property S ~/A - contrary to ~) ~- A. [] 

LEMMA 4. 
1. C-inclusion and C-relevance imply C-closure, Cn(T - (A)) = T - (A). 
2. C-relevance implies C-failure: 0[~- A ~ T C T - (A).  

Proof. As for Lemma 3. [] 

7. THE SUPPLEMENTARY POSTULATES 

In this section we shall briefly discuss the so-called supplementary postulates 
for contractions. These postulates will not be treated in the following sections 
where we propose models of multiple change. We mention them here only for 
the sake of completeness and for future reference. In a sequel to this paper, 
we intend to extend the modelling techniques of the following sections to 
encompass the supplementary postulates. 

(T - a)  fq (T - ~) C_ T - (a  A/3) (intersection) 
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c ~ ¢ T - ( t ~ A / 3 )  ~ T -  (c~A/3) C_T-c~  (conjunction) 

These postulates are called 'supplementary' because, unlike the other ('basic') 
postulates they make reference to the logical structure of sentences. Abstract- 
ing for a moment from the specific structure referred to, the supplementary 
postulates make assertions about how the contraction by a complex item 
relates to contractions by its components. In the singleton case the com- 
plex and its components are a conjunction and its conjuncts respectively. To 
remove a conjunction from a theory, it suffices to choose and remove one of 
the conjuncts. The supplementary postulates give some guidance as to how a 
contraction operation ought to behave in such a choice situation. In this sense 
the postulates may be seen as an attempt at a theory of finitary multiple con- 
tractions, to be more precise: of finitary choice contractions, as we shall see in 
a moment. It should thus come as no surprise that in a suitable generalisation 
of the supplementary postulates the reference to sentence structure vanishes 
and, thus, these postulates lose their "special" character. 

To begin with package contraction, note that contraction by some sentence 
ce also involves the removal of o~ A /3. Since oz A /3 is removed when oz 
is removed, we may assume that package contraction by o~ is identical to 
package contraction by {oz, o~ A /3}. Similarly, package contraction by /3 
should be identical to package contraction by {/3, o~ A/3}. We can then rewrite 
intersection as follows: 

(T - [o~, o~ A/3]) fq (T - [/3, o~ A/3]) C_ T - [o~ A/7] 

This may be generalised to: 

( T - [ A ] ) N ( T - [ B ] ) C _ T - [ A O B ]  

Similarly, the postulate of conjunction can be rewritten as follows: 

c~ ~ T - [ c ~  A/3] ~ T - [ c ~  A ~] C T - [ c ~ ,  ~ A/3] 

This can be generalised to the following two properties. (The first of  these 
was introduced under the name of non-deterioration in Hansson (1992b)): 

o ~ T - [ B ] ~ T - [ B ]  C T - [ B U { c e } ]  

AN ( T -  [ B ] ) =  ~ > T -  [B] _C T -  [A U B] 

For the generalisation of the supplementary postulates to choice contraction 
we propose the use of a quite different principle. Choice contraction by the 
union of two sets corresponds to singleton contraction by the conjunction of 
two sentences in the sense that it is sufficient for success to remove one of 
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the sets (one of the sentences). Therefore, the supplementary postulates seem 
best to be generalised to conditions on choice contractions as follows: 

T - ( A )  N T - ( B ) C _ T - ( A U B )  
A ~ Z T - ( U B )  > T - ( A U B )  C _ T - ( A )  

We leave the subject of the supplementary postulates with these very tentative 
generalisations. In what follows we confine attention on the basic properties 
of contractions as presented in the last two sections. 

8. TOOLS FOR CONSTRUCTING MULTIPLE CONTRACTION 

So far we have rested content with an indirect characterisation of contraction 
operations on theories: we have discussed a number of conditions on such 
functions and we have generalised the AGM set of basic postulates to multiple 
contraction operations. We shall now attempt more direct characterisations: 
we shall give recipes for how to construct multiply contracted theories. The 
postulates will be used as integrity constraints on such constructions in two 
ways. First, the constructed functions will be required to satisfy the postulates; 
and, second, every operation satisfying the postulates will have to be defin- 
able by means of the proposed construction. Accordingly, the main technical 
results in the next sections are suitable representation theorems for multiple 
contractions. 

In this section, we shall introduce the formal tools that will be used below 
to construct models of package and choice contraction. 

In the AGM tradition, the most important definition of singleton contrac- 
tion is that of partial meet (p.m.) contraction; AGM (1985). The basic idea is 
that one should try to lose as little information as possible when contracting 
a belief set. Suppose we are to contract a theory T by some sentence oz. As a 
first approximation towards contracting without incurring loss of information 
beyond necessity, we may restrict attention to the maximal subsets of T that 
do not entail oz. Call such subsets of T remainders and let T _1_ oz be the 
set of remainders (of T after removing oz). There are many such remainders; 
in fact, there are too many remainders to let their intersection (so-called full 
meet contraction) be a viable candidate for the contraction of T by o~. On the 
other hand, picking an arbitrary remainder brings in an element of gambling 
where rational choice is asked for. Besides, remainders are in a way "too 
large" to qualify as candidates for the contracted theory, as in so-called maxi- 
choice contraction; see AGM (1985) for some negative results. To our logical 
apparatus we need to add the brute assumption that among a collection of 
alternative remainders we can somehow pick those that are, in some sense, 
the most preferred ones in that collection. Note that it is not assumed that the 
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choice can always be narrowed down to uniqueness: there may be more than 
one most valuable remainder. Given that we have revealed our preferences 
by choosing a set of remainders we define T - oz to be the set of sentences 
that are common to all preferred remainders; i.e. 

T -- O~ = N s(T _L a) 

where s is a mapping (a selection function) from a non-empty class of the- 
ories (the remainders) into a non-empty subset of that class (the preferred 
remainders). We need to take care of the special case when T _1_ a is empty. 
This happens just when o~ cannot be removed because it is a logical truth. In 
that case we simply put s(T A_ a) = {T} whence T - a = T. 

There are at least two plausible ways to generalise the remainder operation 
( ) _1_ ( ) to operate on two sets instead of one set and one sentence. Indeed, 
in the paper in which the A_-notation was first introduced (Alchourr6n and 
Makinson (1981), p. 128), it was defined as an operation on two sets, with 
T _1_ A denoting the set of maximal subsets of T that do not overlap with A. 

DEFINITION 5 (Package remainders). X E T l A if and only if 
(a) X C_ T, 
(b) X ~/ A, and 
(c) V Y : X c Y C _ T  ' , .Y~-A.  

But just as the theory of multiple contractions naturally splits into a choice 
and a package branch, so there is a further natural generalisation of the AGM 
remainder operation. We may want to consider the set of maximal subsets of 
T that do not contain the set A: 

DEFINITION 6 (Choice remainders). X E TAA if and only if 
(a) x __ T, 
(b) X ,~- A, and 
(c) VY • X c Y c_ T '.. YI e A. 

As will be seen in a moment, ± is a suitable basis for constructing package 
contraction and Z plays the same r61e for choice contraction. 

Finally we introduce a function which chooses "preferred" remainders. 

DEFINITION 7. A selection function (for a theory T) is any function 

ST: p(~o(T)) ~ p(~(T)) 

such that 0 C sT(X)  C_ X for all X 7~ O, and sT(X) = {T} otherwise. (In 
the sequel we omit subscripts to s wherever convenient.) 
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9. CONSTRUCTING PACKAGE CONTRACTIONS 

Only a slight alteration of the AGM definition of partial meet contractions is 
needed to cover the case of package contraction: 

DEFINITION 8. An operation [-1 • g~(Fral) x p (Fra l )  ~ V(Fml) is a 
±-based partial meet (±-pm) contraction if and only if for each theory T 
there exists a selection function ST such that 

T -  [A] = A s ( T  ± A) 

THEOREM 9. An operation [-] is a ±-pm contraction if and only if it satisfies 
the following conditions for each theory T and sets A and B. 

T -  [A] C_ T (P-inclusion) 

~/A '.- A N (T - [A]) = 0 (P-success) 

A =T B '- T -  [A] = T - [ B ]  (P-uniformity) 

oz E T -  [A] '- (P-relevance) 

3 S ' T - [ A ] C _ S C _ T & S ~ A & S , a ~ - A  

Proof (----->.) inclusion: I fa  sentence is contained in all selected remainders, 
it must be contained in T. 

For success assume that (~ ~ A. Then T ± A ¢ ~ whence s(T ± A) C_ 
T ± A, by the definition of s. But for all T ~ E T ± A we have T ~ n A = (~. So, 
since ['1 s(T ± A) C T ~ for at least one T' E T ± A, N s(T ± A) N A = •. 

For uniformity assume A ---=T B, i.e. 

V X C _ T ' X ~ - A . :  ; , X F - B  (*) 

It will suffice to show that T ± A = T ± B. Thus, assume that X E T ± 
A, i.e. (a) X C T, (b) X F/A, and (c) VY • X C Y _c T ~ Y ~- A. Then, 
given (*), we may replace A by B in (b) and (c). Hence, X E T ± B. 

For relevance assume 

(1) a E T  and (2) a • T - [ d ]  

It follows from (2) that there is some S E s(T ± A) with a ~ S. Since we 
have assumed that a E T (1) and since S is maximal, S, a F- A. Moreover, 
s i n c e S E s ( T ± A ) , A s ( T J _ A ) C _ S C _ T , i . e . T - [ A ]  C_SC_T. 
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(,-~--) For each theory T we define a function ST such that 

s(T _1_ A) = { {T}{T' E T _1_ A"  T - [A] C T '}  otherwiseif T ± a ~ (3 

We need to show 
(1) s is well-defined, i.e. T _1_ A = T ± B ==~ s(T 3_ A) = s(T ± B);  
(2) s(T _1_ A) = {T} i f T  2_ A = (3, which is immediate from the definition; 
(3) s(T 3- A) C_ T I A if T 3_ A ~ (3, which is likewise immediate from 

the definition; 
(4) s(T _k A) :~ (3; and 
(5) T - [A] = ('1 s ( T  ± A). 

For (1) assume that T / A = T ± B.  We first show that 

A ~ T  B ($) 

Suppose X C T and X ~ B.  Then there exists a set X ~ _~ X such that 
X ~ E T ± B whence X ~ E T ± A by our assumption. So X ~ ~/A and since 
X ___ X ~, X V A. We have thus shown that VX _ T • X t-- A ~ X t- B.  
The converse follows similarly. 

Next  assume the principal case T ± A ¢ 0 - otherwise the required 
conclusion follows trivially. It follows that 

X E s(T 3- A) =:~ T - [A] _ X (**) 

Suppose that X E s(T ± A). To show that X E s(T ± B) (in the principal 
case T 3_ B ~ 0, which holds by assumption) it is sufficient to show that 
T - [B] C_ X.  We may detach the consequent from (**): T - [A] c_ X.  From 
(*) it follows by uniformity that T - [A] = T - [B] whence T - [B] _ X as 
required. 

(4) is trivial whenever  T 2_ A = ~. So assume T _l_ A ¢ (3. Then (3 ~ A. 
Thus, by success, A M (T - [A]) =- (3. By closure then T - [A] ~ A. By 
inclusion, T - [A] C_ T. Thus, either T - [A] E T 3_ A or there is some set 
S such that T - [A 1 C S C_ T which is maximal w.r.t, the property of  not 
entailing A, i.e. S E T _1_ A, as required. 

As to (5), the inclusion from left to right follows immediately from the 
definition of  8. For the converse we first consider the case that T ± A -- (3. 
Then the definition puts A s(T ± A) = T. So we need to show that T _C 
T - [A]. From the assumption T ± A = ~ it follows that (3 f- A. Hence, by 
failure, which follows from relevance by Lemma 3, T C_ T - [A] as required. 

Next  we consider the principal case: T ± A ~ 00. We need to show that 
for all formulae a,  if 

a ~ T -  [A] (*) 
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then 3T ' E T 3_ A such that T - [A] C_ T'  while a ~ T'. 
We may assume that 

ot E T (**) 

For, if a ~ T, then no remainder in T 3_ A will contain o~ whence the 
inclusion N s ( T  _1_ A )  C_ T - [A] holds trivially. From (*) and (**) it follows 
by relevance that there is some S such that T - [A] C_ S C_ T and S ~ A 
while S, a F- A whence S ~/a.  Thus there must be a set S ~ E T J_ (o~, A) 
such that S C_ S ' C_ T; hence, T - [A] C_ S ~ C_ T and a ¢ S ~. To show that 
S ~ E T 3_ A we need to verify that S ~ excludes A maximally. Thus consider 
may subset X of T such that S' C X. We know that X ~- a, A since S C X 
and S E T 3_ (a,  A). Moreover, we have S, o~ F- A and so, since S C X, 
X, a ~- A. It follows from X ~- a, A and X, a ~- A by (multiple conclusion) 
cut that X ~- A, as required. [] 

Some of the postulates discussed in Section 6 are not mentioned in the 
statement of the theorem. For example P-closure, P-failure and P-vacuity all 
follow essentially from P-relevance. This condition thus turns out to be rather 
powerful. Though slightly less transparent than P-recovery it is, on reflection, 
an intuitively much more convincing expression of the minimality maxim 
that should govern contraction. P-relevance is more easily understood if one 
observes that it is directly equivalent (given elementary assumptions about 
Cn) to the condition: if fl E T \ ( T  - [A]), then there is a T'  E T 3- A with 
T - [A] C_ T'  and/3 ff T'. In words: if/3 gets removed from T (in the 
course of retracting A), then some remainder (maximal consistent subset of 
T excluding A) cannot contain/3. 

Extensionality - the condition that logically equivalent sets determine the 
same contraction - which is used in the AGM characterisation of singleton 
p.m. contractions, does not hold for (multiple) _l_-pm contraction. But even in 
the case of singleton contraction there is a sense in which uniformity rather 
than extensionality should be the preferred postulate. For, it just so happens 
that in the singleton case extensionality can step in for uniformity. Extension 
to the multiple case, however, reveals that uniformity would have been the 
more informative postulate to use all along. This suggestion is based on two 
observations. 

First, if A and B are singleton sets, say {oz} and {/3}, then uniformity 
implies extensionality, oz -tF-/3 > T - [o~] = T - [/3]. Thus, extensionality 
for singletons is correct for 3--based p.m. contractions. Second, it is trvial 
from the definition of =T that if oz and/3 are in T and o~ =T /3, then a q~- b. 
It is this result that allows to use the weaker extensionality condition rather 
than uniformity in completing step (1) in the above proof when singleton 
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contractions only are at issue; cf. Observation 2.5 of AGM (1985) where the 
required step (1) is, as elsewhere in the AGM-literature, omitted. 

We now come back to the question (posed in Section 3) whether pack- 
age contraction can be reduced to singleton contraction, using the reduction 
schema 

T - [ c ~ 1 , . . . ,  c~n] = T - c~1 n . . .  a T - c~,~ ( 1 )  

Note that (1) implies 

A c_ B ==> T - [B] _ T - [A] (2) 

Despite the initial attraction of (2), it does not tally with the partial meet 
modelling adopted here. Consider a set X C T _L B. Then X C T, Cn(X) M 
B = {~ (whence Cn(X) M A = $), and for all X' ,  if X C X t c_ T then 
X '  f- B. However, the sentences in B that can be derived from X t may not 
be contained in A; so X ~ V A whence X ¢ T _L A. Thus, 

A C B ------>, T _L A C _ T £  B (3) 

may fail and so may (2). It is easy to see that the possibility of failure is 
preserved when we restrict attention to cases where A = {o~} and B = 

We do not know whether (full) P-recovery holds for multiple L-partial 
meet contraction. However, the weaker postulate of finite P-recovery (recov- 
ery from contraction by a finite set) can be shown to hold. Indeed, it follows 
from the postulate of P-relevance alone: 

OBSERVATION 10. If the operation [-]  satisfies P-relevance, then it satisfies 
finite P-recovery. 

Proof Let T be a logically closed set and let [-] be an operation on T 
that satisfies relevance. Suppose that finite recovery is not satisfied. There 
is then some finite set A and some sentence/3 such that/3 E T and/3 
Cn((T - [A]) U A). Letting A A denote the conjunction of all elements of 
A we then have/~ A ~ /3 ¢ T - [A]. It follows by relevance that there is 
some T '  such that T - [A] C_ T'  C_ T, T'  V A and T'  U {A A ~ / 3 }  ~- A. 
It follows from the last of these expressions that T ~ b (A A ~ / 3 )  --* o~ for 
some o~ E A. It follows from A A f- oz that (A A ~ / 3 )  ~ o~ is equivalent to 
a,  so that T I ~- oz and thus T / f- A contrary to the initial conditions for T ~. 
We can conclude from this contraction that finite recovery holds. [] 

10. PACKAGE CONTRACTION: RELEVANCE BEYOND RECOVERY 

Whereas singleton relevance and singleton recovery are interchangeable in the 
presence of the other basic postulates, finite package recovery is a distinctly 
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weaker property than package relevance. Indeed, it can be used, in conjunction 
with the other basic postulates, to characterize a wider group of contraction 
operations that do not in general satisfy package relevance. This result may 
appear somewhat surprising, since the intuitive principle behind the relevance 
postulates seems weaker than that behind the recovery postulates. 

The more general group of operations is defined as follows: 

DEFINITION 11. 

1. A set D C_ loT is B-covering if and only if D M (T 2. /3) # (~ for all 
/3 c B .  

2. T & A  = U{T2 .a  " a E A} 
3. A function ~r is a covering function for T if and only if for all A C_ T: 

I f  T A A  is A-covering, then or(A) is an A-covering subset of  T A A .  
Otherwise, or(A) = { T }. 

4. The operator [-] for T is a A-based p.m. contraction if and only if there 
is some covering function or for T such that: 

T - [ A ]  = A or(A) 

Thus, in A-based partial meet contraction, instead of selecting among 
elements of T 2_ A, we select among elements of T 2_ oz for all a E A. 
The covering condition ensures that for each a E A, at least one element of 
T 2. ct is selected, except in the limiting case when T 2. oz is empty for some 
oL E A (or equivalently: when A C3 Cn(0) # 0). 

The following observation shows that _l_-pm contractions are a proper case 
of A-pm contractions. 

OBSERVATION 12. 

1. I f  the operator [-] for T is a _l_-pm contraction, then it is a ~X-pro 
contraction. 

2. It does not hold in general that if the operator [-] for T is a A-pro 
contraction, then it is a 2.-pro contraction. 

Proof Ad 1. Clearly, for each X E T L A  and each a E A there is some 
Y such that X c Y and Y E T_l_c~. Therefore, it is sufficient for us to prove 
that i f X E T 2 . A ,  t h e n X = N { Y "  ( 3 a E A ) ( Y E T 2 _ o L & X C Y ) } .  
Let X E T2_A. Then X C N{Y • (3o~ E A ) ( Y  E T 2_ A & X C_ Y)} is 
obvious. To prove the converse inclusion let/3 be such that 

VY • (3a  E A • Y E T 2_ a & X C_ Y) ==~/3 E Y (1) 

Suppose for reductio that/3 ¢ X. Clearly, /3 E T. Since we assume that 
X E T l A it follows that X,/3 ~- A whence there must be some 7 E A such 
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that 

X,/3 ~- "), (2) 

Consider now any Z E T'±7 such that X C_ Z. It follows from (1) that 

/3 e z (3) 

From (2) and X c Z we may infer that 

Z,/3 ~- O' (4) 

But from (3) and (4) it follows (by cut) that Z ~- 7, contrary to our assumption 
that Z E T ± 7 .  

Ad 2. Let T be a theory that contains the three logically independent 
elements o~,/3, and 7. Then there are sets Z1 and Z2 such that: 

{O ,7 --'+ /3} C_ Z1 E T-I-/3 
C_ Z2 E T_I_ 7 

Let [-] be a/X-based p.m. contraction that is generated by a covering function 
0- such that 0-({/3, 3'}) = {Z1, Z2}. We show that [-]  is not a L-based p.m. 
contraction. Clearly, both Z1 and Z2 are closed under logical consequence. 

We are first going to show that 7 ~ /3 E Z2. Suppose not. Then, since 
Z2 E T ± 7 ,  we have (7 ~ /3) ~ 7 E Z2, i.e., 7 E Z2, contrary to the 
conditions. Thus, 7 -+ /3 E Z2. Since oz E Z1 yields a V/3 E Z1, we may 
conclude that {oz V/3, 7 ~ / 3 }  C_ Z 1 [-I Z 2 = T - {/3, 7}. 

It also follows from a -+ 7 E Z2 and Z2 E T ± 7  that oz ~ Zs, thus 

¢ T - {/3, 7}. 
Now suppose that [-] is also a ±-pm contraction. Then, since {oz V/3, 7 --+ 

/3} C_ T - [/3, 7] and a ¢ T - [/3, 7], there must be some X such that a ¢ X E 
T.±{/3, 7}, and {a V/3, 7 -+/3} C_ X. It follows from a ~ X E T±{/3, 7} 
that either X, a V/3 or X, oz F- 7- In both cases, {a V/3, 7 ~ / 3 }  C_ X yields 
/3 E X,  contrary to the conditions. [] 

THEOREM 13. An operator [-] for contractions of T by finite sets is an 
operator of A-based p.m. contraction if and only if it satisfies the following 
postulates: 

T - [A] = Cn(T - [A]) (P-closure) 

T - [A] C_ T (P-inclusion) 
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(P-vacuity) 

O~/A . ' , A M ( T - [ A ] ) = 0  

0 ~- A ---5, T C_ T -  [A] 

(P-success) 

(P-failure) 

T C_ Cn((T - [A]) U A), i f A  is finite (finite P-recovery) 

Prooji For one direction of the proof, we have to show that the postulates 
are satisfied. 

(P-closure): The intersection of a set of closed sets is itself closed. 
(P-inclusion): Directly from the definition. 
(p-vacuity): If T ~/A, then T _L ee = {T} for all ee E A. 
(P-success): If ~ ~/ A, then it follows for each ee C A that T _L ee is 

non-empty. 
(P-failure): If ~ f- A, then there is some a E A such that T_Lee = 0. It 

follows that T A A  is not A-covering, and thus, ¢(A) = {T}. 
(Finite P-recovery): If T A A  is not A-covering, then N¢(A) = T, from 

which (finite P-recovery) follows directly. For the principal case, when T A A  
is A-covering, let e c T. We show that e E C n ( ( T -  [A]) UA). Let Z E or(A). 
There is then some a C A such that Z C T_l_a. 

Let A A denote the conjunction of the elements of A. We prove that 
(A A --+ e) c Z. Suppose to the contrary that (A A + e) ¢ Z. By e E T 
and the logical closure of T we have (A A + ¢) E T. It follows from this 
and ( A A  -+ ¢) ~ Z c T ± a that ee C Cn(Z W {AA ~ e}). It follows 
that ( A A  --+ e) --+ ee E Cn(Z). Since A A  ~- a, ( A A  -+ e) ~ a is 
equivalent to a. We therefore have ee E Cn(Z), contrary to Z C T l a .  From 
this contradiction we may conclude that (A A -+ e) E Z. Since this holds for 
all Z C or(A), we can conclude that finite P-recovery holds. 

For the other direction of the proof, let [-] be an operator that satisfies the 
postulates listed in the theorem. We use the function o-, defined as follows: 

f {Z E T A B "  T - [ B ]  G Z} i fTABisB-cover ing  if(B) 
{T} otherwise 

We need to show that 
(1) cr is a covering function for T. 
(2) T - [B] = N ~(B).  

Ad 1. It is sufficient to show that if T A B  is B-covering and ee C B, then 
there is some Z such that T - [B] C Z C T_Lee. By P-success and P-closure, 



66 ANDRt~ FUHRMANN AND SVEN OVE HANSSON 

T - [B]b / oz and by P-inclusion T - [B] C_ T. The desired conclusion follows 
directly. 

Ad 2. We first show that T - [B] C_ n or(B). If T A B  is not B-coveting, 
then n or(B) = T, so that the desired conclusion follows by P-inclusion. If 
T A B  is B-coveting, then B N Cn(0) = 0. By P-success, B n (T - [B]) = @. 
It follows by P-closure and the construction of ~r that T - [B] C_ n or(B). 

For the proof of n a (B)  c_ (T - [B]) it should first be noted that this 
follows by P-vacuity if B N Cn(T) = 0 and by P-failure if B N Cn((3) # ~. 
In the remaining case, let o~ ¢ T - [B]. It follows from P-closure that 
a ] /nCn(T - [B]). We need to show that a ¢ n ~r(B). Since this is obvious 
if oz ¢~ T we may assume that a E T. 

It follows from (finite P-recovery) that a E Cn((T - [B]) U B) and 
thus, letting/~ B denote the conjunction of the elements of B , /~  B ~ a E 
Cn(T - [B]). It follows from this and o~ ¢ Cn(T - [B]) that it cannot hold 
for all/3 E B that a V/3 E Cn(T - [B]). Let/3 be an element of B such that 

a V/3 ¢ Cn(T - [B]). 
It follows that there is some X such that T - [B] c X E T_L(a V/3). It 

follows (Lemma 2.4 of AGM 1985) that X E T_J_/3 and thus X E T A B. 
By the definition of or, X E or(B). It follows from X E Tl (oz  V/3) that 
a ~ Cn(X) and thus a ¢~ n a(B) .  This concludes the proof. [] 

11. CONSTRUCTING CHOICE CONTRACTIONS 

Choice contractions can be characterised in a way that corresponds closely to 
what was obtained for the _L-operation. 

DEFINITION 14. Anoperation ( - > :  p(Fml) × p(Fml) --~ p(Fml) is an 
A-based partial meet (~-pro) contraction if and only if for each theory T 
there exists a selection function ST such that 

T - ( A )  = N s ( T A A )  

THEOREM i5. An operation (-> is an Z-pm contraction if and only if it 
satisfies the following conditions for each theory T and sets A and B: 

T - <A) _C T (C-inclusion) 

O ,O- A ;. A g T -  (A> 

Cn(A) = Cn(B) ~ T -  (A) = T -  (B) 

(C-success) 

(C-extensionality) 
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c~ E T \ T -  (A)( ',, (C-relevance) 

3S" T -  (A) C_ S C_ T & S  /~- A & S , @ -  A 

Proof The argument is almost completely parallel to that for _k-based 
p.m. contraction. For the proof of sufficiency we supply the verification 
of C-extensionality. We assume that (*) Cn(A) = Cn(B),  and show that 
T Z A  = T Z B .  Suppose that X C T Z A ,  i.e. (a) X C_ T, (b) X ~ A, and (c) 
VY • X C Y C_ T ----5, Y I t- A. It will suffice to show that A may be replaced 
by B in (b) and (c). Suppose for reductio that X[I- B, i.e. B C_ Cn(X),  Then, 
using (*), we have A C_ Cn(A) __. Cn(B) C_ Cn(X) whence XI~- A contrary 
to (b); so X ~ B. Next consider any set Y such that X C Y C_ T. It follows 
from (c) that A C_ Cn(Y) whence Cn(A) _C Cn(Y). Using (*) we obtain the 
following chain of inclusions: B C_ Cn(B) C_ Cn(A) whence B C_ Cn(Y), 
i.e. Ytl- B as required. 

To prove the necessity direction of the theorem we define for each theory 
T a function ST such that 

{T'  C T Z A "  T -  (A) C_ T'}  i f T Z A  ~ 0 
S ( T Z A )  \ {T} otherwise 

We need to show 
(1) s is well-defined, i.e. T A A  = T / B  ~ s (TAA)  = s ( T / B ) ;  
(2) s (TAA)  = {T} if T A A  = 0, which is immediate from the definition; 
(3) s ( T Z A )  C__ T / A  if T A A  ¢ 0, which is likewise immediate from the 

definition; 
(4) s ( T Z A )  ¢ !3; and 
(5) T -  (A} = n s ( T Z A ) .  

For (1) assume that T A A  = T Z B .  The sought conclusion is immediate in 
the cases when T Z A  = 0 or T Z A  = {T}. In the remaining case (~ 5~ T / A  ¢ 
{T} we have A C T and B c T. We first show that 

Cn(d )  = Cn(B) (*) 

Note that V X  C T • XIH A < '.. XI~- B (**). For, suppose for reductio that 
there is some X C_ T such that Xi~- A and yet X ~ B .  Then there exists a set 
X I D X such that X ~ C T Z B .  So, by our assumption, X ~ E T A A  whence 
X ~ ,~- A. But then X ,~- A since X is no bigger than X ~ - contradiction. This 
proves one direction of (**); the converse follows similarly. Since A, B C_ T, 
we may infer from (**) that AIH B and BIH A whence Cn(A) = Cn(B).  It 
follows by the definition of s that 

X E s ( T Z A )  :. r - (A} c X (***) 
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Suppose that X E s(TZA). To showthat X E s(TAB) itis sufficient to show 
that T - (B) C_ X. From our assumptions we may conclude that X E TAB 
and from (***) that T - (A) c_ X. From (*) it follows by C-extensionality 
that T -  (A) = T -  (B); hence, T -  (B) ___ X. This proves half of what is 
required to show that s is well-defined; the other half follows in an exactly 
similar fashion. 

(4) is trivial whenever TZA = 0. So assume TAA ~ 0. Then 0 /[~- A. 
Thus, by C-success, A ~ T - (A). By C-closure then T - (A) ,~- A. By 
C-inclusion, T - (A) C_ T. Thus, either T - (A) E TZA or there is some set 
S such that T - (A) C S C_ T which is maximal w.r.t, the property of not 
entailing all of A, i.e. S E TAA, as required. 

As to (5), the inclusion from left to right follows by C-inclusion and 
C-success immediately from the definition of s. For the converse we first 
consider the case when TZA = 0. Then the definition puts A s(TZA) = T. 
So we need to show that T C_ T - (A). From the assumption TZA = ~ it 
follows that ~1~- A. Hence, by C-failure (Lemma 4), T C_ T - (A) as required. 

Next we consider the principal case: TZA ¢ 0. We need to show that for 
all formulae a,  if a ¢ T - (A), then 3T' E T / A  such that T - (A) C_ T'  
while o~ ~ T ~. Excluding a trivial case we may assume that a E T. From 
a E T and a ¢~ T - (A) it follows by C-relevance that there is some S such 
that T - (A) C_ S C_ T and S I,tL- A while S, a I ~- A, whence S ( oz. Thus 
there must be a set S ~ E T / A  such that S C_ S ~ C__ T and a ~ $1; hence, 
T - (A) _ S ~ c_ T and a ~ S ~. Thus S I has all the properties required for 
T t" [] 

Partial meet contractions based on the choice-remainder operation Z sat- 
isfy also (C-vacuity) and (finite C-recovery). Contrary to what was found for 
_L-pm contractions, (finite C-recovery) determines - in the presence of the 
other basic postulates - the same finite contractions as (C-relevance). In this 
respect, choice contraction departs less dramatically from singleton contrac- 
tion than package contraction. As an alternative to what has been proved in 
the last theorem we thus have the following representation result. 

THEOREM 16. An operation ( - )  for contraction by finite sets is an / -pm  
contraction if and only if it satisfies the following conditions for each theory 
T and sets A and B. 

C n ( T -  (A)) = T -  A (C-closure) 

T - (A) C_ T (C-inclusion) 
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O /~- A '., A ~= T -  (A} (C-success) 

Olt- A ). T C_ T - A (C-failure) 

A ~ T > T C T -  (A) (C-vacuity) 

Cn(A) = Cn(B) > T - (A} = T - (B} (C-extensionality) 

T C_ Cn((T - (A}) U A), if A is finite (finite C-recovery) 

Proof We prove this theorem from Theorem 15 by showing the following 
five relations between the postulates: 

(1) C-relevance and C-inclusion imply C-closure. 
(2) C-relevance implies C-failure. 
(3) C-relevance implies C-vacuity. 
(4) C-relevance implies finite C-recovery 
(5) C-closure, C-inclusion, C-vacuity, and finite C-recovery imply C-rele- 

vance for finite sets. 
For (1) and (2) see Lemma 2. 
Ad 3. Let B ~ T. Suppose that T ~ T - (B}. There is then some c such 

that ¢ E T and c ~ T - (B}. It follows by C-relevance that there is some T ~ 
such that T - (B} c_ T '  c_ T, B ~ Cn(T')  a n d B  fi_ Cn(T 'U{a}) .  However, 
since T '  U {e} is a subset of T, it follows from B ~ T that B C_ T'  U {e} 
cannot hold. We may conclude from this contradiction that T C_ T - (B), 
and consequently that C-vacuity holds. 

Ad 4. Suppose that/3 ~ Cn((T - (A)) U A). We are going to show that 
/3 ff T. 

Let A A be the conjunction of the elements of A. In order to show that 
A A ~ /3 ¢ T, suppose to the contrary that A A --~ /3 E T. It follows 
from /3 ¢( Cn((T - (A)) U A) that A A  ~ /3 ¢ Cn(T - {A)). We can 
therefore use C-relevance to conclude that there is some set T ~ such that 
T -  (A} C_ T '  C_ T, A ~ Cn(T') ,  and A c C n ( T ' U { A A  ~ /3}). It 
follows from the latter expression that A A E Cn(T'  U {A A ~ / 3 } )  and thus 
(A A ~ /3) --~ A A c Cn(T~), or equivalently A A c Cn(T~), contrary to 
A ~ Cn(T~). It follows from this contradiction that A A --,/3 ~ T. 

Since A A ~ / 3  follows logically from/3, it follows directly from A A --, 
/3 ~ T,  by the logical closure of T,  that/3 ¢ T. This is sufficient to show that 
finite C-recovery holds. 

Ad 5. Let/3 E T and fl ¢( T - (A). We need to show that there is some T ~ 
such that T - (A) _C T '  C__ T, T '  ~ A and T'  U {/3}]k A. 
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If A ~ T, then it follows by C-inclusion and C-vacuity that T = T - (A). 
Then there can be no/3 such that/3 C T and/3 ~ T - (A}, and we are done. 

For the principal case, when A C_ T, let T t = (T - (A)) U {/3 ---+ A A}. 
We need to show that (i) T 1 C T, (ii) T I ~4- A, and (iii) T '  U {/3}[k A. 

(i): By C-inclusion, T -  (A} C__ T. Since/3 ~ A A is a logical consequence 
of A, it follows from A C_ T and the logical closure o f T  that ( T -  (A}) U {/3 -+ 
A A} c_ T, i.e. T' C_ T. 

(ii): Supposeto the contrary that Tq~- A, i.e., ( T -  (A})u{/3 ~ A A} I~- A. 
Then ( T -  (A)) U {/3 --+ AA} k AA, i . e . , ( T - ( A ) ) k  (/3--, AA)  ~ AA,  
i.e., (T - (A)) ~- A A V/3. 

Since/3 6 T it follows from finite C-recovery that (T - (A)) k- A A ~ / 3 .  
It follows from this and (T - {A}) k A AV/3 that (T - (A)) k/3. However, it 
follows by C-closure from/3 ~ T - (A) that (T - {A)) ~//3. We can conclude 
from this contradiction that T ~ )~- A. 

(iii) Directly from {/3 -+ A A} c_ T'. 
This concludes the proof. [] 

12. EXPLORING REDUCTION STRATEGIES 

In section 3, we gave some informal reasons for maintaining that both kinds 
of multiple contractions - package and choice - are independent of singleton 
contractions. In this section we shall look at reduction strategies more thor- 
oughly. With due caution we shall conclude that such strategies are not likely 
to be successful. The theory of multiple contractions appears to be not only 
a natural and in many ways necessary but indeed a proper extension of the 
AGM theory of singleton contraction. 

We need to specify more precisely what may be meant by reduction. 
There is a weak version of reduction that allows for repeated contractions. 
The picture is as follows. There is a space of theories. To each theory T 
we may associate two families of theories: those accessible from T by way 
of a sequence of multiple contractions and those accessible from T by way 
of a sequence of singleton contractions. The reduction thesis asserts that for 
each theory the two families coincide. (There may be a number of provisos - 
which need not concern us now - such as that the language must be sufficiently 
expressive.) 

Since the framework of this paper, just like the original AGM frame- 
work, does not provide for repeated contraction, we will only be concerned 
with stronger versions of the reduction thesis, that refer to single steps of 
contraction. Such versions all derive from the following schema: 

Reduction Schema: Let T be any theory. For each set A C Fml 
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there exists a formula f A  such that T - A = T -  fA .  

Particular instances or classes of instances of the schema are generated by 
(a) specifying the kind of contraction operation at issue and (b) defining 
the mapping f : f~(Fml) --+ F r a l .  If nontrivial mappings f can be found 
for which the thesis is true, then every multiple contraction T - A may be 
represented by a singleton contraction T - fA .  

Mappings to be avoided are those that depend on the particular contraction 
at issue. Thus, the equation T - A = T - f A  should not be made to hold by 
specifying f in terms of T - A. 

Other conditions are less indisputable but still reasonable. For example, 
the formula f A  should be constructed only from material supplied by A, i.e. 

var(fA) c_ A 

where var(fA) is the set of variables occuring in fA .  

It would be nice, if matters could be kept "simple", e.g. conforming to the 
condition 

f A  is a truth function of a finite subset of A 

Obviously, without some such substantial constraints the reduction sche- 
ma is impossible to assess. We shall therefore focus on a reduction thesis 
which seems - at least to us - particularly natural and tempting. This thesis 
can be factored out into two components: 

Fin i tude:  For each set A C F r a l  there exists a finite subset 

A ~ of A such that T -  A = T -  X.  

Senten t ia l i t y :  For each finite set A C_ F m l  there exists a 

formula f A  such that T - A = T - fA .  

The biggest hurdle to reduction is the finitude component: contraction by 
an infinite set cannot in general be simulated by retracting a finite set. 

To see why, note first that for particular sets A and theories T, choice and 
meet contractions may coincide: T - [A] = T - (A). To take a classical 
- though finite - example, suppose you decide to open your mind to the 
possibility that Bizet and Verdi were compatriots. Then it suffices to choice- 
retract the set {Bizet is French, Verdi is Italian}. But if you cannot make up 
your mind which one of the two sentences to give up, you will have to retract 
both. In that case choice and package contractions are indistinguishable. 

Consider now a theory T and an infinite set A such that T -  [A] = T--  (A). 
Let all sentences in A be logically independent. Thus, if a,/3 E A, then no 
logical connection between oz and/3 settles the question whether oz E T - / 3  
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or vice versa. Extending this thought, we may observe that for arbitrary 
subsets B of A, no logical considerations can settle the question whether 
T - A = T - B. Thus, A and T may be chosen such that for no - finite or 
infinite - proper subset B of A do we have T - A = T - B. 

This abstract counterexample to finitude may be fleshed out in many 
ways. Suppose for example that one decides to retract from T the proposition 
that Peter hates all prime numbers. (Hans Rott sugggested this example in 
conversation.) Let us also assume that the universal closure of a sentence is in 
T just in case T contains all of its instances (w-completeness). So retracting 
that Peter hates all prime numbers requires the removal of an infinite set of 
sentences, 

A = {Peter hates the number 2, 3, 5 , . . .  } 

To make the universal sentence fail, it suffices to retract one of the sentences in 
A: we have a paradigm case of choice contraction at hand. Moreover, as long 
as there is no information as to which particular prime number(s) Peter has 
ceased to hate, it will be best to withdraw all of A; thus, T - (A) = T - [A]. 
Clearly, since all elements in A are logically independent, there is no finite 
or even infinite subset of A whose deletion from T has the same effect as the 
deletion of all of A. Thus finitude fails. 

Since the sententiality schema may be instantiated in a potentially infinite 
number of ways a general negative result seems impossible to obtain. How- 
ever, in contrast to the general reduction thesis, we have a particularly simple 
positive result for choice contractions. 

OBSERVATION 17. For  all f inite sets A, T - (A) = T - A A. 

Proo f  It suffices to show that T / { a , / 3 }  = TZ{o~ A /3}, for arbi- 
trary sentences a and /3, which follows immediately from the fact that 

xl - a , /3  ..' ;. A ft. [] 

No corresponding simple relationship holds for package contraction. In par- 
ticular, 

T - [ A ]  = T - V A, for finite A 

fails, essentially because X F- a, fl does not follow from X ~- a V ft. As 
can straightforwardly be verified, it does not help to replace V by some other 
truth function. 

As we have seen, reduction of either choice or package contraction via 
finitude is not in general feasible. But for finite sets choice contractions 
may easily be represented as singleton contractions. A dual strategy fails for 
package contractions. 
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There are reduction strategies not covered by our reduction schema. For 
example, we may allow for representations defined in terms of intersections 
of sets of  singleton contractions, or we may allow for sequences of singleton 
contractions. Variations and combinations abound: we leave their exploration 
to the adventurous reader. 

13. CONCLUSION, FURTHER APPLICATIONS AND OUTLOOK 

In the last section we have supplied further evidence that both package and 
choice contractions are change operations sui generis.  Our approach to multi- 
ple contractions started from a search for suitable generalisations of the AGM 
postulates for singleton contraction. Not surprisingly then, in one direction 
the relation between the theory of multiple contractions and the AGM theory 
is a simple one: 

- the postulates for package and choice contractions coincide for contrac- 
tions by singletons, and 

- for contractions by singletons the postulates for multiple contractions 
are equivalent to the AGM postulates. 

Thus, the AGM theory emerges as a common limiting case of the two types 
of multiple contractions, as it should: 

T-[{~}]:T-~=T-<{~}) 

for any theory T and single sentence ct. 
There is a sense, however, in which the theory developed here is not 

s imply  an extension of the AGM theory. For, our postulates did not always 
result from the AGM postulates by - cum grano  salis - substituting sets for 
sentences. In the case of package contraction, the postulates of uniformity 
and relevance depart significantly from their AGM approximations, exten- 
sionality, and recovery. These departures resulted in a group of postulates 
which is stronger than what we would have obtained, if we had, as it were, 
blindly adapted the AGM postulates to cover contraction by sets. Without 
this additional strength multiple contractions cannot be represented as partial 
meet contractions° 

This paper is only a beginning in the study of multiple change operations. 
From a sizable agenda for future investigations we mention only four topics. 

First, the status of AGM's supplementary postulates with respect to multi- 
ple contractions needs closer investigation. Presumably this is connected, as in 
singleton contractions, with partial meet constructions in which the preferred 
remainder sets are identified as the maximal elements of some preference 
order. This approach is also more informative than the somewhat opaque use 
of selection functions. 
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Second, we have not investigated plausible principles that mediate between 
package and choice contractions. Except in limiting and uninteresting cas- 
es our basic theory does not support such principles. Prima facie plausible 
connections such as 

T -  [A] C_ T -  (A) 

are remarkably resistant to modelling attempts. Perhaps, on reflection, one 
will find that such connections ought not to be part of the general theory but 
should only hold under special conditions. 

Third, though the notion of  a contraction is in a certain sense purer than 
that of a revision, it is the latter which is of primary interest once we turn to 
applying our theory of change operations. We know how to obtain a theory of 
revisions from a theory of contractions in the singleton case, namely by means 
of the Levi identity. But we have made no attempt here to apply a suitable 
generalisation of the Levi identity to obtain a theory of multiple revisions. 
Just as there are two natural ways to contract by sets - i.e. package and choice 
- there should be corresponding modes of multiple revisions. (Cf. Fuhrmann 
1988 and Hansson 1992a.) 

Fourth, as Makinson and G~irdenfors have noted, there is a close connection 
between theory change - particularly theory revision - and nonmonotonic 
inference. 

"The key idea is: 

(1) See the revision of a theory T by a proposition a, forming a theory 
T • a, as a form of nonmonotonic inference from a; 

(2) Conversely, see a nonmonotonic inference of a proposition/3 from 
a proposition a as a discovery that/3 is contained in the result of 
revising afixed background theory T so as to integrate a. 

In this way, the nonmontonic relation a ~  /3 serves as a shorthand for 
a~T /3 which indicates that the nonomonotonic inference is dependent 
on the background theory T." 
(Makinson and G~irdenfors (1989)) 

This idea can be turned into a translation from theory revision to nonmono- 
tonic inference and vice versa. Under these translations core principles of 
nonomonotonic inference and the AGM postulates for theory revision exhibit 
a close correspondence. However, the AGM theory imposes a rather seri- 
ous stricture on inference relations thus generated: they must be singular on 
the left-hand-side. This is in stark contrast to other studies of nonmonotonic 
inference in which inferences are usually drawn from sets rather than single 
sentences. Indeed, that we may extract conclusions from multiple premisses 
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is usually considered one of the hallmarks of  inference or consequence rela- 
tions as opposed to implication connectives that are frozen at the first degree. 
A theory of multiple revisions would not issue in such strictures and could 
produce genuine inference relations. But, as just remarked, such a theory still 
awaits formulation. 
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